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Motivation

e We want to program using (general) recursion, but when is
this justified, i.e, in which situations can we be sure that
the equation we want to employ has a unique solution?

@ Approaches: inductive, coinductive types, structured
recursion, corecursion schemes, guarded-by-destructors
recursion, guarded-by-constructors corecursion; general
totality /termination/productivity analysis methodologies.

@ Not so well recognized: For guarded-by-destructors
recursion, there does not have to be an inductive type
around.

e This talk: recursive coalgebras (as opposed to initial
algebras) as a framework to deal with
guarded-by-destructors generically.



Recursive coalgebras: motivation

o Consider quicksort: Let Z be a set linearly ordered by <.
One usually defines quicksort recursively.

gsort: List Z — List Z
gsort [] = [l

gsort (z:1) = gsort(l<z)H (z : gsort(l>;))
@ Why does this recursive (a priori dubious) definition

actually make sense as a definition, i.e., how do we know
the underlying equation has a unique solution?



Recursive coalgebras: motivation
@ The equation has the form
gsort = qgmerge o BTgsort o gsplit
where BTz X =14+ 2 x X x X, and

gsplit: List Z — 1+ Z x List Z x List Z
gsplit [] = inl(x)
gsplit (z : 1) = inr((z,l<z,l>2))

gmerge: 1+ Z x List Z x List Z — ListZ
gmerge inl(x) = ]
gmerge inr({z,l1,02)) = 1 + (z: 1)



Recursive coalgebras: motivation

@ So why does the equation make sense as a definition?

lit
1+ Z x List Z x List Z aspx List Z
id 4 id x gsort X gsort gsort
1+ Z x List Z x List Z ameree List Z

@ Because gsplit sends a list to a container of strictly shorter
lists.

o Note, the fact that the result type was List Z and that the
assembling function was qmerge did not play any role, we
can replace them with something else and the equation is
still a definition.



Recursive coalgebras: definition

o Let (A, a) be a F-coalgebra and (C, ¢) an F-algebra

@ A morphism f: A — C is a coalgebra-to-algebra
morphism, if

FA & A
Ff f
FC L c

@ A F-coalgebra (A, a) is recursive, if there is a unique
coalgebra-to-algebra morphism from it into any F-algebra
— Denote: f = fixgo(p)

o (An F-algebra (C, ¢) is corecursive, if there is a unique
coalgebra-to-algebra morphism into it from any
F-coalgebra)



Recursive coalgebras: examples
o Let F:C — C be a functor with an initial algebra,
(,U,F, InF)
o Iteration: (uF, in}l) is a recursive F-coalgebra

—1

FuF e uF
Ffl lf
FC L4 c

o Primitive recursion:(uF, F(id,p,id,r) o ing') is a recursive
F(ld x K, p)-coalgebra

F(idyr,id ing!
F(uF x uF) {ur dur >F/,LF Dr uF

F(f x idlu,p)l f

F(C x pF) L4 c




Recursive coalgebras: examples

o Let P : Set — Set be the covariant powerset function.
@ A P-coalgebra (A4, a) is a binary relation (4, <):

afa) = {z€A|z<a}
z<a iff z€ala)
@ A P-coalgebra-to-algebra morphism from (A4, a) to (C, ¢)

is a function f: A — C such that f = poPfoai.e., such
that, for any a € A4,

fla)=o({f(z) [z < a})

Such a morphism exists uniquely for any (C, ) iff < is
wellfounded.
So: (A, a) is recursive iff (4, <) is wellfounded.



Recursive coalgebras: basic properties

o Let F:C — C be a functor with an initial algebra,
(,U,F, inF).
e Prop. (uF, in;l) is a final recursive F-coalgebra.

a

FA A
Ffl Jf
FuF inF uF

—1
FuF £ uF




Recursive coalgebras: basic properties

o Let F:C — C be a functor with an initial algebra,
(,U,F, inF).
o Let (A, a) be a recursive F-coalgebra

e Cor. Then, for any F-algebra (C, ¢), the unique
coalgebra-to-algebra morphism factorizes through the
initial algebra

fiXF,a(‘P) = ﬁXFin;l(‘P) o ﬁXF,a(inF)

FA & A

P |

FuF T uF
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Recursive coalgebras: basic properties

o Let (A, a) be a recursive F-coalgebra
o Then

hop=1%oFh = hofixpa(p) = fixpa(9)

o

FA A
Ff l f
FC g c
Fh l h
FD id D




Recursive coalgebras: basic properties

o Let (4,a) and (B, B) be recursive F-coalgebras
@ Then

ﬁOhZFhOOl = fiXp,ﬁ((p)oh:ﬁXEa((p)

o

FA A
Fh l l h
FB p B
T
FC ? c

o Let F =P : Set — Set, then, (B, ) is recursive and from
coalgebra (A, a) there is a homomorphism into it, then
(A, a) is recursive [Osius, Taylor]

@ Does not hold in general :-(



Recursive coalgebras: basic properties
o Let (A, a) be a recursive F-coalgebra and (B, ) a
F-coalgebra

o Let h:(A,a) — (B,B) and k: (B,B) — (FA, Fa) be
homomorphisms s.t., 5 = Fhok

e Then (B, ) is recursive FB B 5
% i [ / X

FFA Fo FA = A
FFf ‘ Ff l f

FFC e FC £ c

e Prop. If (4, a) is recursive, then (FA, Fa) is recursive



Recursive coalgebras: basic properties

o Let (4, a) be a recursive F-coalgebra.

o (a) If a is iso, then (4, 1) is an initial F-algebra.

e (b) If (A, a) is a final recursive F-coalgebra, then a is iso
(both as a morphism and as a coalgebra morphism) (and
hence (4,a ') is an initial F-algebra).

-1

o
(a) FAT__ A (b) FA<—2— 4
(04
Ff f Fal la
FC c i — - — )
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Recursive coalgebras: basic properties

o Let (A, a) be a recursive F-coalgebra
e Then (4, Faoa) is a recursive F2-coalgebra

Fa o

FFA FA

) N I

F(p o Fsnd, Ffst) (@ o Fsnd, Ffst)
il Rl §

FF(C’ X FC’) F(C X FC') C x FC
FFfstl % fst
7]
FFC o

o Holds also more generally: for any n > 0, the following is
recursive

Fa

Fn+lA‘&FnA‘;""7F2A FA (23 A




Transposition properties

o Let F,G:C — C be functors.

o Let 7: F - G be a natural transformation.
e Let (4, a) be a recursive F-coalgebra.

@ Then (A, 74 o a) is a recursive G-coalgebra.

TA a

GA FA
Ff J
Gf FC

/
]

GC




Transposition properties
o Let F:C — D and G : D — C be functors.
o Let (4, a) be a recursive GF-coalgebra.

e Then (FA, Fa) is a recursive FG-coalgebra.
Fa

FGFA FA GFA A
Ff
FGg / Jg GF fl ‘ f
G
FGC 4 c GFGC 4 ac




Transposition properties

o Let F:C — C, G:D — D be functors.

o Let L :C — D be a functor with a right adjoint.
o Let 7: LF = GL be a natural transformation.
o Let (A, a) be a recursive F-coalgebra.

@ Then (LA, 74 o La) is a recursive G-coalgebra.



Variations of recursiveness

o Let C be cartesian and F : C — C a functor with a strength
o.

@ An F'-coalgebra (4, a) is strongly recursive iff, for any
object I' of C and F-algebra (C, ¢), there is a unique
morphism f : ' x A — C satisfying

FOxA) <« T84 pypgidoxe poy
Ff f
c 14 FC

i.e., iff, for any object I', the F-coalgebra
(I' x A,or,4 o (idr x o)) is recursive.

@ A strongly recursive F-coalgebra (A4, a) is also a recursive
F-coalgebra.

@ For the converse, it is sufficient that C is cartesian closed.



Variations of recursiveness

o Let C be cartesian and F : C — C a functor.

@ An F'-coalgebra (A4, a) is parametrically recursive iff, for
any (K4 x F)-algebra (C, ), there is a unique morphism
f A — C satisfying

id
Ax FA < Sdae)

idAfol ‘f

Ax FC £ c

i.e., iff the (K4 x F')-coalgebra (A4, (id4, a)) is recursive.
@ A parametrically recursive F-coalgebra (4, a) is necessarily
recursive, but the converse does not hold in general.



Comonads and coalgebras

@ A comonad is a triple N = (N, ¢,d), where N is a
endofunctor, e : N - Id and § : N - NN are natural
transformations, s.t.:

NA—24 L NNa NA 04 NNA
ul \ ‘ENA ul l&\m
NNA —NeA [ ng NNA 04 NNNaA

@ A comonadic coalgebra is a N-coalgebra (4,i), s.t.:

i NA

A A
il \ il ‘5/;
NA £4 A NA—N . NNA




Distributive comonads

e Let F be an endofunctor and N = (N, ¢,d) a comonad
o Distributivity is a natural transformation x : FN - NF,

st.:
FNA—"2 5 NFA FNA az NFA
FsA‘ Jvé'FA F5Al ‘5&4
N
FA——— FA FNNA Y4 NFNA =54 NNFA

o Let f: FNA — B be a morphism, then it’s extension
ft: FNA — NB is defined as:

Féa

FNA FNA FNNA

fl fz\ l

B NB «——— NFNA



Generalized comonadic recursion

o Let (A, a) be a recursive F-coalgebra

e Let N =(N,¢,d, k) be a distributive comonad

@ Let i: A— NA be a comonadic N-coalgebra, s.t:
o3

FA A
Fi Jv ‘ i
FNA —F4  NFA N2 Ng

@ Then (A, Fioa) is a recursive F N-coalgebra

FNA «— % FA <t A
g
e ‘ l s f\
b
FNC FNC —2 NC £¢ c

\_/



Comonadic recursion

o Let the recursive F-coalgebra (4, a) be (uF,ing').
o Let N =(N,¢,d, k) be a distributive comonad.
@ Theni=(Ninpok,pl|): pF — NuF is a comonadic

N-coalgebra FuF ing uF
Fi i
Kur Ning
FNuF NFuF NuF

e For any F' N-algebra (C, ¢), there is a unique morphism
f:uF — Cs.t.,

foing=@poF(Nfoi) = f=eco(¢p')
FuF —™F__, ,F FuF —"F _, ,F
F(Nfoi)l lf FgJ Jg
FNC 4 c FNC —% . N t¢

C



Comonadic recursion
@ Primitive recursion as an instance:

NA = AXuF

Nf = fx id#F

€A = fst

5A = <iC|A></,LF,Snd>

ka = (Ffst,inpo Fsnd)

o Course-of-values iteration as an instance:

NA = StrfA

Nf = genf(fohdf,tif)
€A = hdf{

04 = genF(idStrFA7t|i')

ka = genf(Fhdf, Fuf)



Conclusions and future work
@ Done: An elegant framework, a generalization of results
known for initial algebras and modularization of proofs.

@ To do: Develop further methods for checking a coalgebra
for recursiveness.

o Relation between recursiveness and wellfoundedness (Paul
Taylor’s work).
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