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Abstract. It is cooperation that essentially differentiates multi-agent
systems (MASs) from single-agent intelligence. In realistic MAS applica-
tions such as RoboCup, repeated work has shown that traditional ma-
chine learning (ML) approaches have difficulty mapping directly from
cooperative behaviours to actuator outputs. To overcome this problem,
vertical layered architectures are commonly used to break cooperation
down into behavioural layers; ML has then been used to generate differ-
ent low-level skills, and a planning mechanism added to create high-level
cooperation. We propose a novel method called Policy Search Planning
(PSP), in which Policy Search is used to find an optimal policy for se-
lecting plans from a plan pool. PSP extends an existing gradient-search
method (GPOMDP) to a MAS domain. We demonstrate how PSP can
be used in RoboCup Simulation, and our experimental results reveal
robustness, adaptivity, and outperformance over other methods.
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1 Introduction

Cooperation is one of the most significant characteristics of multi-agent sys-
tems (MASs). Compared with a single agent, cooperating agents may gain over
autonomous agents in efficiency, robustness, extensibility and cost. Sometimes
cooperation is necessary to achieve goals due to the observation or action limi-
tations of a single agent.

In order to reduce the learning space of cooperative skills, most of today’s
MASs tend to adopt vertical layered architectures [1, 2]. Such structures can
arguably balance decision accuracy and speed, and simplify the learning process
for high-level (deliberative) skills — such as cooperation — by decomposing
them into lower-level skills. Those lower-level skills can be further decomposed
until the lowest-layer reaction skills.

Although machine learning approaches have shown advantages in solving
low-level skills [3, 4, 5], there still remain two difficulties in learning cooperation.
Firstly, when the number of agents increases, state and action spaces become too
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large for current machine learning approaches to converge. In the MAS domain,
previous machine learning methods showed very limited cooperation and most
of that cooperation was demonstrated in a stationary environment with only
2 players. Secondly, in an adversarial MAS application such as RoboCup and
Combat Simulation, cooperation is usually very complex and highly related to
its opponent, and repeated work has shown that it is difficult to yield such
cooperation directly through machine learning [6, 2]. Although planning methods
have arguably represented such cooperation, few of these methods have shown
successful generalised adaption.

We propose a novel method called Policy Search Planning (PSP) which com-
bines machine learning with a symbolic planner. We claim it can increase coop-
eration quality in POMDPs (Partially Observable Markov Decision Processes).
Plenty of human knowledge on complex cooperation can be presented in a sym-
bolic planner that allocates subtasks to appropriate agents; policy search is then
used to find an optimal cooperation pattern in an unknown environment.

To evaluate our method, we employed RoboCup Soccer 2D Simulation as
our test-bed, which is essentially a dynamic adversarial MAS environment. In
this domain, a number of low-level individual skills such as Positioning [4], In-
terception [3], and Dribbling [5] were addressed and solved by machine learning
approaches. Under high-level cooperation however, although some attempts have
been made to present and decompose cooperation using planning, few of them
have demonstrated how to learn to select plans (cooperative tactics) to maximise
overall performance in an unknown environment. Our experimental results show
adaptive cooperation among 11 agents and a significant improvement in perfor-
mance over pure planning methods.

In §2 we discuss previous work, and we then present our PSP method in §3,
where we consider a MAS as a generalised POMDP. The details of PSP in our
test-bed RoboCup 2D Simulation are provided in §4, and we conclude in §5.

2 Related Work

Accompanied by the booming research on MAS, increasing interest has been
shown in extending machine learning (ML) to the multi-agent domain. There are
mainly three kinds of ML: supervised, unsupervised and reinforcement learning.
In terms of learning cooperation, reinforcement learning is the most appropriate
one among the above three because the mappings from cooperative actions to a
global goal are usually obscure thus supervised and unsupervised learning is not
suitable for yielding cooperative strategies.

Under reinforcement learning (RL), Q-Leaning is the most common learning
approach in MAS scenarios. Recently however, there has been an increasing
interest in another method of reinforcement learning, namely policy search. As
a reasonable alternative to Q-learning, it can arguably promote performance in
POMDP (as shown below).



In this section, we review how policy search was used in single-agent and
multi-agent applications. Moreover, how reinforcement learning can be used to
promote or simplify cooperative planning is also reviewed.

2.1 Policy Search

In a large POMDP problem, such as RoboCup, traditional Q-Learning some-
times has difficulty in approximating the Q-functions [7]. Especially in the MAS
domain, since agents have to broadcast their local Q-function to the other agents,
Q-Learning is significantly restricted by storage space and communication band-
width. In recent years, Policy Search that directly finds the optimal policy is
stepping into the spotlight.

Since the policy is usually parameterised, the optimal policy can be found by
searching the parameter space θ, and using gradient-based search (also known as
Policy Gradient) can substantially increase the search speed. Under policy gra-
dient, the Boltzmann 1 distribution is widely used for computational simplicity.

In a single-agent POMDP system, as the state space cannot always be com-
pletely observed, biased estimation using an eligibility trace has been proposed
by Kimura et al [9]. Baxter and Bartlett further suggested a GPOMDP (Gradient
of Partially Observable Markov Decision Process) method, which was proved to
converge under some assumptions [10, 11]. GPOMDP is essentially a biased and
estimated gradient using the eligibility trace method [12]. The learning equations
are given as follows:

zt+1 (γ) ← γzt (γ) + ∇µUt (θ,Yt)

µUt (θ,Yt)

∆t+1 = ∆t + 1
t+1 [R(Ut)zt+1 −∆t]

(1)

where zt is an eligibility trace and ∆t is a gradient estimate. For each observation
Yt, control Ut and its reward R(Ut), µUt(θ, Yt) represents the probability distri-
bution with parameter θ at time t. γ ∈ [0, 1) is a discount factor, where γ close
to 1 yields a smaller bias but a larger variance. The contribution of GPOMDP
is that the action transition probabilities and the probability distribution over
the observation space are not necessarily required. Due to the space limitation
here, the details of generalised GPOMDP algorithm can be found in [10, 11].

In the MAS domain, on the other hand, only a little work has been done
using policy search. Tao et al suggested a possible way to adopt GPOMDP in
network routing [13]. Routers are regarded as agents, each of which has a set of
local parameters θi =

(
wi

1, w
i
2, · · · , wi

m

)
, and each parameter controls an action.

Essentially, every agent learns its local parameters θi from a local perspective
with the global rewards R

(−→
Ut

)
. This algorithm has also been employed in a sim-

ple cube-pushing game in recent research [14]. Experimental results supported
the performance of GPOMDP. Although this method has shown strong robust
performance in some circumstances, it has two particular limitations: the action

1 Essentially the same as Softmax and Gibbs distributions [8].



space in previous experiments was small, and the cooperation among agents was
not complex.

Another relatively more complex MAS application has been demonstrated
by Peshkin et al in [6]. Their algorithm essentially extends the REINFORCE
algorithm [15] to an MAS domain. It can guarantee convergence to local opti-
mality in a parameterised policy space. This algorithm has been adopted in a
simple football game, and experiments have demonstrated outperformance over
Q-learning in a partially observable environment. However, when the agent pop-
ulation grows the state space will become too large to be practical.

2.2 Combining Reinforcement Learning with Planning

Planning enables an agent to automatically achieve a goal by searching a set of
actions. It is a significant way to undertake deliberative reasoning. In single-agent
systems, there exist some mature planning methods, such as STRIPS (Stan-
ford Research Institute Problem Solver), ADL (Action Description Language),
HTN (Hierarchical Task Network) and PDDL (Planning Domain Definition Lan-
guage).

The usages of planning in MASs are different from those in single-agent
systems. In a single-agent system, planning is mainly used to find an action
sequence to directly achieve a goal. In the MAS domain, however, planning tends
to generate advanced cooperation. According to the taxonomy of Marinova [16],
there are mainly three types of multi-agent planning: centralised planning for
distributed actions, distributed planning for centralised actions and distributed
planning for distributed actions. Today, most planning approaches in MASs are
of the type centralised for distributed actions.

Pecora and Cesta proposed a hierarchical structure to apply PDDL plan-
ning [17] to MASs. The HTN method has been employed in MASs by Obst and
Boedecker [18, 19]. Their method can arguably promote expert knowledge in
dynamic POMDPs and speed up the planning process due to its hierarchical
planning structure, though the role mappings in this method are rather station-
ary. To extend the flexibility of role mapping, Fraser and Wotawa presented a
possible way to apply traditional STRIPS to MAS domains [20]. Before a plan
starts, an agent can select its role, and broadcast it to others.

In the planning process, RL has been adopted in two ways. Firstly, RL is
used to learn advanced individual skills, and so planners are able to search these
skills instead of the actuators at the lowest-level. Secondly, some attempts have
been made to directly promote planning decisions by using RL.

Using the first combination, recent work of Grounds and Kudenko [21] sup-
ports this approach using an example problem of an agent navigating through
a grid. In a single agent grid square, Q-learning is used to generate low-level
behaviours (choosing the direction of motion), while a STRIPS-based planner
encodes high-level knowledge. Experimental results reveal that their PLANQ
method performs better than pure Q-learning in a small domain, but on the
other hand it will lose its strength when the state space grows.



Strens and Windelinckx employed Q-learning in a multi-robot task allocation
problem [22]. Experimental result showed significant energy saving compared
with a greedy method. Their main contribution is extending the action space
to plan space. However, there are two limitations of this algorithm. Firstly, at
any state, the active plans have to be the same for all the agents. Secondly,
this algorithm requires a pure planning decision structure (pure deliberation
architecture). Therefore, the algorithm is difficult to apply to generalised MASs.

Recently, Buffet and Aberdeen proposed have a planner called Factored Pol-
icy Gradient (FPG) [23, 24, 8]. Their algorithm combines a single-agent planner
(PDDL) with the aforementioned policy search method, GPOMDP. Although
the authors did not mention this, its potential advantage is that a pure deliber-
ative architecture is not always needed. But the drawback is that all the plans
have to share the same action space.

3 Policy Search Planning (PSP)

C
B

A

P1

Opp
P2

Fig. 1. A Planning scenario
in RoboCup

In complex MASs, particularly in a system with
hybrid individual architectures, planning plays a
different role compared with that in traditional
domains. In a simplified single-agent system, plan-
ning is used to directly find a goal. In dynamic
MASs, however, the goal is usually difficult to
achieve, or sometimes it is difficult to describe the
goal. In addition, the traditional action effects will
lose their original meaning: environmental state
can also be changed by other agents at the same
time, or sometimes it continually varies even with-
out any actions. For example, consider a scenario
from RoboCup as shown in Figure 1: P1 and P2
are two team members with P1 controlling ball,
Opp is an opponent, and they are all located in
different areas. A traditional planner might con-
struct a plan in which P2 dashes to point A and
then P1 passes the ball. However, in this situation,
points B and C are also potential target points for

P2. Even from a human’s perspective it is difficult to say which plan is better
before fully knowing the opponent’s strategies. Therefore, in multi-agent systems
planning tends to be regarded as a “tutor” to increase cooperative behaviours so
as to improve overall system performance. Expert knowledge can be embodied
in such planning, without which agents mainly execute individual skills.

We propose a novel method called Policy Search Planning (PSP) for POMDPs,
which is essentially a centralised planner for distributed actions. In the exam-
ple of Figure 1, PSP can try to find the most appropriate policy for selecting
a plan even without the opponent’s model. Specifically, it can represent a num-
ber of complex cooperative tactics in the form of plans. Plans are shared by all



the agents in advance, and policy search is used to find the optimal policy in
choosing these plans. As a plan is not designed to find the goal directly but to
define cooperative knowledge, the style of it is not very critical. One possible
presentation, a PDDL-like planner, is shown in Figure 2.

Compared with original PDDL, :goal will not be included as PSP aims not
to achieve it directly, and :effect is not needed unless it is used for parameters
in policy search. The concept of stage is introduced, which makes complex co-
operation possible, whereby if and only if the success condition of the current
stage is met a planner moves to the next stage; and role mapping formulae are
introduced to find the most appropriate agents to implement actions

(define (PLAN_NAME)

(:plan_precondition CONDITION_FORMULA)

((:agentnumber INTEGER(N))

(ROLE_MAPING_FORMULA(1))

(ROLE_MAPING_FORMULA(2))

...

(ROLE_MAPING_FORMULA(N)))

((:stagenumber INTEGER(M))

((:stage_1_precondition CONDITION_FORMULA)

(:stage_1_success CONDITION_FORMULA)

(:stage_1_failure CONDITION_FORMULA)

(:stage_1_else CONDITION_FORMULA)

(:action1 ACTION_FORMULA)

(:action2 ACTION_FORMULA)...)

((:stage_2_precondition CONDITION_FORMULA)

...) ...

((:stage_M_precondition CONDITION_FORMULA)

...))

[(:effect EFFECT_FORMULA)])

Fig. 2. A PDDL-like Plan Structure in PSP

Fig. 3. Learning Process in PSP algorithm



In the PSP algorithm, a plan is actually a cooperative strategy. We can define
plenty of offline plans by hand to establish a plan pool, which is essentially an
expert knowledge database. If the external state satisfies the precondition of a
plan, the plan will be called an active plan. At time t, if there is only one active
plan, it will be marked as the running plan and actions will be executed stage
by stage. However, along with the growth of the plan pool, multiple active plans
may appear at the same time.

Previous solutions [18, 19] chose a plan randomly, which is clearly a deci-
sion without intelligence. Q-learning is apparently a wiser approach, but un-
fortunately Q-learning is difficult to adopt in generalised decision architectures
because all the plans cannot guarantee activation.

In this paper we employ another reinforcement learning method, policy search,
to overcome this difficulty. The learning framework is illustrated in Figure 3. Say
there exist n agents, which are organised in a hybrid architecture. From a global
perspective, although all the actions are executed by the lowest level, decisions
come from two different directions: individual skills and cooperative planning.
Then the global policy value that can be evaluated by the accumulated reward
can be represented as:

ρ
(
θ, θ1, θ2 · · · θn

)
=

∑

s∈S,φ∈ϕ

Rφ,−→a P (θ, φ)

=
∑

s∈S,ai∈Ai,i∈[1..n]

R (−→a ) P
(
θi, ai

)
+

∑

s∈S,φ∈ϕ

R (φ)P (θ, φ)

(2)

where: ϕ is the action plan pool in state s; P (θ, φ) is the probability distribu-
tion of selecting plan φ under plan parameter vector θ; θ1, θ2 · · · θn are policy
parameter vectors of each agent respectively;

∑
s∈S,ai∈Ai,i∈[1..n]

R (−→a ) P
(
θi, ai

)
is

the accumulated reward of individual skills; and
∑

s∈S,φ∈ϕ

R (φ) P (θ, φ) is the ac-

cumulated reward of cooperative planning.
In hybrid architectures, however, we cannot distinguish where the reward

come from, thus along with three assumptions of GPOMDP [10, 11], two addi-
tional assumptions need to be satisfied:

Assumption 1. Individual policies θ1, θ2 · · · θn are independent of planning pol-
icy θ.

Assumption 2. During the observation of policy value ρ (θ) over active plan
pool ϕ, probability distributions over individual actions under local policies
P

(
θi, ai

)
are stationary and individual actions yield a stationary accumu-

lated reward:
∑

s∈S,ai∈Ai,i∈[1..n]

R (−→a )P
(
θi, ai

)
= C



Under the above two assumptions, the global policy value (Equation 2) can
be rewriten as:

ρ
(
θ, θ1, θ2 · · · θn

)
=

∑

s∈S,φ∈ϕ

Rφ,−→a P (θ, φ) = C +
∑

s∈S,φ∈ϕ

R (φ) P (θ, φ) (3)

From the equation above, we find that under individual policies θ1, θ2 · · · θn

the accumulated reward of the individual skills is independent of the global
policy value ρ

(
θ, θ1, θ2 · · · θn

)
. In other words, under our assumptions the global

policy value is only determined by the planning policy value, and thus we can
directly use the global policy value to evaluate the planning policy value:

ρ (θ)′ = ρ
(
θ, θ1, θ2 · · · θn

)
=

∑

s∈S,φ∈ϕ

Rφ,−→a P (θ, φ) (4)

Therefore, we can extend the GPOMDP (Equation 1) to a MAS planning do-
main. Agents adjust the planning parameters independently without any explicit
communication. The adjustment is based on the local observation and a shared
planning control. For an agent i, the PSP learning equations are as follows:

zi
t+1 (γ) ← γzi

t (γ) +
∇µ−→

Ut
(θ,Y i

t )
µ−→

Ut
(θ,Y i

t )
∆i

t+1 = ∆i
t + 1

t+1 [R(
−→
Ut)zi

t+1 −∆i
t]

(5)

where θ is a planning parameter; and zi
t and ∆i

t are the eligibility trace and the
gradient estimate for the agent i respectively at time t. For each local observation
Y i

t , global planning control
−→
Ut and its global reward R(

−→
Ut), µ−→

Ut

(
θ, Y i

t

)
represents

the probability distribution with the planning parameter at time t.

4 Application in RoboCup

RoboCup simulation is a suitable application to evaluate the PSP algorithm
because of the following three reasons: firstly, humans have knowledge about
football and need to apply it to robots; secondly, intelligent cooperation is use-
ful; and thirdly, there exist no universal optimal policy and so adaptive and
adversarial strategies are required. In order to show universality, our plans were
constructed in a RoboCup coach language, CLang [25]; however, due to space
limitations, we are unable to show the CLang form of the plan here.

We created two opponent teams OppA and OppB which tend to defend from
side and centre respectively. All the plans have three features, which are the
extents to which a plan will change the ball or player positions towards the left
sideline, right sideline, and the opponent goal respectively. They are calculated
by vector operations, and selected under a policy π. The policy π is parameterised
by a vector of weights θ = (w1, w2, w3). The probability for selecting plan φ with
parameter vector θ is taken from a Boltzmann distribution.

Our experiments consist of three parts. In our first experiment, 30 plans were
defined in the plan pool, and agents play against OppA. In order to verify the



robustness of PSP, an additional 15 plans were defined in our second experiment
under the legacy policy from the first experiment. OppB is also used to test
adaptivity in our third experiment.

During the PSP learning, we used a discount factor of γ = 0.95; when agents
score a goal Rφ,−→a = 1; and the average number of goals per 100 seconds were
calculated every 15 minutes. The PSP learning processes lasted for 20 hours,
and was compared with a non-planning method and a planning without learning
method. Experimental results are shown in Figures 4–7.
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Fig. 4. Performance of pure individual
skills and planning without learning.
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The learning result of PSP (OppA/30 plans)

Fig. 5. The learning result of PSP
(OppA/30 plans).
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Fig. 6. Performance of PSP (OppA/30
and 45 plans).
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Fig. 7. The learning result of PSP
(OppB/45 plans).

Figures 4 and 5 show that multi-agent planning causes a larger fluctuation in
the average reward, but can promote overall performance. It supports previous
research on MAS planning [26, 20, 19, 18]. However, randomly selecting active



plans without learning leads to only a slight performance improvement in our first
experiment. In the first 4 hours, learning speed was very slow; the performance
difference between learning and non-learning is not very clear. It is followed by
a steady reward increase from around 6 to more than 7.5 goals per 100 seconds.
The figures illustrate that PSP leads to a notable increase in system performance
compared with non-learning planning and non-planning methods.

The result of our second experiment (Figure 6) shows slightly better per-
formance with 15 additional plans using the legacy planning policy. It suggests
that PSP is reasonably robust — with the same opponent, legacy policy is also
compatible with new plans that can lead to further improvement of the decision
quality.

Although the legacy policy may not be useful when playing against a com-
pletely new opponent, Figure 7 shows that through reinforcement learning agents
will finally find a policy to beat their new opponent, namely OppB which has a
stronger defence strategy. Without learning, pure planning can only make fewer
than 2 goals per 100 seconds; after about 8 hours’ learning, PSP increases the av-
erage goal rate to just below 3. Therefore, adaptive cooperations are established
without knowing the opponent model, which supports our theoretical analysis.

5 Conclusion and Future Work

Cooperative behaviours has long been regarded as one of the most important
features of MASs. The main difficulty in establishing cooperation using ma-
chine learning is the large learning space. Today, layered learning frameworks
are widely used in realistic MAS applications. Under this architecture, ML is
used to establish low-level skills while planning is used to define high-level tac-
tics.

Under a layered decision architecture, we proposed a novel method called
PSP in a generalised POMDP scenario, in which a large selection of cooperative
skills can be presented in a plan pool; and policy search is used to find the
optimal policy to select among these plans. The innovations of our PSP method
include:

1. enabling agents to learn to find the most efficient cooperation pattern in an
unknown environment;

2. the design of a learning framework to yield robust and adaptive cooperation
among multiple agents; and

3. extending GPOMDP to a MAS domain where complex cooperation is useful.

We demonstrated why and how PSP can be used in RoboCup 2D Simulation, and
experimental results show explicit robustness, adaptivity and outperformance
over non-learning planning and non-planning methods. In our more general (un-
quantified) experience with PSP it appears able to find solutions for problems
that cannot be solved in a sensible timescale using earlier methods.

PSP is our first attempt to learn the optimal cooperation pattern amongst
multiple agents. Our future directions are two-fold. Under RoboCup we are plan-
ning to define more plans and more features for PSP in our OxBlue 2D and 3D



teams to further verify the robustness of our method. Meanwhile, third party
developed opponents will be used to evaluate the performance of PSP. As to a
generalised POMDP, we are keen to explore how the different architectures of
a planner can effect learning quality, and to verify its generality in other MAS
applications.
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