
C++ for Scientific Computing 1

Practical 0 – Starting Eclipse

You can do all the practicals for this course with a simple editor and the command-line interface
if you wish. However, in future programming projects you may find that you get better productivity
from using an integrated development environment such as Eclipse or Visual Studio.

1 Launch the Eclipse IDE

Use the program launcher (“Activities”) to find Eclipse or start it from the command-line with
eclipse &. The first time you start Eclipse you’ll need to choose a workspace (such as the default
which is $HOME/workspace). Then on the Welcome screen you will need to click the arrow at the
top right to go to the Workbench.

2 Create a project

From the File menu, choose New, then Other/C++ Project. On some versions of Eclipse you
may need to select New -> Project -> C/C++ -> C++ Project. If you see the “Templates for
New C/C++ Project” window then select “C++ Managed Build”. Give the project a name
(for example “Project1”) and under Project types, choose Makefile Project -> Empty Project with
Toolchain Linux GCC. Click Finish. You should switch to the C++ perspective as prompted.

(It’s important for Practical 3 onward that you select the correct project type, so I’ve included a
screenshot from a recent version of Eclipse.)

C++ for Scientific Computing 2

3 Open a C++ code window and start programming

From the File menu, choose New, then Source File. Choose a name such as prog.cpp, and then
click the Open button. Type your program into the central, blank window.

#include <iostream>

#include <string>

int main()

{

std::string name;

std::cout<<"Enter name\n";

std::cin>>name;

std::cout<<"Hello "<< name<<"\n";

return 0;

}

4 Compiling

From the File menu (or right-click the project name), choose New, then File (or File from Template).
Call your new file Makefile and put only these contents into it.

all: prog

The idea here is that build system will look for a file called Makefile with instructions for building
a target called ‘all’. Your instructions say that one of the components of ‘all’ is an executable called
‘prog’. The build system will figure out that prog.cpp needs to be compiled. From the Project
menu select Build Project, to test this is working.

5 Running

Select Run -> Run. Choose C/C++ Local Application and press the ‘New’ button. You may need
to enter the name of the exectuable file (‘prog’) in the C/C++ Local Application box. You should
be able to launch the program.
If this is your first time coding in C++ then make sure you can use Eclipse to compile code or that
you can compile using a text editor and shell in Linux. If you want to work in another operating
system then you might experiment with Visual Studio (Windows) or Code::Blocks (multiplatform).

6 Extras

Eclipse needs a lot of screen space. It’s a good idea to run it full-screen and maximise the size of
the editing window.

It’s easier for demonstrators to talk about your code if you switch on line numbers. Right-click
in the left margin of the editing window and you should find a “Show line numbers” option.

C++ for Scientific Computing 3

Practical 1

If this is your first time coding in C++ then make sure you can use Eclipse to compile code or that
you can compile using a text editor and shell in Linux. If you want to work in another operating
system then you might experiment with Visual Studio (Windows) or Code::Blocks (multiplatform).
Note that when you are working on small, similar questions then you might need to consider how
to organise your work. You might prefer

• one Eclipse project per question

• one file per question each with its own main() function. You may need to tweak the build
rules so that each file produces an executable

• one function per question, with the main() function only calling the function you are testing
(when you are used to writing functions)

• delete (or comment out) answers to previous questions as you go along

If you feel that exercises in any of these sheets are getting repetitive and that you “get the point”
then it’s fine to skip questions and move on. If you need to check or visualize your results then feel
free to use Matlab or any scripting tools that you know.

1. Write code that asks a user to enter two positive integers from the keyboard and writes the
product of these integers to the screen.

2. Write code that calculates the product of more than two positive integers. The user should
be asked how many integers they want to enter, and then to enter the integers. The code
should then print the output to the screen. Note that you are not required to store the input
numbers but only calculate their product.

3. Modify the code in the previous exercise so that the user doesn’t have to specify in advance
how many integers there will be. Instead the user enters “-1” to signify the end of the string
of integers.

4. Modify the code in the previous exercise so that the program terminates if the product of the
integers exceeds 1000.

5. Write code to implement the backward Euler method to solve the ODE

dy

dx
= −y y(0) = 1.

on the interval [0, 1]. The user should be asked how many grid points they want to use—use
an assert statement to ensure that the number of grid points is greater than 1. Your code
should print a file called xy.dat that has two columns: the calculated values of x; and the
calculated values of y. Read this file into Matlab and plot the solution.

[The backward Euler method for this problem results in the difference relation

yn+1 − yn
h

= −yn+1

where h is step size]

Practical 1 continues on next page

C++ for Scientific Computing 4

6. Write code that reads the file xy.dat created in the previous exercise, and computes the error
at each point (the true solution is y = e−x). Print to the screen the maximum error.

7. Write code to calculate the scalar (dot) product of two vectors of length 3.

8. Write code to multiply two 3× 3 matrices.

9. Write a file called numbers.dat that contains 2 rows and 2 columns of numbers.

Run the following code:

#include <iostream>

#include <fstream>

#include <cassert>

int main()

{

std::ifstream input("numbers.dat");

assert(input.is_open());

double x, y;

while (!input.eof())

{

input >> x >> y;

std::cout << x << " " << y << "\n";

}

return 0;

}

Did the code give the expected results? Why were 3 rows of output printed out?1.

10. Write code for solving the equation Ax = b, where is A a 3× 3 matrix, and b is a vector of
length 3.

Have a think about how you would write code to solve the equation Ax = b using Gaussian
elimination, where is A a n× n matrix, and b is a vector of length n.

1Hint—Investigate the use of input.fail() or input.good()

C++ for Scientific Computing 5

Practical 2

Use dynamic allocation of memory for vectors and matrices in this practical: i.e. allocate memory
for vectors as shown on Slide 64, and memory for matrices as shown on Slide 67.

1. Write code that sends the address of an integer to a function that prints out the value of the
integer.

2. Write code that sends the address of an integer to a function that changes the value of the
integer.

3. Write a function that accepts two floating point numbers, and swaps the values of these
numbers.

(a) Write this function using pointers as function arguments:
void swap(double* x, double* y)

(b) Write this function using references as the function arguments

4. Write a function that returns the scalar (dot) product of two vectors of a given length.

5. Write a function that can be used to calculate the mean and standard deviation of an array
of double precision numbers. Note that the standard deviation σ of a collection of numbers
xj, j = 1, 2, . . . , N is given by

σ =

√∑N
j=1(xj − x̄)2

N − 1

where x̄ is the mean of the numbers.

6. Write a function multiply that may be used to multiply two matrices given the size of both
matrices.

7. Overload the function multiply written in the previous example so that it may be used to
multiply:

(a) a vector and a matrix of given sizes;

(b) a matrix and a vector of given sizes;

(c) a scalar and a matrix of a given size; and

(d) a matrix of a given size and a scalar.

8. The p−norm of a vector v of length n is given by

||v||p =

(
n∑

i=1

|vi|p
)1/p

where p is a positive integer. Write a function to calculate the p−norm of a given array, where
p takes the default value 2.

9. Write a module for solving the 3× 3 linear system Ax = b where A is non-singular.

10. Write a module for solving the n× n linear system Ax = b using Gaussian elimination with
pivoting, where A is non-singular.

C++ for Scientific Computing 6

Practical 3

This practical is based on the material in Lectures 7–9. In all cases test your code using suitable
examples.

In order to help you with this practical, I have prepared a small zip file containing student.h,
student.cpp, use student.cpp and a Makefile. This is available on weblearn and at
http://www.cs.ox.ac.uk/people/joe.pitt-francis/C++ScientificComputing/Prac3.zip

If you are using make on the command line (under Linux) then you will find the Makefile handy
since it will re-build automatically as you change things.

1. Write a class of students at the University of Oxford that has the following public members

• A string for the student’s name

• A string for the student’s college

• A string for the student’s status, i.e. graduate or undergraduate

• A string for the degree that the student is registered for, e.g. BA, MSc, DPhil, PGCE

• A double precision variable that stores library fines owed by the student

• A double precision variable that stores the tuition fees owed by the student

• A function that returns the total money owed by the student

• A few constructors that take different arguments

2. The string representing the student’s status can be only “graduate” or “undergraduate”.
Enforce this by making a student’s status a private member of the class. Write one function
that allows the user to set this variable only to one of these values, and another function that
can be used to access this private variable.

3. (a) A graduate student at the University of Oxford is a student at the University of Oxford.
Derive a class of graduate students from the class of students that you have already
written. Note that in order for the graduate student class to have access to the status
member of student it should now be protected rather than private.

(b) Graduate students do not pay tuition fees. Use polymorphism to write a function that
calculates the total money owed by a graduate student.

4. A student enrolled in the DTC is a graduate student at the University of Oxford. Derive this
class from the class written in the previous question.2

5. Write a function that accepts a pointer to an instance of the class of students and use the ->

notation shown on Slide 134.

2Hint: think about the access privileges for the status member of the base class—look at Slide 119 and Slide
139

http://www.cs.ox.ac.uk/people/joe.pitt-francis/C++ScientificComputing/Prac3.zip

C++ for Scientific Computing 7

Practical 4

The Exception class and Vector class designed in Lectures 10–12 and a Makefile are available on
weblearn and also at
http://www.cs.ox.ac.uk/people/joe.pitt-francis/C++ScientificComputing/Prac4.zip

This class of vectors includes the following:

• some constructors;

• a destructor;

• overloading of the binary operators +, –, ∗ and /, along with the unary operator –;

• overloading of the operators = and (); and

• the functions norm and length.

Exceptions have been used to check that the vectors used are of the correct size.

The aim of this practical is to write a class of matrices. Examples of features that should definitely
be included are

1. A constructor that dynamically allocates memory

2. A copy constructor

3. A destructor that frees memory

4. Overloading of the binary operators + and – to define addition and subtraction of matrices

5. Overloading of the = assignment operator

6. Overloading of the unary – operator

Examples of other features you may wish to include are

1. Overloading of the () operator

2. Overloading of the ∗ operator to define multiplication of matrices by scalars, vectors and
other matrices3

3. The function size that returns the size of a matrix (note that since size has two components
it should return an array or a vector)

4. Overloading of the / operator to define division of a matrix by a scalar and a vector – i.e. if
A*x=b then x = b/A. Use Gaussian elimination for solving A*x=b

5. Simple Matlab functions such as size, eye and diag

6. A more complex Matlab function such as cgs or gmres

3Hint: At this point you may find that your Matrix and Vector classes need to know about each other. If you
find that your #includes have circular dependency then investigate “forward declaration”.

http://www.cs.ox.ac.uk/people/joe.pitt-francis/C++ScientificComputing/Prac4.zip

C++ for Scientific Computing 8

More practicals (STL, Mex, finite difference)

1. Use templates to write a single function that may be used to calculate the absolute value of
an integer or a double precision floating point number.

2. Use the data on https://en.wikipedia.org/wiki/List_of_MPs_who_stood_down_at_the_

2019_United_Kingdom_general_election to construct two STL multimaps: one keyed on
year of entry and one keyed on political party. The idea is to enumerate all the MPs who
entered Parliament in 1970 (or whenever) without having to search through the origin list.

std::multimap<int, std::string> map_by_entry; // Key=year Value=surname

...

3. Using the two multimaps, form the set intersection of all the MPs in the list who entered in
1997 with party “Labour”, and write out their names.

4. Copy the example file which has a mexFunction definition (slide 157) and save it in a .cpp file.
Compile it with the mex compiler (or mkoctfile --mex for GNU Octave). Note that you will
need to do this on a machine which has a valid version of Matlab (or the octave-headers

package). Run the function from the Matlab interface (or from Octave).

5. Write a mexFunction which takes a vector as input and outputs the 2-norm of the vector.
Extend the function so that it can optionally take another argument in order to compute the
p−norm.

6. Write a mexFunction which multiplies two Matlab matrices. Check your answer against
Matlab.

Extra practicals continue on next page

 https://en.wikipedia.org/wiki/List_of_MPs_who_stood_down_at_the_2019_United_Kingdom_general_election
 https://en.wikipedia.org/wiki/List_of_MPs_who_stood_down_at_the_2019_United_Kingdom_general_election

C++ for Scientific Computing 9

7. Solve the heat equation in 1D using an explicit finite difference method for u(x, t) in [0, 1] .

The equation is
ut = uxx,

with Neumann boundary conditions at the end of the domain

ux(0, t) = 0, ux(1, t) = 0

and an initial heat distribution given by:

u(x, 0) = cos(2x).

This example is discussed at
http://commons.wikimedia.org/wiki/Image:Heatequation_exampleB.gif

The explicit finite difference scheme is

un+1
j − unj

∆t
=
unj+1 − 2unj + unj−1

h2
,

where ∆t is the and is known to be convergent for step sizes ∆t
h2 ≤ 1

2
. Use a first difference to

impose the boundary conditions:

un+1
0 − un0

∆t
= 2

un1 − un0
h2

.

In order for the bookkeeping to work properly you won’t want uj to be updated before it’s
used in the calculation of uj+1. Write your answer into another vector and then copy other
the original at the end of a time-step.

8. Re-factor the code so that this copying does not take place. Use two vectors at each time-step
(one for the input and one for the output). Swap them over at the end of each time-step.

9. Re-factor the code to use only one vector with the value of uj being held to be re-used in the
next iteration of the loop.

10. Consider (and implement if you have time) using an implicit (backward Euler) solver for this
problem. You will need to be able to solve linear algebra system involving a tri-diagonal
matrix.

http://commons.wikimedia.org/wiki/Image:Heatequation_exampleB.gif

