
C++ for Scientific Computing (2021) 01

C++ for Scientific

Computing

(2021)

Joe Pitt-Francis

Department of Computer Science

from material by Joe Pitt-Francis & Jonathan Whiteley

C++ for Scientific Computing (2021) 02

Administration

• Course material is at

www.cs.ox.ac.uk/people/joe.pitt-francis/C++ScientificComputing/

• New for this year: prerecorded video lectures (released weekly)

• There will be lots of time to do practical exercises

– More than enough material for course

– Suggested pace on web-page (don’t do them all)

• New this year: live Teams Q&A and office hours (Thurs @10)

– Announcements

– Discussion topics from lectures

– Model answers (please ask in advance)

• Special topic assignment details on the web-page

• Teams/Email: Joe.Pitt-Francis@cs.ox.ac.uk

C++ for Scientific Computing (2021) 03

A few introductory remarks

• C++ is a common programming language for scientific

computing applications, but it is not the only choice—other

languages also have their merits

• Learning C++ allows you to learn other languages—e.g.

FORTRAN, Java, C— very easily

• There are lots of resources for C++. I don’t advocate you

spending extra on books, but these are helpful

– Books: Pitt–Francis & Whiteley: Guide to Scientific

Computing in C++ and Meyers: Effective C++

– Web: http://www.cplusplus.com/

• “Integrated Development Environments (IDEs)” exist—e.g.

Eclipse and Visual Studio. These are very useful for managing

large code development

C++ for Scientific Computing (2021) 04

C++ is ‘object-oriented’

• Modularity: All the data and methods of a particular object are

held in one or two files – so can be worked on independently.

• Abstraction: The essential features and functionality are put in

one place.

• Encapsulation: The implementation of an object is kept hidden

from the caller (can be changed without breaking the interface).

• Extensibility: Code is easily re-used and extended.

• Polymorphism: The same code can be used for a variety of

objects (or for different types of data).

• Inheritance: A powerful way to extend functionality.

Many lecture courses begin with these concepts. We’ll cover the basics of

programming without object orientation – and mention this on the way.

C++ for Scientific Computing (2021) 05

Lecture 1 — The basics

General structure of a basic C++ program

1 #include <header1>

2 #include <header2>

3 int main(int argc, char* argv[])

4 {

5 line of code;

6 // this is a comment, ignored by the compiler

7 more code; // this is a comment as well

8 /* Multi-line

9 * comment

10 */

11 return 0;

12 }

see: later

C++ for Scientific Computing (2021) 06

Things to note

1. Header files are listed first. These are files that contain the

functions needed for operations such as input, output and

mathematical calculations

2. There is a section of code that starts “int main(int argc,

char* argv[])” (or “int main()” for brevity when

command-line input is unimportant)

3. This section of code is followed by more code enclosed between

curly brackets, { and }

4. Comments may easily be inserted into the code

5. Lines of code that “do something” end with a semicolon ;

6. Just before the closing curly bracket at the end of the code is a

statement return 0;

C++ for Scientific Computing (2021) 07

A first C++ program

1 #include <iostream>

2

3 int main(int argc, char* argv[])

4 {

5 std::cout << "Hello World\n";

6

7 return 0;

8 }

Save this code as hello world.cpp

C++ for Scientific Computing (2021) 08

This program prints the text “Hello World” to the screen

• iostream is a header file that is needed when using input and

output

• std::cout is a command that sends output to the console, i.e.

the screen

• \n is a formatting command that starts a new line

• All statements (lines of the program) inside the curly brackets

end with a semicolon ;

C++ for Scientific Computing (2021) 09

Compiling the code

A key difference between Matlab and C++—before the code can be

executed it must be compiled

When using the Gnu compiler of Unix/Cygwin this code can be

compiled by saving the code and typing

g++ -Wall -O -o hello world hello world.cpp

followed by return. This produces an executable called hello world

that can be executed by typing

./hello world

Visual Studio can also be forced to compile on the command line (if

you set the correct environment first):

cl /EHsc hello world.cpp

C++ for Scientific Computing (2021) 10

Numerical variables

Before a variable is used the type of variable must be declared. For

example if the variables i and j are integers and a is a double

precision floating point number the statements

int i, j;

double a;

must be included in the program before these variables are used.

It is advisable to use double rather than float in scientific

computing applications

Some names, such as int, for, return may not be used as variable

names because they are used by the language. These words are

known as reserved words or keywords

see: example structure

C++ for Scientific Computing (2021) 11

Some example lines of code that add two integers and print the

answer to screen are

1 int integer1, integer2, answer;

2

3 integer1 = 5;

4 integer2 = 10;

5

6 answer = integer1 + integer2;

7

8 std::cout << "The sum of " << integer1 << " and "

9 << integer2 << " is " << answer << "\n";

The details of the std::cout statement will be explained later

C++ for Scientific Computing (2021) 12

More on numerical variables

A variable may be initialised when defining the variable type, for

example

int i = 5;

The line above is equivalent to declaring i to be of type int and

assigning it the value 5, in one step.

int i;

i = 5;

C++ for Scientific Computing (2021) 13

When assigning values to floating point variables it is good

programming practice to write numbers with decimal points, i.e.

double a = 5.0;

rather than

double a = 5;

If a quantity is a constant throughout the program it may be

declared as such

const double density = 45.621;

C++ for Scientific Computing (2021) 14

There is a shorthand for some mathematical operations

Longhand Shorthand

a = a + b; a += b;

a = a - b; a -= b;

a = a * b; a *= b;

a = a / b; a /= b;

a = a + 1; a++; if a is an integer

a = a - 1; a--; if a is an integer

C++ for Scientific Computing (2021) 15

Some variable types and ranges in most 64-bit operating system are

given below. Note the ranges are operating system dependent

Variable type C++ name Range in 64-bit

integer short int −215 to 215 − 1 (≈ 104)

integer int −231 to 231 − 1 (≈ 109)

integer long int −263 to 263 − 1 (≈ 1019)

unsigned integer unsigned int 0 to 232 − 1

floating point float −3.4× 1038 to 3.4× 1038

floating point double −1.7× 10308 to 1.7× 10308

floating point long double −1.2× 104932 to 1.2× 104932

Note that long double is identical to double on an older 32-bit

architecture

Note that the size of long int is identical to int 32-bit architectures

C++ for Scientific Computing (2021) 16

Some example lines of code

1 float a, b;

2 double d, e;

3 a = 3.0;

4 b = (a * pow(a, 7.5)) / 2.0;

5 d = 4.0;

6 e = 2.0 * sqrt(d);

pow(x,y) gives the value of xy.

sqrt(d) gives the square root of the variable d

When using mathematical functions such as pow, you should use the

additional header file cmath and so you need the line of code

#include <cmath>

C++ for Scientific Computing (2021) 17

Division of an integer by another integer will almost certainly cause

problems

An example is given in the following piece of code

int i = 5, j = 2, k;

k = i / j;

std::cout << k << "\n";

The variable k is an integer and so cannot store the true value, 2.5

Instead, it will store the value 2

C++ for Scientific Computing (2021) 18

Suppose an integer is divided by a variable of type double — or vice

versa — and that the result returned is stored in a variable of type

double, as shown in the code below.

The variable k in this code will contain the mathematically correct

answer

double i = 5.0, k;

int j = 2;

k = i / j;

std::cout << k << "\n";

However, this is bad programming practice and should be avoided

C++ for Scientific Computing (2021) 19

Suppose an integer is divided by a variable of type double — or vice

versa — and that the result returned is stored in a variable of type

int, as shown in the code below.

The variable k in this code is unable to store the mathematically

correct answer

double i = 5.0;

int j = 2, k;

k = i / j;

std::cout << k << "\n";

Only construct mathematical operations that are on elements of the

same type

An integer can be converted to a different data type – see the next

slide

C++ for Scientific Computing (2021) 20

Variables can be converted from one type to another for example

double i = 5.0, k;

int j = 2;

k = i / ((double) (j));

std::cout << k << "\n";

In this example, ((double) (j)) allows the variable j to behave as

if it were a double variable.

C++ for Scientific Computing (2021) 21

Modern C++ aside: the auto type

Modern C++ allows the type to be inferred if it is initialised to a

value when it’s declared.

auto i = 5.0;

auto j = 2;

This is useful when types are long (see Lecture 13).

But it is dangerous when we are using simple types such as int and

double.

auto x = 20; // Compiler infers x as int

x += 2.5;

// Programmer might assume x is double

std::cout << "x = "<<x<<"\n"; // x = 22

To use modern C++ features compile with g++ -std=c++11

C++ for Scientific Computing (2021) 22

Arrays (static allocation)

An array is known to mathematicians as a matrix or, in one

dimension, a vector

If the size of the array is known in advance then it can be declared as

follows

int i = 5, j = 4, array1[4];

double array2[3][3]; //3 by 3 array

In contrast to Matlab and FORTRAN the indices of an array of

length n start at 0 and end at n-1

Either get used to the new index numbering, or define arrays to have

one extra element

C++ for Scientific Computing (2021) 23

Elements of the array are accessed by placing the indices in separate

square brackets, for example

array1[0] = 1;

array2[1][2] = 3.0;

Arrays can be initialised when they are declared, for example

double array1[3] = {0.0, 1.0, 2.0};

int array2[2][3] = { {1, 6, -4}, {2, 2, 2} };

where the array array2 represents the matrix

1 6 −4

2 2 2




C++ for Scientific Computing (2021) 24

Note that the values of arrays may only be set using the curly

bracket notation when they are declared—for example the code

int array[3] = {0, 1, 2};

is correct, but the code

int array[3];

array[3] = {0, 1, 2};

is not correct.

C++ for Scientific Computing (2021) 25

Boolean variables

These variables take the values true or false, and are of use when

using if conditionals and while loops

They are used as follows:

bool flag;

flag = true;

C++ for Scientific Computing (2021) 26

ASCII characters

ASCII characters are numbers, uppercase letters, lowercase letters

and some other symbols

These characters may be represented using the data type char

1 #include <iostream>

2

3 int main()

4 {

5 char letter;

6 letter = ’a’; // note the single quotation marks

7

8 std::cout << "The character is " << letter << "\n";

9

10 return 0;

11 }

C++ for Scientific Computing (2021) 27

Strings

A character is one letter or number, a string is an ordered collection

of characters

For example, “C++” is a string consisting of the ordered list of

characters “C”, “+”, and “+”

To use strings in C++ requires an extra header file as shown below

1 #include <iostream>

2 #include <string>

3 int main()

4 {

5 std::string city; // note the std::

6 city = "Oxford"; // note the double quotation marks

7 std::cout << city << "\n";

8 }

C++ for Scientific Computing (2021) 28

Tip: automated builders and IDEs

• Possibly start with an editor and a command-line compiler

• As projects get larger you need something to keep track of the

compilation for you

• Make is a good dependency-checker: time-stamps determine what

is re-made (Lecture 7). CMake is useful for configuration.

• SCons is a more sophisticated tool (written in Python). MD5

hashes are used to decide what needs to be re-made.

• Integrated development environments: Visual Studio (Windows),

Borland (Windows), Xcode (OSX), Kdevelop (KDE) and Eclipse

(multi-platform) either use Make/SCons or their own

dependency checkers

• An IDE will help you to write code by cross-referencing between

your files, saving your work and offering a debugger

C++ for Scientific Computing (2021) 29

Lecture 2 — Flow of control

The if statement

Suppose you want to execute two statements if the condition p > q is

met

This is achieved using the following code

if (p > q)

{

statement1;

statement2;

}

Note the indentation of the block between { and }. This makes it

clear which statements are executed in the block

C++ for Scientific Computing (2021) 30

If only one statement is to be executed curly brackets aren’t strictly

necessary

For example, the following code will execute statement1 if the

condition p > q is met

if (p > q)

statement1;

but this is poor software engineering practice

Instead, write this code as

if (p > q)

{

statement1;

}

The use of curly brackets makes it clear which statement(s) are to be

executed

C++ for Scientific Computing (2021) 31

Third example – more than one condition

if (p == 0)

{

statement1;

}

else if (p < 0)

{

statement2;

statement3;

}

else

{

// p > 0

statement4;

}

C++ for Scientific Computing (2021) 32

Fourth example – nested if statements

if (p < q)

{

if (x >= y)

{

statement1;

}

}

Fifth example – more than one condition

if (p < q || x < y)

{

statement1;

}

statement1 is executed if and only if one or both of p < q and x <

y is true - i.e. || is the logical OR operator

C++ for Scientific Computing (2021) 33

Relational and logical operators

relation operator

equal to == (note that it isn’t “=”)

not equal to !=

greater than >

less than <

greater than or equal to >=

less than or equal to <=

C++ for Scientific Computing (2021) 34

logical condition operator

AND &&

OR ||
NOT !

C++ for Scientific Computing (2021) 35

Boolean variables may be used in if statements as follows

1 bool flag1 = true, flag2 = false;

2 if (flag1)

3 {

4 std::cout << "Does print something" << "\n";

5 }

6 if (flag2)

7 {

8 std::cout << "Doesn’t print anything" << "\n";

9 }

10 if (!flag2)

11 {

12 std::cout << "Does print something" << "\n";

13 }

C++ for Scientific Computing (2021) 36

The while statement

Similar syntax to if statements

while (x < 100.0 && i < 10)

{

x += x;

i++;

}

The condition x < 100.0 && i < 10 is tested only at the beginning

of the statements in the loop, and not after every statement.

For example if the loop is entered when x = 99.0 and i = 1, the loop

will be executed completely once.

Loop won’t be entered when x ≥ 100: x and i will be unchanged.

If you need a loop to execute at least once, with a test at the end, use

do { ... } while (condition)

C++ for Scientific Computing (2021) 37

for loops

The following loop executes the statements inside the loop 10 times.

Note that i must have been declared as an integer earlier in the code

for (i=0; i<10; i++)

{

statement1;

statement2;

}

Alternatively, the integer i may be declared inside the loop:

1 for (int i=0; i<10; i++)

2 {

3 statement1;

4 statement2;

5 }

C++ for Scientific Computing (2021) 38

for loops can be nested and run over variable indices. The output

from the following section of code is given on the next slide

1 for (int i=0; i<5; i++)

2 {

3 for (int j=5; j>i; j--)

4 {

5 std::cout << "i = " << i << " j = " << j << "\n";

6 }

7 }

C++ for Scientific Computing (2021) 39

The output from the section of code on the previous slide is

i = 0 j = 5

i = 0 j = 4

i = 0 j = 3

i = 0 j = 2

i = 0 j = 1

i = 1 j = 5

i = 1 j = 4

i = 1 j = 3

i = 1 j = 2

i = 2 j = 5

i = 2 j = 4

i = 2 j = 3

i = 3 j = 5

i = 3 j = 4

i = 4 j = 5

C++ for Scientific Computing (2021) 40

Use of assert statements for debugging

assert statements can be used in code to confirm something you

expect to be true

For example, you may wish to confirm that a number you are about

to take the square root of is non–negative

If the condition is not met, the code aborts giving an error message

that explains what went wrong

To use assert statements you must use the header file cassert

An example of the use of assert statements is given on the next slide

C++ for Scientific Computing (2021) 41

1 #include <iostream>

2 #include <cassert>

3 #include <cmath>

4

5 int main()

6 {

7 double a;

8 std::cout << "Enter a non-negative number\n";

9 std::cin >> a;

10 assert(a >= 0.0);

11 std::cout << "The square root of a is " << sqrt(a) << "\n";

12 return 0;

13 }

C++ for Scientific Computing (2021) 42

If the code on the previous slide is compiled and run, and the user

enters “-5” at the prompt, the code will be terminated and the

following error message given:

msqrt:: msqrt.cpp:10: int main(): Assertion ‘a >= 0.0’ failed

This error message tells us to look at line 10 in program.cpp, where

the assertion in quotes failed the test

C++ for Scientific Computing (2021) 43

Lecture 3 — Input and output

Console output

Console output may be achieved by using std::cout

We have already seen that the statement

std::cout << "Hello World\n";

prints the text “Hello World” to the screen, followed by a newline

The statements

int x = 1, y = 2;

std::cout << "x = " << x << " and y = " << y << "\n";

give output to the screen

x = 1 and y = 2

C++ for Scientific Computing (2021) 44

Note that any spaces required in the output must be included within

quotation marks

Some useful formatting commands are

Command Symbol

newline \n
tab \t
’ \’
” \”
? \?
(bell) \a

C++ for Scientific Computing (2021) 45

Sometimes, for example if the computer is busy doing a large volume

of computation, the program may not print the output to the screen

immediately. If immediate output is desirable then use

std::cout.flush() after any std::cout commands

std::cout << "Hello World\n";

std::cout.flush();

C++ for Scientific Computing (2021) 46

Keyboard input

Keyboard input for numbers and characters is achieved using

std::cin

The following statements prompts someone to enter their PIN

int pin;

std::cout << "Enter your PIN, then hit RETURN\n";

std::cin >> pin;

cin may be used to ask for more than one input at a time

int accountno, pin;

std::cout << "Enter your account number then hit RETURN,\n";

std::cout << "and then your PIN followed by RETURN\n";

std::cin >> accountno >> pin;

C++ for Scientific Computing (2021) 47

Keyboard input for strings is slightly different. An example is given

below

1 #include <iostream>

2 #include <string>

3 int main()

4 {

5 std::string name;

6 std::cout << "Enter your name and then hit RETURN\n";

7 std::getline(std::cin, name);

8 std::cout << "Your name is " << name << "\n";

9 return 0;

10 }

C++ for Scientific Computing (2021) 48

Redirecting output

Instead of printing the output to screen, you may want to write the

output to file. Suppose the executable is called my prog. The screen

output may be redirected to the file output by the command

./my_prog > output

When output has been redirected, you may prefer to print errors to

screen. This can be done using std::cerr

std::cerr << "Error - division by zero\n";

When output is redirected to the file output, the errors printed using

std::cerr are not printed to file, only to the screen

C++ for Scientific Computing (2021) 49

Writing to file

When writing to file, an additional header function fstream is

needed. It can be a good idea to include these header files whether or

not they are needed:

#include <iostream>

#include <fstream>

#include <string>

#include <cmath>

The file output.dat may be opened using the statement

std::ofstream out("output.dat");

We can then write to this file in a similar manner as writing to the

screen, with the exception that cout is replaced by out

C++ for Scientific Computing (2021) 50

There are a number of formatting options provided by C++

The following prints data in scientific format

1 #include <iostream>

2 #include <fstream>

3 int main()

4 {

5 double x = -1.0, y = 45.3275893627129, z = 0.00000001;

6 std::ofstream out("output.dat");

7 assert(out.is_open());

8 out.setf(std::ios::scientific|std::ios::showpos);

9 out << x << " " << y << " " << z << "\n";

10 out.close();

11 return 0;

12 }

C++ for Scientific Computing (2021) 51

Reading from file

Very similar to writing to file

Suppose the file numbers.dat (in my home directory) has 5 rows and

3 columns of numbers. This file can be read using the following code

1 double x, y, z;

2 std::ifstream input("/home/joe/numbers.dat");

3 assert(input.is_open());

4

5 for (int i=0; i<5; i++)

6 {

7 input >> x >> y >> z;

8 // ... do something with x, y, z ...

9 }

10 input.close();

C++ for Scientific Computing (2021) 52

It doesn’t matter if we don’t know how long the file is — we can read

data until we reach the end of the file

Using the example on the previous slide where the file numbers.dat

has an unknown number of rows and 3 columns we may use the

following code

1 double x, y, z;

2 std::ifstream input("/home/joe/numbers.dat");

3 assert(input.is_open());

4

5 while (!input.eof())

6 {

7 input >> x >> y >> z;

8 }

9 input.close();

input.eof() is a Boolean variable that contains “true” if the end of

file has been reached and “false” otherwise. (See exercises.)

C++ for Scientific Computing (2021) 53

Reading from command-line arguments

Command-line arguments (or flags) are read from the user of your

program via the “argument count” and “argument values”

parameters of main.

Here’s some example code that reads from the command-line

#include <iostream>

int main(int argc, char* argv[])

{

for (int i=0; i<argc; i++)

{

std::cout<<"argv "<<i<<" is "<<argv[i]<<"\n";

}

}

C++ for Scientific Computing (2021) 54

Here’s that code in action

$./show_args

argv 0 is ./show_args

$./show_args one two

argv 0 is ./show_args

argv 1 is one

argv 2 is two

Note that the first element of the values argv[0] is always the name

of program itself.

argv is an array of strings. If you want to interpret an argument as

an integer then you will need atoi.

C++ for Scientific Computing (2021) 55

Tip: version control

• Big IDEs like Xcode and Visual Studio do this for you (in the

same disk space)

• Modern version control systems like Subversion, Git and

Mercurial let you work on a code-base concurrently

• There are many places that will host your project for you:

– Bitbucket (Git and Mercurial)

– GitHub (Git)

– GitLab (Git)

– Unfuddle (Subversion and Git)

• Eclipse has a Subversion and Git plug-ins (Subclipse & eGit)

• GitHub and Trac offer repository, bug-control and Wiki

C++ for Scientific Computing (2021) 56

C++ for Scientific Computing (2021) 57

Lecture 4 — Pointers and arrays

Pointers

A variable’s address in the computer’s memory is called a pointer

If a variable has been declared by

int total_sum

then the address of total sum is given by &total sum

&total sum takes a constant value, because the address of total sum

in the computer’s memory was allocated when it was declared.

&total sum is therefore known as a constant pointer

C++ for Scientific Computing (2021) 58

Variable pointers may be declared as follows

double* p_x;

int* p_i;

p x is a variable pointer to a variable of type double, p i is a variable

pointer to an integer

Note that spacing can vary: double* p x and double *p x are

equivalent, but the first is clearer.

If p x and p y are both to be declared as pointers this is done by

double *p_x, *p_y;

In the declaration

int *p_i, j;

p i is a pointer to an integer, and j is an integer. It is generally

clearer to declare each new pointer on a separate line.

C++ for Scientific Computing (2021) 59

The contents of the memory that a pointer p x points to is given by

*p x, for example

1 double y, z; // y, z store double precision numbers

2 double* p_x; // p_x stores the address

3 // of a double precision number

4 z = 3.0;

5 p_x = &z; // p_x stores the address of z

6 y = *p_x + 1.0; // *p_x is the contents of the memory p_x,

7 // i.e. the value z

Note here that * p x means two different things, depending on where

it is

C++ for Scientific Computing (2021) 60

A variable pointer cannot be used until first having been assigned a

valid address, for example the following portion of code is incorrect

double* p_x; // p_x can store the address of a double

// precision number - haven’t said which

// address yet

*p_x = 1.0; // trying to store the value 1.0 in an unspecified

// memory location

because an address must first be assigned to p x before a value is

stored in that address

C++ for Scientific Computing (2021) 61

One way of assigning a valid address is to use the operator new

1 double* p_x; // p_x can store the address of a double

2 // precision number

3

4 p_x = new double; // assigns an address to p_x

5 *p_x = 1.0; // stores 1.0 in memory with

6 // address p_x

7 delete p_x; // relinquish memory

C++ for Scientific Computing (2021) 62

Pointers should be used with care. Consider the following example:

1 double y;

2 double* p_x;

3 y = 3.0;

4 p_x = &y;

5 std::cout << "y = " << y << "\n";

6 *p_x = 1.0; // This changes the value of y

7 std::cout << "y = " << y << "\n";

The first time y is printed it takes the value 3: the second time y is

printed it takes the value 1.

The line between the cout statements has altered the value of y,

possibly unintentionally

C++ for Scientific Computing (2021) 63

Dynamic allocation of memory for arrays

Pointers can be used to allocate memory dynamically for arrays

Dynamic allocation of memory has several advantages

1. The size of the array doesn’t need to be known at compile time

2. The size of the array may be changed while the program is

running

3. If a large array is only needed for a small section of the code,

memory can be allocated for the array when it is needed and

de–allocated when it isn’t

4. Efficient handling of irregularly sized arrays

Memory can be allocated using the new operator, and de–allocated

using the delete operator

C++ for Scientific Computing (2021) 64

To create a one-dimensional array of double precision numbers of

length 10 called x we use the following section of code

double* x;

x = new double [10];

The array then may be used as if it had been created by using the

declaration

double x[10];

The memory allocated to x may be de–allocated by the command

delete[] x;

Always be sure to free any memory allocated—a code can very

quickly use all available memory otherwise

C++ for Scientific Computing (2021) 65

In the dynamic allocation of the array allocated using the pointer x

on the previous slide, x is the address of the first element of the

array: this can be tested by using the code

std::cout << x << "\n";

std::cout << &x[0] << "\n";

C++ for Scientific Computing (2021) 66

To create a two-dimensional array of double precision numbers with 5

rows and 3 columns called A we use the following section of code

1 double** A;

2 A = new double* [5];

3 for (i=0; i<5; i++)

4 {

5 A[i] = new double[3];

6 }

The array then may be used as if it had been created by using the

declaration

double A[5][3];

C++ for Scientific Computing (2021) 67

A is a pointer to a pointer:

• A[i] contains the address of A[i][0]

• A contains the address of the pointer A[0]

A is therefore an array of pointers

C++ for Scientific Computing (2021) 68

The memory allocated to A may be de–allocated by the code

1 for (i=0; i<5; i++)

2 {

3 delete[] A[i];

4 }

5 delete[] A;

Always be sure to delete any memory dynamically allocated,

particularly memory allocated inside loops — if not you will run out

of memory

C++ for Scientific Computing (2021) 69

Irregularly sized arrays

Suppose we want to define a lower triangular matrix A of integers

with 10,000 rows and 10,000 columns

This may be done by the following declaration

int A[10000][10000];

but this wastes a considerable amount of memory saving the

super–diagonal elements which are all 0

Instead, we may allocate the memory dynamically using the code on

the following slide

C++ for Scientific Computing (2021) 70

1 int** A;

2 A = new int* [10000];

3 for (i=0; i<10000; i++)

4 {

5 A[i] = new int[i+1];

6 }

C++ for Scientific Computing (2021) 71

Modern C++ aside: the shared pointer

Modern C++ compilers allow the user to create new memory which

doesn’t need to be deleted explicitly.

1 int main()

2 {

3 std::shared_ptr<int> p_x(new int);

4 std::cout<<"p_x use count: "<<p_x.use_count()<<"\n";

5 *p_x = 5; // ’de-reference’ to alter contents

6 std::shared_ptr<int> p_y = p_x;

7 }

A “number of uses” of the pointer maintained at run-time.

When this drops to zero, then the memory is automatically deleted.

To use modern C++ features compile with g++ -std=c++11

C++ for Scientific Computing (2021) 72

Tip: memory leak detection

1 double x[10];

2 for (int i=0; i<10; i++){

3 x[i]=i;

4 }

5 int total=0;

6 for (int i=0; i<=10; i++)//Equality is wrong

7 {

8 total += x[i];

9 }

10 std::cout<<"Total is "<<total<<"\n";

C++ for Scientific Computing (2021) 73

jmpf@userpc30:~$./Leak

Total is 45

jmpf@userpc30:~$ valgrind --leak-check=yes ./Leak

==15050== Memcheck, a memory error detector.

...

==15050== Use of uninitialised value of size 4

==15050== at 0x40B8D21: (within /usr/lib/libstdc++.so.6.0.10)

...

==15050== by 0x804872E: main (in /home/jmpf/HomePC/Ubiquitous/C++Course/Leak)

Total is 45

==15050==

==15050== ERROR SUMMARY: 6 errors from 4 contexts (suppressed: 17 from 1)

C++ for Scientific Computing (2021) 74

Lecture 5 — Blocks, functions and references

Blocks

A block is a piece of code between curly brackets

A variable, when declared, may be used throughout that block

1 {

2 int i;

3 i = 5; // OK

4 {

5 int j;

6 i = 10; // OK

7 j = 10; // OK

8 }

9 j = 5; // incorrect - j not declared here

10 }

C++ for Scientific Computing (2021) 75

The same name may be used for a variable both inside the block

(local variable) and outside the block (global variable)

This is bad programming practice, as it can lead to confusion

1 {

2 int i = 5;

3 std::cout << i << "\n";

4 {

5 int i = 10;

6 std::cout << i << "\n"; // local value of i is 10

7 // variable i with value 5 is not accessible

8 }

9 std::cout << i << "\n"; // value of i is 5

10 }

C++ for Scientific Computing (2021) 76

Functions

The code on the next slide is an example containing a function that

multiplies two double precision floating point numbers

Note the function prototype that is the second line of code

The function prototype tells the compiler about function’s return

value and parameters

The variable names x and y in the prototype are ignored by the

compiler and don’t have to be included. But including them can

clarify the program

C++ for Scientific Computing (2021) 77

1 #include <iostream>

2

3 double multiply(double x, double y); // function prototype

4

5 int main()

6 {

7 double a = 1.0, b = 2.0, z;

8 z = multiply(a, b);

9 std::cout << a <<" times "<< b <<" equals "<< z <<"\n";

10 return 0;

11 }

12

13 double multiply(double x, double y)

14 {

15 return x * y;

16 }

C++ for Scientific Computing (2021) 78

A function may also return no value, and be declared as void

An example of a void function is shown on the next slide

The pass mark for an exam is 30 marks. This function prints out a

message informing a candidate whether or not they have passed the

exam

C++ for Scientific Computing (2021) 79

1 #include <iostream>

2 void output(int score, int passMark);

3

4 int main()

5 {

6 int score = 29, pass_mark = 30;

7 output(score, pass_mark);

8 return 0;

9 }

10 void output(int score, int passMark)

11 {

12 if (score >= passMark)

13 std::cout << "Pass - congratulations!\n";

14 else

15 std::cout << "Fail - better luck next time\n";

16 }

C++ for Scientific Computing (2021) 80

Note the poor software engineering practice on the previous slide –

curly brackets should have been used with the if statements

Any variables that are used in the function must be declared as in

the main program

For example

double mult5(double x)

{

double y = 5.0;

return x * y;

}

C++ for Scientific Computing (2021) 81

Under most conditions a function can only change the value of a

variable inside the function, and not in the main program

This is because the code makes a copy of the variable sent to a

function, and sends this copy to the function

On return from the function changes in this copied variable have no

effect on the original variable

C++ for Scientific Computing (2021) 82

For example the following function has no effect on the variable x

outside the function

1 x = 2.0;

2 noeffect(x);

3 std::cout << x << "\n"; // will print out 2.0

4

5 void noeffect(double x)

6 {

7 // x takes the value 2.0 here

8 x += 1.0;

9 // x takes the value 3.0 here

10 }

C++ for Scientific Computing (2021) 83

One exception to a function being unable to change the value of a

variable outside a function is when an array – either dynamically

allocated or not – is sent to a function

For example the following code does alter the value of x[0]

1 double x[10];

2 x[0] = 2.0;

3 someeffect(x);

4 std::cout << x[0] << "\n"; // will print out 3.0

5

6 void someeffect(double x[10])

7 {

8 x[0] += 1.0;

9 }

C++ for Scientific Computing (2021) 84

One method of allowing a function to change the value of a variable

is to send the address of the variable to the function

1 #include <iostream>

2 void add(double x, double y, double* pz);

3 int main()

4 {

5 double a = 1.0, b = 2.0, z;

6 add(a, b, &z);

7 std::cout << a <<" plus "<< b <<" equals "<< z <<"\n";

8 return 0;

9 }

10

11 void add(double x, double y, double* pz)

12 {

13 *pz = x + y;

14 }

C++ for Scientific Computing (2021) 85

On the previous slide, the variables a and b are sent to the

function—these values cannot be changed by the function

We also send the address of z to the function—we therefore cannot

change the address of z, but we can change the contents of pz

The contents of pz are changed in the function using the line of code

*pz = x + y;

C++ for Scientific Computing (2021) 86

Arrays whose sizes are allocated at compile time may be sent to

functions as follows. There should be a prototype, for example

void example(int a[8], int b[3][3]);

and function

void example(int a[8], int b[3][3])

{

b[0][0] = a[1];

}

This function may then be called with the following statement

int x[8], y[3][3];

example(x, y);

C++ for Scientific Computing (2021) 87

Suppose a is a vector whose size is allocated dynamically, and b is a

matrix whose size is allocated dynamically. These arrays may be sent

to the functions as follows. The prototype is

void example(int* a, int** b);

an example function is

void example(int* a, int** b)

{

b[0][0] = a[1];

}

and this function may be called with the following statement

example(a, b);

for suitably declared a and b

C++ for Scientific Computing (2021) 88

References

Another way of allowing a function to change the value of a variable

outside the function is to use references

These are much easier to use: all that has to be done is the inclusion

of the symbol & before the variable name in the declaration of the

function and the prototype.

For example, see the code on the next slide

C++ for Scientific Computing (2021) 89

1 #include <iostream>

2

3 void add(double x, double y, double& rz);

4

5 int main()

6 {

7 double x = 1.0, y = 2.0, z;

8 add(x, y, z);

9 std::cout << x <<" plus "<< y <<" equals "<< z <<"\n";

10 return 0;

11 }

12

13 void add(double x, double y, double& rz)

14 {

15 rz = x + y;

16 }

C++ for Scientific Computing (2021) 90

Tip: use local variables

Consider the following piece of code

1 int i, j;

2 double a[10][10], b[10];

3 for (i=0; i<10; i++)

4 {

5 for (j=0; j<10; j++)

6 {

7 a[i][j] = 1.0;

8 }

9 }

10 for (i=0; i<10; i++)

11 {

12 b[j] = 10.0; // bug: should read b[i] = 10.0

13 }

This bug will not be picked up by the compiler

C++ for Scientific Computing (2021) 91

If the variables were localised within loops this would not

happen—for example the code below is equivalent to that on the

previous slide, but the compiler would flag the bug

1 double a[10][10], b[10];

2 for (int i=0; i<10; i++)

3 {

4 for (int j=0; j<10; j++)

5 {

6 a[i][j] = 1.0;

7 }

8 }

9 for (int i=0; i<10; i++)

10 {

11 b[j] = 10.0; // j is not defined here

12 }

C++ for Scientific Computing (2021) 92

Lecture 6 — Functions and modules

Default values for function parameters

It is possible to allow a function to be called without specifying all

the parameters needed

Default parameters will be used for the other parameters

These parameters should be declared in the function prototype

The arguments with default parameters must be the last parameters

in the parameter list

This should be used with care: it is easy to forget that default

parameters exist

C++ for Scientific Computing (2021) 93

For example, a solver may be written

void solver(double x, double epsilon, int maxiter)

{

...

}

The function prototype may be written

void solver(double x, double epsilon = 0.0001, int maxiter = 100);

This solver may be called using any of the following

solver(x, 0.01, 10000);

solver(x, 0.01); // default value used for maxiter

solver(x); // default value used for epsilon and maxiter

C++ for Scientific Computing (2021) 94

Function overloading

When a function is declared, the return type and parameter type

must be specified

If a function mult is to be written that multiplies two numbers, we

would like it to work for floating point numbers and for integers

This can be achieved by function overloading

More than one function mult can be written—one that takes two

integers and returns an integer, one that takes two floating point

numbers and returns a floating point number, etc

C++ for Scientific Computing (2021) 95

1 std::cout <<"7 times 10 equals "<< mult(7, 10) <<"\n";

2 std::cout <<"21.5 times 14.5 equals "<< mult(21.5, 14.5) <<"\n";

3

4 double mult(double x, double y)

5 {

6 return x * y;

7 }

8

9 int mult(int x, int y)

10 {

11 return x * y;

12 }

Function overloading also allows the definition of what is meant by

multiplying a floating point number by an integer

C++ for Scientific Computing (2021) 96

Modules

A module is a collection of functions that performs a given task

An example of a module is a collection of functions that comprise a

linear solver for solving the n by n matrix equation Ax = b

Every module has an interface — this may be thought of as a list of

variables that contains (i) those that must be input to the module,

and (ii) those that are output by the module

The module may then be used as a “black box”, provided the

interface is known

Using the example of the linear solver, this module may take form

shown on the next slide

C++ for Scientific Computing (2021) 97

void SolveLinearSys(double** A, double* x, double* b, int n)

{

//...lines of code;

// a line of code that uses SolveFunc1;

// a line of code that uses SolveFunc2;

}

void SolveFunc1(...)

{

...

}

void SolveFunc2(...)

{

...

}

C++ for Scientific Computing (2021) 98

Suppose you want to solve the m by m matrix equation Pu = v using

the module on the previous slide

After including the module in your code all you have to do is include

the line of code

SolveLinearSys(P, u, v, m);

There is no need to understand the code used by this module.

All that is required is to understand the interface, i.e. the ordered list

of variables in the line of code above

C++ for Scientific Computing (2021) 99

Modules are useful for code re–use, and for fast code development by

programmers with no understanding of the operations that a module

performs

Consider the linear solver example.

• Numerical analysts use linear solvers in almost every code they

write. A module allows them to re–use this code rather than

write a new linear solver each time.

• Other scientists with little mathematical expertise may have to

solve a linear system. A module allows them to do so without

learning how

But the use of modules may cause problems

C++ for Scientific Computing (2021) 100

Problems that may arise when using modules

Suppose the linear solver that has been written has been based on

the GMRES solver

This solver requires the calculation of the scalar product between two

vectors

A function would therefore be written to calculate the scalar product

of two vectors of a given length

This function may be used by another module of the code, for

example an ODE solver

Suppose whoever was programming the ODE solver decided to

change the inputs to the scalar product function. This would

inadvertently cause the linear solver to stop functioning correctly

The linear solver module could then not be treated as a black box

C++ for Scientific Computing (2021) 101

More problems

Suppose matrices are stored in an array as in a previous lecture

When a function is written to multiply two matrices, the arrays and

the sizes of the arrays must be sent to this function

There is no way of checking that the size is correct

It would be more useful to have a new data type called “matrix”

that contained both the size and the entries of the array—i.e. all the

information is stored within one object

C++ for Scientific Computing (2021) 102

Encapsulation using classes

The shortcomings of modules described on the previous two slides for

solving the linear system Ax = b could be overcome if we could write

code in such a way that the variables A, x and b could be processed

by a “module” that:

1. contains all the functions needed to solve the system;

2. can not be accessed by any other part of the program except

through the interface; and

3. can not itself access any other part of the program

4. consistently handles data as well as functions

This is possible, through the use of classes

The specifications described above are known as encapsulation

C++ for Scientific Computing (2021) 103

Lecture 7 — An introduction to classes

As an example we will develop a class of books

Each book will have the following attributes:

• an author;

• a title;

• a format;

• a price;

• a year of publication; and

• a publisher.

We will begin by writing a class with these attributes, and then

develop the class further

C++ for Scientific Computing (2021) 104

This class may be coded as

1 #include <string>

2

3 class Book

4 {

5 public:

6 std::string author, title, publisher, format;

7 int price; //Given in pence

8 int yearOfPublication;

9 };

Don’t worry about the term public – that will be explained later

Note the semicolon after the curly bracket at the end of the class

C++ for Scientific Computing (2021) 105

Save the code on the previous slide as Book.hpp

The class can then be used using the code on the following slide

C++ for Scientific Computing (2021) 106

1 #include <iostream>

2 #include "Book.hpp"

3 int main()

4 {

5 Book fave_book;

6 fave_book.author = "Lewis Carroll";

7 fave_book.title = "Alice’s adventures in Wonderland";

8 fave_book.publisher = "Macmillan";

9 fave_book.price = 199;

10 fave_book.format = "hardback";

11 fave_book.yearOfPublication = 1865;

12 std::cout << "Year of publication of "

13 << fave_book.title << " is "

14 << fave_book.yearOfPublication << "\n";

15 return 0;

16 }

C++ for Scientific Computing (2021) 107

Recall that we want to write functions that are associated only with

the class

We will write a function CalculateEuroPrice that takes a floating

point number (Euros to the pound) as input and returns the price of

the book in Euro cents

We define the function inside the file Book.hpp

The body of the function is written inside another file Book.cpp

The files Book.hpp and Book.cpp are shown on the next two slides

Technically a function on an object is known as a method of the

object

C++ for Scientific Computing (2021) 108

Book.hpp

1 #include <string>

2

3 class Book

4 {

5 public:

6 std::string author, title, publisher, format;

7 int price; //Given in pence

8 int yearOfPublication;

9 int CalculateEuroPrice(double rate);

10 };

C++ for Scientific Computing (2021) 109

Book.cpp

1 #include <cmath> // For ceil

2 #include "Book.hpp"

3

4 int Book::CalculateEuroPrice(double rate)

5 {

6 double euro_price = price*rate;

7 // Round up to nearest cent

8 return ((int) ceil(euro_price));

9 }

Loosely speaking, a list of variables and functions is included in the

.hpp file, and the functions are included in the .cpp file

C++ for Scientific Computing (2021) 110

On the previous slide note that the function written is associated

with the class Book through the statement

int Book::CalculateEuroPrice(double rate)

This function may used outside the class by using statements such as

std::cout << fave_book.CalculateEuroPrice(1.13)<<"\n";

Some example code is given on the next slide

C++ for Scientific Computing (2021) 111

use book.cpp

1 #include <iostream>

2 #include "Book.hpp"

3

4 int main()

5 {

6 Book fave_book;

7 fave_book.author = "Lewis Carroll";

8 fave_book.title = "Alice’s adventures in Wonderland";

9 fave_book.price = 199;

10 fave_book.format = "hardback";

11

12 std::cout << "Price in Euro cents = "

13 << fave_book.CalculateEuroPrice(1.13)<<"\n";

14 return 0;

15 }

C++ for Scientific Computing (2021) 112

Compiling multiple files

Before we can compile the file use book.cpp on the previous slide we

first need to compile the Book class. This is done by using the -c

option when compiling:

g++ -Wall -O -c Book.cpp

This produces an object file Book.o. We can now compile

use book.cpp by typing

g++ -Wall -O -o use_book use_book.cpp Book.o

The code may be run as before by typing

./use_book

C++ for Scientific Computing (2021) 113

Using a Makefile

Suppose a code UseClasses.cpp uses two classes: Class1 and Class2

It is easy to forget to compile the files Class1.cpp and Class2.cpp

each time they are modified

Also, you only need to compile classes that have been changed since

they were last compiled

Makefiles are a very efficient solution to these problems

C++ for Scientific Computing (2021) 114

Save the following code as Makefile

1 all : UseClasses

2

3 Class1.o : Class1.cpp Class1.hpp

4 g++ -c -O Class1.cpp

5

6 Class2.o : Class2.cpp Class2.hpp

7 g++ -c -O Class2.cpp

8

9 UseClasses : Class1.o Class2.o UseClasses.cpp

10 g++ -O -o UseClasses Class1.o Class2.o UseClasses.cpp

The executable UseClasses may be created by typing

“make UseClasses”

C++ for Scientific Computing (2021) 115

When using a makefile, the line

UseClasses : Class1.o Class2.o UseClasses.cpp

means that the executable UseClasses depends on the files

Class1.o, Class2.o and UseClasses.cpp

In turn, the line

Class1.o : Class1.cpp Class1.hpp

means that the object file Class1.o depends on the files Class1.cpp

and Class1.hpp

The file Class1.cpp will only be compiled if Class1.cpp or

Class1.hpp have changed since the last time Class1.o was created

When “make” is invoked without a target, it will attempt to build the

first target in the Makefile

C++ for Scientific Computing (2021) 116

.o.cpp

.cpp

.cpp

.hpp

.hpp

.o

.o

Class1.hpp

Class2.hpp

Class1.cpp

Class2.cpp

UseClasses.cpp

Class1.o

Class2.o

UseClasses.o

UseClasses

compile

compilecompile

compile

link

C++ for Scientific Computing (2021) 117

Setting variables

We can use functions to set variables — this allows us to check that

the values assigned are sensible. For example

1 void Book::SetYearOfPublication(int year)

2 {

3 assert ((year > 1440) && (year < 2025));

4 yearOfPublication = year;

5 }

C++ for Scientific Computing (2021) 118

First we add the function definition to the file Book.hpp as we did

with the function CalculateEuroPrice:

void SetYearOfPublication(int year);

Then we add the function on the previous slide to the file Book.cpp

This allows us to set the variable using statements such as

fave_book.SetYearOfPublication(1865);

Now we have written a function to set the variable

yearOfPublication that checks that it takes an appropriate value, it

seems sensible only to allow ourselves to assign a value to this

variable through this function

We now need to think about access privileges

C++ for Scientific Computing (2021) 119

Access privileges

An instance of a class is known as an object. For example in the

previous slide fav book is an object of the class

Variables and functions associated with a class – for example

yearOfPublication and CalculateEuroPrice – are known as class

members and methods

There are three degrees of access to class members

• private - these class members are only accessible to other class

members, unless friend is used

• public - these class members are accessible to everyone

• protected - these class members are accessible to other class

members and to derived classes

C++ for Scientific Computing (2021) 120

To make the variable yearOfPublication only accessible from

outside the class through the function SetYearOfPublication we

make yearOfPublication a private class member

To highlight that it is now private we might also modify the name

from yearOfPublication to mYearOfPublication:

1 class Book

2 {

3 private:

4 int mYearOfPublication;

5 public:

6 std::string author, title, publisher, format;

7 int price;

8 ...

C++ for Scientific Computing (2021) 121

The reserved words private and public may be used as often as

desired. For example the following is acceptable code

1 class Book

2 {

3 public:

4 std::string author, title, publisher, format;

5 private:

6 int mYearOfPublication;

7 public:

8 int price;

9 ...

C++ for Scientific Computing (2021) 122

The default for variables in a class is private

For example, in the following code the variables author, title,

publisher, format are actually private

1 class Book

2 {

3 std::string author, title, publisher, format;

4 private:

5 int mYearOfPublication;

6 public:

7 int price;

8 ...

C++ for Scientific Computing (2021) 123

But now we can’t access the variable mYearOfPublication outside

the class. We need to write a public class member to access this

variable

1 int Book::GetYearOfPublication()

2 {

3 return mYearOfPublication;

4 }

and this function may be used in the main code as follows

1 std::cout << "Year of publication of "

2 << fave_book.title << " is "

3 << fave_book.GetYearOfPublication() << "\n";

It is good software engineering practice to access as many variables

as possible in this way

C++ for Scientific Computing (2021) 124

Lecture 8 — More on classes

Constructors and Destructors

Each time an object of the class of books is created the program calls

a function that allocates space in memory for all the variables used

This function is called a constructor and is automatically generated

This default constructor can be overridden if desired – for example in

our class we may want to set all the string variables to

“unspecified” when a new object is created

This function has the same name as the class, takes no arguments,

has no return type and must be public

C++ for Scientific Computing (2021) 125

An overridden default constructor function is included in the class

shown below

1 class Book

2 {

3 private:

4 int mYearOfPublication;

5 public:

6 Book();

7 ...

and the function is written

Book::Book()

{

author = "unspecified"; title = "unspecified";

publisher = "unspecified"; format = "unspecified";

}

C++ for Scientific Computing (2021) 126

Copy constructors

Another constructor that is automatically generated is a copy

constructor

The line of code

Book fave_book_copy(fave_book);

will create another object fav book copy with variables initialised to

those of fav book

This constructor may also be overridden in the same way as for the

default constructor

C++ for Scientific Computing (2021) 127

Other constructors

Other constructors may be written.

For example you can write a constructor that initialises the title of a

new Book object

This allows code to be written such as

Book recent_book("The explorer");

The constructor must be added to the list of class members in the file

Book.hpp:

Book(std::string bookTitle);

C++ for Scientific Computing (2021) 128

The constructor is then written as

Book::Book(std::string bookTitle)

{

title = bookTitle;

}

This code is added to the file Book.cpp

You can write as many constructors as you like

C++ for Scientific Computing (2021) 129

Destructors

When an object leaves scope it is destroyed

A destructor is automatically created that deletes the variables

associated with that object

Destructors can also be overridden – there will be an example later

C++ for Scientific Computing (2021) 130

Use of pointers to classes

An instance of a class can be sent to a function in the same way as

data types such as double, int, etc.

This is shown in the example code on the next slide

C++ for Scientific Computing (2021) 131

1 #include "Book.hpp"

2 void SomeFunction(Book book);

3

4 int main()

5 {

6 Book fave_book;

7 SomeFunction(fave_book);

8 return 0;

9 }

10

11 void SomeFunction(Book book)

12 {

13 //...some code...

14 }

C++ for Scientific Computing (2021) 132

Note on the previous slide that as the function SomeFunction was

called without the argument fav book being a pointer,

SomeFunction is unable to change any of the members of fav book

outside the body of the function

If you do want to change members of fav book outside the body of

the function, the function should be written to accept a pointer or a

reference to fav book.

Code for sending a pointer to fav book into a function is shown on

the next slide

C++ for Scientific Computing (2021) 133

#include "Book.hpp"

void SomeFunction(Book* pBook);

int main()

{

Book fave_book;

//...

SomeFunction(&fave_book);

return 0;

}

void SomeFunction(Book* pBook)

{

// Uplift price by one pound

(*pBook).price += 100;

}

C++ for Scientific Computing (2021) 134

The line of code on the previous slide

(*pBook).price += 100;

is a little clumsy. An equivalent statement is

pBook->price += 100;

C++ for Scientific Computing (2021) 135

Tip: coding standards

If you stick to a coding standard, then you’re more likely to know

what’s what. For example,

• Proper indentation (with spaces rather than tabs)

• Braces ({}) on a line of their own

• Pointer names begin with ‘p’ (p return result)

• Locally declared names have underscores

• Names are meaningful (local index)

• Method names arguments are in camel-case (firstDimension)

• Method names are in camel-case with verbs (GetSize())

• Class data is camel-case with ‘m’ to denote private (mSize)

• Lots of descriptive comments

• Avoid floating point comparisons, cut-and-paste. . .

C++ for Scientific Computing (2021) 136

An example from code I work with

void VentilationProblem::SetDynamicResistance(bool dynamicResistance)

{

mDynamicResistance = dynamicResistance;

}

void VentilationProblem::SetPressureAtBoundaryNode(const Node<3>& rNode, double pressure)

{

if (rNode.IsBoundaryNode() == false)

{

// Handle error ...

}

assert(mFluxGivenAtInflow == false);

// Store the requirement in a map for the direct solver

mPressureCondition[rNode.GetIndex()] = pressure;

}

double VentilationProblem::GetFluxAtOutflow()

{

return mFlux[mOutletNodeIndex];

}

C++ for Scientific Computing (2021) 137

Lecture 9 — Inheritance and derived classes

Suppose we are running a bookshop and want to write a class of

electronic e-books

An electronic book is a book, and so each object in this new class is

also an object in the class of books

It has two special features: the format is “electronic” and it has an

additional class member that contains a private URL

The “is a” relationship allows us to derive the class of e-books

(Ebook) from the class of books (Book)

Each object in the class of e-books inherits many properties from the

class of books

Inheritance allows us to re–use code

Book is the base class and Ebook is the derived class

C++ for Scientific Computing (2021) 138

The header file for the class of electronic books, Ebook.hpp may be

written

1 #include <string>

2 #include "Book.hpp"

3

4 class Ebook: public Book

5 {

6 public:

7 Ebook();

8 std::string hiddenUrl;

9 };

C++ for Scientific Computing (2021) 139

The word “public” in the first line of code on the previous slide has

the effect that

• public members of Book are public members of Ebook

• protected members of Book are protected members of Ebook

• private members of Book are hidden from Ebook

These access privileges may be changed by using protected or

private

In practice public inheritance is far more common the protected or

private inheritance

C++ for Scientific Computing (2021) 140

The file Ebook.cpp that contains the functions (methods) of the class

is given by

1 #include "Ebook.hpp"

2

3 Ebook::Ebook()

4 : Book()

5 {

6 format = "electronic";

7 }

This constructor sets the format of all members of the class of

electronic books to "electronic"

Example code using this class is on the next slide

Note that we can still use the functions and variables of the class

Book when using an object of type Ebook

C++ for Scientific Computing (2021) 141

The code—which may be written on one line—on the previous slide

Ebook::Ebook()

: Book()

indicates which constructor in the class Book we want to call when

creating an object of the class Ebook

C++ for Scientific Computing (2021) 142

To re–use the constructor of the class Book that required a string as

input we would have

Ebook::Ebook(std::string bookTitle)

: Book(bookTitle)

{

format = "electronic";

}

in the file Ebook.cpp

The following constructor is declared in the file Ebook.hpp

Ebook(std::string bookTitle);

and the original constructor

Book(std::string bookTitle);

was declared in the file Book.hpp

C++ for Scientific Computing (2021) 143

1 #include <iostream>

2 #include "Book.hpp"

3 #include "Ebook.hpp"

4

5 int main()

6 {

7 Ebook reading("The skull beneath the skin");

8 reading.author = "P D James";

9 std::cout << "The author is " << reading.author << "\n";

10 std::cout << "The title is " << reading.title << "\n";

11 std::cout << "The format is " << reading.format << "\n";

12

13 reading.hiddenUrl = "http://ebook.example.com/ex-book";

14 std::cout << "The URL is " << reading.hiddenUrl << "\n";

15 return 0;

16 }

C++ for Scientific Computing (2021) 144

It doesn’t matter if we include header files such as iostream, string,

etc. more than once

But we should not include files such as Book.hpp more than once

This can be occur inadvertently: on the code on the previous slide we

include the file Book.hpp.

The same header file is included in the file Ebook.hpp

We are therefore including the file Book.hpp twice—this can cause

problems

To avoid this code being included twice we adapt our header

functions to be of the form shown on the next slide

C++ for Scientific Computing (2021) 145

example.hpp

1 #ifndef EXAMPLEDEF__ // if variable EXAMPLEDEF__

2 // not defined then execute lines of

3 // code until #endif statement

4

5 #define EXAMPLEDEF__ // define the variable EXAMPLEDEF__.

6 // Ensures that this code is only

7 // compiled once, no matter how

8 // many times it is included

9 class example

10 {

11 lines of code // body of header file

12 };

13

14 #endif // need one of these for every #ifndef statement

C++ for Scientific Computing (2021) 146

For example the header file Book.hpp would be written

1 #ifndef BOOKHEADERDEF__

2 #define BOOKHEADERDEF__

3

4 #include <string>

5

6 class Book

7 {

8 private:

9 int mYearOfPublication;

10 ...

11 };

12

13 #endif

A similar mechanism #ifndef EBOOKHEADERDEF__ could be used in

Ebook.hpp to prevent it from being read twice

C++ for Scientific Computing (2021) 147

Polymorphism

Polymorphism may be used when a number of classes are derived

from the base class, and for some of these derived classes we want to

override one of the functions of the base class

For example, consider a class of guests who stay at a hotel

The class guest will have variables such as name, room type, arrival

date, number of nights booked, minibar bill, telephone bill

This class will also have a function that computes the total bill

C++ for Scientific Computing (2021) 148

Suppose the hotel has negotiated special rates for individuals from

particular organisations. The function that computes the total bill

will be different for these clients

This can be handled with if statements, but this can get messy. A

more practical solution is to use virtual functions where the

function used to compute the total bill does different things for

different derived classes before returning the value of the total bill

This is known as run-time polymorphism

The function should be defined as virtual in the base class as shown

on the next slide

C++ for Scientific Computing (2021) 149

The class Guest has header file Guest.hpp

1 #ifndef GUEST__

2 #define GUEST__

3 #include <string>

4 class Guest

5 {

6 public:

7 std::string name, roomType, arrivalDate;

8 int numberOfNights;

9 double minibarBill, telephoneBill;

10 virtual double CalculateBill();

11 };

12 #endif

C++ for Scientific Computing (2021) 150

The file Guest.cpp is

1 #include "Guest.hpp"

2

3 double Guest::CalculateBill()

4 {

5 double room_bill, total;

6

7 room_bill = numberOfNights * 50.0;

8 total = room_bill + minibarBill + telephoneBill;

9

10 return total;

11 }

C++ for Scientific Computing (2021) 151

Suppose the hotel have negotiated a deal with a company that

reduces the room rate to £45 for the first night and £40 for

subsequent nights that a guest stays in the hotel

The header file for our derived class SpecialGuest.hpp is

1 #ifndef SPECIALGUEST__

2 #define SPECIALGUEST__

3

4 #include "Guest.hpp"

5

6 class SpecialGuest : public Guest

7 {

8 public:

9 double CalculateBill();

10 };

11 #endif

C++ for Scientific Computing (2021) 152

The file SpecialGuest.cpp is

1 #include "SpecialGuest.hpp"

2

3 double SpecialGuest::CalculateBill()

4 {

5 double room_bill, total;

6

7 room_bill = (numberOfNights - 1) * 40.0 + 45.0;

8 total = room_bill + minibarBill;

9

10 return total;

11 }

C++ for Scientific Computing (2021) 153

Example use of the class SpecialGuest is

1 #include <iostream>

2 #include "Guest.hpp"

3 #include "SpecialGuest.hpp"

4

5 int main()

6 {

7 SpecialGuest harry;

8 harry.numberOfNights = 2;

9 harry.minibarBill = 30.99;

10

11 std::cout << "Harry’s bill = "

12 << harry.CalculateBill() << "\n";

13

14 return 0;

15 }

C++ for Scientific Computing (2021) 154

Note that declaring the function CalculateBill() as virtual in the

class Guest does not require that this function must be redefined in

derived classes – instead it gives us the option to redefine it

If the function wasn’t redefined then objects of the class

SpecialGuest would use the function CalculateBill() defined in

the class Guest

Note that the function CalculateBill() could have been declared as

virtual in the class SpecialGuest

This would allow any class derived from SpecialGuest to redefine

the function CalculateBill() if desired

When using derived classes, the destructor for the base class should

always be a virtual function

C++ for Scientific Computing (2021) 155

Example of polymorphism in action. (Imagine an array of pointers to

Guests.)

1 Guest* p_gu1 = new Guest;

2 Guest* p_gu2 = new Guest;

3 Guest* p_gu3 = new SpecialGuest; //Pointer of different type

4

5 //Set the three guests identically

6 p_gu1->numberOfNights = 3;

7 p_gu2->numberOfNights = 3;

8 p_gu3->numberOfNights = 3;

9

10 std::cout << "Bill 1 = " << p_gu1->CalculateBill() << "\n";

11 std::cout << "Bill 2 = " << p_gu2->CalculateBill() << "\n";

12 std::cout << "Bill 3 = " << p_gu3->CalculateBill() << "\n";

13 // The last one gets a smaller bill

C++ for Scientific Computing (2021) 156

Tip: plugging C++ into Matlab

You may need to interface C++ with Matlab (or with Gnu Octave)

• to get the speed of compiled code in a critical place

• to use an external library written in C++

This is possible with a Matlab executable file (Mex)

In the simplest case the C++ code is a single file containing a

function called mexFunction with a specific signature

The function mexFunction takes points to arrays for output and

input

This is compiled with mex (a wrapper compiler to g++) and a .mex

file is produced

The .mex file is treated like a .m file by Matlab

C++ for Scientific Computing (2021) 157

An example file myFunc.cpp

1 #include "mex.h"

2 #include <iostream>

3

4 void

5 mexFunction(int nlhs, mxArray* plhs[], int nrhs,

6 const mxArray* prhs[])

7 {

8 mxArray* v = mxCreateDoubleMatrix(1, 1, mxREAL);

9 double* data = mxGetPr(v);

10 *data = 3.142;

11 std::cout<<"Num args = "<<nrhs<<" \n";

12 plhs[0] = v;

13 }

C++ for Scientific Computing (2021) 158

C++ for Scientific Computing (2021) 159

Lecture 10 — A class of vectors

We will design a class of vectors in such a way that:

1. objects of this class behave like a new data type; and

2. code similar in style to Matlab may be written using objects of

this class.

We will define operations on and between objects of the class of

vectors, and between these objects and data types such as int and

double

We want to be able to write code such as

Vector u(3), v(3); // vectors of length 3

Matrix A(3,3); // matrix of size 3 by 3

v = A * u;

u = gmres(A, v);

C++ for Scientific Computing (2021) 160

Constructors for vectors

We want the declaration

Vector u(3);

to have the following effect:

• The compiler allocates memory for an array of three double

precision floating point numbers and initialises these numbers to

zero

• We can access the elements of u

• We can access the size of u

The code on the next two slides achieves these goals

C++ for Scientific Computing (2021) 161

The following file should be saved as Vector.hpp

1 #ifndef VECTOR__

2 #define VECTOR__

3 // a simple class of vectors

4 class Vector

5 {

6 public:

7 // member variables

8 double* data; // data stored in vector

9 int size; // size of vector

10 // construct vector of given length

11 Vector(int sizeVal);

12 };

13 #endif

C++ for Scientific Computing (2021) 162

The following file should be saved as Vector.cpp

1 #include "Vector.hpp"

2

3 // constructor that creates vector of given size with

4 // double precision entries all initially set to zero

5 Vector::Vector(int sizeVal)

6 {

7 data = new double[sizeVal];

8 size = sizeVal;

9 for (int i=0; i<size; i++)

10 {

11 data[i] = 0.0;

12 }

13 }

C++ for Scientific Computing (2021) 163

An example of use of the class of vectors:

1 #include <iostream>

2 #include "Vector.hpp"

3

4 int main()

5 {

6 Vector u(3), v(3);

7 std::cout << u.size << "\n";

8 u.data[0] = v.data[1] = 5.0;

9 std::cout << u.data[0] + v.data[1] << "\n";

10 return 0;

11 }

The size of u is accessed by u.size

Element n of u is accessed by u.data[n]

see: neater way of accessing elements of u

C++ for Scientific Computing (2021) 164

Default constructor (no longer exists)

The default constructor is not appropriate when declaring a vector:

we need to know the length of the vector in advance

Because we have given an alternative constructor, and have not

overridden the default constructor, the compiler automatically

revokes the default constructor

The code

Vector a_vector;

will now give a compiler error.

C++ for Scientific Computing (2021) 165

Copy constructors

When using the copy constructor generated by the compiler

statements such as

Vector w(u);

will not have the desired effect.

The length of the vector will be correctly set

However, instead of setting the elements of w equal to the elements of

u, the pointer to the first element of w will be set to the pointer to

the first element of u

This has the effect that the computer will attempt to store both u

and w in the same memory space, which will obviously lead to errors

C++ for Scientific Computing (2021) 166

Statements such as

Vector w(u);

are not commonly used in Matlab, there is little need for this

constructor

However, if the compiler generated copy constructor is not overridden

there may be errors

The copy constructor may as well be written. First the constructor

must be added to the list of public members in the file Vector.hpp

1 Vector(const Vector& rOther);

C++ for Scientific Computing (2021) 167

The copy constructor may then be written

1 Vector::Vector(const Vector& rOther)

2 {

3 size = rOther.size;

4 data = new double[size];

5 for (int i=0; i<rOther.size; i++)

6 {

7 data[i] = rOther.data[i];

8 }

9 }

and should be included in the file Vector.cpp

C++ for Scientific Computing (2021) 168

Note the use of const Vector& rOther on the previous slide

The function could have been prototyped by

Vector(Vector otherVec)

The argument of the function would then not be a reference variable.

A copy of this variable would be made for use in the constructor

function. If the vector is big this will slow down the program

Using a reference variable allows us to use the same variable in the

function

The qualifier const in the prototype ensures that this reference

variable cannot be altered inside the function

C++ for Scientific Computing (2021) 169

Destructors

Recall that a destructor function is automatically generated and is

called when a variable is destroyed, i.e. goes out of scope

We want our destructor to do more than this: we want it to free the

memory that was allocated to the vector

We therefore need to override the default destructor

First the destructor must be included in the file Vector.hpp

~Vector();

The destructor should then be added to the file Vector.cpp

Vector::~Vector()

{

delete[] data;

}

C++ for Scientific Computing (2021) 170

Destructors are called automatically

A further advantage of writing classes of vectors and matrices is that

a destructor will automatically be called when a vector or matrix

goes out of scope — this ensures that memory allocated to these

objects is automatically deleted.

C++ for Scientific Computing (2021) 171

Functions

Recall that functions (methods) may be defined on classes

For example, the method norm(p), the p−norm of u

We will assign p the default value 2

Add the following line of code into the list of public members of the

class Vector

double norm(int p=2) const;

together with the function given on the following slide. The const

keyword after the method informs the compiler that there should be

no changes to the class. The norm of a Vector may be calculated

using statements such as

x = u.norm();

y = v.norm(1);

C++ for Scientific Computing (2021) 172

1 double Vector::norm(int p) const

2 {

3 double temp, sum, norm_val;

4 sum = 0.0;

5 for (int i=0; i<size; i++)

6 {

7 temp = fabs(data[i]); // floating point absolute value

8 sum += pow(temp, p);

9 }

10 norm_val = pow(sum, 1.0/((double)p));

11 return norm_val;

12 }

C++ for Scientific Computing (2021) 173

External function versus member method

We have written a function that calculates the p–norm a vector u

using statements such as

dp = u.norm();

This notation is clumsy – we would rather write statements similar to

those that we would use in Matlab such as

dp = norm(u);

This can be done, but at the expense of compromising on good

software engineering principles

C++ for Scientific Computing (2021) 174

The function norm is declared as a friend in the file Vector.hpp

friend double norm(Vector vec, int p);

Declaring a function as a friend of a class allows this function to

access the private members of the class

The function norm is now no longer encapsulated within the class of

vectors, and so must be prototyped in Vector.hpp:

double norm(Vector vec, int p);

and is now written

double norm(Vector vec, int p)

{

...

}

see: another example of friend

C++ for Scientific Computing (2021) 175

Tip: documenting code

In the norm method on a previous slide, it is not obvious what is

happening, even though there are only a few lines of code

Comments should be added to the code to aid anyone reading the

code

For example a description of the function should be given first

1 // Function to calculate the p-norm of a vector

2 // See ‘‘An Introduction to Numerical Analysis’’ by

3 // Endre Suli and David Mayers, page 60, for definition

4 // of the p-norm of a vector

5

6 double Vector::norm(int p) const

7 {

8 ...

9 }

C++ for Scientific Computing (2021) 176

Explain what is happening in the loop

1 // Loop over all elements of vector to calculate the

2 // sum required for the p-norm

3 sum = 0.0;

4 for (int i=0; i<size; i++)

5 {

6 temp = fabs(data[i]);

7 sum += pow(temp, p);

8 }

C++ for Scientific Computing (2021) 177

Documenting code is an art rather than a science

A few tips:

Describe what part of the problem the code is solving. Don’t describe

the code. For example, don’t include documentation such as

// Loop over values of p going from 0 to n-1

for (p=0; p<n; p++)

Using lots of empty lines can make the code look more readable

C++ for Scientific Computing (2021) 178

If you want to emphasise something you can simulate underlining, for

example

// Very important comment

// ----------------------

Alternatively, can emphasise something by putting it in a box:

// **

// **

// ** **

// ** Function to calculate p-norm of vector **

// ** **

// **

// **

C++ for Scientific Computing (2021) 179

Lecture 11 — Operator overloading

We want to write code such as

w = u + v;

where u, v, w are defined to be objects of the class Vector

We have to define within the class what is meant by the operators +

and = in this context

This can be achieved by overloading the + operator and the =

operator for the class of vectors

First we will restrict access to the data in the vector class

C++ for Scientific Computing (2021) 180

Overloading the () operator

We may overload the () operator in order to access elements of an

array in the same way as Matlab and FORTRAN

This allows us to assign indices from 1 to n inclusive for an array of

length n, instead of 0 to n-1 as when using conventional C++

We will worry about error checking (0 ≤ i ≤ size) later

The function required to do this is

double& Vector::operator()(int i)

{

return data[i-1]; // (NB we should check that i is in range)

}

and the following line must be included in the file Vector.hpp

double& operator()(int i);

C++ for Scientific Computing (2021) 181

We can now access the first element of u by writing u(1), instead of

the clumsy notation u.data[0]

Note the appearance of the symbol & on the previous slide

This indicates that the operator returns a reference

This allows us to use terms such as u(1) on the left hand side of

expressions such as u(1)=2.0

We can also overload the square brackets operator with

double& operator[](int i);

(This is an exercise)

see: accessing elements of an array

C++ for Scientific Computing (2021) 182

Access privileges

Having overloaded the () operator we may now access elements of a

vector using identical syntax to Matlab.

We are now unlikely to access elements of a vector u by using the

expressions of the form u.data[2]

There is now no need for the member data to be available outside

the class, and so it could be declared as private

As discussed earlier, a good reason for declaring the member data as

private is that this makes it harder for code to inadvertently alter the

elements of a vector

We can also make the member size a private member, and access

the length of the vector through a function length that replicates the

length function in Matlab

C++ for Scientific Computing (2021) 183

The renamed members mData and mSize are declared as private by

writing the file Vector.hpp as follows

1 class Vector

2 {

3 private:

4 int mSize;

5 double* mData;

6 public:

7 Vector(int);

8 ...

9 friend int length(const Vector& rVec);

10 ...

11 };

12 int length(const Vector& rVec);

Note that the function length is declared as a friend of the class

Vector and its prototype is also given

C++ for Scientific Computing (2021) 184

The function length is given below

int length(const Vector& rVec)

{

return rVec.mSize;

}

Other functions that are used should also be declared as a friend

C++ for Scientific Computing (2021) 185

Binary operators

To write code such as

w = u + v;

then the lines

Vector& operator=(const Vector& rVec);

friend Vector operator+(const Vector& rVec1, const Vector& rVec2);

should be added within the class description in the file Vector.hpp,

and then the following two functions should be included in the file

Vector.cpp

C++ for Scientific Computing (2021) 186

1 Vector& Vector::operator=(const Vector& rVec)

2 {

3 // (We should check that the sizes match)

4

5 for (int i=0; i<rVec.mSize; i++)

6 {

7 mData[i] = rVec.mData[i];

8 }

9 return *this;

10 }

this is a pointer to the object

*this is the contents of the object that the pointer points at

C++ for Scientific Computing (2021) 187

1 Vector operator+(const Vector& rVec1,

2 const Vector& rVec2)

3 {

4 // (We should check that the sizes match)

5

6 Vector result(rVec1.mSize);

7 for (int i=0; i<rVec1.mSize; i++)

8 {

9 result.mData[i] = rVec1.mData[i] + rVec2.mData[i];

10 }

11 return result;

12 }

C++ for Scientific Computing (2021) 188

It is essential that a destructor and copy constructor have been

written before the code on the previous slide is used

A vector result is declared within the function—this will go out of

scope at the end of the function (but its content will be copied)

If the destructor or copy constructor are not written correctly this

may cause problems

C++ for Scientific Computing (2021) 189

The binary operators - and * can be overloaded in a similar way as to

+

When overloading * we first have to define what u * v means for a

vector, i.e. do we mean the scalar product or the vector product?

We can also also overload * to define multiplication between an array

of double precision numbers and a double precision number

For example, if a is a double precision floating point variable, and u

is an array of double precision floating point numbers we can define

what is meant by the operator * in the case a*u

C++ for Scientific Computing (2021) 190

1 Vector operator*(double a, const Vector& rVec)

2 {

3 Vector result(rVec.mSize);

4 for (int i=0; i<rVec.mSize; i++)

5 {

6 result.mData[i] = a * rVec.mData[i];

7 }

8 return result;

9 }

after the following line has been included into the file Vector.hpp

friend Vector operator*(double a, const Vector& rVec);

C++ for Scientific Computing (2021) 191

Binary operators without ‘friend’

In overloading operator+ we have used an external friend function

rather than a local method because it feels natural to be adding two

objects.

1 Vector operator+(const Vector& rVec1,

2 const Vector& rVec2)

3 {

4 Vector result(rVec1.mSize);

5 for (int i=0; i<rVec1.mSize; i++)

6 {

7 result.mData[i] = rVec1.mData[i] + rVec2.mData[i];

8 }

9 return result;

10 }

C++ for Scientific Computing (2021) 192

However, it is more efficient to write a binary operator as a member

of a class.

1 Vector Vector::operator+(const Vector& rOther)

2 {

3 Vector result(mSize);

4 for (int i=0; i<mSize; i++)

5 {

6 result.mData[i] = mData[i] + rOther.mData[i];

7 }

8 return result;

9 }

Both operators would be instantiated as a = b+c, but in the case of

the second style, it would be run as an internal method of b. (mSize

evaluates to b’s mSize.)

see: previous use of friend

C++ for Scientific Computing (2021) 193

Unary operators

The unary operators - and + may also be overloaded in a similar

manner to binary operators: add the line

friend Vector operator-(const Vector& rVec);

to the list of public members of Vector in the file Vector.hpp, and

add the function on the following slide to the file Vector.cpp

C++ for Scientific Computing (2021) 194

1 Vector operator-(const Vector& rVec)

2 {

3 // (We should check that the sizes match)

4

5 Vector result(rVec.mSize);

6 for (int i=0; i<rVec.mSize; i++)

7 {

8 result.mData[i] = -rVec.mData[i];

9 }

10 return result;

11 }

C++ for Scientific Computing (2021) 195

Overloading the output operator

C++ does not know how to print out a vector, unless you tell it how.

(If you print a pointer, then a memory address will be printed.)

Overload the << operator in the hpp file:

class Vector

{

private:

int mSize;

double* x;

public:

Vector(int);

...

friend std::ostream&

operator<<(std::ostream& output, const Vector& rVec);

};

C++ for Scientific Computing (2021) 196

The implementation might look like this:

1 // std::cout << "a_vector = " << a_vector << "\n";

2 // appears as: a_vector = (10, 20)

3 std::ostream& operator<<

4 (std::ostream& output, const Vector& rVec)

5 {

6 output << "(";

7 for (int i=0; i<rVec.mSize; i++){

8 output << rVec.mData[i];

9 if (i != rVec.mSize-1)

10 output << ", ";

11 else

12 output << ")";

13 }

14 return output; // for multiple << operators.

15 }

C++ for Scientific Computing (2021) 197

Tip: step-through debuggers

• Visual Studio and Borland Delphi etc. have their own integrated

step-through debuggers

• Eclipse offers a debugging plug-in which by default links to

Gnu’s gdb debugger, but supplies a user interface over the top

• Other graphical front-ends to gdb exist. I like ddd.

• Note: Executable files suitable for debugging need to be

compiled with -g (debug) rather than -O (optimized).

C++ for Scientific Computing (2021) 198

C++ for Scientific Computing (2021) 199

Lecture 12 — Exceptions

Suppose we have lines of code that read

bigger_vector = a_vector;

smaller_vector = a_vector;

where smaller vector, a vector and bigger vector are vectors

that have been declared as having 1, 2 and 3 elements respectively.

The assignment operator is expecting that the size of its input vector

(on the right-hand side) matches the object which it is assigning to.

There are clearly errors here – the current implementation will

attempt to add too much data into smaller vector.

What should the program do when the sizes do not match?

C++ for Scientific Computing (2021) 200

The answer is – “It depends”.

It’s good to have a hierarchy of errors

Level 1 If the error can be fixed safely, then fix it. If need be, warn the

user.

Level 2 If the error could be caused by user input then throw exception

up to calling code, since the calling code should have enough

context to fix the problem.

Level 3 If the error should not happen under normal circumstances then

trip an assertion.

Exceptions are a compromise between carrying on regardless and

stopping completely.

C++ for Scientific Computing (2021) 201

Exceptions require use of the keywords try, throw and catch

try tells the code to execute some statements

throw identifies an error

catch attempts to fix the error

C++ for Scientific Computing (2021) 202

We will use the example of assigning to a vector of the wrong length

using the overloaded = operator for vectors

When assigning to a longer vector we will treat it as a Level 1 error –

pad the extra entries with zeroes and warn the user. When assigning

to a shorter vector we will treat it as a Level 2 error and throw an

exception, because data would be lost otherwise.

When an error occurs we want the code to “throw” two pieces of

information

1. A summary

2. A description of the error

We will write a class Exception to store these two pieces of

information, and with the ability to print this information when

required

C++ for Scientific Computing (2021) 203

The file Exception.hpp may be written

1 #ifndef EXCEPTION__

2 #define EXCEPTION__

3 #include <string>

4 class Exception

5 {

6 public:

7 std::string problem, summary;

8 Exception(std::string sum, std::string prob);

9 void DebugPrint();

10 };

11 #endif

C++ for Scientific Computing (2021) 204

The file Exception.cpp may be written

1 #include "Exception.hpp"

2

3 Exception::Exception(std::string sum, std::string prob)

4 {

5 problem = prob;

6 summary = sum;

7 }

8

9 void Exception::DebugPrint()

10 {

11 std::cerr << "** Exception ("<<summary<<") **\n";

12 std::cerr << "Problem: " << problem << "\n\n";

13 }

C++ for Scientific Computing (2021) 205

Here’s the new assignment operator (2 slides)

1 Vector& Vector::operator=(const Vector& rVec)

2 {

3 // if rhs vector is too long then throw

4 // if rhs vector is too short, assume missing entries are 0

5 if (rVec.mSize == mSize)

6 {

7 for (int i=0; i<mSize; i++)

8 mData[i] = rVec.mData[i];

9 }

10 else if (rVec.mSize > mSize)

11 {

12 throw Exception("length mismatch",

13 "vector assignment operator - vectors have different lengths");

14 }

C++ for Scientific Computing (2021) 206

15 else //if (rVec.mSize < mSize)

16 {

17 for (int i=0; i<rVec.mSize; i++)

18 mData[i] = rVec.mData[i];

19 for (int i=rVec.mSize; i<mSize; i++)

20 mData[i] = 0.0;

21 std::cout << "vector assignment - copied vector too short";

22 std::cout << " and has been extended with zeroes\n";

23 }

24 return *this;

25 }

C++ for Scientific Computing (2021) 207

We may now test the exception written in our overloaded assignment

operator for vectors

1 Vector smaller_vector(1);

2 Vector a_vector(2);

3 Vector bigger_vector(3);

4 //This produces a warning

5 bigger_vector = a_vector;

6 //This produces an exception

7 try

8 {

9 smaller_vector = a_vector;

10 }

11 catch (Exception& err)

12 {

13 err.DebugPrint();

14 }

C++ for Scientific Computing (2021) 208

Tip: test first

• Test driven development means that you always start with the

code for a test (not the code itself)

• Choose the simplest piece of functionality which you want to

implement first

• Make a test before you make the implementation (it won’t

compile and it won’t pass)

• Write the missing functionality until the test passes

• Always check that all tests pass as you add new functionality

(then you know as soon as the program gives different behaviour)

C++ for Scientific Computing (2021) 209

An example from my own code (with CxxTest)

void TestPatientData() throw (Exception)

{

VentilationProblem problem("continuum_mechanics/test/data/all_of_tree", 0u);

problem.SetOutflowPressure(0.0);

problem.SetConstantInflowPressures(50.0);

TetrahedralMesh<1, 3>& r_mesh=problem.rGetMesh();

TS_ASSERT_EQUALS(r_mesh.GetNumNodes(), 56379u);

TS_ASSERT_EQUALS(r_mesh.GetNumElements(), 56378u);

problem.SetDynamicResistance(false);

problem.Solve();

std::vector<double> flux, pressure;

problem.GetSolutionAsFluxesAndPressures(flux, pressure);

double top_radius = r_mesh.GetNode(0)->rGetNodeAttributes()[0];

TS_ASSERT_DELTA(top_radius, 8.0517, 1e-4); //mm

double top_reynolds_number = fabs(2.0 * problem.GetDensity() * flux[0]

/ (problem.GetViscosity() * M_PI * top_radius));

// Poiseuille

TS_ASSERT_DELTA(problem.GetFluxAtOutflow(), -7.975182e6, 1.0);

TS_ASSERT_DELTA(top_reynolds_number, 49591, 1.0);

//...

}

C++ for Scientific Computing (2021) 210

Lecture 13 — Templates and the STL

• Templates introduce compile-time polymorphism: generics

• They are used where the same code may need to repeated for

small numbers of different values or for different types

1 mesh_3d.SolvePoisson();

2 mesh_2d.Create();

3

4 double GetMin(double a, double b)

5 {

6 if (a<b){return a;} return b;

7 }

8 int GetMin(int a, int b)

9 {

10 if (a<b){return a;} return b;

11 }

C++ for Scientific Computing (2021) 211

Use the template keyword to produce as many functions as may be

required

1 template <class T>

2 T GetMin (T a, T b) {

3 if (a<b){

4 return a;

5 }

6 return b; // When a>=b

7 }

8

9 main(){

10 std::cout << GetMin<int>(10,-2) << "\n";

11 double ans=GetMin<double>(22.0/7.0, M_PI);

12 }

Each new instance of the function requires the code to re-compiled

for that particular value

C++ for Scientific Computing (2021) 212

1 template<unsigned DIM>

2 class TemplatedVector

3 {

4 double mData[DIM]; // Static size (fixed at compile-time)

5 public:

6 double& operator[](int pos){

7 assert(pos<DIM); return(mData[pos]);

8 }

9 };

10 int main()

11 {

12 TemplatedVector<5> a;

13 a[0]=10; a[1]=11;

14 std::cout<<a[0]+a[1]<<"\n";

15 a[5]=0; //Trips assertion

16 }

C++ for Scientific Computing (2021) 213

The Standard Template Library (STL)

This is a set of commonly used patterns which can be re-used for

different types of objects

• Containers. e.g. random access vectors, linked lists

• Algorithms. e.g. sorting

• Iterators

• Special containers e.g. Queues and maps

C++ for Scientific Computing (2021) 214

• The vector template class provides a form of dynamic array that

expands at the end as necessary to accommodate additional

elements

• It is declared with std::vector<type>

• It contains methods like bool empty(), push back(value), int

size(), int capacity(), reserve(int)

• The implementation is responsible for doing the memory

management for you

• If you grow a vector dynamically, then STL may make a new

larger space for it and move it. Therefore, it’s not good to store

the addresses of vector elements elsewhere.

• Insertions/deletions at the end of the vector are fast

• Insertions/deletions at the front will take linear time

• std::deque has fast insertions at front or back

C++ for Scientific Computing (2021) 215

1 std::vector<std::string> SS;

2

3 SS.push_back("The number is 10");

4 SS.push_back("The number is 20");

5 SS.push_back("The number is 30");

6 // Loop over index

7 for(int ii=0; ii < SS.size(); ii++)

8 {

9 std::cout << SS[ii] << "\n";

10 }

11 //Loop with iterator

12 std::vector<std::string>::const_iterator cii;

13 for(cii=SS.begin(); cii!=SS.end(); cii++)

14 {

15 std::cout << *cii << "\n";

16 }

C++ for Scientific Computing (2021) 216

• The map template class provides the machinery to make a

mathematical map

• This lets us recall the value to which a particular key maps,

rapidly

• The internal organisation of a map relies on the ability to

compare the values of keys

• Many plain data types (int, double) have obvious comparison

functions. std::string types can be compared

lexicographically.

• For more complicated keys, you need to write and add a

definition of the ‘less than’ operator

• There are also set (like map with just the keys), bag (like set,

but with multiple copies of the same element) and multimap

(allowing the same key to be mapped to many things)

C++ for Scientific Computing (2021) 217

1 std::map<std::string, int> Phonebook;

2

3 Phonebook["Joe"] = 83511;

4 Phonebook["Sandy"] = 15208;

5 Phonebook["Sam"] = 10666;

6 std::cout << "Phonebook[Joe]=" << Phonebook["Joe"] << "\n\n";

7 std::cout << "Map size: " << Phonebook.size() << "\n";

8

9 for(std::map<std::string,int>::iterator

10 ii=Phonebook.begin(); ii!=Phonebook.end(); ii++)

11 {

12 std::cout << (*ii).first << ": " << (*ii).second << "\n";

13 }

14 assert(Phonebook.count("Laura") == 0);

C++ for Scientific Computing (2021) 218

This class lets us do comparison (lexicographical) on 2D points

1 class Point2d

2 {

3 int x, y;

4 public:

5 Point2d(int xval, int yval)

6 {

7 x=xval; y=yval;

8 }

9 bool operator<(const Point2d& rOther) const

10 {

11 if (x < rOther.x) return true;

12 if (x > rOther.x) return false;

13 return (y < rOther.y); //Returns false if y>=rOther.y

14 }

15 };

C++ for Scientific Computing (2021) 219

Thus we get key comparison (two-dimensional point comparison) for

use in a set

1 int main()

2 {

3 std::set<Point2d> points;

4 Point2d origin(0,0);

5 points.insert(origin);

6 points.insert(Point2d(0,1));

7 points.insert(Point2d(1,0));

8 points.insert(Point2d(0,0)); //No different from origin

9 std::cout<<points.size()<<"\n";

10 std::cout<<points.count(Point2d(0,0))<<"\n";

11

12 }

C++ for Scientific Computing (2021) 220

Comparison can be used for sorting

1 #include <algorithm>

2 ...

3 std::vector<int> squares_mod_10;

4 for (int i=0; i<10; i++){

5 squares_mod_10.push_back(rand() % 10);

6 }

7 // e.g. 3 6 7 5 3 5 6 2 9 1

8 sort(squares_mod_10.begin(), squares_mod_10.end());

9 for (int i=0; i< squares_mod_10.size(); i++){

10 std::cout<<squares_mod_10[i]<<" ";

11 }

12 std::cout<<"\n";

13 // e.g. 1 2 3 3 5 5 6 6 7 9

C++ for Scientific Computing (2021) 221

Modern C++ aside: enriched features in the STL

Modern C++ contains many useful features which have been added

to the STL:

• a more accessible array container

• easier initialisation of containers

• easier iteration over containers

std::vector<int> nums = {0, 1, 2};

// Use a reference to alter the members

for (int& r_num : nums) r_num++

// More compact form

for (auto n:nums) std::cout<<n<<"\n";

To use modern C++ features compile with g++ -std=c++11

C++ for Scientific Computing (2021) 222

• STL may look heavy-weight at first, since you have to put lots of

lists of things into angle-brackets

• Some of the use of iterators (e.g. set union) look very clumsy

• STL concentrates on frequently used design patterns and it’s

good to know the patterns (even if you don’t use the library)

• STL functionality is highly-optimised by compiler writers to give

complexity assurances and a low memory-footprint

C++ for Scientific Computing (2021) 223

Tip: re-use of robust libraries

If you write it yourself then you understand it better. However, it’s

not likely to be correct first time and it’s not likely to be the optimal

solution. Using code that has had decades of effort put into it is

better, even if the learning curve is steeper.

• Standard Template Library for extensible vectors, sorting

searching, indexing and mappings

• Boost for simple added functionality such as serialisation and

small matrices

• PETSc for large-scale, robust and sparse linear algebra

• MPI for distributed-memory parallelism

• . . .

C++ for Scientific Computing (2021) 224

The end — Useful tips

Software carpentry: You can increase your programming productivity

(in terms of speed and of correctness) by using available tools

The “tips” you have seen apply to all languages (not just to C++)

• Automated builders and IDEs

• Version control

• Memory leak detection

• Coding standards

• Documenting code

• Step-through debuggers

• Test first

• Re-use of robust libraries

C++ for Scientific Computing (2021) 225

Summary

• Administration

• Lecture 1 — The basics

• Lecture 2 — Flow of control

• Lecture 3 — Input and output

• Lecture 4 — Pointers and arrays

• Lecture 5 — Blocks, functions and references

• Lecture 6 — Functions and modules

• Lecture 7 — An introduction to classes

• Lecture 8 — More on classes

• Lecture 9 — Inheritance and derived classes

• Lecture 10 — A class of vectors

• Lecture 11 — Operator overloading

• Lecture 12 — Exceptions

• Lecture 13 — Templates and the STL

• The end — Useful tips

C++ for Scientific Computing (2021) 226

Index

2 Administration

3 A few introductory remarks

4 C++ is ‘object-oriented’

5 Lecture 1 — The basics

5 General structure of a basic C++ program

7 A first C++ program

9 Compiling the code

10 Numerical variables

12 More on numerical variables

21 Modern C++ aside: the auto type

22 Arrays (static allocation)

25 Boolean variables

C++ for Scientific Computing (2021) 227

26 ASCII characters

27 Strings

28 Tip: automated builders and IDEs

29 Lecture 2 — Flow of control

29 The if statement

33 Relational and logical operators

36 The while statement

37 for loops

40 Use of assert statements for debugging

43 Lecture 3 — Input and output

43 Console output

46 Keyboard input

48 Redirecting output

C++ for Scientific Computing (2021) 228

49 Writing to file

51 Reading from file

53 Reading from command-line arguments

55 Tip: version control

57 Lecture 4 — Pointers and arrays

57 Pointers

63 Dynamic allocation of memory for arrays

69 Irregularly sized arrays

71 Modern C++ aside: the shared pointer

72 Tip: memory leak detection

74 Lecture 5 — Blocks, functions and references

74 Blocks

76 Functions

C++ for Scientific Computing (2021) 229

88 References

90 Tip: use local variables

92 Lecture 6 — Functions and modules

92 Default values for function parameters

94 Function overloading

96 Modules

100 Problems that may arise when using modules

101 More problems

102 Encapsulation using classes

103 Lecture 7 — An introduction to classes

112 Compiling multiple files

113 Using a Makefile

117 Setting variables

C++ for Scientific Computing (2021) 230

119 Access privileges

124 Lecture 8 — More on classes

124 Constructors and Destructors

126 Copy constructors

127 Other constructors

129 Destructors

130 Use of pointers to classes

135 Tip: coding standards

137 Lecture 9 — Inheritance and derived classes

147 Polymorphism

156 Tip: plugging C++ into Matlab

159 Lecture 10 — A class of vectors

160 Constructors for vectors

C++ for Scientific Computing (2021) 231

164 Default constructor (no longer exists)

165 Copy constructors

169 Destructors

171 Functions

173 External function versus member method

175 Tip: documenting code

179 Lecture 11 — Operator overloading

180 Overloading the () operator

182 Access privileges

185 Binary operators

191 Binary operators without ‘friend’

193 Unary operators

195 Overloading the output operator

C++ for Scientific Computing (2021) 232

197 Tip: step-through debuggers

199 Lecture 12 — Exceptions

208 Tip: test first

210 Lecture 13 — Templates and the STL

213 The Standard Template Library (STL)

221 Modern C++ aside: enriched features in the STL

223 Tip: re-use of robust libraries

224 The end — Useful tips

225 Summary

226 Index

