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Abstract

Kochen-Specker (KS) vector systems in three dimensions are sets of directions in R3 with

the property that it is impossible to assign 0s and 1s to the directions in such a way that no

two orthogonal directions are assigned 0 and no three mutually orthogonal directions are

assigned 1. The existence of such sets forms the basis of the proofs of the Free Will Theorem

and the Kochen-Specker Theorem. Currently the smallest known KS vector system in three

dimensions contains 31 directions. We give an exhaustive algorithm that can be used to show

that the smallest such set must contain at least 18 directions. We show how to represent KS

vector systems by graphs that are not ‘101-colourable’. The NP-completeness of checking

101-colourability is shown and several necessary properties of the graph representation of

the smallest KS vector system are found.
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Chapter 1

Introduction

1.1 Motivation

The topic of this dissertation was suggested by my supervisor, Dr Joël Ouaknine. He had

attended a talk given by Prof. John H. Conway about the “Free Will Theorem” [4]. In

his talk, Conway formulated the problem that is the topic of my dissertation as an open

problem. I had attended the same talk at a different location, so I could immediately relate

to the problem.

The statement of the Free Will Theorem can be roughly explained as follows. There are

certain ‘spin-1 particles’ (e.g. photons), whose ‘spin’ (a physical property) can be measured

along any given direction. The squared outcome of such a measurement is either 0 or 1.

The theorem says that if experimenters can choose the direction from which to perform a

spin 1 experiment freely (i.e. not determined by the past), then the response of a spin 1

particle to such an experiment is also not determined by the past:

Theorem 1 (The Free Will Theorem). If the choice of directions in which to perform spin

1 experiments is not a function of the information accessible to the experimenters, then the

responses of the particles are equally not functions of the information accessible to them.

The theorem assumes three axioms, called the SPIN, the TWIN, and the FIN axiom.

A more recent, stronger version of the theorem replaces the FIN axiom with a weaker MIN
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axiom [5].

The axiom that will be of interest to us is the SPIN axiom:

Axiom 1 (The SPIN Axiom). Measurements of the squared (components of) spin of a spin

1 particle in three orthogonal directions always give answers 1, 0, 1 in some order.

This axiom not only follows from the postulates of quantum mechanics, but it can and

has also been verified experimentally [12]. This axiom alone already gives rise to an inter-

esting ‘paradox’, called the Kochen-Specker Paradox [5]. If the response of a particle to any

spin measurement was determined prior to the actual measurement, then those responses

would define a function from the three-dimensional unit sphere to the set {0, 1} with the

so-called 101 property: any three points on the unit sphere with mutually orthogonal posi-

tion vectors must be assigned the values 1, 0, 1 in some order. It is a remarkable fact that

such a function does not exist.

The non-existence of such a ‘101-function’ can be proved by exhibiting a finite set of

points on which such a function cannot be defined. In the proof of the Free Will Theorem,

Conway and Kochen present a set of 33 points. A brief argument suffices to show that no

101-function can be defined on those 33 points. Conway also found a set of 31 points which

does not admit a 101-function (e.g. p. 114 of [19]). The question he phrased as an open

problem during his talk, and the topic of this dissertation, is what the smallest possible

such set is. A considerable amount of work has already been put into finding such small

sets: the first known set contained 117 points [13]. This number was subsequently improved

to 33 and then to 31 (cf. pp. 2-3 of [16]).

Finding a smaller Kochen-Specker vector systems is desirable, because it would ‘simplify’

the proofs of the Free Will Theorem and the Kochen-Specker Theorem in some sense. Of

course, the proof that no 101-function can be defined on a set of directions may be more

involved for a small set than for a large set. A small set of directions would also simplify

the execution of the experiment described in the proof of the Free Will Theorem.
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1.2 Outline

The main body of this dissertation consists of four parts. First, the notion of a Kochen-

Specker vector system – a set of directions that is sufficient to derive the Kochen-Specker

Paradox from the SPIN Axiom – is defined. We show how to represent Kochen-Specker

vector systems as graphs that cannot be coloured in a certain way. Next, we deal with

the problem of finding a set of directions whose graph representation is a given graph, i.e.,

embedding a graph into the sphere (or more accurately the projective plane). The last two

sections deal with establishing a lower bound and an upper bound on the size of the smallest

Kochen-Specker vector system in three dimensions.

We will derive a number of conditions that the smallest Kochen-Specker vector system

must satisfy. Unfortunately, the number of graphs satisfying those conditions is still very

large.

1.3 Notation

Most of this work is concerned with simple, undirected graphs. Often, we will refer to simple,

undirected graphs simply as “graphs”. We will define the notion of “101-colourability” of

a graph. Sometimes we will call a graph “uncolourable”, by which we mean that it is not

101-colourable. The 4 cycle C4 is called a square. A simple, undirected graph is called

square-free iff it contains no subgraph isomorphic to C4.

Three-dimensional vectors are denoted by bold letters, such as x and y. The expression

x · y denotes the scalar product between vectors x and y. The x, y, and z components of

a vector x are denoted x(1), x(2), and x(3), respectively. In three-dimensional figures and

illustrations, the vertical axis is taken to be the y axis; the x axis runs left to right and the

positive z axis runs “into the paper”.

In this work, we clearly distinguish between three kinds of proofs. The usual kind of

proof is the mathematical proof. In addition to mathematical proofs, we also present some

results that have computer-aided proofs. This means that a computer program was involved

in proving the result. Formally, such a proof may not be considered a mathematical proof: it

would also have to include proofs of the correctness of the computer program that was used,
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and of the correctness of the compiler and computer architecture of the machine on which

the computer program was executed. Finally, we will also present some results that have

numerical proofs: by a numerical proof, we mean a proof for which a computer program

was used, and floating point arithmetic was involved in a way that cannot be shown to be

entirely accurate. It is reasonable to assume that the computed results are correct up to

a certain accuracy, and the initial problem would have to be very ill-conditioned in order

for the proof to be invalid. However, such a numerical proof is in some sense only a strong

indication of the truth rather than an actual proof. A computer-aided proof is certainly

much stronger than a numerical proof.
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Chapter 2

Kochen-Specker Vector Systems

We recall the SPIN Axiom from the introduction:

Axiom 2 (The SPIN Axiom). Measurements of the squared (components of) spin of a spin

1 particle in three orthogonal directions always give answers 1, 0, 1 in some order.

As S. Kochen and E. Specker showed [13], this axiom gives rise to a ‘paradox’: There is

no function that assigns to each point on the unit sphere either value 0 or value 1 in such a

way that every triple of points with mutually orthogonal position vectors is assigned 1, 0, 1

in some order. A finite set of points on the unit sphere suffices to arrive at a contradiction

when assuming the existence of such a function. We investigate the lower and the upper

bound on the size of the smallest such set.

2.1 Definitions

2.1.1 101-functions

We define the notion of a 101-function (“one-oh-one function”) as in [4]. First, observe that

if the outcomes of all possible spin measurements of a spin 1 particle were pre-determined,

then the TWIN Axiom would imply that we can define a function on the unit sphere of

directions with the property that any three mutually orthogonal directions are assigned

1, 0, 1 in some order. We can easily derive further properties of such a function:
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1. Opposite vectors are assigned the same value.

2. No two orthogonal vectors are assigned 0.

3. No three mutually orthogonal vectors are assigned 1.

Note that on a subset of the unit sphere of directions, these three properties are possibly

stronger than the requirement that any three mutually orthogonal directions are assigned

1, 0, 1 in some order (consider for instance a set consisting only of two opposite directions).

The three properties motivate the following definition:

Definition 1. Let K be a set of directions in R3. A function f : K → {0, 1} is called a

101-function iff it satisfies the following three conditions:

1. If u, v ∈ K and u · v = 0, then f(u) 6= 0 or f(v) 6= 0, i.e. no two orthogonal vectors

are assigned value 0 by f .

2. If u, v, w ∈ K are three mutually orthogonal vectors, then f(u) 6= 1, f(v) 6= 1 or

f(w) 6= 1.

3. Opposite directions u,−u ∈ K satisfy f(u) = f(−u).

The Kochen-Specker Paradox resulting from the SPIN Axiom is that no 101-function

can be defined on S2.

2.2 Kochen-Specker Vector Systems

Next, we define the notion of a direction set in three dimensions:

Definition 2. A direction set K ⊆ R3 is a set of non-zero vectors, none of which are

collinear.

Note that because of the non-collinearity requirement, a function f : K 7→ {0, 1} is a

101-function on a direction set K iff it satisfies properties 1 and 2 of Def. 1 (101-function).

Finally, we use the following definition of a Kochen-Specker vector system in three dimen-

sions:
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Definition 3. A three-dimensional Kochen-Specker vector system (KS vector system) is a

direction set on which no 101-function can be defined.

2.3 Representing Direction Sets as Graphs

Given a direction set K, we may define a graph G = (V,E) corresponding to this direction

set as follows:

V = K

E = {(x, y) : x, y ∈ K and x · y = 0}

In other words, there is one vertex per direction (or, if K is infinite, there is a bijection

between the vertices of G and the elements of K) and two vertices are connected by an

edge iff the corresponding directions in K are orthogonal. Of course, the actual directions

in K are not preserved when constructing G. We can rotate the directions of K around the

origin while the corresponding graph G does not change. However, enough of the structure

is preserved to determine whether a 101-function can be defined on K. We call G the graph

representation of K.

2.3.1 Different Definitions in the Literature

Unfortunately, there is no uniform terminology of terms relating to KS vector systems. The

use of the term “Kochen-Specker vector system” was motivated by the title of the research

report of M. Pavičić, J-P. Merlet, and N. Megill ([17], “Exhaustive Enumeration of Kochen-

Specker Vector Systems”). In this report, the expression “Kochen-Specker set” is defined

similarly, but for arbitrary dimensions. Occasionally, the term “Kochen-Specker system” is

also used.

However, it must be clarified that the definition of a KS set is somewhat different in

the research report. Pavičić et al. require that every pair of vectors in an n-dimensional

“Kochen-Specker set” belongs to a set of n mutually orthogonal vectors. Using this def-

inition in three dimensions, one could define a 101-function to be a function that maps

any three mutually orthogonal vectors to 1, 0, 1 in some order. The ‘stronger’ conditions
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of our definition would not be stronger on KS sets, and would therefore not be required.

This is why, according to their counting, Conway’s KS set contains 51 vectors instead of

31. Indeed, the graph representation of Conway’s KS system contains 20 edges that do not

belong to any triangle: there are 20 pairs of orthogonal vectors that do not belong to a

triple of mutually orthogonal vectors. Of course, the 20 additional vectors can easily be

added to the set of directions, thus resulting in a set of 51 directions.

This is why care needs to be taken when comparing the result of Pavičić et al. with the

results established in this thesis. Their algorithm has enumerated and checked all direction

sets of size up to and including 30. However, according to their counting, there are still

21 directions missing until the size of the system suggested by Conway is reached. It is

a reasonable assumption that the number of systems that have to be checked increases at

least exponentially with the number of directions, although the author is not aware of the

exponent’s coefficient. Thus, the gap from 30 to 51 directions according to the different

counting is probably similar to the gap from 17 to 31 directions according to the counting

used in this thesis. The speed of growth of the number of direction sets as defined in this

thesis is investigated in the Discussion chapter.

2.3.2 101-colorability of a graph

We define the notion of 101-colourability of a graph. If G is the graph corresponding to a

direction set K, then we would like G to be 101-colourable iff there exists a 101 function for

K. The definition can be extended to cover all simple undirected graphs, however.

Definition 4. A simple undirected graph G = (V,E) is 101-colourable iff there exists a

function c : V 7→ {0, 1} s.t. not both vertices of any edge are assigned 0 and not all three

vertices of any triangle are assigned 1, i.e.

1. If {a, b} ∈ E then c(a) = 1 or c(b) = 1

2. If {{x, y}, {y, z}, {z, x}} ⊆ E then c(x) = 0 or c(y) = 0 or c(z) = 0

In order to put 101-colourability in context with regular k-colourability, we show the

following result.
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Proposition 1. A 3-colourable graph G = (V,E) is 101-colourable.

Proof. Let c : V 7→ {1, 2, 3} be a 3-colouring. Define the colouring c′ : V 7→ {0, 1} by

c′(x) =


0 if c(x) = 1

1 otherwise
.

We claim that c′ is a valid 101-colouring. Indeed, every edge {a, b} must have c′(a) 6= 0 or

c′(b) 6= 0, since c(a) 6= c(b). Furthermore, c assigns all three colours 1, 2, and 3 to the three

vertices of a triangle. This means that c′ assigns 1 to two of the vertices and 0 to one of

the vertices, as required.

NP-completeness

Deciding whether a simple graph admits a 101-colouring is NP-complete. Following the

customary naming convention, we introduce the name 101-COLOR for this problem. We

show the NP-completeness by showing that the problem 3-COLOR of deciding whether

a simple graph is 3-colourable can be reduced to 101-COLOR. The NP-completeness of

101-COLOR then follows from the NP-completeness of 3-COLOR (e.g. [6], pp. 1019f.).

Theorem 2. The 101-colourability problem is NP-complete.

Proof. Note that 101-colourability is in NP: there are 2n possible colourings of a graph on

n vertices. Checking whether one such colouring is a valid 101-colouring can be done in

polynomial time, e.g. by checking all O(n3) triples of vertices whether they contain an ‘all

0-edge’ or an ‘all 1-triangle’.

It remains to show NP-hardness. Given a simple graph G = (V,E), we show how

to construct a simple graph G′ = (V ′, E′) which is 101-colourable iff G is 3-colorable.

Furthermore, it will be clear that the construction can be performed in time proportional

to a polynomial of the input size. We assume a “reasonable” encoding of the input instead

of over-complicating the proof with many details. Since 3-COLOR is NP-complete, this

proves the theorem.

The new graph G′ will contain three vertices v1, v2, and v3 for each vertex v in G. Those

three vertices are joined to form a triangle. For every edge e = {u, v} in G, we introduce
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Figure 2.1: An example of the construction of G′ from G.

three edges in G′: {u1, v1}, {u2, v2} and {u3, v3}. One can think of G′ as three copies of G

whereby any vertex of one copy is joined to the two corresponding vertices in the other two

copies. This construction is illustrated using a simple example in Fig. 2.1.

We claim that G is 3-colourable iff G′ is 101-colorable. This claim is a corollary of the

following two lemmas.

Lemma 1. If G is 3-colourable, then G′ is 101-colourable.

Proof. Suppose G is 3-colourable and let c : V 7→ {1, 2, 3} be a valid 3-colouring. If a vertex

v ∈ V has colour c(v), then we colour the corresponding vertices v1, v2, and v3 by assigning

0 to vertex vc(v) and 1 to the other two vertices. Hence, we encode the 3-colouring of G in

our colouring of G′. Formally, our new colouring is defined by c′ : V ′ 7→ {0, 1}:

c′(vi) =


0 if i = c(v)

1 otherwise .

(2.1)

We note the following two properties of G′ and c′:

1. By definition of c′, if w1, w2 and w3 are the vertices in G′ corresponding to w in G,

then exactly one of those will be assigned colour 0.

2. Suppose that ui and vj are vertices in G′ corresponding to vertices u and v in G,

respectively. Suppose further that (ui, vj) is an edge in G′. Then it follows from the

construction of G′ that either u = v and i 6= j, or that u 6= v and i = j.

It remains to show that c′ is indeed a valid 101-colouring of G′. Indeed, neither of the

two conditions of Def. 4 (101-colouring) is violated:
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Suppose, for a contradiction, that the first condition is violated, i.e. that two adjacent

vertices ui and vj have colour 0. By Property 1 the corresponding vertices u and v of G

must be distinct. By Property 2 we must then have i = j and {u, v} ∈ E. But by the

definition of c′, we have c(u) = c(v). This contradicts the assumption that c is a valid

3-colouring of G. We conclude that no two adjacent vertices in G′ can have colour 0. The

colouring c′ therefore satisfies the first condition of Def. 4.

Next, suppose for a contradiction, that the second condition is violated, i.e. some vertices

ui, vj , and wk of a triangle in G′ have colour 1. Let u, v, and w denote the corresponding

vertices in G. We claim that all three of those must be distinct vertices in G. Indeed, by

Property 1, not all of u, v, and w can be the same. Wlog. (by symmetry) we may assume

u 6= v and therefore (by Property 2) i = j. But then w 6= u or else k 6= i = j which implies

that w = v 6= u. By symmetry we also have w 6= v, proving the claim.

Hence, we have that u, v, and w are all distinct and i = j = k. By the definition of c′

this means that none of u, v, and w can have colour i. Since ui, vj , and wk form a triangle

in G′, their corresponding vertices form a triangle in G. But then c colours the triangle

{u, v, w} using only two colours, contradicting the assumed validity of c. The colouring c′

therefore also satisfies the second condition of Def. 4 and thus c′ is a valid 101-colouring.

Lemma 2. If G′ is 101-colourable, then G is 3-colourable.

Proof. Suppose that c′ : V ′ 7→ {0, 1} is a valid 101-colouring of G′. Suppose v1, v2, and

v3 are the three vertices in G′ corresponding to v in G. Since {v1, v2, v3} is a triangle

in G′, exactly one of those vertices has colour 0. We may therefore define a colouring

c : V 7→ {1, 2, 3} of G by c(v) = i⇔ c′(vi) = 0.

This is valid 3-colouring: Suppose, for a contradiction, that k = c(v) = c(u) for two

adjacent vertices v and u in G. Then c′(vk) = c′(uk) = 0 in G′ and by the construction of

G′ the two vertices are adjacent. This contradicts the validity of c′ (condition 2 of Def. 4).

Hence, if G′ is 101-colourable, then G is 3-colourable.

Finally, note that |V ′| = 3 |V | and |E′| = 3 |E|+ 3 |V |, i.e. the size of G′ is Θ(|E|+ |V |).

Also, the construction of G′ from G is straightforward and clearly possible in polynomial

time.
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Whenever the 101-colourability of a given graph needed to be checked, the problem was

formulated as a SAT instance and solved using the MiniSAT solver [7], which can be linked

statically with a C++ program. One variable was introduced for the colour of each vertex.

For each edge, a clause stating that not both vertices can have colour 0 was introduced; for

each triangle, a clause was added stating that not all three vertices can have colour 1. The

MiniSAT solver outperformed a straight-forward backtracking algorithm on all reasonably

large graphs.

2.4 Records in three dimensions

In their original paper, Kochen and Specker [13] construct a KS vector system with 117

vectors. Subsequent constructions of smaller KS vector systems are referred to as “records”

[17]. We outline the construction of three of those systems.

2.4.1 The Original KS Vector System with 117 Directions

Fig. 2.2 shows the graph from which the original KS Vector System is constructed. The

graph contains 120 vertices. To form the graph representation of the KS vector system, three

pairs of vertices are identified: A and a, B and b, and C and c. The detailed construction

of the direction set which has this graph representation can be found in the original paper

[13].

Interestingly, 88 of the 117 directions suffice as a KS vector system (88 directions are

also necessary). This number was found using the backtracking algorithm introduced in

Sect. 5.2.

2.4.2 Peres’ System with 33 Directions

Peres’ KS vector system [18] uses only 33 directions to establish a contradiction. It is

constructed by taking three copies of the unit cube [−1, 1]3. One copy is rotated 45 degrees

around the x-axis, a second cube is rotated 45 degrees around the y-axis, and the last cube is

rotated 45 degrees around the z-axis. The directions then correspond to the symmetry axes

of the rotated cubes (see Fig. 2.3). The construction is copied from Conway and Specker
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Figure 2.2: The graph from which the original KS vector system was constructed. The
pairs of vertices (A, a), (B, b), and (C, c) are identified.

[5]. They also give a concise proof of the fact that no 101-function can be defined on this

set of directions.

2.4.3 Conway’s System with 31 Directions

The 31 directions of the KS vector system found by John Conway lie on a grid of points on

the surface of a cube. The black dots in Fig. 2.4 represent the directions in the set. This

figure is taken from [19]. As of the time of this writing, no smaller KS vector system in

three dimensions is known.
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Figure 2.3: Illustration of the directions in Peres’ KS vector system. The directions are the
symmetry axes of the shaded cubes.

 

Figure 2.4: A visual representation of the KS vector system discovered by John Conway.
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Chapter 3

Directions from Graphs

Unfortunately, not all graphs correspond to a set of directions in three dimensions. For

example, the following result states that a graph representing a direction set must not

contain a square. We call a graph corresponding to some direction set embeddable. All

other graphs are called unembeddable. Note that every subgraph of an embeddable graph

is also embeddable. Equivalently, every graph containing an unembeddable graph is also

unembeddable. If a direction set K has graph representation G, then we call K an embedding

of G.

Proposition 2. A graph representing a direction set must be square-free.

Proof. It suffices to show that the square (C4) is not embeddable. It follows immediately

Figure 3.1: A square forces two collinear directions.
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Figure 3.2: The division of the upper half-sphere into four quadrants.

that no graph representing a direction set can contain a square. Note that if a vertex a

has two neighbours b and d, then the direction associated with a must be orthogonal to

the directions associated with b and d. If we write δ(x) for the unit vector in the direction

associated with vertex x, then δ(a) = ±δ(b) × δ(d). This expression is always a valid

direction, because δ(b) and δ(d) are not allowed to coincide. Suppose now that vertices a, b,

c, and d form a square. Then δ(a) = ±δ(b)×δ(d) and δ(c) = ±δ(b)×δ(d), i.e. δ(a) = ±δ(c).

In other words, δ(a) and δ(c) are collinear. This violates the condition that all the directions

in a direction set must be distinct.

Our next result states that a finite embeddable graph must be 4-colourable.

Proposition 3. A finite graph representing a direction set must be 4-colourable.

Proof. We begin by outlining the idea of the proof and then fill in the details. The direction

vectors of a KS vector system can be represented as points of the upper half (y > 0) of a

unit sphere (we might have to apply a rotation to all the position vectors). This upper half

of the unit sphere can be split into four quadrants. Points that are inside each quadrant

cannot represent orthogonal directions. Hence, the corresponding vertices in the graph form

an independent set. Therefore, the graph consists of four independent sets, which can be

considered the colour classes of a 4-colouring.

The quadrants of the upper half-sphere are shown in Figure 3.2. It remains to show that

we can always rotate the direction vectors in such a way that none of the points end up on

the boundaries of the quadrants.
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First, note that there must exist some plane through the origin on which none of the

points lie. Indeed, a plane through the origin can be described by its normal vector. Every

direction in the KS system lies on exactly those planes with normal vectors orthogonal to

the direction. Hence, every direction vector in the KS system forbids a one-dimensional

set of normal vectors, which has Lebesgue measure 0 inside the (two-dimensional) set of all

normal vectors. Since the KS system is finite by assumption, the union of all ‘forbidden’

sets also has Lebesgue measure 0. Thus, almost all of the normal vectors describe planes in

which no direction vectors of the KS system lie.

Let P be a plane in which none of the direction vectors lie. We rotate the direction

vectors around the origin s.t. P is the plane y = 0. Next, we rotate around the y axis in

such a way that no points lie on the planes described by x = 0 and z = 0. This can be done

for a similar reason: every direction in the KS system excludes (up to) four rotation angles

(the angles which cause the x or z coordinates to vanish). Those four angles have Lebesgue

measure 0 with respect to the Lebesgue measure defined on [0, 2π). Thus, we can rotate

around almost all angles without moving any direction onto the x = 0 or z = 0 plane.

Note that this leaves the possibility of a single point being located at (x, y, z) = (0, 1, 0).

But the corresponding direction would not be orthogonal to any other direction, because

we have chosen P in such a way that no direction vectors lie in it.

The four quadrants are now defined by {x > 0} ∩ {z > 0}, {x < 0} ∩ {z > 0}, {x >

0} ∩ {z < 0}, and {x < 0} ∩ {z < 0}. If a point is located at (x, y, z) = (0, 1, 0) it can be

put into either of the four quadrants. The quadrants form the colour classes and show that

the graph corresponding to the KS vector system must be 4-colourable, as claimed.

Remark 1. The proof can straightforwardly be extended to countable graphs representing

KS vector systems.

Since all embeddable graphs are square-free, we are only interested in the 101-colourabili-

ty of square-free graphs. This problem is still NP-complete. The proof is almost identical

to the NP-completeness proof of the 101-colourability problem for general graphs. We show

how to reduce instances of 3-COLOR to the problem of checking a square-free graph for

101-colorability. The construction is as before, except that instead of edges joining two

21



vx,i

ve,i,3

ve,i,4

ve,i,1

ve,i,5

vy,i

ve,i,2

ve,i,6
 

Figure 3.3: The square-free gadget used to connect vertices in G′. The leftmost (vx,i) and
rightmost (vy,i) vertices cannot both be coloured 0.
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Figure 3.4: The construction of G′ from G.

vertices in the newly constructed graph that correspond to different vertices of the original

graph, we use a square-free ‘gadget’ with the appropriate properties.

Theorem 3. The square-free 101-colourability problem is NP-complete.

Proof. We know that checking a square-free graph for 101-colourability is a problem in NP,

because checking a general graph for 101-colourability is in NP by Thm. 2.

We show how to reduce an instance of 3-COLOR to checking 101-colourability of a

square-free graph. Given a graph G = (V,E), construct G′ = (V ′, E′). Before we give a

formal definition of V ′ and E′, it will be useful to illustrate the shape of the new graph using

an example (see Fig. 3.4). Note that the shape of G′ is like shape of G′ in the construction

in the NP-completeness proof of 101-COLOR (Thm. 2), except that the edges connecting

vi and ui (v, u ∈ V ) are now replaced by a special square-free gadget (as shown in Fig. 3.3).
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The formal construction looks as follows. We have

V ′ =

(⋃
x∈V

{vx,1, vx,2, vx,3}

)
∪

⋃
e∈E

 ⋃
i∈{1,2,3}

{ve,i,1, . . . , ve,i,6}


and

E′ =

(⋃
x∈V

{{vx,1, vx,2}, {vx,2, vx,3}, {vx,1, vx,3}}

)
∪

⋃
e∈E

 ⋃
i∈{1,2,3}

Ee,i

 ,

where for e = {x, y} each Ee,i is a set consisting of the 11 edges:

Ee,i =
{
{vx,i, ve,i,1}, {vx,i, ve,i,5}, {vy,i, ve,i,2}, {vy,i, ve,i,6},

{ve,i,1, ve,i,2}, {ve,i,5, ve,i,6}, {ve,i,1, ve,i,3}, {ve,i,2, ve,i,3},

{ve,i,4, ve,i,5}, {ve,i,4, ve,i,6}, {ve,i,3, ve,i,4}
}
.

Hence |V ′| = 3 · (|V | + 6|E|) and |E′| = 3 · |V | + 11 · |E|, i.e. the increase in size is still

polynomial (in fact O(|V |+ |E|)).

We now have to establish the following three facts:

1. G′ is square-free.

2. If G is 3-colourable, then G′ is 101-colourable.

3. If G′ is 101-colourable, then G is 3-colourable.

We split the proofs of those three facts into three lemmas.

Lemma 3. G′ is square-free.

Remark 2. This fact is actually obvious by inspection. The formal proof is included for

completeness.

Proof. Note that G′ contains a square iff there exist vertices a and b with more than one

neighbour in common. Call the vertices vx,i for x ∈ V , i ∈ {1, 2, 3} ‘triangle vertices’

(because they all appear in triangles). We call the remaining vertices (ve,i,j for e ∈ E,

i ∈ {1, 2, 3}, and j ∈ {1, . . . , 6}) edge vertices. We show that neither a nor b can be a
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Figure 3.5: Colouring the gadget if the end-vertices have different colours (0 = white, 1 =
grey).

triangle vertex or an edge vertex. Since the entire graph consists only of triangle and edge

vertices, we deduce that G′ does not contain any square.

First, suppose that a is a triangle vertex. Then b cannot lie on the same triple of triangle

vertices, because any two triangle vertices on the triple share only one common neighbour.

Furthermore, b cannot be a triangle vertex belonging to a different vertex in G, because

by construction any two triangle vertices in G′ corresponding to different vertices in G are

connected only by paths containing at least two edge vertices. This is because every edge

in G is replaced by a gadget in G′. Any path across a gadget contains at least two edge

vertices. We deduce that at least one of a, b must be an edge vertex.

Suppose now that a is an edge vertex. Since the gadget is square-free, a and b must lie

on different gadgets. But a must share two neighbours with b. Both neighbours must also

be vertices on the same gadget as a, because a is ‘inside’ the gadget. By inspection, we find

that the only two vertices on the gadget with neighbours outside the gadget are vx,i and

vy,i (see Fig. 3.3). However, those two do not have any edge vertex as a common neighbour.

But a would have to be a common neighbour of both, so we arrive at a contradiction.

Thus, by symmetry, we have shown that neither a nor b can be edge vertices. Also, we

have shown that not both a and b can be triangle vertices. Consequently, there exist no two

vertices a and b in G′ which share two common neighbours, i.e. G′ is indeed square-free.

Lemma 4. If G is 3-colourable, then G′ is 101-colourable.

Proof. Suppose that G is 3-colourable. Lemma 1 tells us that G′ would be 101-colourable
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Figure 3.6: Colouring the gadget if the end-vertices are coloured 1 (0 = white, 1 = grey).
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Figure 3.7: Not both end vertices of a gadget can be coloured 0. A colour 0 is represented
by a white vertex, a colour of 1 by a grey vertex.

if the gadgets were replaced by regular edges. We use the colouring constructed in Lemma

1 and show that the additional vertices (introduced by the gadgets) can also be coloured.

Note that each of those additional vertices is connected to at most one vertex that is already

coloured. Thus, we only have to show that there exists a colouring for the gadget in Fig.

3.3 for the following three situations:

1. vx,i is coloured 0 and vy,i is coloured 1.

2. vx,i is coloured 1 and vy,i is coloured 0.

3. vx,i is coloured 1 and vy,i is coloured 1.

The first two situations are the same by symmetry. Figures 3.5 and 3.6 give the colourings

for situations 1 and 3, respectively.
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Figure 3.8: 4-colouring a gadget

Lemma 5. If G′ is 101-colourable, then G is 3-colourable.

Proof. Let c′ : V ′ 7→ {0, 1} be a 101-colouring of G′. For x ∈ V exactly one of c′(vx,1),

c′(vx,2), c′(vx,3) is 0. We define a 3-colouring c : V → {1, 2, 3} by c(x) = i⇔ c′(vx,i) = 0. It

remains to show that c is indeed a valid 3-colouring. We show that if e = {x, y} is an edge of

G, then c′(vx,i) 6= 0 or c′(vy,i) 6= 0 for 1 ≤ i ≤ 3. Indeed, as Fig. 3.7 shows, it is impossible

to colour the gadget between vx,i and vy,i in such a way that 0 is assigned to both vertices:

If vx,i and vy,i are both coloured 0, then their four neighbours (ve,i,1, ve,i,2, ve,i,5, ve,i,6) must

be coloured with colour 1. This forces the remaining vertices ve,i,3 and ve,i,4 to have colour

0 – a contradiction, since they are adjacent.

Lemmas 3, 4, and 5 imply that deciding the 101-colourability of a square-free graph is

NP-hard. Together with the fact that this problem lies in NP, this means that deciding the

101-colourability of a square-free graph is NP-complete, as claimed.

Remark 3. It is not difficult to see that the constructed graph G′ is also 4-colourable.

Indeed, we can 4-colour each gadget in such a way that both end vertices vx,i and vy,i have

the same or different colours, as shown in Fig. 3.8. Using colourings like this (possibly

permuting the colours appropriately), we can 4-colour G′ by colouring vx,i with colour i for

all v ∈ V .

The reader may be interested to see the following

Proposition 4. The gadget in Fig. 3.3 is the unique smallest square-free graph with the

property that there exist two non-adjacent vertices which cannot both be coloured 0 in a valid

101-colouring.
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Proof. (computer-aided) By exhaustive enumeration using the methods described later in

this thesis.

3.1 Embedding Polynomials

Suppose that G = (V,E) is a simple undirected graph with vertex set V = {v1, . . . , vn}.

We are interested in finding a direction set K whose graph representation is isomorphic to

G. The intention, of course, is to find a graph that is not 101-colourable and to determine

a corresponding direction set K. Such a set would be a KS vector system, since no 101

function could be defined on K. Therefore, we are actually only interested in finding a

direction set K with the property that G is a subgraph of the graph representation of K.

Let xi be the vector in K corresponding to vertex vi in G. There are now three conditions

that the xi have to fulfil:

1. xi 6= 0 for all i ∈ {1, . . . , n}.

2. (vi, vj) ∈ E ⇒ xi · xj = 0 for all i, j ∈ {1, . . . , n}.

3. xi × xj 6= 0 for all i, j ∈ {1, . . . , n}, i 6= j.

As soon as K contains more than one element, the first and the third conditions can be

summarized by saying that no two vectors may be collinear. In the sequel, we will refer to

the conjunction of conditions 1 and 3 as the ‘collinearity constraint’. Condition 2 will be

referred to as the ‘orthogonality constraint’.

The orthogonality constraint can be formulated nicely as a system of polynomial equa-

tions. A direction set K whose graph representation is isomorphic to G must satisfy all of

the given equations. The system contains one equation for each edge of G. The equation

for a given edge e = {vi, vj} ∈ E is

xi · xj = 0 , (3.1)

which can be rewritten as

xi(1)xj(1) + xi(2)xj(2) + xi(3)xj(3) = 0 . (3.2)
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Here we write xi(k) for the kth component of vector xi = (xi(1), xi(2), xi(3))T.

If this system of equations has a single real solution, then it has infinitely many solutions:

First of all, a solution can be scaled by any non-zero scalar to arrive at another solution.

In fact, each of the vectors in the direction set can be scaled by a separate non-zero scalar.

This can easily be prevented by adding an additional equation for each vertex vi in the

graph:

xi(1)2 + xi(2)2 + xi(3)2 − 1 = 0 (3.3)

This forces all the vectors in the direction set to be of unit length.

Secondly, any solution can be rotated around the origin to arrive at more solutions.

This can be prevented by fixing the directions corresponding to the two vertices of one edge

(assuming that the graph contains an edge). If the edge is part of a triangle, then the

direction corresponding to the third vertex of the triangle is also determined.

Fortunately, it is known that the problem is decidable. In fact, the conditions can be

expressed as a formula in the existential first-order theory of the reals. Deciding the truth

of such a formula is known to be a problem in PSPACE ([2], [22]). However, we require an

efficient algorithm, which can decide the embeddability of a graph within seconds.

A first, näıve approach to finding an embedding was to ask the software package Wolfram

Mathematica 7.0 for a symbolic solution to the system of equations. Unfortunately, the

command never terminated, even for relatively small systems.

Thereafter, a significant amount of time was spent on learning about and trying out

methods for finding embeddings of graphs. Personally, I believe that finding a reliable and

efficient method for determining whether a graph is embeddable is the key to finding smaller

KS vector systems, or showing that none exist. Unfortunately, none of the methods under

consideration were refined to a point where they could usefully be applied to all the graphs

that were encountered.

The next sections cover the methods that were applied, their benefits and their draw-

backs. Finally, we present some surprisingly small graphs whose embeddability was hard

or impossible to decide using the described methods.
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3.2 Embedding via Numerical Minimization

Wolfram Mathematica offers a function, called NMinimize, which uses various numerical

methods in order to find the global minimum of a given function in multiple variables.

In order to use NMinimize, the system of equations encoding the orthogonality conditions

must be converted into a single function which reaches its known minimum iff the system

has a solution. This is done by summing the squares of all the left-hand sides of the

equations. All terms in the sum are non-negative. Hence, the sum has minimum 0 iff the

system of equations has a solution. Note that this does not take into account the collinearity

condition.

Let G = (V,E) be a graph with |V | = n vertices. Formally, the function being minimized

is given by:

f(x1, ...,xn) =
n∑

i=1

(
1− |xi|2

)2
+

∑
{i,j}∈E

(xi · xj)2 (3.4)

Note that we do not fix any coordinates in advance. This leaves a higher-dimensional

set of minima in the function (if the graph has an embedding). Whether or not this is

advantageous was not investigated.

Section 7.1 in the Appendix contains the Mathematica input which finds an embedding

for Conway’s KS system.

3.2.1 Advantages

This provides a very quick method of finding the numerical approximation to an embedding

of a graph. The function call terminates within about one second, which makes this method

relatively fast compared to the other methods – especially when looking at the worst cases.

The method can deal with all graphs in the range that we are interested in. Converting

a graph to the corresponding input for Mathematica is also quite straight-forward, i.e. the

implementation effort is low.

29



3.2.2 Drawbacks

The algorithm underlying NMinimize is not guaranteed to find the global minimum of the

function. It is therefore impossible to use this method in order to decide that a graph has

no embedding. Furthermore, even if an embedding is found, the coordinates are not found

accurately, although the solution’s accuracy may be increased. Sometimes it is possible

to find the exact coordinates by rotating the discovered embedding until three orthogonal

vectors are aligned with the unit vectors. The coordinates of the remaining vertices may then

be close to some “familiar” values, like 1√
2

or 1√
3
. Using those values for the coordinates,

one can again verify that they solve the system of equations.

Sometimes the method finds only embeddings that have collinear vectors, even when run

with many different seeds for the random number generator used by the implementation of

NMinimize. One would like to conclude that, with high probability, no embedding exists

that does not contain pairs of collinear vectors. However, it is probably very complicated

(even knowing all the implementation details) to derive bounds for the probability of certain

minima appearing.

3.3 Embedding with the ‘Box Grid’

Conway’s KS system lies on a very regular grid, as shown in Fig. 2.4. The grid (including the

points that do not belong to Conway’s system) corresponds to the direction set containing

the vectors with integer coordinates on the surface of the cube [−2, 2]3. For every such

vector v, there is also an exactly opposite vector −v with integer coordinates that lies on

the surface of the cube. Obviously, we consider only one of those two collinear vectors.

Fig. 3.9 shows the box grid on which Conway’s system lies. The vectors that belong to the

direction set are marked by small circles. There are 49 such vectors on the entire grid, while

Conway’s system makes use of only 31 of them.

We can generalize the grid and introduce a grid parameter N : The direction set corre-

sponding to a grid with positive integer grid parameter N corresponds to the (non collinear)

vectors with integer coordinates that lie on the surface of the cube [−N,N ]3. Hence, Con-

way’s KS system is embeddable on the box grid with grid parameter N = 2. Obviously, it
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Figure 3.9: The box grid underlying Conway’s KS system.

is also embeddable on the box grid with grid parameter N = 4, which contains the same

directions as the box grid with parameter N = 2, and a few more.

In order to check whether a given graph is embeddable, one can look for an embedding on

a box grid. In fact, a graph G is embeddable if it is the subgraph of the graph representation

of the direction set corresponding to a box grid.

3.3.1 Advantages

Finding an embedding on a box grid gives an exact symbolic representation of the KS

vector system. At the same time, it guarantees that the embedding is valid. Checking

embeddability on the box grid with grid parameter N = 2 can be done very quickly, so the

method provides a quick way of embedding graphs that are easy to embed.

3.3.2 Drawbacks

Deciding subgraph isomorphism is unfortunately NP-complete in general [8]. It seems that

this should remain true if only square-free graphs are considered. This was not investigated

in detail, because it is not central to this work. It is less obvious if checking whether a

given graph is embeddable in a box grid with given grid parameter N is NP-complete.

However, no efficient algorithm was found. The check is infeasible, even for small values of
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N (N = 32, say).

Furthermore, it is not clear whether every embeddable finite graph has an embedding on

some box grid. If this was the case, then this would put the problem of finding an embedding

of a given graph into a discrete setting. The following straight-forward propositions work

towards establishing this result. Unfortunately, the result itself was not obtained.

Proposition 5. A finite graph G has an embedding on some box grid iff it has an embedding

on the surface of the unit cube [−1, 1]3 with only rational coordinates.

Proof. First, we show that we can construct an embedding with rational coordinates on the

surface of the unit cube [−1, 1]3 from an embedding on the box grid with grid parameter

N . Let K = {x1, . . . ,xn} be an embedding of G on the box grid with parameter N . All the

coordinates of the xi are integers. Consider the direction set K′ = { 1
N x1, . . . ,

1
N xn}. All

vectors in K′ have rational coordinates that lie on the surface of [−1, 1]3.

On the other hand, suppose that K′ = {x′1, . . . ,x′n} is an embedding on the surface

of [−1, 1]3 with rational coordinates, say xi =
(

pi(1)
qi(1)

, pi(2)
qi(2)

, pi(3)
qi(3)

)T

. Let k be the least

common multiple of all the qi(j). Such a k exists, because G is finite by assumption. Then

K = {kx′1, . . . , kx′n} contains only integer coordinates on the surface of the box grid with

parameter N = k.

From now on, we refer to a vector in a direction set as rational iff all of its coordinates

are rational numbers. A vector that is not rational is called irrational. Hence, Q3 denotes

the set of rational vectors.

Proposition 6. Let x and y be rational vectors (not collinear) on the surface of the unit

cube [−1, 1]3. Then the two vectors orthogonal to both x and y that lie on the surface of

[−1, 1]3 are also rational.

Proof. The two orthogonal vectors are ±k(x × y), where k = ‖x × y‖−1
∞ , i.e. we divide

through by the coordinate with greatest magnitude of x× y to take the orthogonal vector

back to the surface of the cube. Note that ‖x×y‖−1
∞ > 0, because x and y are not collinear

by hypothesis.
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Let z = (z(1), z(2), z(3))T = x× y. The coordinates of z are:

z(1) = x(2)y(3)− y(2)x(3)

z(2) = x(3)y(1)− y(3)x(1)

z(3) = x(1)y(2)− y(1)x(2) ,

i.e. all coordinates are rational. But then k is rational, too. It follows that the two vectors

±k · z are also rational, as claimed.

Corollary 1. In an embedding on the surface of [−1, 1]3, either none or at least two of the

vectors assigned to the vertices of a triangle are irrational.

Corollary 2. In an embedding on the surface of [−1, 1]3, at most one of the vectors or-

thogonal to an irrational vector is rational.

Note that we can choose any two adjacent vertices of a given graph and assume the

corresponding vectors are rational. Unfortunately, this is far from sufficient to show that

all vectors can be rational. However, since no emabeddable graph was found that has no

embedding on some box grid, we make the following conjecture:

Conjecture 1. Every finite, embeddable graph has an embedding on some box grid with

finite grid parameter N .

One might wonder whether it is always possible to use vectors with rational coordinates

that lie on the unit sphere for an embedding. Fortunately, the answer to this question is

known: a 101-function can be defined on the rational points of the unit sphere. Thus, any

graph that is not 101-colourable cannot be embeddable using only rational coordinates on

the unit sphere.

The following proof is due to D. A. Meyer [15] and is based a result by Godsil and Saks

[9] and a theorem of Hales and Straus [11].

Theorem 4. The rational vectors on the unit sphere are 101-colourable.

Proof. We give an explicit colouring of the rational vectors on the unit sphere. Let x =(
p1
q1
, p2

q2
, p3

q3

)T
be a rational vector on the unit sphere (gcd(pi, qi) = 1), and k the least
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common multiple of q1, q2, and q3. Let x̂ = k ·x be one of the two shortest collinear vectors

with integer coordinates (which of the two vectors will not matter for the construction). We

denote the components of x̂ by x̂(1), x̂(2), and x̂(3). Since the original vector x satisfies:

(
p1

q1

)2

+
(
p2

q2

)2

+
(
p3

q3

)2

= 1 ,

we also know that the components of x̂ satisfy

x̂(1)2 + x̂(2)2 + x̂(3)2 = k2 .

The square of an odd number is congruent to 1 mod 4, since (2n+ 1)2 = 4n2 + 4n+ 1.

Similarly, the square of an even number is congruent to 0 mod 4. Consequently, if k is even,

then all of x(1), x(2), and x(3) must be even, or else their squares can only sum to 1, 2,

or 3 mod 4. If all of x(1), x(2), and x(3) are even, then x̂ cannot be the shortest collinear

vector with integer coordinates. Thus, we conclude that k must be odd. At the same time,

exactly one of x̂(1), x̂(2), and x̂(3) must be odd.

Consider now the function

f(x) =


0 if x̂(1) is odd

1 otherwise
.

We claim that f is a 101-function on the rational vectors on the unit sphere. Indeed, if x

and y are two orthogonal vectors, then

x̂(1)ŷ(1) + x̂(2)ŷ(2) + x̂(3)ŷ(3) = 0 .

Considering this equation modulo 2, we see that this is only possible if the odd coordinate

of x̂ is in a different place than the odd coordinate of ŷ. Hence, we deduce that only one of

three mutually orthogonal vectors has an odd first integer coordinate in its smallest integer

representation, i.e. f is indeed a 101-function.
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3.4 Embedding Using Numerical Continuation

Looking for more reliable methods to solve the systems of equations, Joël Ouaknine and

I were pointed to a software called Bertini [1]. I am indebted to Prof. C. W. Wampler,

one of the authors of Bertini, who explained very patiently how to use the software and

who produced the input file which was used to show (numerically) that a subgraph of the

uncolourable 17 vertex graph is not embeddable (see Chapter 4).

We give a brief outline of the algorithm underlying Bertini. A very detailed treatment

can be found in the book by A. J. Sommese and C. W. Wampler [24].

The general idea of homotopy continuation is the following: Given a system of polyno-

mial equations fi(x) = 0 in the variables x that we are trying to solve, find another system

of equations gi(x) = 0 with known solutions and of matching degrees. Consider the system

of equations hi(x, t) = t · gi(x) + (1 − t)fi(x) = 0. We know the solution of hi(x, t) = 0

at t = 1 and we seek a solution at t = 0. Assuming that “nothing goes wrong” (which is

a strong assumption, see the book for details), we can numerically track the paths of the

roots of hi(x, t) as t goes from 1 to 0. This path tracking can be done, for example, by

using Euler prediction and Newton correction steps. In order for all of this to work, we

have to work in the complexes instead of just the reals. If the roots of the initial system

of equations are isolated (i.e. the solution set has dimension 0), then this method (when

combined with several enhancements, e.g. the Gamma Trick, which makes use of a random

number generator in order to avoid bad start systems with probability 1) will produce this

set of isolated roots with mathematical probability 1. Of course, the actual probability may

be slightly lower than 1 because of the finite precision in the floating point numbers on a

computer.

The system of orthogonality equations has a very nice property. Each equation has the

form

xi · xj = 0 .

Hence, all equations are homogeneous in each of the xi: if we have a solution that satisfies

all equations, we can scale each xi by an arbitrary non-zero λi and we still have a solution.

Thus, we can identify all collinear, non-zero vectors and work in the projective space P2.
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Of course, this was clear from the start. We are looking for a set of directions, rather than

actual points in R3. Working in P2 also means that we do not need the additional equations

forcing the solution vectors to have unit length.

Bertini allows the definition of homogeneous variable groups. Those are groups of vari-

ables with respect to which the system of equations is homogeneous. In the case of our

problem, the sets {xi(1), xi(2), xi(3)} form homogeneous variable groups. The use of such

variable groups helps reducing the root count of the start system: fewer of the paths will

lead to singular roots.

The system of orthogonality equations can only have isolated solutions if we fix the

coordinates of the vectors corresponding to two adjacent vertices (or, if the graph has a

triangle, we can fix the coordinates of the vectors corresponding to the triangle’s vertices).

This eliminates some variables and simplifies a few equations. Furthermore, if we fix a

particular vector to have coordinates (1, 0, 0)T, say, then all orthogonal vectors must have

the first coordinate set to 0. This eliminates more variables and simplifies further equations.

An example input file for Bertini is shown in Sect. 7.2 of the appendix.

3.4.1 Advantages

Especially when a system of equations has isolated solutions, Bertini is practically guar-

anteed to find those solutions. The accuracy of the numerical computations may have to

be increased, or one might end up in a “probability 0” case (running Bertini again will fix

this), but mathematically, the method works almost surely.

Bertini is relatively fast on small systems of equations. For larger systems, a method

called “regeneration” can be used to speed up the root finding process. However, I was

unable to solve the system of equations resulting from Conway’s KS system.

3.4.2 Drawbacks

Although Bertini works well if the graph being embedded has exactly the right number of

edges and only isolated solutions, it is more difficult to deal with the other cases. A graph

G = (V,E) has exactly the right number of edges if E = 2 · |V | − 3 (each vector in the

embedding has two degrees of freedom and by fixing two adjacent vertices, we remove three
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degrees of freedom). Note that the right number of equations does not necessarily mean

that the solution set is 0-dimensional.

If a system has fewer equations or positive dimensional solution sets, then one has to

intersect the higher-dimensional solution sets with the reals in order to check whether the

result is non-empty. This is currently not possible with Bertini. An algorithm for finding

the real points on a complex curve is known [14] and may be in a future release of Bertini.

If the system of orthogonality equations has more equations than unknowns, then it may

still be possible to find an embedding using Bertini. For example, if there are m equations in

n unknowns (m > n), then one can consider n equations chosen uniformly at random. With

luck, those equations have isolated solutions. One still has to verify that the solutions also

satisfy the remaining equalities. Another possibility is taking n random linear combinations

of the n equations (where the coefficient of each equation is chosen uniformly between 0

and 1).

Unfortunately, the process of solving a large system of equations can be rather slow. For

example, using a random selection of the orthogonality equations that belong to Conway’s

KS system, Bertini ran for over a week and was tracking 122866 paths when the execution

was aborted (the run was using the “regeneration” feature, where new equations are brought

in one at a time).

If Bertini actually finds an embedding (as a real root of the system of equations), then

this does not constitute a computational proof of the fact that the system has an embedding.

Due to the finite precision in the solution and the computations of Bertini (even if adaptive

precision is used), the embedding will only satisfy the equations within a (very small and

configurable) error margin. Of course, such a solution is a very strong indication of the

fact that such an embedding exists and it may be possible to “guess” the correct values

of some of the variables and then use a symbolic solver to determine the remaining values

symbolically.
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3.5 Embedding Using Interval Arithmetic

Interval Arithmetic is the method used by Pavičić et al. in [17]. I thank Dr Jean-Pierre

Merlet, one of the authors of the article and author of the interval arithmetic library ALIAS

[21], for sharing some of his experience in embedding KS vector systems, and for helping

me use the library. The results found in this thesis were obtained using a custom interval

analysis solver based on the interval analysis library PROFIL / BIAS [20].

The idea underlying interval arithmetic is that the real values of the variables are re-

placed with intervals. For example, suppose that we know that x ∈ [−1, 1] and y ∈ [−1, 0].

Then we can already decide that x + y ∈ [−2, 1] and that the equation x + y = 2 has no

solution on the given ranges. Here, we have used the interval evaluation of the + operator:

if x ∈ [x, x] and y ∈ [y, y], then x + y ∈ [x + y, x + y]. Similarly, an interval evaluation for

multiplication can be defined (and, of course, for many other operators). In fact, when im-

plemented on a computer, such interval operators can even take into account the rounding

errors that are introduced by the finite precision arithmetic.

A collection of intervals, one interval for each variable involved in a system of equations,

is called a box. Given such a box B, we may already be able to decide that within this box,

there can be no embedding of the graph that we are trying to embed. For example, it may

be impossible for one of the scalar products to evaluate to 0.

For the purpose of finding an embedding K = {xi}i=1...n, the initial intervals can be set

as follows:

xi(1) ∈ [−1, 1]

xi(2) ∈ [−1, 1]

xi(3) ∈ [0, 1]

Of course, we can already fix some of the vertices or coordinates at the beginning, as usual.

The initial intervals are not likely to indicate that no embedding exists. Furthermore, if

an embedding exists, we would like to get a close approximation to the solution. There
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are several methods that can decrease the width of some of the intervals, two of which we

outline here (the 2B and the 3B method). If the width of the intervals cannot be decreased

any further, it is necessary to split the current box into two boxes and treat each of the

boxes separately. This process is called bisection.

3.5.1 The 2B Method

Suppose that one of the orthogonality equations is

x1(1)x2(1) + x1(2)x2(2) + x1(3)x2(3) = 0 .

Let x̃i(k) denote the current interval for variable xi(k). If x̃2(1) does not contain 0, then it

must be the case that

x1(1) ∈ − x̃1(2)x̃2(2) + x̃1(3)x̃2(3)
x̃2(1)

,

where the operators on the right hand side are interval arithmetic operators. This may allow

us to decrease the width of interval x̃1(1). We may even be able to deduce that there is

no solution of the equation inside the current box. This method is called the “2B Method”

and it can similarly be applied to all the other variables involved in the equation.

3.5.2 The 3B Method

Given a box B, we may be able to determine that it cannot contain a solution. This will

most likely be the case if some of the intervals have a particularly small width. Suppose

that x̃1(1) = [x1(1), x1(1)] is the interval for variable x1(1) in box B. Suppose further that

we can determine that B contains no solution if we change x̃1(1) to be [x1(1), x1(1) + ε].

Then we can replace x̃1(1) by the interval [x1(1) + ε, x1(1)]. We can use binary search

to determine a good value for ε. This method is called the “3B Method”. It can also be

applied to the upper bound of an interval, and to all intervals involved in the problem.
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Figure 3.10: Initial intervals for the interval solver.

3.5.3 Equations for the Interval Solver

There are many different ways of formulating the problem of embedding a particular graph

for an interval arithmetic solver. One possibility is to take the orthogonality equations and

one equation per vector in the embedding, saying that the length of the vector should be 1.

Another interesting approach uses as start intervals the squares that are visible on the

cube shown in figure 3.10. A recursive backtracking algorithm will find ‘valid’ assignments

of vectors to the intervals. Here, valid means that the orthogonality equations are still

satisfiable. During this process, the 2B and 3B methods are already applied to decrease the

sizes of the intervals. However, no bisection takes place. Once a valid assignment of the

starting intervals has been found, the full interval arithmetic solver algorithm is applied to

find actual solutions within the intervals. This method benefits from the fact that every

vector has only two components that are intervals: the third component is fixed, because

the vector must lie on one side of the cube. This reduces the number of intervals by 1/3.

However, we also remove all the equations saying that the length of a vector must be 1.

This leaves fewer equations to which the 2B method can be applied.

Yet another way of phrasing the orthogonality conditions is via distance equations: If

we think of the vectors in an embedding as points on the unit sphere, then the distance

of any point to the origin must be 1, while the distance between two points corresponding

to two adjacent vertices in the graph must be
√

2. In an interval arithmetic solver, those
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equations can be used in addition to the regular orthogonality equations in order to provide

more equations for the 2B method. Whether or not this is beneficial was not investigated.

3.5.4 Advantages

In certain situations, interval analysis can provide a complete, computational proof (not

just a numerical proof) of the fact that an embedding does not exist: if there are no real

solutions of the orthogonality equations, then there is a set of (possibly many, small) boxes

which cover the entire space of potential solutions, and in each of which the system of

equations provably has no solution.

The algorithms underlying a simple interval analysis solver are rather easy to understand

and can be implemented within a reasonable amount of time. This can probably not be

said about the algorithms underlying numerical continuation.

Finally, interval analysis is often quite efficient in finding solutions for an embeddable

graph, although there are some cases where this is not the case.

3.5.5 Drawbacks

It is difficult to deal with embeddings that have solutions where two vectors are collinear: the

algorithm has to determine whether or not two vectors within a given solution are collinear

or not (and possibly discard the solution). If the vectors are required to be of unit length,

one can check whether or not the magnitude of the dot product between two vectors (i.e. the

sine of the angle between the two vectors) is greater than a certain threshold. For example,

Pavičić et al. [17] use 0.99 as the threshold. This corresponds to a minimum allowed angle

of roughly 8 degrees between any two vectors. This means that any solutions with vectors

that are almost collinear will be (incorrectly) discarded. It seems that whenever there is

a valid embedding, then there is an embedding in which the directions are reasonably far

apart (considering the number of vectors in the system). However, there is no immediate

reason to assume that no graphs exist which only admit embeddings that contain at least

one pair of vectors that make an angle smaller than the given threshold. In fact, all of the

vectors y1, . . . ,yk corresponding the the k neighbours u1, . . . , uk of a vertex v must lie in

one plane, namely the plane orthogonal to the vector corresponding to v. If all pairs yi and
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Figure 3.11: A graph that forces the minimum angle between two vectors in the embedding
to be less than 8 degrees.

yj of vectors (i 6= j) must have a dot product with magnitude less than 0.99, then there

can be at most 22 vectors in this plane (π/ cos−1(0.99) ≈ 22.1959). This means that the

interval arithmetic embedder in [17] may not have found an embedding for any graph that

contains the graph shown in Fig. 3.11 as a subgraph.

Clearly, this graph has an embedding: if xi is the vector corresponding to the vertex

labelled i in Fig. 3.11, then we can set

x1 = (1, 0, 0)T

x2i =
(

0, sin
(
i · π

24

)
, cos

(
i · π

24

))T

x2i+1 =
(

0, cos
(
i · π

24

)
,− sin

(
i · π

24

))T

,

for 1 ≤ i ≤ 12. It is not difficult to see that the orthogonality conditions are indeed satisfied,

and that the vectors x2i lie on an arc of 90 degrees. The vectors x2i+1 also lie on an arc of

90 degrees, s.t. they are orthogonal both to x1 and their orthogonal counter-part on the first

arc. (The reader may find it much easier to directly construct an embedding than following

this written explanation).
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Figure 3.12: Two graphs that were determined to be unembeddable by the interval arith-
metic solver.
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Figure 3.13: A graph with 12 vertices whose embeddability was found difficult to determine.

3.6 Difficult Examples

In this section, we give a few examples of graphs whose embeddability was infeasible or

difficult to decide using the methods described above. The embeddability of these graphs

can probably be decided without too much effort, when the methods are implemented

more carefully and given more time. Nonetheless, they might serve as a starting point for

benchmarking automatic embedders.

The first two examples are graphs with 11 vertices (Fig. 3.12). All of their subgraphs

are embeddable, but the interval analysis algorithm determined that those graphs have no

embeddings.

The third example is a graph with 12 vertices (Fig. 3.13). The interval arithmetic solver

was unable to determine the embeddability of this graph within a reasonable amount of
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time. It should be remarked that this graph has no triangles and two adjacent vertices

which have degree 2. Those features probably make it difficult for the interval analysis

algorithm to reduce the widths of the intervals.

3.7 Real Solutions of the Orthogonality Equations

There can be many unwanted real solutions of the orthogonality equations (real solutions

in which some of the vectors are collinear), as the following result indicates:

Proposition 7. Let G = (V,E) be a simple graph with at least one edge, and let N be the

number of 3-colourings of G. Let x and y be two adjacent vertices of G. Suppose that we fix

the vector corresponding to x in an embedding to be (1, 0, 0)T and the vector corresponding

to y to be (0, 1, 0)T. Suppose further that we require all vectors in the embedding to have

a non-negative third coordinate. Then the orthogonality equations of G, together with the

condition that the solution vectors have length 1, have at least N
6 real solutions.

Proof. We show how to obtain a distinct embedding of G from every 3-colouring, assuming

that the colours of x and y are fixed. If G is coloured using the colours 1, 2, and 3, then

every permutation of the three colours yields a new colouring. We will therefore assume

that x has colour 1 and y has colour 2. This means we are left with only N
3! = N

6 colourings.

Given such a colouring, we assign the vector (1, 0, 0)T to all the vertices that are coloured

1. All vertices that are coloured 2 and 3 are assigned the vectors (0, 1, 0)T and (0, 0, 1)T,

respectively. Since we have a valid 3-colouring, all edges connect vertices with different

colours. The corresponding vectors are therefore orthogonal. This means that we have

constructed a valid embedding. Furthermore, distinct colourings (with the colour of x and

y being 1 and 2, respectively) result in distinct embeddings.

This shows that there must be at least N
6 real solutions to the orthogonality equations.

Remark 4. Not all of those solutions necessarily contain pairs of collinear vectors (but all

solutions with more than three directions do). Also, some of the solutions may consist of

the same multi-set of vectors.
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A large number of real solutions can make the interval analysis solver very slow: as long

as the current box contains multiple solutions, it will be difficult to decrease the width of

the box. The algorithm must get lucky and do the right bisection of the box. If all of the

real solutions have collinear vectors, then a very large number of boxes must be considered.

An advanced solving algorithm using interval arithmetic could first bisect only on vari-

ables that belong to one smallest not 3-colourable subgraph of the given graph. This was

not tried out, but it could avoid unnecessary bisections. Note that every graph that is not

101-colourable is also not 3-colourable by Prop. 1.
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Chapter 4

Lower Bound

We have seen that every KS vector system can be converted into a simple graph, which is not

101-colourable. Furthermore, we know that such a graph must be C4-free (square-free). It

is therefore natural to ask what the smallest square-free graph is that is not 101-colourable.

The size of this graph is a lower bound for the size of the smallest 3-dimensional KS vector

system.

The complete answer to this question consists of two parts. On the one hand, we

present an uncolourable square-free graph on 17 vertices. On the other hand, we show

that no uncolourable square-free graphs on fewer than 17 vertices exist by exhaustively

enumerating all such graphs. In this section, we describe the methods employed to establish

both results.

4.1 The Smallest Uncolourable Square-Free Graph

4.1.1 Enumerating Square-Free Graphs

At the time of this writing, the On-Line Encyclopaedia of Integer Sequences [23] contains

the numbers of square-free connected graphs with up to and including 17 vertices (see Fig.

4.1). The fact that the sequence only contains the number of connected square-free graphs

up to 17 vertices indicates that no explicit formula for the sequence is known and that it is

in fact somewhat difficult to enumerate all connected square-free graphs on a larger number
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n graphs n graphs n graphs
1 1 7 57 13 932260
2 1 8 186 14 8596844
3 2 9 740 15 93762704
4 3 10 3389 16 1201732437
5 8 11 18502 17 17992683043
6 19 12 120221

Figure 4.1: Number of connected square-free graphs on n vertices.

of vertices. The algorithm suggested in this section would probably be powerful enough

to obtain the 18th value in this sequence, given one or two weeks of CPU time on a single

machine. We attempt to check all connected square-free graphs with at most 17 vertices

for 101-colourability. This involves checking almost 18 billion instances of an NP-complete

problem (Thm. 3).

In order to do this, one has to enumerate the connected square-free graphs efficiently.

We do this by generating the graphs on n + 1 vertices from the graphs on n vertices by

adding in an extra vertex and connecting it to the other n vertices in every possible and

valid way. This method works due to the following

Lemma 6. Every non-empty simple connected graph G contains a vertex that is not a cut

vertex.

Proof. Since G is connected, it has a spanning tree T . A vertex x of T with degree at

most 1 (which exists since T is a non-empty tree) can be removed without disconnecting

T . Therefore, T − {x} is a spanning tree of G − {x} proving that x is not a cut vertex of

G.

As a consequence of Lemma 6, we can construct any connected square-free graph on

n+ 1 vertices from some connected square-free graph on n vertices by adding an additional

vertex. If there was a connected square-free graph in which every vertex is a cut-vertex,

then it would not be possible to generate this graph by adding a new vertex to a single

connected square-free graph.

Given this result, an obvious way to proceed is to start with a list of graphs on n vertices

and generate all graphs on n + 1 vertices. We add an extra vertex and connect it to the
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n existing vertices in all 2n − 1 possible ways (there must be at least one incident edge).

This method will generate several graphs that are isomorphic. For example, there are two

possible ways of generating a path on three vertices from a single edge, depending on which

of the two vertices the third vertex is joined to. One solution to the problem is to store

all generated graphs in a hash table using a hash function that is invariant over isomorphic

graphs. Whenever a collision occurs, an actual isomorphism check must be done. Given the

small size of the graphs in question, this approach is actually feasible. Indeed, the check

was first done using this method.

Choosing a good hash function is crucial for the performance of the algorithm. However,

the computation of the hash value for a given graph should not take too long. If G = (V,E)

is a simple undirected graph, then the hash value of G is computed by the hash function h:

e(v) = the number of neighbours of vertex v (4.1)

Pn = the nth prime (4.2)

h3(u) =
∏

{u,w}∈E

Pe(w) (4.3)

h2(v) =
∑

{v,u}∈E

h3(u) (4.4)

h(G) =
∑

v∈V (G)

P
h2(v)
e(v) mod M (4.5)

Here, M denotes the size of the hash table and is taken to be some appropriately large

prime. This hash function encodes the structure of the graph by encoding the number

of neighbours that every vertex has, and the number of neighbours of the neighbours.

Although some time was spent on devising this hash function, it was only improved until

the algorithm performed sufficiently fast. There are certainly better or more efficient ways

of generating hash values.

The graph isomorphism check is executed by sorting the vertices by degree. At this point

it may already be possible to determine that two graphs are not isomorphic. Otherwise, a

recursive bruteforce algorithm will try all possible assignments of vertices with equal degree.

Some obvious ways of pruning the search were used to improve performance, but they are

of no interest for this thesis.
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The method just described clearly has several drawbacks: for example, all graphs have

to be stored in memory. One way around this problem is to limit the size of the hash

table and accept the fact that some isomorphic graphs will occur in the lists multiple times.

Another solution consists of running the algorithm several times for the same n, each time

only storing and outputting the graphs on n+ 1 vertices that hash into a particular range.

Under the assumption that the distribution of the graphs is roughly uniform amongst the

partitions of the hash table, this allows reducing the amount of space required by the

algorithm by a factor of k in exchange for an increase of the runtime by a factor of k.

4.1.2 Decreasing Space Complexity

It is possible, in fact, to reduce the amount of space required to O(n) without increasing the

runtime complexity. Note that this space requirement is practically constant, given that we

are only interested in graphs of size at most 31. When I had the honour of explaining the

topic of my dissertation and my approaches to Prof. D. Knuth, he pointed me to a paper

by C. J. Colbourn and R. C. Read on “Orderly Algorithms for Graph Generation” [3]. This

very accessible paper describes a method for generating all non-isomorphic graphs with a

‘hereditary’ property without the need for isomorphism checks. By a ‘hereditary’ property

P (G) we mean a graph property which is satisfied by any subgraph of a graph satisfying P .

The term ‘hereditary’ is not used by Colbourn and Read, but it is clear that their method

works for enumerating all graphs with such a hereditary property.

The key idea is that the adjacency matrices of the graphs are generated in unique

canonical forms. The canonical form has the property that removing the last row and

column of a canonical matrix (i.e. removing the ‘last’ vertex of the graph) results in another

canonical matrix of a graph with one fewer vertex.

When generating the canonical adjacency matrices of graphs on n+ 1 vertices from the

canonical n×n matrices, we add the last column and row and output exactly those adjacency

matrices that are already in canonical form (without permuting rows or columns). It is then

clear that there is exactly one way of generating the canonical form of any particular graph

on n+ 1 vertices.

More concretely, the canonical representation of an undirected simple graph G is taken
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to be the following: given the adjacency matrix M of G, consider the string of 0s and

1s obtained by concatenating the entries above the diagonal of M in a column-by-column

fashion. We call this the string representation of M. The canonical representation of

G is the (unique) adjacency matrix of G, which has the greatest string representation in

lexicographical order. We call the adjacency matrix of a graph canonical iff it is the canonical

representation of the graph that it describes.

Note that the graphs under consideration are actually unlabelled graphs, but an adja-

cency matrix introduces an order or a labelling on the vertices. We show that removing the

‘last’ vertex with respect to this order results in another canonical adjacency matrix.

Proposition 8. The top-left (n − 1) × (n − 1) submatrix of a canonical n × n matrix is

canonical.

Proof. Let A be the canonical n×n matrix representing graph G, and B its (n−1)×(n−1)

top-left submatrix. Note that B is the adjacency matrix of an undirected simple graph H:

it corresponds to the deletion of a single vertex of G.

Let a and b be the string representations of A and B respectively. Note that b is just a

with the last n− 1 symbols deleted.

Now suppose, for a contradiction, that B is not canonical. Let B′ be the canonical

representation of H. B′ may be obtained from B by some permutation of the rows and

columns, i.e. by a ‘re-labelling’ of the vertices of H. Re-labelling the vertices of G in the

same fashion, we arrive at an adjacency matrix A′ with B′ as its upper-left (n−1)× (n−1)

submatrix. Again, we write a′ and b′ for the string representations of A′ and B′. Note that

b′ is again just a′ with the last n − 1 symbols deleted. Since b′ > b lexicographically, it

follows that a′ > a lexicographically. This contradicts the assumption that A is canonical.

We deduce that B must indeed be a canonical adjacency matrix.

We could have replaced the lexicographical order with any total order on strings of 0s

and 1s, so long as for any two strings x and x′ of the same length and any string y it holds

that x > x′ =⇒ xy > x′y. In particular, we could have chosen to use the representation

that is least in lexicographical order as the canonical representation.

However, being connected and square-free is not a hereditary property: a subgraph of

50



a square-free, connected graph need not be connected. We demonstrate how this could be

a problem using a simple example. Suppose we had chosen the matrix with the least string

representation as the canonical form.

Starting from the one-vertex graph with representation (0), we generate one two-vertex

graph (a single edge):  0 1

1 0


The string representation of this graph is just ‘1’. In the next step, we would like to generate

the path on three vertices P3 and the triangle. However, the canonical matrix representation

of P3 is 
0 0 1

0 0 1

1 1 0


with string representation ‘011’. This graph cannot be generated from the single edge,

because the canonical representation of the edge is not the top-left 2× 2 sub-matrix of the

canonical representation of P3.

Fortunately, we can show that the ‘last’ vertex in the canonical representation (the

greatest string representation) of a simple graph G is never a cut vertex in G.

Proposition 9. The last vertex in the canonical representation of a connected, simple,

undirected graph is not a cut vertex.

Before we turn to the proof of this result, we need the following auxiliary result.

Lemma 7. If a simple, undirected graph has multiple components, then all the vertices

of one component will appear first in the vertex order imposed by the canonical adjacency

matrix.

Proof. Let G = (V,E) be a simple, undirected graph with at least two components. Suppose

M is the canonical adjacency matrix of G. As remarked previously, M defines an order on

the vertices of G. Let A ⊂ G be the component of the first vertex in this order. Let y ∈ V

be the first vertex in the order that is not in A. Finally, suppose, for a contradiction, that

z ∈ V is a vertex connected to some vertex that occurs before y in the order, but z itself
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Figure 4.2: Swapping vertices y and z results in a matrix with lexicographically greater
string representation.

occurs after y in the order. Note that such a z always exists unless all vertices of component

A occur before y in the vertex order. We show that by swapping the order of y and z, one

can arrive at an adjacency matrix with lexicographically greater string representation than

M. This contradicts the assumption that M is canonical. Thus, if M is canonical, then all

the vertices of one component appear first in the order imposed by M, as claimed.

Indeed, since y is in a different component than all the vertices occurring before y in

the vertex order, all column entries of y above the diagonal must be 0. Now z is connected

to some vertex that occurs before y in the vertex order. Swapping z and y will leave

the upper-diagonal entries of the columns before the column of y unchanged. The upper-

diagonal entries of column y, which are all 0, will be replaced by the corresponding entries of

z. At least one of those entries is 1. Thus, the string representation of the matrix obtained

by swapping y and z is lexicographically strictly greater than the string representation of

M (c.f. the illustration in Fig. 4.2). This concludes the proof.

Proof. (Proposition 9) Let x be the last vertex in the canonical representation of a con-

nected, simple, undirected graph G with adjacency matrix M. We show that if removing x

disconnects G, then M cannot be canonical.
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Figure 4.3: Swapping vertices x and y results in an adjacency matrix with lexicographically
greater string representation.

Indeed, if x disconnects G, then G− {x} has k > 1 components. Also, there is at least

one edge in G from x to each of the k components of G − {x} (because G is connected).

From Prop. 8 we know that the canonical adjacency matrix of G− {x} is just M with the

last row and column removed. By Lemma 7 all the vertices of a single component A ⊂ G

appear first in the order induced by M. Also, the first vertex y not in A has all entries above

the diagonal of M set to 0. Swapping x and y will leave all entries above the diagonal to

the left of y’s column unchanged. However, at least one of the entries above the diagonal in

y’s column will become 1. This contradicts the assumption that M is canonical. Therefore,

if M is the canonical matrix of a connected, simple, undirected graph, then the last vertex

in the vertex order induced by M is not a cut vertex. This idea is illustrated in Fig. 4.3.

Note that this result allows us to enumerate all connected graphs with any hereditary

property. In particular, we can enumerate all connected square-free graphs. This result is,

in some sense, an extension of the method suggested by Colbourn and Read.

We can now simply enumerate all connected square-free graphs with at most 16 vertices

and check each of them for 101-colourability. This allows us to obtain the following result.

Theorem 5. Every square-free graph with at most 16 vertices is 101-colourable.
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Proof. (computer-aided) Note that it suffices to show the result for all connected square-

free graphs: A graph consisting of several square-free components is 101-colourable iff every

one of its component is 101-colourable. Using the methods described above, all connected

square-free graphs with up to 16 vertices were enumerated and checked for 101-colourability.

4.1.3 Finding Small Uncolourable Square-Free Graphs

In this section we describe the method employed to find a graph on 17 vertices that is

square-free but not 101-colourable. From the previous section we already know that no

graph on fewer vertices with this property exists.

The basic idea is that we generate a ‘large’ square-free graph that is not 101-colourable

on N vertices (N = 35, say) at random. Once we have such a graph, a backtracking

algorithm is used to find the smallest uncolourable subgraph.

To generate the large graph on N vertices, we take a permutation of all
(
N
2

)
potential

edges uniformly at random. This list of edges is then processed from the beginning to the

end. At every step, the current edge is added to the graph if it does not introduce a square.

Once the complete list is processed, the resulting graph is checked for 101-colourability. If

it is not 101-colourable, then the smallest uncolourable subgraph is extracted.

It turns out that many of the graphs generated in this way are uncolourable. This obser-

vation has not been analysed, but it appears reasonable to make the following conjecture:

In the limit, as N → ∞, the probability that a randomly generated, maximal, square-free

graph on N vertices is 101-colourable tends to 0 or some other constant less than 1. By

‘randomly generated’, we mean generated by the method described in the previous para-

graph. It is possible that the statement also holds if the graphs are generated uniformly at

random.

Using the method just described, it was possible to generate several hundred 17 vertex

graphs within about a day. All of the graphs were isomorphic to the graph displayed in

Figure 4.4. Generating nice (symmetric) plots of graphs is a difficult problem. The plot

shown is the most symmetric one found, but there may well be plots that reveal more

interesting aspects of the structure. For completeness, we give the list of edges of the
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Figure 4.4: A graph on 17 vertices that is not 101-colourable.

graph:

V ={1, . . . , 17}

E =



{1, 2}, {1, 9}, {1, 10}, {1, 15}, {2, 3}, {2, 8}, {2, 9},

{3, 4}, {3, 8}, {3, 11}, {4, 12}, {4, 15}, {4, 16}, {4, 17},

{5, 6}, {5, 7}, {5, 8}, {5, 12}, {6, 10}, {6, 11}, {6, 12},

{7, 8}, {7, 13}, {7, 16}, {9, 14}, {9, 17}, {10, 11}, {10, 15}

{11, 13}, {11, 14}, {12, 17}, {13, 14}, {13, 16}, {14, 17}, {15, 16}


The existence of this graph naturally leads to the following two questions: Does this

graph have a corresponding direction set? Is this the only graph on 17 vertices that is not

101-colourable? Unfortunately, the answer to the first question is ‘No’. However, the graph

is indeed the unique square-free graph on 17 vertices that is not 101-colourable. Those two

facts together allow us to establish a new lower bound for the smallest KS vector system:

A three-dimensional KS vector system must contain at least 18 vectors. We now turn to

the proofs of these facts.

4.1.4 Uniqueness and Non-Embeddability of the 17 Vertex Graph

Proposition 10. The square-free graph shown in Fig. 4.4 is the unique graph with 17

vertices that is not 101-colourable.
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Figure 4.5: An unembeddable subgraph of the uncolourable graph on 17 vertices.

Proof. (computer-aided) By enumeration of all square-free graphs with 17 vertices.

In some sense, all of the methods introduced in Chapter 3 play a role in demonstrating

that this graph has no embedding. First, Mathematica was used to extract the smallest

subgraph whose embedding polynomial could not be minimized to (approximately) 0 using

NMinimize.

The graph that was found is shown in Fig. 4.5. Of course, the fact that Mathematica

cannot find a real root of the embedding polynomial for this graph does not mean that this

graph is not embeddable. Nonetheless, the graph serves as a good starting point.

It is a very fortunate coincidence that this graph has exactly the right number of edges:

12 vertices mean 24 degrees of freedom. Three degrees of freedom are removed by fixing the

location of the vectors corresponding to the vertices of a triangle. Thus, 21 degrees of free-

dom are left – exactly one degree of freedom per edge. Thanks to the help of Prof. Charles

W. Wampler, who created the Bertini input file shown in Sect. 7.2 of the Appendix, we

were able to show the following:

Proposition 11. The 12 vertex graph shown in Fig. 4.5 is not embeddable.

Proof. (numerical) Bertini finds 12 non-singular roots (and no other roots), which are all

complex.

Since the orthogonality equations admit no real solutions, we know by Prop. 7 that the
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graph shown in Fig. 4.5 cannot be 3-colourable. Indeed, we can show the following result.

Proposition 12. The 12 vertex graph shown in Fig. 4.5 is the unique smallest square-free

graph that is not 3-colourable.

Proof. (computer-aided) By enumeration and checking of the connected square-free graphs

on up to 12 vertices.

Corollary 3. The orthogonality equations of any square-free graph with fewer than 12

vertices admit at least one real solution.

Proof. From Prop. 7 and Prop. 12.

We can see that it is no coincidence that this graph was found to be the smallest subgraph

of the 17 vertex graph for which NMinimize does not find a global minimum that is very

close to 0. Every smaller subgraph admits at least the real solutions that are induced by

its three-colourings, as described in the proof of Prop. 7.

Since none of the solutions are real, we can turn the numerical proof of Prop. 11 into a

computer-aided proof.

Proof. (of Prop. 11, computer-aided) Using interval analysis, without discarding solutions

that have vectors that lie too close to each other.

Prop. 11 allows us to prove our final theorem regarding the lower bound.

Theorem 6. A Kochen-Specker vector system must contain at least 18 directions.

Proof. (computer-aided) All square-free graphs with fewer than 17 vertices are 101-col-

ourable (Thm. 5). The unique uncolourable graph on 17 vertices is not embeddable (Prop. 10

and Prop. 11).

4.1.5 Generating Embeddable Connected Graphs

Given the large number of square-free graphs on 16 vertices, one might ask how many of

such graphs are actually embeddable. It is reasonable to assume that the number of graphs

under consideration can be decreased by filtering out the graphs that have no embeddings.
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Figure 4.6: The only two square-free graphs on 10 vertices for which no embedding was
found.

A program was written to find the smallest square-free graph that has no embedding on

the box grid with grid parameter N = 4. The following result may be surprising:

Proposition 13. Every square-free graph with fewer than 10 vertices is embeddable on the

box grid with grid parameter N = 4.

Proof. (computer-aided) By enumeration of all square-free graphs with fewer than 10 ver-

tices and finding embeddings for all of them.

This result indicates that the square-freeness is already a strong condition for a graph

to be embeddable. There are two graphs on 10 vertices that were (numerically) found not

to be embeddable. All other square-free graphs on 10 vertices are embeddable.

Proposition 14. The two graphs shown in Fig. 4.6 are not embeddable.

Proof. (numerical) Using interval analysis. The proof is numerical, because the possibility

that two directions in an embedding make a tiny angle cannot be excluded. Such an

embedding would be rejected by the interval analysis embedder.

Out of the the 18502 square-free connected graphs with 11 vertices, 18484 were found

to be embeddable. One can see that removing unembeddable graphs may not reduce the

number of graphs under consideration as much as hoped. We can certainly always just

add one single edge connecting a new vertex to a smaller embeddable graph to arrive at
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another embeddable graph. Unless the small graph is completely symmetric, there are many

possibilities of connecting an additional vertex using one edge. Therefore, the number of

embeddable graphs can intuitively be expected to increase at least exponentially with the

number of vertices.

Once a new graph is generated, one can check whether it contains a subgraph isomorphic

to an unembeddable graph. As the number of known unembeddable graphs increases, this

check may become more expensive than running the embeddability check again. Both

methods increase the runtime of the algorithm drastically, unless the embeddability check

is very efficient. The automated embedding algorithm that was used already had problems

with some of the 12 vertex graphs.
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Chapter 5

Upper Bound

The current upper bound for the size of the smallest KS system in three dimensions is

Conway’s system (see Fig. 5.1; the construction is taken from [19]). In chapter 7.3 we give

the coordinates of the system, as well as its graph representation.

5.1 Generating Uncolourable Graphs at Random

Some attempts were made to find smaller systems, but none of them were successful. The

biggest problem encountered lies in checking whether or not a graph is embeddable. In fact,

the algorithm outlined in 4.1.3 finds many square-free graphs that are not 101-colourable

 

Figure 5.1: Construction of Conway’s KS vector system with 31 directions.
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and have fewer than 31 vertices. Unfortunately, no embedding for any of the graphs was

found (this does not mean that no embedding exists, of course). If the embeddability of a

graph could be decided efficiently, then it would be interesting to use the algorithm to gen-

erate embeddable, uncolourable graphs at random (although probably far from uniformly).

Looking at the smallest uncolourable subgraphs, one might find a smaller KS vector sys-

tem, or provide some evidence that Conway’s KS vector system is indeed the smallest one

in three dimensions.

5.2 Uncolourable Subgraphs of the Box Grid

Another method of finding upper bounds is to take a large, embeddable graph which is

known to be not 101-colourable and to find its smallest uncolourable subgraph. We call

a smallest such subgraph an uncolourable core. By smallest, we mean with the smallest

number of vertices. We are not interested in the number of edges. A graph that has no

proper subgraph (no subgraph with fewer vertices) is called minimal.

For example, the graph representation of Conway’s KS vector system is a minimal un-

colourable subgraph of the graph representation of the box grid with grid parameter N = 2.

No efficient algorithm that produces the smallest uncolourable subgraph of a given graph

was found. However, the following observations help pruning the backtracking search.

Proposition 15. A minimal not 101-colourable graph must have minimum degree at least

3.

Proof. By definition, any proper subgraph (i.e. subgraph with fewer vertices) of a minimal

graph is 101-colourable. We show that if we add a vertex to a colourable graph and connect

it to at most two other vertices, then this new graph can still be 101-coloured. Indeed, if the

new vertex has fewer than two neighbours, then it cannot be the member of any triangle.

Thus, we can certainly assign 1 to the new vertex and colour the rest of the graph as before.

The remaining configurations are shown in Fig. 5.2. The newly added vertex is the

vertex on the left while the two neighbours are the two vertices on the right. Only one

configuration is shown in case there are multiple symmetric configurations. Note that we
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Figure 5.2: Possible configurations when connecting a new vertex to two neighbours.

only need to check the colourability conditions locally, i.e. within at most one triangle that

the new vertex belongs to, and for the two edges. The conditions are satisfied on the

remaining edges and triangles, because the original graph is 101-colourable.

Remark 5. As the graph representation of Conway’s KS vector system shows, it is possible

to have minimum degree 3 in a minimal uncolourable graph.

Proposition 16. Every vertex in a minimal not 101-colourable graph must belong to at

least one triangle.

Proof. Suppose, for a contradiction, that there exists a minimal graph G = (V,E) that

is not 101-colourable and which contains a vertex x that does not belong to a triangle.

By minimality, removing the vertex x results in a 101-colourable graph G − {x}. Let

c : V − {x} 7→ {0, 1} be a 101-colouring of G− {x}. Then c′ : V 7→ {0, 1} defined by

c′(v) =


c(v) if v 6= x

1 if v = x

is a valid 101-colouring of G, because x does not belong to any triangle and can therefore

be coloured 1 in any case.
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Finding an uncolourable core of a large graph is infeasibly slow. However, the following

result was obtained.

Proposition 17. There is no smaller subgraph of the box grid graph with parameter N = 2

than Conway’s graph.

Proof. (computer-aided) By enumeration of the uncolourable cores using a backtracking

algorithm.

For larger values of N , the algorithm was too slow to generate all minimal uncolourable

subgraphs. Instead, the following algorithm was used to look for smaller uncolourable

subgraphs: We maintain a subgraph H of the box grid graph. At each step, a neighbour of H

which is not already contained in H is added at random (the probability being proportional

to how many edges of the vertex cross the cut between H and G − H). At some point,

H becomes uncolourable (note that this means that the vertex added in the last step

definitely belongs to the smallest uncolourable subgraph of H). The algorithm then spends

some amount of time looking for the smallest uncolourable subgraph of H.

Using this method, the smallest subgraphs found with box grid parameters N = 6, 8,

or 12 all contained 31 vertices. For example, 44 uncolourable subgraphs on 31 vertices were

discovered. All of them were isomorphic. This supports the idea that the box grid with

parameter N = 8 contains no smaller KS vector system than Conway’s.

For odd box grid parameters, the smallest box grid graph that is not 101 colourable has

N = 15. Not much time was spent investigating the uncolourable subgraphs.
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Chapter 6

Discussion

6.1 Results

The results obtained in this thesis can almost completely be summarised by giving a charac-

terisation of the smallest Kochen-Specker vector system in three dimensions. The smallest

such system:

• has at most 31 directions (Conway’s KS vector system)

• has at least 18 directions (Thm. 6)

• has graph representation G that is square-free (Prop. 2)

• has graph representation G that is not 3-colourable (Prop. 1)

• has graph representation G that is 4-colourable (Prop. 3)

• has graph representation G with minimum degree 3 (Prop. 15)

• has graph representation G that is not isomorphic to a subgraph of the graph repre-

sentation of the box grid with grid parameter N = 2 (Prop. 17)

• has graph representation G in which each vertex belongs to a triangle (Prop. 16)

The thesis also contains some minimality results (Prop. 4, Prop. 10, Prop. 12, Prop. 17)

and an explanation for the large number of real solutions to the orthogonality equations
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of some graphs (Prop. 7). Furthermore, it was shown that checking 101-colourability of

(square-free) graphs is NP-complete (Thm. 2 and Thm. 3), although the proof idea is due

to Dr Joël Ouaknine. It was also shown that the method of orderly graph generation

described by Colbourn and Reed [3] works for the generation of all connected graphs with

a descending property.

It is natural to ask what proportion of square-free, connected graphs with up to and

including 30 vertices were covered in our search for a lower bound. We know that the total

number of labelled graphs on n vertices is just 2(n
2). We can use the numbers of square-free,

connected graphs on up to 17 vertices in order to fit a function of the form eax2+bx+c to the

data. Using Microsoft Excel, an estimate of 100.0349x2+0.0059x was determined (c.f. Fig. 6.1).

Note that we have no reason to claim or assume that this is a reasonable estimate. Extrapo-

lating this function, we find that there should be approximately 1032 square-free connected

graphs with 30 vertices. A total of 1010.28 graphs were scanned, i.e. only about 10−22 of

our estimate of the work space. This indicates that the method of enumerating all candi-

dates may currently be infeasible. Given an efficient embeddability tester, the randomised

algorithm suggested in this thesis may at least provide an indication of what the smallest

number of directions required in a three-dimensional Kochen-Specker vector system is.

6.2 Failed Attempts

Naturally, there was a large number of approaches and attempts which failed and did not

even make it into the write-up. Many of them are not worth mentioning, but some of them

probably deserve some attention.

One such approach is the following: one could conjecture that graphs are often not

embeddable if they have more embedding equations than degrees of freedom. Simply spoken,

one could require that the maximum density subgraph must have a density of at most 2:

on average, at most two equations limit the two degrees of freedom of each vertex. An

algorithm for finding the maximum density subgraph [10] was implemented, but as it turns

out, the graph representation of Conway’s KS vector system already has a maximum density

subgraph with density 12
5 . This shows that discarding graphs with high density subgraphs
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Figure 6.1: An estimate of the number of square-free, connected graphs with more vertices.

is probably not a good idea.

Several attempts involving Ordered Binary Decision Diagrams (OBDDs) were made.

For example, such diagrams may be used to count the number of 101-colourings of a given

graph. Using this number in a heuristic to find the smallest uncolourable subgraph of a

given graph resulted in no improvement over the obvious backtracking algorithm. It was

also investigated whether OBDDs could be used to count the number of square-free graphs

on n vertices (counting isomorphic graphs multiple times), but the size of the OBDDs

becomes unmanageable very quickly. Intuitively, this is clear: the ordering of the variables

(the edges) cannot have a huge influence of the size of the OBBDs, because the problem is

symmetric for all edges. Whether or not a particular edge is present influences the presence

of squares – also squares that contain edges that occur at the end of the variable order.

This means that the OBDD somehow has to represent the states of (almost) all edges and

not too many simplifications can be made.
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6.3 Future Work

The problem of determining the number of necessary directions in a Kochen-Specker vector

system remains unsolved. In my opinion, the biggest open problem is determining efficiently

whether or not a given graph has an embedding. Some of the difficulties certainly result

from the potentially large number of real solutions (with collinear vectors) of 3-colourable

graphs.

Another area which might be interesting to investigate is whether or not every finite

graph has an embedding with only rational coordinates on the surface of the unit cube

[−1, 1]3 (Conjecture 1). If one could also establish a reasonable upper bound for the grid

parameter of the grid required to embed a graph of given size, then finding the truly smallest

KS vector system in three dimensions would be reduced to finding the smallest uncolourable

cores of a few graphs.

Finally, I believe that it is not well enough understood which property exactly makes

a graph unembeddable. The square-freeness of a graph is a very simple property, and it

eliminates all unembeddable graphs with up to and including 9 vertices. It would be nice

to find more such properties, and to devise an algorithm that can generate graphs which

satisfy those properties almost uniformly at random. I have not been able to obtain any of

my lower bound results purely analytically – computer programs where involved in all the

proofs. Analytic proofs of (possibly slightly weaker) results would probably provide a lot

of insight as to why so many directions are required to establish a contradiction from the

SPIN axiom.
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Chapter 7

Appendix

7.1 Numerical Minimization Example

We show how to find an embedding for Conway’s KS vector system using numerical min-

imzation.

v[i_]:={x[i],y[i],z[i]};

f:=Sum[(1-v[i].v[i])^2 ,{i,0 ,30}]+

(v[0].v[11])^2+(v[0].v[13])^2+(v[0].v[20])^2+

(v[0].v[29])^2+(v[1].v[15])^2+(v[1].v[19])^2+

(v[1].v[20])^2+(v[2].v[12])^2+(v[2].v[13])^2+

(v[2].v[22])^2+(v[3].v[17])^2+(v[3].v[20])^2+

(v[3].v[26])^2+(v[3].v[28])^2+(v[4].v[14])^2+

(v[4].v[15])^2+(v[4].v[21])^2+(v[4].v[22])^2+

(v[4].v[26])^2+(v[4].v[29])^2+(v[5].v[13])^2+

(v[5].v[24])^2+(v[5].v[26])^2+(v[5].v[30])^2+

(v[6].v[16])^2+(v[6].v[17])^2+(v[6].v[22])^2+

(v[7].v[15])^2+(v[7].v[23])^2+(v[7].v[24])^2+

(v[8].v[17])^2+(v[8].v[24])^2+(v[8].v[27])^2+

(v[8].v[29])^2+(v[9].v[18])^2+(v[9].v[22])^2+

(v[9].v[23])^2+(v[9].v[27])^2+(v[9].v[28])^2+

(v[10].v[12])^2+(v[10].v[15])^2+(v[10].v[25])^2+

(v[10].v[27])^2+(v[10].v[30])^2+(v[11].v[16])^2+

(v[11].v[18])^2+(v[11].v[25])^2+(v[11].v[29])^2+

(v[12].v[21])^2+(v[12].v[27])^2+(v[13].v[22])^2+
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(v[14].v[19])^2+(v[14].v[21])^2+(v[14].v[23])^2+

(v[15].v[20])^2+(v[15].v[22])^2+(v[15].v[24])^2+

(v[15].v[25])^2+(v[16].v[21])^2+(v[16].v[25])^2+

(v[17].v[22])^2+(v[18].v[19])^2+(v[18].v[22])^2+

(v[18].v[30])^2+(v[19].v[30])^2+(v[23].v[28])^2+

(v[25].v[28])^2+(v[26].v[28])^2+(v[26].v[29])^2+

(v[26].v[30])^2+(v[27].v[29])^2;

soln=NMinimize[f,

Union[v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],

v[8],v[9],v[10],v[11],v[12],v[13],v[14],

v[15],v[16],v[17],v[18],v[19],v[20],v[21],

v[22],v[23],v[24],v[25],v[26],v[27],v[28],

v[29],v[30]]]

Using Mathematica 5.2, the following minimum was found:

Vertex x y z

1 0.83434 -0.353089 0.423325

2 0.643305 -0.170387 0.746409

3 0.597761 -0.696065 0.397714

4 -0.340168 -0.042007 -0.939426

5 0.365699 -0.536278 0.760704

6 -0.257016 0.917745 -0.302798

7 0.0564223 -0.263258 0.963074

8 -0.0108778 0.788936 -0.614379

9 -0.237156 -0.522649 0.818899

10 -0.169377 -0.0370425 0.984855

11 -0.241389 -0.868212 0.433519

12 0.546526 0.429517 -0.718905

13 -0.0562136 0.45849 0.88692

14 -0.377792 0.192975 0.905557

15 0.225125 -0.742081 -0.631375

16 0.605234 -0.483892 -0.632092

17 0.354806 -0.896359 -0.265808
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18 0.704884 -0.672637 -0.225163

19 0.686554 -0.721369 0.0909424

20 -0.675114 -0.586042 0.448079

21 -0.468882 -0.85838 0.208166

22 0.903096 0.402147 -0.150649

23 0.707075 0.69156 0.147615

24 0.973706 0.148173 0.173033

25 -0.795973 -0.378719 -0.472228

26 0.758566 0.109801 0.642278

27 0.927943 0.146843 -0.342577

28 0.968799 -0.189723 0.15948

29 -0.152339 0.988267 0.0109713

30 0.0720122 0.83117 0.551336

31 -0.269934 -0.369027 -0.889356

The function value at these points is approximately 2.74 · 10−31. The smallest length of the

cross-product between any two distinct vectors is approximately 0.1.

7.2 A Bertini Input File with Isolated Solutions

% A graph on 12 vertices with 21 edges.

% If all 21 eqns are independent , we have 2 * 12 - 21 = 3

% dimensional solution but we can take out 3 dimensions by

% modding out by O(3).

% This is done by fixing the coordinates for one triangle.

% Vertex 0 fixed at (1, 0, 0).

% Vertex 1 fixed at (0, 1, 0).

% Vertex 7 fixed at (0, 0, 1).

CONFIG

MPTYPE: 2;

DEGREEBOUND: 2;
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COEFFBOUND: 1;

END

INPUT

hom_variable_group y2, z2;

hom_variable_group x3, z3;

hom_variable_group x4, y4, z4;

hom_variable_group x5, y5, z5;

hom_variable_group y6, z6;

hom_variable_group x8, z8;

hom_variable_group x9, y9, z9;

hom_variable_group x10 , y10 , z10;

hom_variable_group x11 , y11;

function e2e4 , e2e6 , e2e9 , e3e5 , e3e8 , e3e10 , e4e5 ,

e4e9 , e4e11 , e5e10 , e5e11 , e6e10 , e8e9;

e2e4 = y2 * y4 + z2 * z4;

e2e6 = y2 * y6 + z2 * z6;

e2e9 = y2 * y9 + z2 * z9;

e3e5 = x3 * x5 + z3 * z5;

e3e8 = x3 * x8 + z3 * z8;

e3e10 = x3 * x10 + z3 * z10;

e4e5 = x4 * x5 + y4 * y5 + z4 * z5;

e4e9 = x4 * x9 + y4 * y9 + z4 * z9;

e4e11 = x4 * x11 + y4 * y11;

e5e10 = x5 * x10 + y5 * y10 + z5 * z10;

e5e11 = x5 * x11 + y5 * y11;

e6e10 = y6 * y10 + z6 * z10;

e8e9 = x8 * x9 + z8 * z9;

END

All 12 solutions are complex.

7.3 Representations of Conway’s KS vector system

The following table lists the coordinates of the vectors of Conway’s KS vector system. The

vectors lie on the surface of the cube [−2, 2]3.
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1: (-1, 2, 1) 9: (1, 2, -1) 17: (-1, -1, -2) 25: (2, -1, 0)

2: (-1, 2, 0) 10: (0, 2, -2) 18: (0, -1, -2) 26: (2, -2, 0)

3: (0, 2, 1) 11: (2, 2, 0) 19: (0, -2, -2) 27: (2, 0, -2)

4: (-1, 2, -1) 12: (2, 2, -2) 20: (2, 1, -1) 28: (2, -2, -2)

5: (0, 2, 0) 13: (-1, 1, -2) 21: (2, 1, 0) 29: (2, 2, 2)

6: (1, 2, 1) 14: (0, 1, -2) 22: (2, 0, -1) 30: (2, 0, 2)

7: (0, 2, -1) 15: (-1, 0, -2) 23: (2, 0, 0) 31: (2, -2, 2)

8: (1, 2, 0) 16: (0, 0, -2) 24: (2, -1, -1)

The graph representation can be given as an adjacency list. Line i contains the degree

di of vertex i in the graph. The degree is followed by a list of the di neighbours of vertex

i. The vertices are numbered from 1 to 31.

31

4 12 14 21 30

3 16 20 21

3 13 14 23

4 18 21 27 29

6 15 16 22 23 27 30

4 14 25 27 31

3 17 18 23

3 16 24 25

4 18 25 28 30

5 19 23 24 28 29

5 13 16 26 28 31

5 1 17 19 26 30

4 3 11 22 28

4 1 3 6 23

4 5 20 22 24

8 2 5 8 11 21 23 25 26

4 7 12 22 26

4 4 7 9 23

5 10 12 20 23 31

4 2 15 19 31

4 1 2 4 16

4 5 13 15 17

8 3 5 7 10 14 16 18 19
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4 8 10 15 29

4 6 8 9 16

5 11 12 16 17 29

6 4 5 6 29 30 31

5 9 10 11 13 30

5 4 10 24 26 27

6 1 5 9 12 27 28

5 6 11 19 20 27

The graph contains 17 triangles and 71 edges.
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