
Trustworthy Services Through
Attestation

�
John Lyle

Keble College

University of Oxford

A dissertation submitted for the degree of

Doctor of Philosophy

Michaelmas Term 2010

Abstract

Remote attestation is a promising mechanism for assurance of distributed systems. It allows
users to identify the software running on a remote system before trusting it with an important
task. This functionality is arriving at exactly the right time as security-critical systems, such as
healthcare and financial services, are increasingly being hosted online. However, attestation
has limitations and has been criticized for being impractical. Too much effort is required for
too little reward: a large, rapidly-changing list of software must be maintained by users, who
then have insufficient information to make a trust decision. As a result attestation is rarely
used today.

This thesis evaluates attestation in a service-oriented context to determine whether it can
be made practical for assurance of servers rather than client machines. There are reasons to
expect that it can: servers run fewer programs and the overhead of integrity reporting is more
appropriate on a server which may be protecting important assets. However, a literature
review and new experiments show that problems remain, many stemming from the large
trusted computing base as well as the lack of information linking software identity to expected
behaviour.

Three novel solutions are proposed. Web service middleware is restructured to minimize
the software running at the endpoint, thus lowering the effort for the relying party. A key
advantage of the proposed two-tier structure is that strong integrity guarantees can be made
without loss of conformance with service standards. Secondly, a program modelling approach
is investigated to further automate the attestation and verification process and add more
information about system behaviour. Several sets of programs are modelled, including the
bootloader, a web service and a menu-based shell. Finally, service behaviour is attested through
source code properties established during compilation. This provides a trustworthy and
verifiable connection between the identity of the software on a service platform and its expected
runtime behaviour. This approach is applicable to any programming language and verification
method, and has the advantage of not requiring a runtime monitor. These contributions are
evaluated using an example e-voting service to show the level of assurance attestation can
provide.

Overall, this thesis demonstrates that attestation can be made significantly more practical
through the described new techniques. Although some problem remain, with further im-
provements to operating systems and better software engineering methods, attestation may
become a trustworthy and reliable assurance mechanism for web services.

Acknowledgements

Firstly I thank my supervisor, Andrew Martin, who has provided endless insight,
support and encouragement throughout my DPhil. I have enjoyed collaborating
with him on several projects and papers and I am grateful for the opportunities
and ideas he has provided.

I thank my parents for giving me the opportunity to pursue a DPhil and for their
understanding, advice, and first-rate proof-reading abilities. I would not be here
without their help and guidance over the last 26 years. I also thank my sisters for
their moral support.

Throughout my DPhil I have been fortunate to study with brilliant people. In
particular, I thank Jun Ho Huh, Cornelius Namiluko, Andy Cooper, Shamal Faily,
Ronald Kainda, Joe Loughry, Ivan Flechais and the rest of the Security Reading
Group. Our entertaining weekly discussions have contributed to this dissertation
as well as my education in computer security. I am also extremely grateful to the
Oxford University Computing Laboratory and Software Engineering Programme
for providing several excellent courses and opportunities throughout my studies.
I thank my examiners for their useful feedback and suggestions.

My friends in Oxford deserve enormous credit for making my studies such good
fun. Special thanks go to George and Kate, my office mates (and fellow tea drinkers)
Daniel, Tom, Peter and Meng, as well as many others in the Computing Laboratory.
I thank my friends from Keble, including Richard, Ross, Tom, James, Ed, Josh and
Chris, as well as and everyone at the university windsurf club. I am grateful to
Steve and Alex for proof-reading this dissertation, as well as all their entertaining
emails. I also thank my other friends from Weir Wood SC, Imperial College and St
Paul’s, all of whom deserve a mention but will, unfortunately, not get one.

My studies in Oxford have made me very grateful for the education I received at Im-
perial College. I sincerely thank my former tutors and lecturers in the Department
of Computing.

This dissertation was funded by the EPSRC and QinetiQ. I owe them a debt of
gratitude for making this project possible.

Contents

1 Introduction 1
1.1 Why Do We Need Trustworthy Services? . 2
1.2 Contributions and Dissertation Structure . 4
1.3 Terminology and Definitions . 5

2 Establishing Trust in Software Systems 13
2.1 System Assurance: An Overview . 13
2.2 Service-Oriented Architectures . 15
2.3 Trusted Computing and Virtualization . 18
2.4 Specification and Verification Techniques . 27
2.5 Conclusion . 32

3 Attestation: Problems and Existing Solutions 35
3.1 Open Problems . 35
3.2 Related Research, Systems and Tools . 41
3.3 Integrity Measurement Approaches . 47
3.4 Gap Analysis and Conclusion . 54

4 Analysing Web Service Attestation 57
4.1 What Makes a System Easy to Attest? . 57
4.2 Quantifying the Software Update Problem . 63
4.3 Conclusion . 71

5 Reducing The TCB of an XML Web Service 73
5.1 A Split Service Architecture . 74
5.2 Implementation Issues . 75
5.3 Security Analysis . 80
5.4 Observations and Design Choices . 81
5.5 Impact on Performance . 82
5.6 Comparison With Related Work . 84
5.7 Conclusion . 85

i

6 From Measurement Logs to System Models 87
6.1 Attesting Execution Integrity or Behaviour? . 87
6.2 Modelling Programs and PCR Usage . 90
6.3 CSP Program Models . 97
6.4 Implementation in Prolog . 102
6.5 The TPDMenu Shell . 108
6.6 Discussion . 111
6.7 Comparison With Related Work . 114
6.8 Conclusion . 115

7 Uniting Program Definition and Platform Attestation 117
7.1 Attesting Platform Behaviour, Not Execution State 117
7.2 Trustable Remote Verification: Establishing Properties Without Source Code . . 118
7.3 Prototype Implementation . 121
7.4 Evaluation and Observations . 123
7.5 Alternative Implementations and Approaches 127
7.6 Comparison with Related Work . 129
7.7 Conclusion . 130

8 Evaluation 131
8.1 Evaluation Approach . 131
8.2 The Complete Attestable Service Architecture . 132
8.3 To What Extent Have Attestation Problems Been Solved? 139
8.4 Practicality and Security of Solutions . 140
8.5 Assurance Properties . 141
8.6 Is Attestation Feasible for Service Assurance? . 142

9 Conclusion and Future Work 143
9.1 Contributions . 143
9.2 Future Work . 145
9.3 Summary . 147

Bibliography 170

Glossary 171

A A Trusted Ballot Box Service 177
A.1 Background . 177
A.2 Requirements . 178
A.3 Description and Operations . 179

B Example Scripts 185
B.1 Ant Compilation Script . 185
B.2 Prolog Verification Script . 188

ii

C Trusted Computing and Provenance: Better Together 193
C.1 Introduction . 194
C.2 Background . 195
C.3 The Case for Trusted Provenance . 196
C.4 Remote Attestation as a Provenance System . 197
C.5 Provenance and Trusted Computing Research: Producing the Same Solutions . 201
C.6 Challenges . 203
C.7 Conclusion . 204

iii

iv

List of Figures

1.1 Dissertation structure . 11

2.1 Authenticated boot . 20
2.2 The structure of a virtualized platform . 24
2.3 The Extended Static Checking process. Figure adapted from Leino [175] 28

4.1 Measurements and updates by component . 66
4.2 Cumulative updates by component over time . 67

5.1 The split web service architecture . 75
5.2 Sequence diagram showing steps from the protocols in from Section 5.2.1 and

the message formats from Figure 5.3 . 77
5.3 Service request and response transformations . 79
5.4 Flow chart for four different service architectures, showing (a) no encryption

(b) standard WS-Security (c) TPM-enabled cryptography and (d) the proposed
TPM-enabled split-architecture. 83

6.1 Comparing the chain of trust with platform execution state 91
6.2 Creating models describing program PCR usage 92
6.3 An overview of the proposed program modelling approach 93
6.4 An example of the conditions required for predicting future behaviour based on

an attestation . 96
6.5 CSP model of platform boot and IMA Linux . 99
6.6 CSP model of platform startup scripts . 100
6.7 CSP log verification example . 101
6.8 An example instance of PDMenu. 108
6.9 An example PDMenu terminal configuration file 109
6.10 CSP model of the TPDMenu menu-based shell 110

7.1 An overview of the trustable remote verification process, showing the order of
execution and all items measured into PCRs. 119

7.2 An example web method, complete with JML annotations. 120

v

7.3 The chain of trust for trustable remote verification, showing execution order and
measurement storage. 121

7.4 Using TPM attestation to produce proof of execution 126

8.1 Sequence diagram of a request to the ballot box evaluation example 133
8.2 Code extracts demonstrating the JML in the Trusted Ballot Box service 135

A.1 Electronic voting system overview . 178

C.1 Diagram of an attestation-based provenance architecture. Remote services pro-
cess results and attest to the provenance store, which saves and links the mea-
surement logs to a TCG-defined Reference Manifest Database. 198

vi

Chapter 1

Introduction

Service-oriented computing is a popular paradigm for implementing and designing distributed
systems. Companies, governments and universities have developed grid, cloud and web
services to provide access to data and for performing resource-intensive computation. There
are many advantages over previous ad-hoc systems. Services can scale to match demand,
charge on a per-use basis, and provide backup and redundancy. Furthermore, web service
interfaces are described using open, interoperable standards, allowing them to be composed
together so that complex systems can be built from many individual services [164]. This can
even be automated, allowing for rapid system development.

However, the move to remote services presents new security challenges [94, 127]. Many
potential users, such as pharmaceutical companies, financial services, and government depart-
ments have stringent security requirements [159, 135]. One example is scientific provenance.
When processing gigabytes of data for climate models or drug trials, a key requirement is that
researchers should be able to trust the result of remote computation [86]. If the computer that
ran the experiment was insecure, it could be tampered with to produce incorrect results. This
could reduce accuracy and cost time, money and the researcher’s reputation. Unfortunately,
the motivation for attacking and compromising these systems exist, as the recent ‘Climategate’
scandal has shown [30], and mechanisms are required for protecting these systems. Users need
the ability to establish the trustworthiness of remote services despite the presence of motivated
attackers.

For the purposes of this dissertation trustworthiness is defined in terms of behaviour.
When users seek assurance of a service, they aim to make sure that it will behave in the manner
they expect. This means that security requirements are met, and that more general integrity
guarantees hold, including the behaviour of an algorithm, or the reliability of storage. The
aim is to go from services which are trusted – relied upon without any supporting evidence –
to assured – relied upon because of unforgeable evidence of their behaviour.

A crucial part of the problem is that these systems are remote, and will be running software
that users cannot assess themselves. Most existing approaches for gaining trust in remote
systems therefore rely on the ability for each platform to attest to the software and hardware

1

it is using. This seems essential, as without knowing what the platform consists of, how can
its behaviour be known, let alone trusted? However, the security of the remote attestation
mechanism now becomes an important challenge, otherwise an untrustworthy computer can
report that it is running trustworthy software.

Fortunately, trustworthy attestation is part of trusted computing, a technology which has
been available for several years. It uses tamper-resistant hardware to report on the state
of software. If users trust the manufacturers of the hardware, they can then believe what
it says about the software, and therefore the state of the machine itself. Theoretically, the
combination of software assurance methods – such as testing and verification – along with
attestation should make assessment of remote platforms possible. However, few companies
and services use attestation today. There appear to be significant practical problems, primarily
in the semantic gap between establishing what software has been run on the platform and
whether or not it should be trusted.

This dissertation explores the problem of attestation for establishing trust, and answers the
following questions:

• To what extent is remote attestation a practical solution for web service assurance?

• What are the key problems, and how significant are they?

• Can it be made more feasible through new tools and software engineering techniques?

In the following section, the motivation for answering these questions is discussed, and sev-
eral example situations are described. In Section 1.2 an outline of the dissertation is provided,
as well as a summary of the the main contributions.

1.1 Why Do We Need Trustworthy Services?

Before diving into the main thesis question – to what extent attestation is a feasible mechanism
for gaining assurance in services – it is worth considering whether there is any real need for
trustworthy, high-assurance services. Are there situations where an unreliable or insecure
service would have a significant impact? The focus of this dissertation is on assurance in
terms of security behaviour but algorithmic behaviour, or even formal correctness is just as
important. Terminology is discussed in more detail in Section 1.3. The following four sections
give examples of scenarios where service-oriented computing is in use, and trustworthiness is
critical.

1.1.1 Services for healthcare

Medical science and the heathcare industry have been enthusiastic adopters of service-oriented
architectures. Research projects in medicine have significant security requirements to maintain
the confidentiality of patient data [168]. Furthermore, hospitals and clinics would benefit
from greater information sharing through standardised XML interfaces [90], but have obvious

2

concerns about the integrity and confidentiality of this data. Being able to demonstrate the
trustworthiness of these systems is increasingly important in light of laws such as the US
Health Insurance Portability and Accountability Act [226] (HIPAA) and The Data Protection
Act and Caldicott report [52] in the UK. Indeed, these last two specify that ‘Suitable security
should be in place to protect data’ and that ‘Information access should be on a strict need to
know basis.’

These security requirements are a challenge to implement, and put a burden on healthcare
administrators to make sure that the computer systems being used are protecting data prop-
erly. This implies the need for auditing and evaluation of all services that are relied upon.
Mechanisms such as attestation may help provide evidence that private information is not
being leaked to unauthorised parties.

1.1.2 Electronic voting

Electronic voting systems have clear security requirements. The goal of these systems is to
allow online voting which can be potentially cheaper, easier and more reliable than requiring
voters to turn up at polling stations. There are advantages for voters with disabilities, for
whom getting to a polling station is prohibitively difficult and for people who usually have to
fill in a postal vote. Indeed, Estonia used electronic voting for local government elections in
2005 [225] in order to try and increase turn-out.

However, voters must be able to trust the voting machines to properly record their vote,
keep it confidential and produce the correct tally at the end of the election. This turns out to be
a difficult problem and the subject of a great deal of academic literature [44, 157]. Attestation of
electronic voting systems has been considered and Gardner et al. [68] convincingly argue that
software-based attestation systems are likely to be inadequate for electronic voting systems.
Alternatives using trusted computing may solve some of these problems but must be made
practical for voters.

1.1.3 Financial services

Web services are often used in financial institutions [235] to process incoming information
such as trades, transactions and stock quotes. The inherent interoperability is attractive for
companies that work together with this information. However, the incentive for attacking
these services is clear and it is reasonable to expect users to be wary of remote systems which
process information such as credit card details. Financial institutions have suffered from
software-based attacks. The Heartland Payment System [109] was used by over 250 thousand
businesses to process 100 million credit card transactions every month. Malicious software
was installed on the payments system, which then stole potentially tens of millions of card
details. Similar incidents at RBS Worldpay and Hannaford Bros., also involved malicious
software [109]. Secure attestation of software identity information might have helped avoid
these attacks.

3

1.1.4 Provenance of grid services

Computational and data grids are used by scientific institutions to distribute complex appli-
cation workloads and to share experimental results. However, the quality of these results
depends on the trustworthiness of all of the computers in the grid. Some scientific data are
known to have security concerns, such as private healthcare records and politically-sensitive
climate models, and almost all experimental data require high integrity storage and process-
ing. As a result, data provenance in the face of potential adversaries has become increasingly
important [86] particularly in service-oriented architectures such as grids [203].

‘From an operational perspective, there is a need to provide solutions that are
secure, reliable, and scalable. Scientists need to be able to trust that their input
and output data are secure and free from inappropriate data access or malicious
manipulation.’ [73]

One of the key threats is that provenance information could be forged to make fake data
appear reputable. Therefore, a requirement for secure provenance is that participants can
provide tamper-proof evidence of how data were acquired and processed [86]. Attestation
could provide some of this evidence, assuming it can be made practical and easy to validate.
More details on this approach can be found in Appendix C.

1.1.5 Summary

The four examples – healthcare, voting, finance and scientific provenance – demonstrate the
need for trustworthy and attestable services. Users must be able to check that the service they
are trusting with their account details, vote or healthcare data will behave as they expect, and
not betray any of their sensitive information. Trustworthy attestation is a good starting point
for providing this functionality, as it can provide the identity of the software being used by
these remote platforms. If this can be combined with software assurance methods, to show
that the attested software will work in the correct manner, then a financial service would be
able to demonstrate in a believable way that it will implement the functionality promised in its
service description. Realising this goal has the potential to make service-oriented computing
more practical for both users and providers [164].

1.2 Contributions and Dissertation Structure

The main contributions of this dissertation are an analysis of the feasibility of using attestation
for web service assurance, and a range of techniques that have been developed for making it
more practical and trustworthy. The next section looks at terminology, to clarify ambiguous
language and define concepts for the rest of the dissertation. Chapter 2 provides background
material on trusted computing and web service concepts, as well as summarising methods for
software assurance. The strengths and properties of these are compared, and the necessity
of combining them with attestation in a service-oriented scenario is established. Chapter 3

4

presents a list of the open problems with attestation, and the approaches taken in existing
research to overcome them. Remaining issues with attestation that have not been adequately
solved are discussed in a gap analysis, which provides motivation for the content of the
following chapters.

The first novel contribution is made in Chapter 4, where the problem of service attestation is
analysed and quantified over a two-and-a-half year period by applying software updates to an
example platform. This is accompanied by a review and comparison of attestation approaches
and the most practical situations for its use. One of the problems identified – the large trusted
computing base of a service – is immediately tackled in Chapter 5. The proposed solution is to
move the core service implementation to another platform, and the various problems of doing
so are then discussed and mitigated.

Having addressed one issue with attestation, Chapter 6 moves on to the problem of inter-
preting platform state. Existing specifications do not make it easy to use information gained
from attestation to establish what state the platform is in. A layer of abstraction is described
which allows programs to be modelled and composed together to form a system which ex-
plains the attested information. This also provides a framework for developing applications
with attestation of behaviour in mind.

In Chapter 7 the next step is taken, to allow developers of services to attest to not only the
identity of their software, but also code-level properties such as invariants and post-conditions.
This, in combination with the application framework and minimal service infrastructure, allow
for the creation of an attestable electronic voting ballot box service, which is analysed as part
of the evaluation in Chapter 8. The evaluation considers to what degree the problems with
attestation identified in Chapter 3 are solved by the new system. Finally, in Chapter 9 future
work is proposed, and the dissertation concludes.

Supporting material is provided in the appendices. Appendix A gives further details
about the algorithms used in the electronic voting service. Section B.1 of Appendix B gives
an example build script for compiling part of this service and demonstrates how integrity
measurement can be integrated into the build process, as discussed in Chapter 7. Section B.2
then gives the script used to run Prolog models from Chapter 6 and the evaluation. Appendix
C is an extract from a related paper on applying attestation to provenance, which provides
motivation for the arguments and results presented in this dissertation.

1.3 Terminology and Definitions

There are several ambiguous concepts in computer security and assurance, and this section
covers how they will be used for the rest of this dissertation. Some additional definitions are
given in the glossary. Where possible, the notation and terminology defined is justified by
existing work.

5

1.3.1 Trust and trusting software

The words ‘trust’ and ‘trustworthiness’ are difficult to use precisely. In general, the notion of
trust refers to a belief in the behaviour of something. Garfinkel et al. [69] use trust to describe
‘our level of confidence that a computer system will behave as expected.’ This is similar to
the Trusted Computing Group’s definition that a trusted system is one where ‘hardware and
software behaves as expected’ [210]. Trustworthiness, on the other hand, is about whether
this trust is well placed. A trustworthy person is able and willing to act in the best interests of
the trusting party [133]. This can be established by having some evidence (assurance) that this
statement is true. For example, having experience of good behaviour in the past might make
someone reasonably trustworthy for the future. RFC 4949 [192] defines a trustworthy system
as one ‘that not only is trusted, but also warrants that trust because the system’s behaviour can
be validated in some convincing way, such as through formal analysis or code review.’ This
formal analysis or code review is the assurance method.

Unfortunately, no single reference provides a consistently useful set of definitions for trust
and trustworthiness. For the purpose of this dissertation, therefore, when the following phrases
are used, they will have the given meanings:

Alice can be trusted. ‘An entity can be trusted if it always behaves in the expected manner
for the intended purpose’ [160]. This means that trust is about behaviour, and not just
security behaviour, such as the confidentiality of data.

Alice trusts Bob. Alice believes that Bob will behave as expected. There could be any (or no)
reason for this belief. Generally the notion of trusting an entity only occurs when the
entity has the ability (but hopefully not the intention) to abuse that trust. For example,
if it is given a private key or has a security function. In this dissertation, trust can be
thought of as synonymous with faith.

Alice must trust Bob. Alice needs Bob to behave in the expected manner. Alice may or may
not have any reason to believe that Bob will.

Trustee and Trustor. In a one-way relationship where Alice trusts Bob, Alice is the trustor
and Bob is the trustee. In the majority of this dissertation, the trustee will be a service
computer platform, and the trustor will be an end user / service requester.

Alice is trustworthy. Alice will behave as expected, and the trustor is correct to trust her for
the intended purpose.

Establishing trust. While this seems to contradict the other definitions, ‘establishing trust’ is
the process of working out whether an entity is trustworthy, that is, whether there is any
reason to trust it. This phrase could more accurately be ‘establishing trustworthiness,’
but much of the literature uses the former phrasing.

Entity X is trustable. Sufficient infrastructure and information exists that a decision about
whether entity X is trustworthy can reasonably be made. This would not be the case, for

6

example, when a remote party is unable to identify who or what entity X is, or has no idea
what it is supposed to do. An important distinction is that Entity X may be trustable, but
not trustworthy. The first two of Proudler’s three steps for establishing trust (see Section
1.3.3) are used in order to make the entity trustable, then the third is used to make the
decision on trustworthiness.

Assurance The process of building evidence to show that something is trustworthy. Attesta-
tion is a form of assurance, as are code reviews, certification and testing.

Security and Trust As Gollmann explains [75], misusing the term ‘trust’ can have bad conse-
quences for security. Security has a different meaning to trust, and is defined as a subset
of trustworthiness [77]. A trustworthy entity is by definition secure, as it will behave ‘as
expected’ with respect to the user’s security requirements. However, a security require-
ment may significantly raise the bar for the trustworthiness of a system, as there may be
known, motivated attackers. Because of this, the security of the system may be one of
the most difficult and important aspects, and the security of the assurance process may
also be vital. This is generally the case for systems proposing to use trusted computing
technology.

These definitions can apply to many things, including people and objects. However, is
the notion of trust relevant to software and electronic systems? It is more usual to discuss
these with reference to a specification, using formal proof to establish correctness rather than
trustworthiness. However, there are many reasons why the less precise definition of trust is
more applicable. In part this is due to the problems associated with specifying and verifying
software [190]. It is considered infeasible to specify large programs, such as operating systems,
making it impossible to verify their correct implementation. Moreover, almost all applications
rely upon several of these large systems, so while they might be correctly implemented,
the assumptions they make may not hold. Worse still, applications themselves are almost
never formally verified, and generally contain bugs. This means that software cannot be
considered to match the precise intentions of the programmer. These bugs may be security
vulnerabilities, which means that the software an end user interacts with may have been altered
by a malicious party. The original programmers may have also intentionally introduced
undesirable behaviour into an application, which the user may not know about. Almost
all software is therefore capable of silently betraying its user, despite previous experience.
As a result, the behaviour of software is effectively unpredictable. Indeed, from the users’
perspective, the majority of applications are sufficiently complex that most people perceive
their computers as social actors [238] rather than deterministic, predictable algorithms. This
makes sense from a programming perspective as well, because many systems are so large that
no single person understands all of the code. Overall, therefore, trustworthiness can be used
as a reasonable pragmatic alternative to correctness, and one that makes sense when thinking
about the perspectives of those using and developing computer systems.

7

1.3.2 Trusted computing base (TCB)

The Trusted computing base (TCB) has been defined by the US Department of Defence [227]
as

‘The totality of protection mechanisms within a computer system – including
hardware, firmware, and software – the combination of which is responsible for
enforcing a security policy. A TCB consists of one or more components that to-
gether enforce a unified security policy over a product or system. The ability of
a trusted computing base to correctly enforce a security policy depends solely on
the mechanisms within the TCB and on the correct input by system administrative
personnel of parameters (e.g., a user’s clearance) related to the security policy.’

The same definition is used in RFC 4949 [192]. An important feature of the TCB is that it is
the minimum amount of code and hardware that must be trusted, and any flaw within it has the
potential to invalidate the security of the entire system. However, this quotation only describes
a TCB in terms of system security. A correct, security policy-enforcing TCB will not be able to
guarantee overall behaviour, which contradicts the earlier definition of trust. As such, a TCB
from this definition is necessary but not sufficient for behavioural trustworthiness, assuming
the expected behaviour of the system includes the non-violation of the enforced policies.

For the purpose of this dissertation, a TCB is defined as:

‘any part of the system, including hardware, firmware and software, which
must be operating correctly in order for any defined behavioural properties of the
system to be met.’

This description and the earlier one might be reconciled if ‘security’ includes a very broad
notion of integrity. An example illustrates this point. On a consumer banking website, a
classic TCB would include all the software responsible for authenticating users, preventing one
customer from viewing and modifying the accounts of another, and so on. The definition used
here, on the other hand, includes those points but also that any standing orders a customer
creates will work as expected, and that suitable warnings are given before transactions are
carried out. This is a subtle point, but important when using a Trusted Computing Group
(TCG) definition of trust.

1.3.3 Proudler’s three steps to establishing trust

Proudler gives three requirements for establishing trust in an object or entity [169]:

1. It must be correctly and unambiguously identified.

2. It must be operating unhindered.

3. The trustor must have experience (or trust someone who has) of its consistent previous
good behaviour.

8

The first step means that the entity being trusted can be reliably identified by the trustor.
Without this, a similar entity with different behaviour might be able to impersonate it. For
people, the solution to this problem is (on a small scale) simply recognising someone’s physical
appearance. For software, this might be a hash of the executable, or the assumed confidentiality
and ownership of a private RSA key.

The second step means that the entity is behaving in its usual manner, with no outside
influence or extreme condition altering its behaviour. For a person, this might not be the case if
they were being blackmailed, or intoxicated. For software, infection with a virus, or corruption
of part of the binary are examples of hindrances.

These two steps make an entity trustable. That is, they allow a trust decision to be made,
as the entity can be identified and assumed to be working as normal. The final step is to
establish what can be expected as normal. In the case of a simple software calculator, this
might mean that numbers have successfully been multiplied together in the past, leading the
trustor to believe that it will happen again in the future. Importantly, good behaviour does
not necessarily mean correct behaviour, as a calculator that is known to make small rounding
errors might still be trusted at a lower level of precision. Similarly, a more complicated piece
of software with known bugs may be trusted to always reproduce these bugs. More discussion
of the merits of previous experience are discussed in Section 2.1.1.

1.3.4 Security and assurance properties

The term security property is frequently used in the literature, but poorly defined. Most com-
monly, a security property is one of the standard information security components: confiden-
tiality, integrity, availability and, sometimes, accountability [195]. These can be refined further,
into protocol properties such as non-repudiation, agreement, non-interference and authenti-
cation [63]. Separability is another example, as the property that ‘no interaction is allowed
between high level and low level events’ [241]. However more specific code-level properties
are sometimes discussed. The MOPS tool [34] checks for temporal properties including ‘any
call to chroot should be immediately followed by a call to chdir(“/”)’ and ‘a privileged process
should drop privilege ... before calling execl.’ Sadeghi and Stüble [178] discuss property-based
attestation, and by properties they ‘informally mean a quantity that describes an aspect of the
behavior of that platform with respect to certain requirements, e.g., a security-related require-
ment.’ The example given is of a ‘secure operating system providing isolation of processes or
confinement etc.’ Poritz et al. [166] give examples of attestable properties as ‘the absence of
certain vulnerabilities or the ability to enforce certain policies’ as well as ‘privacy and avail-
ability statements.’ They go on to include conformance with common criteria, and uptime
requirements.

This dissertation is concerned with assurance and trustworthiness, which refer to behaviour
beyond just security properties. For this reason, assurance properties will be the focus. Assurance
properties are aspects of the system that can be established through evidence provided by the
system, or a third party, through techniques such as attestation. These aspects may include
security properties, behavioural properties, or statements about the platforms involved. They

9

will make guarantees of different strengths, and may rely on other assumptions. For example,
the presence of an anti-virus program might provide assurance. If every computer on a
network reports on whether anti-virus is active then this might provide a guarantee that files
with known virus signatures will be prevented from running. However, it does rely on the
trustworthiness of the reporting mechanism, and does not provide any information about
protections from other attacks, or any detail about the specific behaviour of the platform.
Assurance properties are therefore the reportable facts about a system that can inform a relying
party about its trustworthiness.

10

Introduction1

Background2

Analysing Web Service
Attestation

4

Minimizing A
Web Service TCB

5

Modelling Integrity
Measurement

6

Attesting Application
Compile­time Semantics

7

Evaluation8

Conclusion &
Future Work

9

Example “Trusted
Ballot Box” Service

A

Proposed
solutions

Main research
contributions

Motivation,
background and
introduction to

broad problem area
Literature review
and key research

problem

Appendix A & B
used in the
evaluationExample ScriptsB

Paper extract:
Trusted Provenance

C

Example use of
trusted computing

and services

Glossary

Bibliography

Existing Solutions3

Figure 1.1: Dissertation structure

11

12

Chapter 2

Establishing Trust in Software
Systems

The need to assess and evaluate the trustworthiness (and security) of computing platforms has
been around for nearly as long as computing platforms themselves [233, 26]. The examples
in Section 1.1 describe some of the reasons for assessing online services in particular, but a
great deal of research has gone into evaluating all kinds of software and hardware. This
chapter begins in Section 2.1 with a brief, high-level overview of some approaches to software
assurance.

Following this, Section 2.2 introduces service-oriented architectures, and the terminology
used to discuss them. This discussion highlights an important difference between the assurance
of services, and most of the systems discussed in the literature on software assurance. A web
service user may not have access to the source code, the installed applications, operating
system, or hardware. Users will not necessarily know the identity (or even the developer)
of the software at the endpoint. This is a problem, as Proudler’s three requirements for
trust (see Section 1.3.3) state that identity is one of the pre-requisites. Attestation, as part of
trusted computing, is one potential solution and is the focus of the research presented in this
dissertation. Section 2.3 provides a comprehensive overview of trusted computing features,
and the kind of assurance it can provide for remote platforms.

Assuming attestation can provide basic assurances, it is necessary to look at how more
detailed information about software behaviour might be established. This includes techniques
such as static analysis and proof-carrying code, as well as specific methods used for web
services. This is covered in Section 2.4, and then the chapter concludes in Section 2.5.

2.1 System Assurance: An Overview

The following approaches are commonly used to establish the trustworthiness of a software
system, or avoid the risk associated with using it.

13

2.1.1 Previous experience and reputation

Perhaps the most logical method of gaining assurance in software is to use it, and observe
whether it works as expected. If it does, then it may be considered trustworthy in the future.
This is step three of Proudler’s method for establishing trust: having experience of consistent
good behaviour in the past.

However, there are problems with relying on experience. It will never exist the first time
a piece of software is used, and there are situations where it is impossible to build it up. For
example, when trusting the air bags in a car, or a new online banking system. Secondly, online
software is liable to change, and good behaviour in a previous version does not imply good
behaviour in the current one. In fact, the same piece of software may work on one day and
not the next, perhaps because of an increased load, user input or another interfering program.
Previous experience is equivalent to black-box testing, and has the same fundamental, well-
known problem [59] when attempting to use it to establish the absence of bugs. Therefore, it
may be impossible to ever build up valid experience of a remote software system.

These problems might be avoided by using the previous experience of another person.
However, this requires the trusting party to trust this other person, and eventually someone is
going to have to try the software for the first time. Reputation-based systems try to take some
of these factors into account, but all have their own limitations or overheads. As a result, it
is likely that many users will be unwilling to use someone else’s experience to chose a critical
system.

2.1.2 Certification

Military and government projects often use certified software in an attempt to increase the level
of assurance. In security, for example, the Common Criteria ISO standard has seven evaluation
assurance levels, with higher levels implying more thorough evaluation. The certification
does not, however, necessarily imply better security, and there are several problems [125] with
relying on it. There is a wide range of other evaluation and certification standards, discussion
of which is beyond the scope of this dissertation.

2.1.3 Source-code analysis and verification

A more traditional way of establishing whether or not a piece of software will behave properly
is through formal verification. This requires a formal specification of the behaviour of the
system, followed by an analysis of the code to see if it conforms. There is a huge range of
literature surrounding this topic. A complete survey has not been provided due to the size of
the field, but several relevant techniques are discussed in Section 2.4.

2.1.4 Using a high assurance software development process

The software development process used can also indicate the expected quality of an appli-
cation [6]. One reason for looking at this is that it is extremely difficult to spot bugs in the

14

software itself, but the process could show how many are likely to exist. Good software en-
gineering practices are believed to improve the overall quality of software, although there is
some dispute over what these practices are. Some metrics can be used to quantify the quality
of software, both later on and early in development [104]. These include factors such as code
complexity, design purity [13], test coverage, bug reporting statistics and the rate of change
of the code base. Other practices are harder to measure, such as the requirements capture
method and team communication. These metrics are also quite difficult to analyse sensibly, as
different development practices may suit different projects. The key problem is summarised
by Amoroso et al. [6]:

‘characterizing the ideal software process is especially impractical, in light of the
fact that the software engineering community has yet to develop practical, widely
accepted techniques for developing software that is free of errors’

Furthermore, it is important to emphasize that even if reliable software quality metrics
were established this would still not be useful for a remote relying party. A remote party
cannot reliably establish the identity of the running code and would not be able to believe any
reports about its development method or the result of any verification. This is why trustworthy
attestation is required: to find out exactly what software is running on a remote system such
as a web service.

2.2 Service-Oriented Architectures

Service oriented architectures (SOA) provide the context for this dissertation, as they are a pop-
ular way of creating distributed systems with an emphasis on standards and interoperability.
They have been adopted by a wide variety of companies, as well as governments and academic
institutions, as they provide common interfaces for different data sources and functionality.
A definition of the overall concept of service-oriented computing is given by Papazoglou and
Dubray [156] :

‘Service-Oriented Computing (SOC) utilizes services as the constructs to sup-
port the development of rapid, low-cost and easy composition of distributed ap-
plications. Services are self-contained processes – deployed over standard middle-
ware platforms, e.g., J2EE – that can be described, published, located, and invoked
over a network’

Individual web services themselves are arguably just networked applications which can
communicate in a standard format and perform some valuable function. Some services are
used to make existing (or proprietary) databases available to other systems. They can also be
more complex; one service might contact several others and be part of a much larger overall
transaction. Web services have been defined by many people in different ways, but for the
purpose of this report the following one is used [156]:

15

‘A web service is a platform-independent, loosely coupled, self-contained pro-
grammable web-enabled application that can be described, published, discovered,
coordinated and configured using XML artefacts for the purpose of developing
distributed interoperable applications. Web services possess the ability to engage
other services in a common computation...’

2.2.1 Components

There are several components in a standard service-oriented architecture, with the following
definitions taken mostly from Singh and Huhns [195]:

Service Provider. The provider creates and operates the web service. They also advertise it to
potential users by registering it with service brokers.

Service Brokers. They maintain a list of all services that have been registered with them. They
may also provide other functionality for service discovery. Typically the service broker
holds the interface definition of each service.

Service Requester. The end user of a service. This might be a person, piece of software or
another service. They search the registry to find a suitable provider.

2.2.2 Standard technologies

Web services rely on various standards, most of which use XML. SOAP [215] is used for
exchanging messages between the service provider and requester. It defines the structure of
the content, as well as encoding rules. SOAP messages are routed between recipients until
they arrive at the final destination. This may include any number of intermediary nodes.
SOAP also defines fault elements which can be sent by the service in a number of situations,
including incorrect client request formats or internal errors.

The Web Service Description Language (WSDL) is another standard based on XML. It is
used to describe the programmatic interface of a web service, in terms of its address and
method signatures. This includes information on data types, arguments and return values.

The Universal Description, Discovery and Integration (UDDI) specification is used to reg-
ister and locate web services. It defines a registry where organisations can describe themselves
and publish their services so that potential clients can discover them. UDDI is itself a web
service based on XML and SOAP [195].

2.2.3 Dynamic selection

While each individual web service may offer some kind of useful functionality, the real benefit
of SOA is that they can be combined together easily, allowing the rapid creation of new, custom
applications. These workflows also have the potential to be very reliable, as services can be
chosen and composed together at the last minute. This means that an individual fault can,
when detected, be dynamically avoided by choosing alternative services where necessary [196].

16

However, many of the perceived advantages rely upon better specification and assurance of
the component services. Without knowing precisely how each will behave, it is difficult to use
them in combination with any confidence [164]. Testing web services is also difficult, as they
might exist in different administrative domains or operate on live data. This becomes more of
an issue when considering services with critical functionality, such as in financial, medical or
valuable intellectual property scenarios. Remote verification of web services therefore seems
necessary, but few methods of doing so have been developed.

2.2.4 Common threats and vulnerabilities

To gain assurance in a service-oriented architecture, there are a number of threats to consider.
From the requester’s perspective, the service provider has the best opportunity to betray secrets
or make a service act maliciously. Even assuming the provider is largely trustworthy, there
have also been numerous examples of disgruntled employees abusing their privileged status
to attack their systems [76]. This kind of insider attack might be carried out through malicious
software, a modified script, or an unencrypted communication channel. One of the advantages
of trusted computing is that malicious software can be identified through attestation before
the service is used. Furthermore, TPM protected storage can prevent data leaks even with
privileged access to the system.

However, service-oriented architectures also face many threats from outside. A malicious
party might attack the system to steal customer data, or to alter its behaviour. The following
threats are defined by Bhalla and Kazerooni [18] and The National Institute of Standards
and Technology [197] as being particularly important. Assurance of services must therefore
focus on guaranteeing that the running software will be robust despite these threats and
vulnerabilities.

• Message alteration, falsification and replay.

• Loss of confidentiality. Information within a message being disclosed to an unauthorized
individual

• Forged credentials. An attacker makes a request to the service using stolen or fake
credentials.

• Denial of service.

• Exploiting XML parsers and validators. The XML parser or validator may contain a
buffer overflow, or be vulnerable to denial of service through input of a large file with
complex data structures.

• Error handling. Presenting too much error information can make an attacker’s job easier,
highlighting a potential SQL injection, for example.

• XPath or SQL injection. Both XPath and SQL queries can be designed to return more in-
formation than was anticipated, avoid access controls, or to execute arbitrary statements.

17

Throughout this dissertation, these threats will be considered with respect to assurance.
Any proposals that might create a vulnerability to one of these threats will be identified and
mitigated where possible.

2.3 Trusted Computing and Virtualization

Remote computing platforms and their software are currently not trustable: it is not even
possible to reliably establish whether or not they are trustworthy (see the definition in Section
1.3.1). Only weak identification methods exist for the endpoint – IP and MAC addresses, user
credentials – and there is no way of reliably finding out what software a remote computer
is running. The platform can be queried, but nothing prevents a malicious system from
reporting falsities. Furthermore, viruses and trojans make otherwise trustworthy software
behave in untrustworthy ways. This means that a remote system cannot be relied upon to
say that it is trustworthy. This is because computer systems are fundamentally unrestricted
– they can be programmed for any purpose, and can run potentially any software designed
for it. While this flexibility is partly responsible for the successful history of computing, it
means that software is always capable of working against the user’s intentions. At every level,
software could betray its user – malicious applications, operating systems and firmware all
exist. Therefore, mechanisms in hardware, a less malleable medium, are necessary to protect
against malicious software, and provide evidence to support the honesty of the platform’s
interactions.

Trusted computing is a paradigm developed and standardized by the Trusted Computing
Group [214], based on exactly this principle. It aims to enforce trustworthy behaviour of
computing platforms by identifying a complete chain of trust, an ordered list of components on
a system that are relied upon for trustworthy behaviour, including all hardware and software.
Assurance of each link in the chain is dependent on the trustworthiness of every earlier
component. If a platform owner can reliably find out exactly what software and hardware is
in use, they should be able to recognise and eliminate any malware, viruses and trojans. This
approach is known as integrity reporting.

2.3.1 The Trusted Platform Module (TPM)

The technologies proposed by the TCG are centred around the Trusted Platform Module (TPM).
In a basic server implementation, the TPM is a chip connected to the CPU. It can securely store
RSA keys, and holds a unique private key (the endorsement key or EK). It also contains at least
16 Platform Configuration Registers (PCRs). These are reset at boot and can then be read by
software. They can only be written to in one way, through the extend(..) operation. This
updates the PCR value to be the SHA-1 hash of the old value along with the new data given
as an argument to the operation. Therefore, at any time a PCR value will be of the form

pcrm = SHA1(An | SHA1(...SHA1(A1 | SHA1(A0 | 0x00))))

18

where A0..An are all the values extended into PCR number m and SHA1(x | y) computes the
hash of x concatenated with y. Most PCRs start with value 0. Separately from this, a log is
kept of the actual A0...An values, and this log can be verified against the final PCR value by
recreating the entire hash chain. In this way, one PCR can record a long chain of hashes.

2.3.2 Authenticated boot

The limited functionality offered by the TPM is ideal for recording the boot process of a
platform, with the idea being that, starting from the BIOS, every piece of code to be executed is
first hashed and extended (measured) into a PCR by the preceding piece of code. This principle
is known as measure-before-load and must be followed by all applications. If so, no program
can be executed before being measured. Because the PCRs cannot be erased this means that
no program can conceal its execution from the TPM. The first module cannot be measured,
and is referred to as the root of trust for measurement. A platform is said to support authenticated
boot when it follows this process, as it provides a way for users to authenticate their platform’s
boot sequence against reference values.

Kauer [103] gives three properties of this chain of trust which must hold for the system
measurements to be trustworthy:

1. The first code running and extending PCRs after a platform reset (the SRTM,
see Section 2.3.4) is trustworthy and cannot be replaced.

2. PCRs are not resettable without passing control to trusted code.

3. The chain is contiguous. There is no code in between that is executed but not
hashed.

This authenticated boot functionality is useful to the owner of a system, as they can check
that no viruses or root kits were loaded at start up. However, it might also be interesting for a
remote user. For this reason, the TPM also contains a mechanism for reporting the PCR values
in a tamper-proof manner, called remote attestation.

2.3.3 Remote attestation

The TPM can create a signed copy of its PCR values. This can be given to a remote party (the
‘challenger’) for inspection, along with the Integrity Measurement Log (IML), recording the
application hashes that have been extended. The PCRs are signed using a private key held
by the TPM, guaranteeing the key’s confidentiality. This is called an Attestation Identity Key
(AIK). The public half of the key must be certified by a third party certificate authority (a Privacy
CA) which confirms that a real TPM holds the private half. The reason for this additional key
is to preserve platform privacy – an AIK certificate shows only that the platform has a TPM, not
which one it has. Multiple AIKs can be created for the same TPM. Full details can be found on
the TCG website [214], and a nonce-challenge attestation protocol has been specified by Sailer
et al. [180]. An alternative to using a Privacy CA is Direct Anonymous Attestation (DAA),
which preserves the privacy of the attesting party through use of a zero-knowledge proof [24].

19

BIOS

Bootloader

Operating System

App App App App

Root of Trust

Loads Measure the
binary hash

Trusted Platform
Module (TPM)

Figure 2.1: Authenticated boot

The software running at the platform can be identified by matching the hash values in
the attestation with reference data. This requires a list of Reference Integrity Measurements
(RIMs) contained within a Reference Manifest Database [207] (RMDB). These measurements
are collected from their original source: the software and hardware manufacturers. For ex-
ample, Microsoft could release RIMs containing the correct hash measurements for each file
in Windows Vista. Creating and maintaining this database is a challenging task, but the next
step is perhaps harder: deciding whether or not a certain configuration is trustworthy. This is
an open problem in trusted computing research.

2.3.4 Roots of trust

The TCG define a root of trust as:

‘A component that must always behave in the expected manner, because its
misbehavior cannot be detected. The complete set of Roots of Trust has at least the
minimum set of functions to enable a description of the platform characteristics
that affect the trustworthiness of the platform.’ [210]

An example is the Root of Trust for Measurement (RTM) which is the first element in the
authenticated boot process. The TCG define it as ‘a computing engine capable of making
inherently reliable integrity measurements’ [210]. The RTM begins integrity measurement
by measuring itself. It then measures the next element in the boot process, and passes over
control. On a standard server or laptop, the static RTM (SRTM) is the first sector of the BIOS.
It is a static measurement because it takes control immediately after platform reset, and its

20

self-measurement can only be triggered by this event. Furthermore, it is a small block of
functionality that should never require modification.

Other roots of trust include the Root of Trust for Reporting (RTR) and Root of Trust for
Storage (RTS). The RTR is an ‘entity implicitly trusted to report information accurately and
verifiably to outside entities’ [78]. It is responsible for implementing secure attestation. The
RTS can ‘be trusted implicitly to store information without any interference or leakage’ [78]. It
implements the key storage and sealing mechanisms discussed in Section 2.3.6. Both the RTR
and RTS are provided by the Trusted Platform Module.

More recently, other items have been proposed as roots of trust. St Clair et al. [198] propose
the root of trust in integrity, or ‘root of trust installation’ (ROTI) which links all software
installed on a platform to the original program, the ROTI, which installed and configured it.
This is discussed further in Section 7.6. Cabuk et al. [29] have also described a ‘Software-based
Root of Trust for Measurement (SRTM)’ which is not quite a root, as its integrity is established
and reported through the hardware roots described previously.

2.3.5 Dynamic root of trust for measurement and late launch

The dynamic root of trust for measurement (DRTM) is an alternative to the static RTM. It can
be run at any time after platform boot, allowing an untrusted platform to launch a virtual
machine (or any piece of code) which will be measured, starting from the dynamic root,
without any interference from the software currently running. On Intel processors, the DRTM
is implemented by the SENTERCPU instruction, and SKINIT on AMD chips. This entire process
is known as late launch.

On an Intel platform late launch occurs when a component loads the MLE and SINIT
modules into memory and issues the GETSEC [SENTER] command [79]. The MLE (Measured
Launch Environment) is a trustworthy piece of software, typically a virtual machine monitor,
capable of running isolated virtual machines. SINIT is another software module, responsible
for measuring and launching the MLE. After GETSEC [SENTER] is called, the processors are
synchronised (so only one is left running) and external event handling is stopped, disconnect-
ing DMA and interrupts. Next, all the bytes of PCRs 17-20 are reset to 0x00 and a hash of the
SINIT module is extended into PCR 17. The SINIT module is executed, and tests for proper
hardware configurations. It then measures and loads the MLE, re-enables external events and
executes the MLE code. When ready, the MLE can then run GETSEC [SEXIT] to re-enable all
other processors. The end result of this is that MLE code has been run without any interference,
and has been measured into a PCR. This is then the base for running operating systems and
applications which support integrity measurement.

Attestation of a dynamic root of trust involves a TPM Quote of at least PCRs 17-20. The
PCRs have all their bytes set to 0xFF at boot time, and then are reset to 0x00 at late launch.
Imitating this would involve calculating Q such that 0xFF= SHA1(0x00|| Q). This is considered
infeasible. After checking that the PCRs were reset, the hashes of the SINIT and MLE must be
checked, and then the IML is verified as per normal.

The advantage of this approach is that the BIOS and bootloader do not need to be measured.

21

This is particularly useful as the BIOS will load (in an effectively random order) many Option
ROMs. These are from many different manufacturers, and a SRTM system relies on all of these
being trustworthy. This is considered unrealistic [79]. For this reason, the OSLO boot loader
has been developed which uses the DRTM rather than relying on the earlier boot process [103].

2.3.6 TPM protected storage

Another feature of the TPM is that it can seal or bind arbitrary data to PCR values. This
allows data to be encrypted to one specific TPM and only allow decryption when its PCRs
have a particular trustworthy value. This might be used to prevent a certain document being
opened by anything other than a trusted reader application. One way this is implemented is
by creating a TPM sealed key. The private half of the key is always held in the TPM. The public
half can be used to encrypt any piece of data. When it needs to be decrypted, a request is made
to apply the private key to the encrypted data. The TPM will only complete the request when
the PCRs are in the state defined upon key creation.

2.3.7 The Trusted Software Stack (TSS)

The Trusted Software Stack [211] (TSS) is a specification made by the TCG of support software
for operating systems and applications that try to make use of the TPM. It is designed to
provide functionality which may not be present on the TPM for reasons of economy, but are
essential for services wishing to use it. The TSS is itself split into multiple layers, including
the TPM device driver, TSS Device Driver Library (TDDL), TSS Core Services (TCS), TSS
Service Provider (TSP) and cryptography services. The TSS is responsible for maintaining the
Integrity Measurement Log and swapping encrypted keys in and out of the TPM’s limited
memory. Several TSS implementations exist. Programs described in this dissertation made
use of both the IAIK jTSS [101] and TrouSerS [219] libraries.

2.3.8 Monotonic counters

TPMs must be able to provide at least four monotonic counters. Monotonic counters are simple
integer values (associated with an identifier) that can be read using the TPM_ReadCounter com-
mand and incremented via TPM_IncrementCounter. Counters can be created and destroyed,
but once destroyed, their identifiers may never be used again. There are many suggested uses,
including counting the number of times a platform is rebooted, or to implement count-limited
objects (CLOBs) [186]. Three restrictions apply to counters: it must be possible to increment
one continually for 7 years, they must support an increment at least every 5 seconds [212], and
only one counter may be incremented on one boot of the platform.

Although counter values cannot be directly attested in the same way as PCRs, it is possible
to do an equivalent operation. TPMs support transport sessions which encapsulate commands
sent to the TPM and provide a signed log of their results [186]. A TPM_ReadCounter operation
can be called within a session, and the resulting signed log sent to a remote party.

22

2.3.9 Tick counter

The TPM also contains a tick counter which increments steadily over time. This is not a direct
representation of the current real time, as it is not required to operate when the platform is
powered down. The tick count is begun from the start of a timing session which may be the
platform boot or TPM initialisation. The platform may then read the number of ticks using the
TPM_GetTicks method. A protocol for associating tick counts with time can be found in the
TPM design principles documentation [212].

In addition to reading the tick counter, it can be used to time stamp arbitrary data. The data
and current ticks are hashed together and then signed with a TPM key. This can be used to
effectively attest the platform’s tick count.

2.3.10 TPM Performance

Despite the TPM usually being implemented in hardware, it is not a high-performance device.
It is not a cryptographic accelerator and is designed for security and tamper-resistance rather
than speed. This means that programs and protocols should use software wherever possible
and avoid the overuse of TPM key-based operations such as attestation, encryption and signing.
The extend operation is faster, but the overhead of hashing a large file (such as a kernel image)
may result in a slight performance penalty. For example, running the sha1sum command on
a 175MB file took 55 seconds on a Compaq 6510b laptop with an Intel Core 2 Duo processor.
More details of the performance impact of the TPM on authenticated boot are given by Sailer
et al. [180].

2.3.11 Trusted Network Connect

Trusted Network Connect is a standard proposed by the TCG to specify how network infras-
tructures should communicate to protect endpoints and prevent the spread of malware [213]. It
provides specifications for protocols and functionality to support auditing and access control,
based on platform integrity information and user authentication.

2.3.12 Isolation techniques: Virtualization and sandboxing

Isolation mechanisms can be used to separate trusted and untrusted code. This is a useful
approach, as it allows the trusted computing base (in the RFC 4949 sense) of a platform to
be separate from the rest of the code, but still provide assurance. This reduces the size of
the TCB, while still allowing untrusted code to be run. Isolation can be imposed at different
levels. Operating systems, in combination with OS paging and rings, provide process-level
isolation, as well as isolating the kernel from userspace. Platform-level virtualization, on the
other hand, allows for the entire machine to be virtualized. This means that several operating
systems can be running, unaware of each other, none of which have sole access to the platform.
This form of isolation can be enforced in hardware (through processor features such as Intel
Virtualization Technology) or software, or a combination of both. There is a trade-off between

23

performance and the strength of the isolation provided, a full discussion of which is not within
scope of this dissertation. When referring to virtualization, the general architecture shown in
Figure 2.2 will be assumed. This consists of a hypervisor at the lowest level, running on real
hardware, which then allows several guest virtual machines to run, each completely isolated
from the others.

Hypervisor

Guest OS 1

Virtualized Devices

App 2

App 3 App 4

App 1

Hardware

Guest OS 2

Virtualized Devices

App 6

App 7 App 8

App 5

VM 2VM 1

Figure 2.2: The structure of a virtualized platform

A virtual machine can also refer to a language-level runtime environment such as the Java
Virtual Machine. This does not virtualize the platform, but provides a sandbox between the
executing code and the machine. This is an opportunity for users to impose restrictions on
the executing code, such as limiting file and network access. In addition, type safety can be
enforced by the VM, as well as exception handling. These eliminate several types of common
vulnerabilities. However, the VM itself is complex and may introduce vulnerabilities as well
as lowering performance.

2.3.13 Notation

The following notation will be used when describing trusted computing systems and protocols.
This is adapted from the syntax of the Logic of Secure Systems (LS2) [53] and Casper [119].

Cryptographic keys

Cryptographic keys can use any of the following notation.

• Keys can be single characters – e.g. k or j – in which case assumptions about how they
will be used by the actors with access to them will be given in the text.

• Public key cryptography involves the use of a public and secret (or ‘private’) key for an
actor, for example: SK(Bob) is Bob’s secret key and PK(Bob) is Bob’s public key. Actors

24

like Alice and Bob are assumed to hold their own secret key securely unless otherwise
specified.

• Arbitrary key pairs may be shown as the key k and its inverse k−1. The use and assump-
tions placed on each key will be defined in the text.

Encryption and Signing

Protocols involving encryption and signing will use the following notation from Datta et
al. [53].

• SYMENCk{| X |} is the encryption of value X using symmetric encryption and key k.

• SIGSK(Bob){| X |} is the signing of value X using Bob’s secret key SK(Bob).

• ENCPK(Bob){| X |} is the signing of value X using Bob’s public key PK(Bob).

As in [28], perfect encryption is assumed unless otherwise stated, so that any adversary is
incapable of decrypting SYMENCk{| X |} unless they have access to key k. Perfect public key
encryption is also assumed: a message encrypted with a public key can only be decrypted by
a secret key, and vice-versa.

Protocols

Protocols will be described using Casper-style notation [119]. A message M from Alice to Bob
followed by a reply R from Bob to Alice is shown as:

A→ B : M (2.1)

B→ A : R (2.2)

Defined terms in protocols

Cryptographic Hash. When used to produce a digest for input X, this can be written as
HASH(X), H(X) or using the specific implementation: SHA1(X). Hashes are assumed to
have perfect properties: they are not directly reversible, no collisions will occur, and a
hash is not commutative, e.g. SHA1(A | B) is not equivalent to SHA1(B | A), where ‘|’
indicates concatenation.

HMAC a ‘Hash-based Message Authentication Code,’ a hash of an element, encrypted using
a secret key. Notation: HMAC(k,X) indicates a HMAC of element X using key K. The
hash function itself may be given as well: HMACSHA1(k,X) .

Nonce a freshly-made random integer, used to establish timeliness. Usually given as just
nonce or nonceA to indicate it was created by user A.

Timestamp a signed statement of the current time. These will be given as timestamp or may
be shortened to ts1 and ts2 to indicate two timestamps, where ts1 is older than ts2.

25

Trusted computing notation

In protocols, the following notation is used to describe TCG objects, keys and parties. Some
simplifications have been made from the full TCG specifications.

PCRs. Platform Configuration Registers are show as pcrx to indicate the content of PCR number
x. In some cases a range is given – pcr1−9 is every PCR from 1 through to 9 inclusive.

AIKs. Attestation Identity Keys are used in several protocols. The secret half of an AIK pair for
platform P is given as AIK-SK(P)1 and the public half is AIK-PK(P)1 where the subscript
is a label for the particular AIK, as a platform may have several.

Quotes. An attestation takes the form of a TPM Quote. Quotes are written as
QuoteAIK−SK(P)1 {| pcr1−5,nonce |} where this represents the attestation of PCRs 1-5 signed
by AIK-SK(P)1 with a nonce included. Quotes are actually the hash of these PCRs,
rather than PCR values themselves, but this is left off for brevity. Quotes are treated as
logically equivalent to signing with an AIK private key: SIGAIK−SK(P)1 {| pcr1−5,nonce |}.
The shorthand for a platform quote is sometimes used, Pquote, but will be defined earlier
in the text.

CertifyInfo. The credential for a TPM-bound key, showing that the private half of it is held
in the TPM, is described as CertifyInfoAIK−SK(P)1 {| K−1, [pcrx−y] |}. This shows that key K is
held in platform P’s TPM, bound to PCRs x through to y. The credential is signed by the
secret half of P’s AIK. If no PCRs are specified, then it just certifies that the key is held
within the TPM.

Privacy CA. In protocols, the Privacy CA is shown as PCA. When the PCA signs something,
such as an AIK credential, SK(PCA) is the Privacy CA’s private key.

AIK Credentials. The certificate stating the validity of the AIK is given as a credential signed
by the Privacy CA: AIKCredentialSK(PCA){| AIK-PK(P)1 |}.

Attestation Parties. The parties involved in an attestation are the challenger (‘relying party,’
‘requester’), who requests an attestation response, and the responder (‘attester,’ ‘target
platform’) who uses a TPM to generate the TPM Quote reply.

Actions

In algorithms, the following syntax is used for certain actions:

PCR Extend. The action of extending a PCR is written as extend(x, M), representing the
action of extending item M into pcrx.

TPM Counter Increment. The action of incrementing a counter with label label is given as
increment counter(label).

26

2.3.14 Summary: Assurance properties through trusted computing

Trusted computing has been designed to enable assurance of several useful properties. As
described in this section, use of TPM keys (signing and attestation) can provide unambiguous,
re-identification of a platform. One key can only belong to one platform, so seeing a signature
by the same key twice provides a strong guarantee of identity. TPM keys can also provide
confidentiality through sealing and binding. Data bound to a TPM key can only be read with
the cooperation of the platform with the right TPM. Attestation provides evidence of PCR
values, which themselves give the ordered sequence of TPM_Extend actions performed by a
platform. Assuming the boot process follows measure-before-load, and no runtime attacks
occur, this might provide a full list of the software running on the platform. Statements such as
‘platform X runs Y’ can be made, as well as ‘platform X has not run known malware Z.’ These
guarantees are backed by hardware, which makes them stronger than application or OS-level
assurance, which might be affected by malware or runtime attacks. However, to go further
and make more specific behavioural statements, hardware-backed assurance must be combined
with further techniques. The following sections provide details on software assurance and
isolation, which can provide the missing functionality.

2.4 Specification and Verification Techniques

A more traditional way of establishing whether or not a piece of software will behave properly
is through formal verification. This requires a specification of the behaviour of the system,
followed by an analysis of the code to see if it conforms. There is a huge range of literature
surrounding this topic. A complete survey has not been provided due to the size of the field,
but several techniques relevant to the issues arising from remote attestation and web services
are discussed in this section.

2.4.1 JML and Design by Contract

The Design by Contract (DbC) approach advocates having a ‘precise definition of every mod-
ule’s claim and responsibilities’ [136] in order to create reliable and, importantly, reusable
components. Module interfaces are annotated with pre- and post- conditions in the form of
requires and ensures clauses. There are also class invariants, which express ‘general con-
sistency constraints that apply to every class instance as a whole’ [136]. Several annotation
languages exist for the DbC methodology, including Eiffel, Spec# and JML. JML [112] offers
other language features, including specification of exceptions, non-null annotations and class
ownership. A simple example of JML can be found in Figure 7.2.

2.4.2 Static program analysis

Static analysis is the process of automatically extracting properties from the source code or
binary of an application without executing it. This kind of technique has been used for

27

a number of purposes, including finding common security problems [41, 40] and spotting
memory-management bugs. Static analysis is a broad term that covers simple source-code
scanning (perhaps just using a regular expression) as well as more rigorous program analysis
with theorem proving.

One such technique is called Extended Static Checking [175]. An ESC tool takes annotated
program code, translates it into logical terms, runs the code through a theorem prover with
the annotations, and then produces either a counter example or a ‘Verified’ result. Figure 2.3
is an overview of the process. There have been several extended static checkers developed,
including ESC/Modula-3, ESC/Java2 and ESC/Haskell. ESC/Java2 [46] uses JML as the anno-
tation language and can interpret Java 1.4 source code. It is a useful tool for both the Design
By Contract and Design For Verification approaches. ESC/Java2 translates source code into
predicates and terms which can be understood by Simplify [56], a theorem prover.

Translator

Theorem prover

Annotated Program

Verification condition

Counterexamples

Post­processor

Warning messages

“Valid”

Figure 2.3: The Extended Static Checking process. Figure adapted from Leino [175]

ESC/Java2 has been used successfully in a number of projects and has been used to check
software consisting of tens of thousands of lines of code [175]. Rioux and Chalin [172] describe
their experiences using it to improve the quality of web applications, as well as providing
a good overview of the concepts and terminology. They discovered several faults in their
code, including failure to propagate design changes and missing exception conditions. They
conclude in favour of the approach, as JML provides a better quality of program documen-
tation and ESC/Java2 makes sure of the accuracy of the annotations. They also believe that
ESC/Java2 should scale efficiently. Another example, although this time not using ESC/Java2,
is presented by Pavlova et al. [158]. They use JML and JACK, the Java Applet Correctness Kit,
for verification. The purpose of their work is to check that smart card implementations meet
certain high-level security properties. These include the life-cycle of the card – going into a
‘dead’ state when misused – transaction atomicity, exception handling and access control.

28

2.4.3 Proof-Carrying Code

Proof-Carrying Code is an approach for establishing trust in code developed by a third party.
The following quote describes the general process:

‘In a typical instance of PCC, a code receiver establishes a set of safety rules
that guarantee safe behaviour of programs, and the code producer creates a formal
safety proof that proves, for the untrusted code, adherence to the safety rules. Then,
the receiver is able to use a simple and fast proof validator to check, with certainty,
that the proof is valid and hence the untrusted code is safe to execute.’ [149]

The PCC method has several advantages. Firstly, the code producer does the bulk of the
work, creating the safety proof of the application. The end-user just has to run a verifier.
Secondly, the code is shipped as a binary, with annotations. Preserving the secrecy of the
source code may be important for commercial applications. Thirdly, the system is extremely
flexible, with the only trusted code being the final verification program. Proofs may be written
by hand or generated by a Certifying Compiler. This component can create the proof at compile
time.

However, there are several practical issues with using PCC. Creating the proofs is difficult
and time consuming. Establishing the safety conditions is also hard, as is expressing all the
requirements. Some implementations exist, including an example system by Colby et al. [48]
for verifying the type safety of Java applications. Atkey et al. [9] discuss how PCC could
be used in a grid computing scenario as an alternative to runtime monitoring of untrusted
code. They also present an implementation which checks for conformance with a resource-
usage policy. Franz et al. [66] have tried to make PCC more portable and more efficient, by
combining it with a minimal virtual machine. This also lets them tailor the VM language for
verification.

Proof-Carrying Code is just one of several language-based techniques for adding verifi-
able information to a program executable. Kozen [108] provides a summary of three other
approaches which have a security and safety emphasis. These include the Typed Assembly
Language (TAL), Efficient Code Certification (a less-rigorous but faster PCC) and JFlow for
information flow properties. Existing research on information flow security is summarised
in more detail by Sabelfield and Myers [177] who cover a wide range of language-based
techniques.

2.4.4 Booster and model-driven approaches

Booster [54] takes well-defined system models and uses domain assumptions to generate
complete object databases. The correctness of the generation process implies a guarantee that
the end result is bug-free and potentially trustworthy.

Booster allows the specification of method pre- and post-conditions, along with type infor-
mation and access control details. The significance is the use of a formal notation (based on
Z) to create the service with no manual editing of code or configuration files. It is therefore

29

sufficient to know that a service was compiled with Booster in order to guarantee that it imple-
ments the original model. If the generation process is assumed to be correct, then the entire
application can be analysed just by reasoning about its specification.

Booster is conceptually a compiler, as it takes a system description and turns it into an
executable program. However, this is something of a simplification and it should more accu-
rately be described as a system generator. This is because it takes a very high-level model as an
input, which by itself contains insufficient information to create an application. This input is
then refined by a series of steps to produce the final implementation. At compile time, most
of these refinements are proved to maintain the same pre-, post-, and invariant conditions that
the original model did. The final output is also more complex than the result of a traditional
compiler, consisting of SOAP interfaces, a web GUI, the object database and access control
mechanisms.

An example usage is to extract data-flow properties from an application. For example,
students submitting work to an online system may want a proof that their final mark will
never be revealed to fellow students, except in the form of a class average. In a medical
record system we could show that information about heart conditions is always visible to the
prescribing physician. Such properties can be as fine-grained as necessary or invariant over
the whole application.

2.4.5 Specifying and verifying services

There have been many attempts to create better specifications for web services, often in order
to improve automatic runtime selection and verification. SOA researchers have developed
both OWL-S [128] and SAWSDL [107] which add semantic annotations to WSDL. They can
provide pre- and post- conditions and use standard ontologies for describing data types and
functionality. They are very flexible, supporting a wide range of rule definition languages
within them. However, the main emphasis has been on dynamic discovery and composition
of services. Semantics usually refers to the high-level intentions of a service, rather than the
specific operational details. This makes the descriptions largely unenforceable, as they have
no relation to the code that implements them. These issues have led to recent criticism by
Petrie [164] about the impracticality of public service-oriented architectures.

A solution might be to apply formal methods to web service implementations, and there
have been many projects aimed at doing exactly this. However, this has mostly been about
verifying message interactions. Betin-Can et al. [16, 17] use a design for verification (D4V)
approach. They introduce the ‘Peer Controller Pattern’ for creating reliable services. This
separates out the message exchange from the logic, massively simplifying the verification
process, which can then be automated. Behavioural interfaces are also generated. Assertions
that are known to hold in individual services are then combined using hierarchical interfaces,
and the behaviour of the whole system can be checked with regard to synchronisability.
Individual services implementations are considered to conform with their interfaces if their
call-sequences are acceptable to its state machine. This is verified using JavaPathFinder [230].
This is appropriate when considering concurrency issues, but does depend on all services

30

being developed by the same people, with trust less of an issue.
Rioux and Chalin [172] use ESC/Java2 to reason about the code of a web-based application

framework. They document their experience of using a design by contract methodology in
order to assess the effectiveness of ESC/Java2 at increasing program quality. They highlight the
difficulty of using a static checker with external libraries which lack a specification. Overall,
90% of faults identified were problems with the inadequacy of the specifications themselves,
rather than any coding errors. The other 10% were genuine bugs in the program. Similarly,
Heckel and Lohman’s also use a design by contract approach (see Section 2.4.6).

Sarna-Sarosta et al. [187] present the idea of using declarative contracts to specify services
and then use these to guarantee certain safety properties. Developers would enhance the spec-
ification of services with their requirements for exclusive resource access, and then ‘containers’
compose and negotiate contracts to ensure that all the requirements are satisfied. There would
be two types of container: flow and inter-process. Flow containers would address problems
of concurrency within a service, whereas inter-process containers work on multiple services,
negotiating access to multiple shared resources. This only works when all the services are on
the same server, which is also running the container. The main aim of this work is to reduce the
overhead on a developer, so that code for synchronising transactions does not need writing,
but is automatically created by containers which read the declarative contracts.

2.4.6 Testing services for assurance

Several approaches have been taken to let a requester establish whether a service will work as
expected. Heckel and Lohmann [88] use design by contract (see Section 2.4.1) to create web
service behavioural contracts, complete with pre- and post- conditions for methods. These
contracts are declared in an extension to WSDL. Test cases are automatically derived from
contracts and used in order to match the services offered by the provider with the requirements
of the requester.

Sharygina and Kröning [189] use model checking techniques to verify that services do
not have any concurrency-related problems, such as safety and liveness properties. They
define and implement a PHP-like language for web services. Any number of services created
with this language can then be checked for safety. One of the important features of their
work is that it allows for synchronous communication with other services and asynchronous
interleaved communication with databases. This work is impressive, but does assume that
the verifier of these services is also the designer, and as such is more suitable for testing than
remote verification. Furthermore, they readily admit that the application of formal methods is
limited, as it would involve having a complete model of all the many library functions within
PHP.

Tsai et al. [223] describe a framework (‘WebStrar’) for web service assurance. Services are
registered with WebStrar, which performs a series of tests on it. Each service has an OWL-
S [128] specification and this is checked via ‘Completeness and Consistency’ analysis and model
checking of the specification and verification patterns. There is also a step involving positive
and negative test cases, which all go towards ranking the services in terms of reliability.

31

This approach is a logical way of gaining assurance, but does have some flaws. Testing is
not appropriate in a situation where the service operates on live data. Secondly, testing is
inadequate for demonstrating conformance between a specification and its implementation,
although it can raise confidence. It is also not clear whether the tested services have any
obligation to re-register in the case of a change to their implementation. This could potentially
invalidate all test results.

In summary, most existing work focuses on using verification tools and testing within the
development process, rather than as a tool for helping the end user, or enforcing trustworthy
behaviour.

2.4.7 SOAP proxies

One method for adding authentication and access control to a web service is the use of a
SOAP proxy [25]. These have been discussed in detail by Power et al. [168]. They have the
advantage of requiring little or no modification to the base service, while enabling complex
policy enforcement.

2.4.8 Summary: Assurance properties through software analysis

Specification and verification can provide assurance (or even proof) of far more detailed,
algorithmic properties of software. Static checking can demonstrate that post-conditions and
invariants are met, and model-driven approaches can also show this as well as the relationship
between data items and objects. Other techniques can demonstrate type safety, the absence of
buffer overflows, access control rules and how information will flow. Testing can give weaker,
but nonetheless useful evidence of the outcome of a variety of actions, as well as the overall
reliability of a complex system.

These properties are generally established through direct, local access to the code or system.
However, in combination with the assurances provided by trusted computing and attestation,
it seems possible that this could be applied to software running on remote services. This
dissertation will look at how practical it is to use attestation for this purpose.

2.5 Conclusion

Several approaches to assurance have been discussed, each with their own strengths and weak-
nesses. A promising approach is to combine the detailed analysis possible through software
verification, with the hardware-rooted assurance provided by TCG-defined attestation. With
this in mind, the thesis question – to what extent attestation is a feasible mechanism for gaining
assurance in services – can be refined to consider different assurance properties, many of which
have been covered in this section.

The rest of this dissertation will consider the practicality of using attestation for the follow-
ing assurances. Each of these might be considered important for trusting remote services, but
offer guarantees of different properties and at varying levels of confidence:

32

• Unambiguous identification of the service platform.

• Secure communication, without loss of confidentiality or integrity of messages sent and
received.

• The absence of known malware on the service (blacklisting).

• Only known, trusted software has run on the service (whitelisting). Or, similarly, only
software from trusted sources has run on the service.

• Platform state: a list of all software running, actions it has performed, and each program’s
runtime memory state.

• Access control policies, whether or not they are being enforced, and any violations.

• Runtime security state: has the platform been attacked, through a vulnerability such as
a buffer overflow?

• Service behaviour: what it will do when queried. This may include the range of future
actions the service could perform. This is likely to be established through assurance of
the service software.

Attestation has already been proposed as a mechanism for most of these properties. The
next chapter will look at the well-known problems with doing so, as well as some of the
solutions developed in related literature.

33

34

Chapter 3

Attestation: Problems and Existing
Solutions

The last chapter described the theory behind how TCG-defined attestation works, in terms
of protocols and the Trusted Platform Module. In practice, however, this is only one part of
a larger process for establishing platform trustworthiness. It turns out that using attestation
on real software systems is surprisingly difficult, and the literature is full of criticisms of
it [141, 167, 21, 42, 200, 47]. This chapter lists these problems and presents the various solutions
that have been developed in the last decade of research. In particular, the different platform-
level integrity measurement strategies are covered in Section 3.3. In Section 3.4, the current
state-of-the-art is analysed to identify the areas which are still outstanding.

This chapter contains an analysis of the key challenge that this dissertation aims to solve,
and the contributions in the following chapters all seek to overcome the problems listed below.

3.1 Open Problems

There are well-known issues with TCG-described attestation. These include the disclosure
of platform configuration information (privacy), the semantic gap between hash values and
platform properties (semantic gap), attacks on running software (runtime), and the practical
difficulty of maintaining a whitelist of known hash values (whitelisting). In addition, there are
the problems of the number of credentials and trusted parties required (trusted parties), the
performance impact, application compatibility, establishing a trusted path, and attestation across
multiple domains.

3.1.1 The semantic gap: Measured but not trustworthy?

Attestation has been criticised for reporting a platform’s execution state rather than its security
state [167], which many consider to be the ultimate goal. These two properties are related,
but there is a significant gap between them. If it is not clear that one software configuration

35

is necessarily more secure than another, why report it? The root of the semantic gap problem
is that integrity measurement only provides assurance of the identity of software loaded,
and additional software assurance methods are required to make further security guarantees.
However, if the only assurance goal sought is to identify malware, for example, then arguably
attestation is more appropriate. Assuming measure-before-load is implemented correctly,
blacklisting is a simple matter of identifying the components in a list that are known to be
untrustworthy. Unfortunately, this is rarely the case, and assuming measure-before-load is
sometimes unrealistic.

Sadeghi and Stüble [178] introduced ‘Property-Based Attestation’ (PBA) to solve the se-
mantic gap problem (see Section 3.2.1) but still rely on at least one party being able to match
software identity to security properties. Presumably this would be achieved through testing
or verification, both time-consuming processes. Even more complexity is apparent when the
scope of measure objects is expanded beyond just executables. Platform configurations include
configuration files, data and runtime events, all of which might need reporting in order to gain
a thorough impression of the state of the platform.

Arguably more difficult than reporting security state is reporting how a platform will behave.
This is essential if attestation is to be used for establishing trustworthiness, as the two concepts
are linked by the TCG definition (see Section 1.3).

Some solutions do exist. Semantic Remote Attestation (discussed in Section 3.2.4) attempts
to bridge this gap through reporting dynamic runtime information. Similarly, the Tisa system
by Rajan and Hosamani [170] allows for reporting of program execution traces, through a
trusted monitor which instruments Java bytecode. Requirements can then be specified in terms
of linear temporal logic expressions. However, this relies on the program user understanding
the meaning of code execution traces, and on the correct implementation of the code, monitor
and middleware. Furthermore, the configuration of the monitor will be complex and will
affect trustworthiness. An alternative approach, taken by Alam et al. [2, 3, 4], is to use a
trusted virtual machine to log behavioural updates to objects, in order to link attestation to
usage controls. This relies heavily on the implementation of the virtual machine, and has
only been used to investigate usage control issues on client machines. Another attempt to link
attestation to security state is through use of vulnerability databases. Munetoh et al. [142] report
whether or not any executables have known exploits as listed on the Common Vulnerability
and Exposures [138] database. Unfortunately, this approach is limited to identifying existing
flaws, rather than pro-actively defending against new ones, and relies on the accuracy of
the database. St. Clair et al. [198] propose to link the definition of a trusted platform state
to the original software installation, a principle similar to the ‘birth certificates’ proposed
by England [61]. They use a custom installer to set-up and configure a platform, and thus
create the ‘known-good’ image. Any deviation from this image is considered untrustworthy.
Coker et al. [47] agree that the semantic gap is a problem, and their fourth principle for an
attestable system is that the semantic content of attestations should be explicit. They state that
an appraiser should be able to infer consequences from a series of attestations. Their proposed
architecture has an Attestation Manager component, which is responsible for using a suitable

36

tool to analyse attestations, before then passing the analysis on to the challenger in a standard
format.

3.1.2 Vulnerability to runtime attack

Integrity measurement can assert the identity of software when it was originally loaded, but
says nothing about the runtime state of the platform [188, 61]. In-memory attacks (such as
exploiting a buffer overflow) can occur which will not be reported in an attestation, but will
certainly alter the expected behaviour of the machine. This problem is directly linked to that
of semantics, as the trustworthiness of the platform is dependent on both static binary state and
runtime. Therefore, many proposals attempt to solve both problems at once.

One approach is to monitor a platform at runtime, using a trusted agent. Kil et al. [105]
augment the operating system to monitor system calls and applications, and extend a PCR
when any bad behaviour is observed. This is linked to program semantics through earlier
static analysis of the applications, identifying common patterns of execution. Unfortunately,
this approach does not detect all integrity violations, and has a performance overhead. Gu
et al. [83] measure all dependencies and inputs to the application being monitored, through
trapping system calls. Zhang and Wang [242] propose to attest to process trees, rather than just
binaries, to detect when unexpected processes are spawned, highlighting an attack. Baiardi et
al. [10] use virtual machine introspection to monitor the platform, allowing flexible auditing
policies to be followed. These approaches undoubtedly make it harder for a runtime attack
to go unnoticed, but all make the challenger’s task more difficult. The level of knowledge
required for the challenger is much higher, as they must understand the implications of any
policy violations. At best, these proposals fight the symptoms of the problem, rather than
immunising against the cause – excessive TCB size and complexity.

Unfortunately, runtime attacks compromise almost all the assurance goals described in
Section 2.5. Reliable blacklisting and whitelisting is not possible, as a remote attack could
instantiate any software. Any reports of platform state could be compromised, and behaviour
could be changed in almost any way.

3.1.3 Maintaining a whitelist

The complexity of managing a large software whitelist has frequently been cited as a major
problem for attestation. England [61] claims that the 4 million windows drivers (growing at
4000 per day) makes even identifying the software running on a platform a challenge. Other
researchers have made similar points about the number of possible configurations [178, 85, 173].
However, there are some promising counter-examples. Sailer et al. [179] show an implemented
network access control system which uses a whitelist of only 25000 entries, and is designed to
handle application updates. An enormous amount of literature exists on platform minimisation
and TCB reduction. Attestation highlights the problem well, as measurement numbers are a
quick metric for comparison. The whitelist problem is clearly related to the runtime issue, itself
a part of the semantic gap issue. TCB minimisation is therefore crucial to making attestation

37

feasible, as it contributes to all of these problems.
The most obvious approach to TCB minimisation is to use a small operating system and

software stack. Böttcher et al. [20] use the L4 microkernel to do this. Indeed, a smaller version
of L4 has even been formally verified [106], enhancing assurance of any system using it.
Singaravelu et al. [194] reduce the TCB further through ‘AppCores,’ into which the security-
sensitive portion of applications are placed. This means that the rest of the application can
remain untrusted. However, attestation of this process is not considered. The LibraryOS
project [7] also allows the creation of minimal application environments, useful for security-
critical components. Another technique is to use information flow controls to reduce the
number of applications that need measuring. Jaeger et al. [96] use SELinux to do this, allowing
untrusted applications to be ignored and not measured. However, the overhead in policy is
significant. The IAIK Privacy CA project [151] has another approach to reducing the TCB.
They analyse the precise components in the Java runtime that are actually used, and remove
everything else before deployment. There is an enormous amount of literature related to TCB
reduction, and a full review is not presented here.

One alternative is to measure a virtual machine image rather than an entire software stack,
turning hundreds of measurements into just one. The implications are discussed in detail in
Section 3.3.2. Toegl and Podesser [218] propose per-application VMs in part for this reason,
and achieve integrity measurement logs of only twenty or so entries. Wang and Wang propose
the same for VMs in a grid system [231], and England [61] also suggests attesting VM images
with known security properties. Cooper [51] has an alternative approach to minimise a grid
platform. He proposes that only a ‘job security manager’ should be attested, which then
implements security controls, such as providing encrypted storage and isolated job execution.
This works for grid jobs, but would be difficult to implement for web services.

The software update problem is referred to as one cause of the whitelisting problem. Frequent
software patches make the whitelist too large and dynamic. Property-based attestation can help
with this issue, as can the chameleon hashing approach taken by Alsouri et al. [5]. Chameleon
hashes use a key-based hashing function to allow different files to produce the same hash
value, thus avoiding increasing the size of the measurement list. However, this also prevents
revocation of software when a new vulnerability is found. England [61] suggests that a ‘birth
certificate’ should be used instead, an attestation of the original installation image, rather than
the running, patched version. This is a clear trade-off between detail and manageability.

Configuration files are also part of the issue, as these are likely to be unique for every
platform, despite potentially having the same meaning. St. Clair et al. [198] avoid this by
generating configuration during a measured installation process. Alternatively, the SAConf
proposal [232] uses a configuration analyser to link this to file semantics, rather than binary
identity. This is discussed further in Section 7.6.

Using a dynamic root of trust can also reduce integrity measurements significantly. McCune
et al. [130] use it to launch isolated pieces of code despite the presence of an untrustworthy
operating system. However, the size and complexity of the code is naturally limited, as none
of the operating system provided services are available. The Oslo bootloader also uses the

38

DRTM to remove BIOS and pre-boot measurements [103].

3.1.4 Too many trusted parties and processes

Bottoni et al. [21] summarise the credentials and beliefs necessary in order to use remote
attestation. The results are not encouraging. For a simple scenario, where the remote platform
has three software layers and there are two Certificate Authorities, five authorities must be
trusted and fifteen certificates verified. Furthermore, assuming that the processing of certificates
will rely upon checking revocation lists, remote attestation becomes liable to blocking and
denial of service. However, many of these certificates might well be provided by the same
party (e.g. a system administrator) and as such the complexity is diminished significantly.
The key principle to take from this problem is that adding new trusted third parties should be
avoided when designing attestation-based systems.

3.1.5 Privacy concerns

Integrity measurement requires the challenging party to identify every piece of software ex-
ecuted on the remote platform. This might allow them to discriminate based on their own
criteria [178, 167], requiring software from only one vendor, for example. This could work
against the user’s best interests. Furthermore, reporting the exact hash values could make an
attacker’s job easier [110], as he or she will be able to quickly identify which known exploits
are appropriate.

The problem of preserving privacy is closely related to that of whitelisting. If precise
integrity values do not need to be disclosed, then a precise whitelist also does not need to be
maintained. As a result, many of the solutions discussed in Section 3.1.3 help with privacy
too — in particular, property-based attestation and chameleon hashing [5]. Another approach
is to use a higher level of abstraction during attestation. Nagarajan et al. [145] put low-level
components into ‘buckets’ and then have multiple layers of properties, which are fulfilled by
having at least one component in the right bucket. This theoretically enables the attestation of
just the platform-level properties, so flexibility in individual components can be maintained.
However, it assumes agreement on the component-property mappings, the transitivity of
properties, and has not been shown to scale in a real scenario.

3.1.6 Performance

Because trusted computing features depend on use of the TPM, they are also constrained by
the speed in which the TPM can perform encryption and signing. If attempting to establish
trust in a remote server, regular attestation or sealing could impact the processing time for
requests. This could result in reduced service or an availability issue.

While the TPM itself may increase in performance, there are other solutions. Stumpf et
al. [200] propose three improvements on attestation. Firstly, by batching attestation requests
together, one attestation can serve multiple remote users. The second technique uses a trusted

39

third party to regularly request an attestation at fixed time intervals. The attestation result and
nonce are published by the trusted party. This guarantees freshness within the time period,
and saves individual users from having to request attestations. The last method uses the TPM’s
tick counter, details of which can be found in the paper. An alternative suggested by Löhr et
al. [116] is that certified PCR-bound keys would be more efficient for attestation, compared to
TPM Quotes, as these can be used offline by the remote party.

3.1.7 Compatibility with legacy systems

All applications on the attesting platform must support measure-before-load for any data they will
execute. This means that virtual machines, programs with plug-in architectures and programs
with detailed configuration settings must all be modified. This requires a significant amount
of time and effort from all developers. The quality of the applications is also important, as any
error in the implementation might allow an executable to be loaded without measurement.
This issue has occurred in some of the early trusted bootloaders [167], and can undermine
many assumptions necessary for assurance.

Solutions to this problem often involve policies and OS-level instrumentation, such as the
IMA system [180]. These allow unmodified applications, but have an overhead on policy,
and lack the intelligence to distinguish some executables and static files. Alternatively, Kil
et al. [105] use static analysis of legacy executables as well as OS-level system call tracing
to enable better monitoring. Dietrich et al. [58] propose an architecture for legacy systems
which provides attested communication channels through attestation proxies. However, this
does not help with the integrity measurement process itself, but can benefit applications which
are working on compatible systems. The TCG solution, on the other hand, is to use the
Platform Trust Service (PTS) to enable monitoring of the whole system. This is equivalent to
an operating-system level solution, as it is also placed in the TCB. More discussion of the PTS
can be found in Section 6.6.6.

3.1.8 Establishing a trusted path

Remote attestation preserves the privacy of individual platforms by introducing a pseudony-
mous attestation identity key (see Section 2.3.3). However, AIKs are not meant to be used
for anything except attestation, and cannot be used in further protocols. This means that it
is difficult to establish that the attested platform is the same as the platform being communi-
cated with, as nothing links the AIK with a particular transport session. A man-in-the-middle
could forward valid attestations from another platform to convince the relying party of its
trustworthiness.

This problem of establishing secure channels to trusted platforms has been discussed
extensively [42, 74, 72, 201]. The solution presented by Goldman et al. [74] links a platform’s
SSL key to its AIK, which then makes it easy to establish a transport session with the attested
platform. They do this through a number of mechanisms, but one is to measure the public SSL
key at boot time, so that all attestations must include it. Choi et al. [42] point out that this does

40

not work if a malicious platform manages to get the SSL key, as they can then use a ‘good’
platform to attest but switch to a ‘bad’ platform with the same key afterwards. Their solution
uses a network monitoring agent and trusted third party to guarantee the endpoint address
of the attested platform. Stumpf et al. [201] describe a masquerading attack on standard
attestation, and present a robust integrity reporting protocol as an alternative.

3.1.9 Attestation across multiple domains

Another problem with attestation is the application of integrity measurement policies across
multiple administrative domains, such as in grid systems. If certain software configurations are
unique to one domain, then platforms in these domains will not be trusted by other domains,
as the attested configurations will be difficult to validate [92].

3.2 Related Research, Systems and Tools

In this section a few of the most significant research contributions will be discussed in further
detail, to identify the principles behind them, and any areas for improvement. Many projects
involving attestation have encountered some of these problems before, and are analysed to see
how they have been overcome.

3.2.1 Property-based Attestation (PBA)

The property-based attestation approach [178] proposes that platforms should attest to prop-
erties of the software they are using, rather than just hash-based identities. This reduces
privacy concerns (exact configurations do not need to be revealed [36]) and software updates
become unimportant, so long as the same properties are maintained. Multiple vendors can
produce software which has the same property, avoiding any potential for vendor lock-in.
Property-based sealing is also attractive, as all trustworthy configurations retain access to
sealed data without re-sealing on every update. Poritz [167] claims that normal attestation is
a form of PBA, however, but with a very simple model. The only property being attested is
that software with a certain hash value was run in a certain order at system boot. He calls this
‘Binary Attestation.’ The main research challenge is to implement PBA in a secure, simple,
low-infrastructure manner.

Sadeghi and Stüble [178] give a range of implementation options. The basic suggestion is to
have a trusted third party providing a layer of indirection between properties and PCR values.
The TTP would issue a certificate stating that certain PCR configurations correspond to a certain
property. Alternatively, methods involving zero-knowledge proofs and proof-of-membership
protocols are discussed which do not require any additional trusted party. This idea is fully
realised through a protocol by Chen et al. [35] and then with ring signatures [36]. Each of
the approaches has advantages and disadvantages, discussed fully in the paper. However, at
no point is the question of property-extraction answered: how should certain properties be

41

established in the first place? This is a problem, as it is very difficult to establish the behaviour
of any piece of software.

3.2.2 IMA and PRIMA

Sailer et al. [180] introduce the Linux Integrity Measurement Architecture (IMA). They tackle
several practical problems with TCG technology, including how to measure modules and
programs loaded in a seemingly random, non-deterministic way on top of the operating
system, while still being able to report the system state in a meaningful way. This is difficult to
do when using a simple chain-of-trust, as a different order of program execution will result in a
completely different final hash value. In their solution, the Linux kernel measures and extends
programs and libraries into the PCRs and keeps its own in-kernel list. This list can then be
checked against the PCR value in the TPM. In order to improve performance, measurement
results are cached and files are only re-measured when they change. They step through an
example web server, running Tomcat and Java servlets, showing which parts of the system
require measurement (as they can affect the system) and which parts do not. Several problems
are identified here. Knowing precisely which files are actually used by an application is
difficult, as many programs can load multiple configuration files from arbitrary locations.
Furthermore, dynamic data cannot be measured in the same way as code, so security policies
and data histories must be relied upon instead. The authors maintain that their approach is
practical, as a ‘normal’ RedHat 9 Linux system used for writing papers, compiling programs
and browsing the web accumulates no more than 500 measurement entries. This claim is based
on an old version of IMA. More recent versions measure more components, and have policies
associated with them. Section 4.2.4 has more up-to-date statistics. However, the integrity
measurements are in no way linked to platform behaviour, and the authors make no attempt
to convert them into a trustworthiness value of any kind.

The IMA implementation is improved by Jaeger et al. [96]. They attempt to show the
CW-Lite integrity property of a system, a slightly weaker version of the Clark-Wilson integrity
model, which requires that high-integrity processes accepting low-integrity data need to have
interfaces with filters. These filters are trusted to discard or upgrade low-integrity data inputs.
This is shown through measurement and attestation of an SELinux policy which enforces
information flow. It guarantees that high-integrity software only receives input from high
integrity sources, or from low-integrity sources which are filtered. As a result, any untrusted
software or data does not need measuring because the policy prevents it from communicating
with high-integrity components. PRIMA was designed to show that a behavioural property
could be enforced through trusted computing, rather than just secure boot. This has been
demonstrated to some extent, although it is impossible to be sure that no covert channels
are present. The second aim was to reduce the size of the TCB and therefore the number of
necessary integrity measurements. This does seem to be the case, although with the cost of
measuring a massive (and complex) security policy of over 1MB. No details are given as to the
expected size of the new TCB. It is also difficult to judge whether the added complexity of this
system is justifiable, as opposed to maintaining stronger isolation between low-integrity data

42

and high-integrity, for example with two physical machines.
There have been two similar approaches to PRIMA. Sandhu and Zhang [181] measure the

OS up to a trusted reference monitor (TRM). The TRM enforces an access control policy to
create protected runtime environments for each application. This gives each application a
protected memory space and also controls any secure channels they may want to establish
to other pieces of software or I/O. The TRM securely holds an asymmetric key pair for every
application. The TRM is capable of enforcing usage control constraints, such as limiting
the number of times a file can be viewed, or the application which can be used to view it.
Marchesini et al. [126] also measure the system up to the kernel, and then the Enforcer software
module takes over. This maintains a ‘long-lived’ core kernel, which checks that a signed,
up-to-date Security Admin is present. This is responsible for holding a signed description of
the ‘medium-lived’ software on the platform. The Enforcer makes sure that the description of
software in the Security Admin matches the current system. All encryption keys for sensitive
data are controlled by the Enforcer, which can restrict access to them should the current system
not match the expectations. Both of these papers rely upon sensible matching of program
identity to trustworthiness, and can only enforcing very limited policies, in terms of access
control or confidentiality. More sophisticated statements about behaviour are not dealt with.

3.2.3 Attested Append-only Memory (A2M)

Append-only memory is an abstraction designed to provide a trusted log [43], a secure history
of events. This provides a mechanism for implementing protocols ‘immune to equivocation,’
so that one platform cannot lie in different ways to different parties. With A2M, platforms
are ‘forced to commit to a single, monotonically increasing sequence of operations’ [43]. This
would be ideal for reporting an electronic ballot, or an audit log. Levin et al. [113] implement a
similar system using a single trusted counter and a key, and demonstrate that the functionality
can be provided by the Trusted Platform Module.

The use of secure coprocessors have also been suggested for enhancing the trustworthiness
of electronic auctions [162, 11], a related problem.

3.2.4 Semantic Remote Attestation

Haldar et al. [84] begin to fill the gap left by PBA, i.e. the mapping between software and
behaviour. They use a Trusted Virtual Machine to attest to high-level properties of the running
code. The presence of the TVM is attested first using normal methods. The properties that can
be extracted and proven by the TVM include class hierarchies, Java VM security constraints and
runtime dynamic state. Going a step further, arbitrary properties can be proven by requesting
the TVM accept and run code written by the attestation requester. This might check for any
kind of runtime or code property. A test suite could be sent to the attesting platform which
checks its floating point precision, for example. The integrity of these results are guaranteed
by the presence of the TVM. This approach is extremely flexible and allows attestation of
meaningful information as opposed to merely program identities.

43

However, there are some concerns. Firstly, a TVM is a significantly large element in a
trusted computing base, and the fact that it must be run constantly makes it a target for remote
attacks. It also imposes a performance penalty which may be unacceptable. Moreover, remote
platforms will be unwilling to run the arbitrary test code sent from a potentially untrustworthy
source, due to security concerns, especially when it can (at best) only demonstrate that their
platform might be secure. Finally, these tests will presumably need to be done regularly, to
make sure that code has not changed in-between. This is a large overhead for the attestation
requester.

3.2.5 Model-based Behavioural Attestation

Alam et al. [4] and Nauman et al. [147] propose Model-based Behavioural Attestation. They
also identify the semantic gap problem with attestation, and aim to solve it with a trusted
virtual machine, which logs behavioural updates to objects in order to enforce usage control
constraints. This has also been implemented for web services [3]. One of the most significant
contributions is the formal model and overall framework they discuss, which is independent
of the attestation technique. However, much of this work focuses on problems of usage control
for client platforms.

3.2.6 UCLinux

UCLinux [111] is a Linux security module designed to provide a usage-control system. In
doing so, it introduces several useful ideas to mitigate problems with authenticated boot and
TPM sealing. These include TCB pre-logging, which pre-measures all potential applications so
that PCR state does not change while the platform is in use. They note that user login may be
an issue, and propose to extend PCR values on this event, to drop any open security contexts.
However, recovering from this requires a reboot. They also count their integrity measurement
log (to provide a statistic for the whitelist problem) and find a total of 419 components in the
TCB.

3.2.7 Virtual machine introspection

Virtual Machine Introspection [70] is a way of monitoring a ‘guest’ virtual machine instance
by allowing another virtual machine to run in parallel and inspect its memory and system
state, usually for the purpose of intrusion detection. This architecture has the advantage of
isolating the inspection VM against a compromised guest, as well as placing it on the same
hardware, giving it sufficient visibility for accurate monitoring. Of course, it may still be
possible for an intruder to work around the inspection VM. The inspection mechanisms might
still be exploited, as they must read the guest VM’s memory, over which the attacker can gain
complete control. Alternatively, the privileged virtual machine monitor could be attacked.
However, the difficulty of such exploits should be significantly higher than any system which
does not use hardware isolation.

44

Baiardi et al. [10] have used VM introspection to provide semantic attestations. When
attempting to gain assurance of a remote platform, users can communicate with the introspec-
tion VM which can report more detailed state information about it. Trust is established by
first challenging the introspection VM to attest its configuration in the normal, TCG-defined
manner.

3.2.8 Terra

Garfinkel et al. [71] propose Terra, a trusted computing architecture supporting attestation and
virtual machines. This is one of the pioneering papers in the field, and many of the proposals
have been adopted by the Trusted Computing Group since.

They extend the chain of trust from hardware to a trusted virtual machine monitor, and
then to the VM and applications. This full chain can be attested to a remote party. The
problem of software whitelisting and updates is identified. A proposed solution is that the
attesting platform provide all the necessary certificates to the challenger, covering each version
of the software. Software updates are handled by simply downloading a new version of the
certificate. This is similar to the TCG mechanism of having reference integrity measurements,
but relies on challengers being able to verify certificates, and having a good revocation strategy.

3.2.9 The middleware problem

Cooper [51] describes the ‘middleware problem’ for grid security, an issue that is also directly
relevant to the trustworthiness (and attestability) of service-oriented architectures. He argues
that middleware is highly likely to be the cause of vulnerabilities, as it is large and contains
privileged code. It also stores credentials, and is in charge of authentication and access control.
The example given by Cooper is of the Globus Toolkit, but the same principles apply to web
service middleware such as Glassfish. Glassfish has over 700,000 lines of Java source code, as
well as 11,000 lines of C and 66,000 lines of XML. This amount of code will dwarf anything
else on a platform, apart from the operating system itself.

3.2.10 E-Voting

Sandler and Wallach [182] suggest using attestation and TPM counters in order to create
high-integrity logs of electronic voting systems. The requirements they attempt to fulfil in
VoteBox [183] are similar to those discussed in Section A.2. Böttcher [20] suggest using attesta-
tions for an anonymity service, to demonstrate that no additional logging component has been
installed. They also reduce the TCB of the system, using the L4 Fiasco microkernel operating
system and the OSLO bootloader (see Section 2.3.5). In order to establish the integrity of voting
machine software, Gardner et al. [68] suggest using the Pioneer system. This can present users
with a 65-bit checksum, demonstrating that the right software has been loaded.

45

3.2.11 CA-In-A-Box

Franklin et al. [65] describe their experiences in creating an attestable certificate authority (CA).
Their goals were (amongst other things) to make the CA verifiable to a remote party, and to
enforce that only a properly configured platform has access to its signing key. In their solution,
they split the system state, so that configuration files are signed and stored on a USB disk and
the executables and signing key are stored on the hard drive. The key itself is sealed and can
only be accessed when the CA boots the correct binary kernel image. Overall, their system
is an excellent example of how a trustworthy service might be implemented, and is the first
demonstration (to an extent) of the feasibility and costs associated with doing so.

3.2.12 Trusted Grid Architecture

Löhr et al. [116] describe their Trusted Grid Architecture (TGA) which proposes a ‘scalable
offline attestation protocol’ to make sure that grid provider systems are in a trustworthy
configuration. They overcome the issue of performance by using a sealed-key approach, where
messages are sent to grid providers encrypted with a TPM key. This key is sealed to certain pre-
defined PCR values, making the data inaccessible otherwise. This method inspired some of the
solutions proposed in Section 5.2.1. However, their approach relies heavily on sophisticated
middleware, an issue which does nothing to help with the middleware problem discussed in
Section 3.2.9. They also identify that this system suffers from problems with software updates
and privacy.

3.2.13 Integrity measurement for the Android platform

Nauman et al. [148] describe their implementation of integrity measurement on the Android
mobile platform. They compare two methods – attestation of applications and attestation of
individual class files. There is a clear trade-off, as class-level measurement is more flexible, but
requires a measurement log of around 1941 entries, whereas only an average of 28 application-
level measurements are required. They also address the problem of measuring classes loaded
across a network, and break down the classes themselves into small components to improve
performance and remove redundant information. Classes are divided into meta-information
(class name, class loader, descriptor, etc.), ‘passive entities’ such as static fields and method
names, and executable code. However, they do not present a method for verifying integrity
measurements, and have not considered how to connect the classes being measured to any
notion of assurance, beyond basic whitelisting.

3.2.14 Flicker and TrustVisor

As described in Section 2.3.5, one way of reducing the whitelisting problem is to use a dynamic
root of trust for measurement. This was designed primarily for the launching of a trusted virtual
machine on an already-booted untrusted operating system. However, McCune et al. [131]
use it in the Flicker system for a different purpose: the measurement and attestation of small

46

elements of critical code known as ‘Pieces of Application Logic’ (PALs). These are late launched,
which pauses the running untrusted operating system, executes the PAL in isolation and then
resumes the operating system. Because the DRTM is used, only the PAL and supporting
code (the Secure Loader Block or SLB, equivalent to the MLE on Intel platforms) needs to be
measured and trusted, resulting in few integrity measurements and a small chain of trust.
McCune et al. suggest that their technique could be used in many scenarios, including the
following four: for running a trusted rootkit-detector on client platforms, to execute a simple
distributed-computing application (such as factoring a large number) in a verifiable way, to
protect SSH passwords on untrusted remote machines, and to protect a certificate authority’s
private signing key. Because of performance constraints, Flicker is most appropriate for
relatively infrequent events (such as password entry). Another constraint is that because the
existing operating system is unavailable to the PAL, and the desire is to keep the TCB small, the
PAL must be relatively simple and not rely on additional libraries or a runtime environment.
It must also not use hardware interrupts, reducing possible functionality greatly. The Flicker
approach is clearly a useful technique, but not appropriate for the attestation of a complete
web service, where the trusted code (based on the definition in Section 1.3.2) is significantly
larger. It would not make sense to put an entire web service into a PAL, as the dependencies
and support code would quickly make the improvement in TCB minimal.

The TrustVisor [129] hypervisor takes advantage of the earlier Flicker architecture to pro-
vide execution integrity for security-sensitive portions of applications. The main focus is on
overcoming the performance penalties associated with late launch and the TPM and therefore
making PALs more practical. This is achieved by providing a micro-TPM in every PAL which
replicates the low-performance TPM operations. Again, PALs are constrained as they are not
able to make system calls and must be self-contained. TrustVisor is therefore a more practical
implementation of Flicker which can provide enhancements of the security of small amounts
of code in otherwise untrusted and unmodified systems.

3.3 Integrity Measurement Approaches

This section looks at the different strategies for integrity measurement, with respect to the ex-
isting literature, to see how the problems with attestation identified in Section 3.1 are affected.
In particular, there have been several attempts to minimize the number of integrity measure-
ments through either measuring a larger component (a virtual machine) or automating the
validation process so that individual hashes do not need to be saved on a whitelist. However,
not all strategies are appropriate for all parts of the system, so this analysis begins with a
taxonomy of measurable components.

3.3.1 A taxonomy of measurable components

The following components may require measurement and reporting:

Hardware. Devices such as the CPU, motherboard, and network cards. Measurement of these

47

is pre-defined.

BIOS and firmware. Software loaded onto hardware. Rarely updated.

Boot-time components. This includes the bootloader, kernel image, kernel modules, and any
hypervisors or VMMs. These are typically highly privileged, and may implement secu-
rity controls. Often the boot-order is fixed, and little user interaction (beyond selecting
from a menu, or escaping into a different mode) is expected.

Services and daemons. Running in the background, daemons such as cron and SSHD begin
without any user input, and run for a long time. This makes them vulnerable to runtime
exploits. With normal measurement approaches, only their start-up is measured, mean-
ing that challengers must assume that attestations containing these executables are still
running them. Web services are also included in this category.

Interpreters. Programs such as the PHP interpreter. They may not be as highly privileged
as the OS itself, but they are also responsible for enforcing access controls and loading
a large amount of code, including potentially untrustworthy applications. Interpreters
must have their own integrity measurement implementation, as they will load files that
may appear to be data (e.g. bytecode) to the operating system.

User executables. Applications typically run at the user level, such as an email client or
browser. They may be started and stopped, and are often not part of the TCB of the
system.

Shared libraries. Part of standard applications, but an incorrect implementation may have
a larger impact. More likely to be part of a TCB, as they may be used by services or
daemons.

Scripts Bash scripts, python, perl, etc. They differ from executables in that they are frequently
user-generated or modified.

Command-line arguments and environment variables. Similar to scripts and user executa-
bles, the command line arguments passed to an application often change the expected
behaviour.

Configuration files. Files designed to intentionally control application behaviour, as opposed
to general data. Sometimes these will be in the form of scripts.

Data. Any non-executed file. However, many data files contain scripts (spreadsheet macros,
for example) and have executable content.

Not all of these require alternative strategies to measure, but a comprehensive integrity
measurement approach must be able to deal with them all. Because there is some overlap
and non-exclusivity of the terms, it makes sense to think of this more as a sliding scale, with
privileged, essential components at the top and dynamic, but not frequently executed files
at the bottom. Furthermore, it might be assumed that the rate of change (volatility) of the

48

components is likely to be similar, going from slow at the top to fast at the bottom. However,
in Section 4.2.3 this assumption is challenged. Hardware is an exception in this list, as it can
only be measured and handled in pre-defined ways.

There are other measurable items which break from the general pattern on this list as
they are runtime properties rather than load-time. Firstly, significant runtime events or actions
can be measured. For example, the operating system might measure a user login, or certain
system calls [83]. An application could add a measurement when it connects to a remote
server. This would be done to preserve a history of the action, perhaps to enforce a temporal
constraint [111, 147]. Secondly, an active research area is how to measure and report the runtime
state of a platform, as opposed to its load-time state. There are many strategies for doing this,
some of which involve inspecting memory [70] or data structures [118]. Perhaps the most
important missing item is user input: what has the user done on the platform? Sometimes this
will not be important — the user is treated as potentially malicious and untrusted. On other
occasions, such as when the user is a system administrator, there may be semi-trusted things
that the user might do which would just reduce the trustworthiness of the platform. In these
situations it may be worthwhile to record and attest to some user actions.

3.3.2 Granularity of system attestation

There are several levels at which software integrity can be measured. One consideration is
the size of each item that will be measured. Several approaches have been proposed: mea-
surement of individual applications, measurement of virtual machine images, measurement of
application-level events, and hybrid schemes. This can also be considered the stage in which
measurement stops. In this section the advantages and disadvantages of these are analysed,
with respect to the problems discussed earlier.

Virtual machine measurement

A virtual machine encapsulates all the software and state of an individual platform, bar the
hypervisor, and therefore seems an important component to measure. A hypervisor could be
configured to measure the virtual machine image, typically only one file, and then ignore the
individual applications run within it [231].

The first advantage is that only one item needs to be measured, reducing the size of a
corresponding whitelist. This has good implications for sealing, as any items sealed to this
VM will always be available, no matter the order in which programs are started. Furthermore,
individual applications do not need to support measure-before-load, and users are given the
freedom to use any applications provided by the virtual machine that they want. The VM mea-
surement can also be considered reliable, as it only depends on the hypervisor. Performance
may be better as only one hash is needed, reducing the impact on runtime applications.

However, this broader measurement only increases the semantic gap between execution
state and trustworthiness. The VM image can only describe the range of possible applications
that may be run and the operating system. This does not include details on precisely which

49

programs are run. The OS must further be relied upon to prevent arbitrary applications
being downloaded and executed. In essence, VM attestation is only as useful as the operating
system’s policy enforcement and specification. Furthermore, assuming a lenient policy, the
amount of potentially-running software may be larger (any program in the VM), and this
actually increases the burden on the challenger. They must now be confident that runtime
attacks do not exist in any of these components, not just the ones in use. Furthermore, if the
VM is to be updated, there will still be significant effort required by the challenger to make sure
the right image is kept in their whitelist. This implies a closer link between the VM provider
and challenger.

Application measurement

The IMA [180] system measures the operating system kernel modules and every application
upon first execution. This approach has already been analysed in previous sections. The main
advantages are that only the applications in use need to be trusted by the challenger, and that
upgrades only invalidate the whitelist entries of the individual upgraded programs. Disad-
vantages include lower privacy and the impracticality of sealing to system state. Whitelists
must also be much larger, although the sources of hash values can be the vendors themselves.
There is still a semantic gap to be overcome, and the sequential, measured chain of applications
is at odds with the parallel, multi-tasking nature of operating systems. This problem is a major
motivation for the work presented in Chapter 6. Furthermore, the operating system must
be trusted to perform and track measurements, which may be unrealistic given their large
code-base and vulnerability to attack.

Event measurement

More fine-grained than application measurement is the idea of measuring events that occur
at the application and operating system level. These may include key state changes, such as
a user logging into the system, or an access control decision being made. This is similar to
Semantic Remote Attestation [85] and Behavioural Attestation [4]. More details can be found
in Section 3.3.3.

The clear advantage is that event measurement should be a much closer representation of
actual system behaviour and state. Use of PCRs makes the events append-only, and so this
provides a greater level of assurance compared to simply analysing the logs of an application.
In addition, event reporting – when implemented well – should be more feasible than full
behavioural verification and testing of applications, which are difficult for large code bases.
Event triggers can be programmed in a semi-automated manner (e.g. by wrapping certain
system calls [83]). They might also detect runtime exploits, as an unusual sequence of events
could indicate compromise.

However, event reporting requires greater modification of executables to enable compat-
ibility, and will have a performance impact, as they would need to use the TPM regularly.
Verification of the measurements will become much more complex, requiring a larger, multi-

50

level whitelist, as well as an understanding of the applications at a code-level. Privacy is also
affected. The trusted computing base of such a platform also becomes the entire set of pro-
grams with access to the TPM, and full isolation is required to avoid measurement of arbitrary
events by malicious applications.

Hybrid schemes

None of the three levels described in this section are mutually exclusive, and various hybrid
scheme are possible.

One option is to measure at the VM level, and then use a virtual TPM to log application and
event measurement. This has the advantage of speed, as the physical TPM is not used for each
measurement. More information about the platform’s current state can be recorded, beyond
just the virtual machine hash. However, it relies heavily on the trustworthiness of the operating
system, and a potential exploit could report an entirely false log, as application hashes are not
validated through PCR attestation. It also has all the whitelisting issues associated with VM
and application level measurement.

Another hybrid option is to combine all of the above three options and measure at every
level, using different PCRs for each. This gives three levels at which attestation is possible,
and the challenger can chose which level of information to ask for, a potentially lower impact
on privacy. Sealing remains viable against the VM measurement, but detailed behavioural
state can be ascertained from the event and application measurements. It also provides defence
in depth as the OS policy provides one level of guarantee, and the other measurements can
corroborate its effectiveness. There are some disadvantages, however. The whitelist grows
at a much faster rate, as there are measurements of all components. The usefulness of the
event reports will depend on the isolation and security of the operating system, as well as
on the challenger’s understanding of the individual applications. The interpretation of PCR
measurements will be even more complicated, and there may even be inconsistencies between
different levels of measurement.

Summary

The implications of this analysis are that the most practical integrity measurement level will
depend on the goals of the security system, and the properties of the operating system. If a
detailed audit of behaviour is required, then a more fine-grained approach should be taken.
This might be the case when attesting a single-purpose platform, such as a web service. If
management, flexibility and scale are more important, such as for user workstations, then VM-
level may be more suitable. However, if the application-level security policies of the operating
system are trusted, then VM measurements may be enough for most situations. Similarly,
it is only reasonable to have an event-reporting system if suitable levels of isolation can be
provided to each reporting application. This may make it impractical for standard operating
systems. A final point of interest is that VM measurement of a single-purpose platform (e.g.
an application server that offers only one service) that is unable to run any other programs

51

could be considered equivalent to application level measurement, and so has little additional
benefit.

3.3.3 Measuring applications: Strategies

Through a survey of the literature, and experiments, several strategies for performing mea-
surements of the components listed in Section 3.3.1 are given below.

No measurement

The easiest way to deal with a component of the platform is not to measure or record it at all.
This is suitable for any file or application that is never read or executed in any way. There
are some scenarios, however, where simply stat-ing a file may be enough to make it worth
measuring. Some configuration files, for example, can reside in multiple places, and if one
exists in a certain location, it may override another. So any attestation of the overridden file
will be misleading. A related strategy to no measurement is therefore existence check, where just
a file name and ‘yes’ or ‘no’ is recorded. A standard hash would also work.

Binary hash and disclosure

The standard TCG-defined approach to integrity measurement is binary attestation, where
each application is measured and then compared to a well-known reference value. However,
when a custom application is run, there is no reference value. The only way to attest any
meaningful information is to show the content of the file that has been executed (or was
compiled to produce the executable). The easiest way of doing this is to make the content
available. This does not tell the relying party how they might use or analyse the content. It
also does not help if the file contains sensitive information, such as a password.

In some cases, therefore, the attesting party will wish to make most of the file public, but
keep a portion of it confidential. In such a scenario, a mask might be used, as suggested by
Munetoh [141]. The confidential parts of the file are first erased (or replaced with blank charac-
ters) and then measured and made public. This would work for a system where passwords and
usernames are specified in plain text, along with other, less sensitive configuration settings.
However, if the confidential aspect of the file is the part which has a property to establish (for
example, if the aim is to demonstrate that a system uses strong passwords) then a different
techniques must be used. Applying a mask is inherently an application-specific decision, and,
as such, this method can only be implemented on a per-application basis. This would break
any system-wide scheme.

Binary hash and blind analysis

As an extension to hash and disclose, any custom file (be it a configuration, script, or executable)
can be analysed rather than completely revealed. This is discussed further in Chapter 7
to demonstrate properties of Java applications through source code. The advantage is that

52

disclosure is not necessary; the disadvantage is that a full platform is required to produce any
analysis credential. There are also several properties which cannot be established through a
static analysis.

Measurement by agent

Rather than having the attesting platform measure files and the relying party analyse their
trustworthiness, this job could be delegated to an agent running on the attesting machine.
As suggested by Yoshihama et al. [239], the attesting platform demonstrates that the agent is
running and then lets the relying party query it:

‘An example of such an agent is a local daemon that reads system configuration
files, and composes a structured message that describes the properties of the con-
figuration (e.g., network setting, minimum password length, etc.).’

This then becomes binary measurement of an executable (the agent) plus either runtime
querying or an event-measurement (see item 3.3.3). This is similar to Semantic Remote At-
testation [85], but without necessarily being integrated into a single virtual machine. The
disadvantage of this method would be that either multiple agents would need to be running,
or one would need to understand many different file formats. Furthermore, an additional
process (particularly one designed to read system files) is an opportunity for runtime compro-
mise. The TCG Platform Trust Service (see Section 6.6.6) is a good example of a system-wide
measurement agent.

Event reporting

Configuration files do not have to be explicitly measured before interpretation. The alternative
is to measure the events the application produces instead. This has a number of advantages.
The configuration file can have any semantics and format without requiring the verifying
platform to understand it. Furthermore, the behaviour is the actual property that matters, and
is also the aspect that is being measured. Equivalent configuration files will result in the same
behaviour and therefore the same attested result. Finally, the application will know best which
events are important, and which configuration settings are most relevant and need measuring.
This puts the work in the hands of the developer, who has the expertise.

One problem with this idea is that it requires considerable effort on the behalf of the
developer, who must modify their application. It could also be argued that this strategy
violates the measure-before-load principle of trusted computing. Although no configuration
file would actually be executed, a malicious one could potentially cause a buffer overflow (or
similar) which would avoid the logging and never be noticed in an attestation. Care must also
be taken to make sure that the events cannot easily be forged by another process. Any process
with access to the PCR will be able to extend the same entries as this process, which would
be misleading. However, this could be avoided by providing some access control at a higher
layer, or by limiting event-based reporting to occur only immediately after the application is
loaded.

53

3.3.4 Summary

Several methods for measuring integrity exist, and the best method will probably depend on
the component being measured. That means there will be several ways implemented on one
platform, which makes the job of the challenging party more difficult. Moreover, different
types of platform will benefit from different approaches, so it may be that services require a
different method (perhaps higher granularity) to clients. This motivates the idea that there is
room for improvement with attestation for services.

3.4 Gap Analysis and Conclusion

From the literature review and analysis in this section, the following gaps were spotted in the
current state-of-the-art.

Perhaps most surprisingly, the full impact of the software-update problem has never been
investigated. Some statistics on the number of process and components of a platform exist [179,
111, 61], but the impact over time of upgrades requires further assessment. This may cause
potential trusted computing adopters to be put off, when the impact is low. This is particularly
as most existing analysis concentrates on client machines rather than servers [179, 74, 10]. In
the next chapter an analysis of the impact of software patching on a web service over time is provided.

While there have been several attempts at reducing the TCB on general platforms, including
reducing the OS [7] and JVM [151], little work exists on solving the middleware problem for
web services. Indeed, many solutions rely on customised language virtual machines [85, 4], or
large components in the trusted computing base [142, 116]. These can provide the necessary
functionality, but have all the problem of increasing the runtime attack surface. A clear gap in
the literature is providing trusted functionality without a large TCB overhead.

Many of the solutions described in Section 3.2 and in the approaches outlined in Section 3.3.2
use Platform Configuration Registers at different levels – in the application, OS and boot layer –
but do not go into great detail about how to interpret attestations [147, 202]. Measurement from
the Operating System onward appears to be a particular oversight. Although the IMA system
exists, and the TCG have defined the Platform Trust Service specification, how to develop
applications so that their configurations are easy to attest remains an open problem. This is
complicated by concurrency, user login [111], and the multiplexing of PCRs. A significant
contribution of Chapter 6 is a unified approach to attesting applications and configuration.

Another missing component is the ability to go from software identity to properties. This
functionality is assumed by many systems [178, 35] but few go into details about how it can be
achieved. Approaches such as hooking system calls [83] are one method, but the relationship
between this and behavioural properties is unclear. Existing software assurance mechanisms
(as discussed in Chapter 2) might be applicable, but to the best of the author’s knowledge have
never actually been applied. Therefore, the second opportunity is connecting program analysis
and attestation.

There are several others issues which need to be solved to make attestation more viable.
Better operating systems would certainly help, as would a better infrastructure for refer-

54

ence integrity measurements. Performance and compatibility are also holding back adoption.
However, these problems are beyond the scope of this dissertation, which seeks to assess and
improve the feasibility of service attestation, rather than the direct implementation of trusted
computing systems.

The four gaps identified in the literature are the main motivation for the next four chapters.
By providing a solution to these problems, web services may become capable of attesting to
their own trustworthiness. In Chapter 8 the problems and gaps discussed in this chapter will
be used as reference to evaluate how successful the proposals have been.

55

56

Chapter 4

Analysing Web Service Attestation

Several papers on trusted computing make the point that attestation is largely infeasible, in part
because the number of potential software configurations that might be reported [61, 178, 85] is
too large. However, most literature focuses on client machines running dozens of applications.
Web services (and servers in general) are not considered, and may be more practical.

In this chapter, the difficulty of attesting a web service is analysed. First, the properties of
a highly attestable system are discussed, such as one with a small TCB and few patches. This
can be used to identify where attestation is most likely to succeed. Is it in client machines, as
most suggest, or in servers and services? In Section 4.2 these conclusions are quantified by
taking a web service platform and counting how many integrity measurements are required to
measure it, and what the system state it reports looks like. The analysis is concluded in Section
4.3. A shorter version of the results and analysis in this chapter was originally published in
conference proceedings [122].

4.1 What Makes a System Easy to Attest?

The impact of some of the issues described in the last chapter can be quantified, such as trusted
parties, performance and whitelisting, but the others are more difficult to analyse. It is possible,
however, to identify the best and worst-case scenarios for each of them. Knowing the scenarios
where attestation is least practical can then inform an analysis of the practicality for service
attestation, as discussed in the rest of this chapter.

Best and worst-case scenarios are as shown in Tables 4.1-4.7. These give circumstances
where the particular attestation problems are most and least significant, either because they
are mitigated through the use of certain technology or because there is less of a threat in the
scenario. For example, Table 4.1 shows the best-case scenarios for attestation with respect to the
privacy issues outlined in Section 3.1.5. If the measurement logs remain confidential through
secure transport sessions or restricted networks, the privacy issues are much less important
as it is not possible for an third party to learn the platform configuration. Similarly, if the
challenger is unknown, then this implies that they may misuse the reported measurement log

57

or disclose it to a third party, making privacy more of a concern.
Some of the features given in these tables simply depend on good design or implementation

details, for example, using robust software, caching, and compatibility. However, there are
some underlying principles which will be dependent on how attestation needs to be used.
There will be situations where a large amount of software must be attested, or where a complex
property needs to be established. The next section will analyse which scenarios have more in
common with the best-case than the worst-case features.

4.1.1 Where should attestation work best?

Given the properties listed in Tables 4.1-4.7, there are many reasons to consider attestation more
or less practical for any given platform. There are some niches that seem particularly promising,
such as attestation of single-purpose systems, like online banking virtual machines [206] and
games consoles [11]. Indeed, many games consoles, such as the Sony PlayStation 3 support
the secure boot process [191]. These work because they are rarely updated and users do not
require a large, flexible range of software, minimizing the whitelist problem. However, some
platforms in service-oriented architectures are more suitable than others and the rest of this
section provides an analysis of them.

Home client platforms

Computers used at home for online banking, games and media playing may benefit from
attestation. Banks would like to establish that no malware is running before allowing cus-
toms access to their online accounts. Game servers would like to make sure players are not
cheating through unfair local program modifications. Media companies are keen to prevent
unauthorised sharing of music and video by users, through Digital Rights Management. This
ultimately relies on the state of the user’s platform. Therefore, there is a good case for attesting
a general purpose platform, perhaps to one or more remote servers.

The advantages in this scenario are that the client machine will be rebooted often, so mal-
ware will need to load at boot time, making integrity measurement an appropriate mechanism
for identifying it. This also reduces the chance of runtime attacks. Home operators are likely to
be running standard, pre-compiled software, which makes it easier to identify. It may already
be managed in one package-management system, which provides an automatic whitelist. At-
testation is likely to be one or two servers, which will not impose a performance penalty to the
home platform. It is also possible that the property being attested is relatively simple, such as
‘unmodified application in use’ although this would be situation-dependent.

Disadvantages are numerous. This is the scenario feared by privacy advocates, as the
media provider might mandate certain software configurations which the client is unwilling
to use [166]. The freedom to run and compile any application is important to many people. The
range of software and hardware available is huge, and compiling a comprehensive software
whitelist (with any semantic value) would be difficult. Furthermore, at any one time users
may be running (or have run) web browsers, email applications, word processors, games, and

58

Best-case features Worst-case features

Measurement log remains confidential
through encryption or other means

Uncontrolled measurement disclosure

Attesting to a trusted challenger Attesting to many unknown challengers
Attesting robust software Attesting software with known exploits
Attesting few components Attesting many components

Table 4.1: Privacy: Best and worst-case scenarios for attestation

Best-case features Worst-case features

Attesting few components Attesting many components
Attesting software with a known, proven
property

Attesting under-specified applications

Open source software, allowing white-box
testing

Only black-box testing

Relying party requires only one property,
dependent on one component

Trustworthiness dependent on all compo-
nents

Behaviour only depends on executables,
no user input or config files

Configuration files, data and runtime
events can affect platform behaviour

Property easy to express and demonstrate
conformance

Non-functional or high-level property

Platform has known trustworthy configu-
rations

Unknown whether platform configura-
tions are trustworthy

The combination of components on the
platform is unimportant

The order and combination of applications
is important

Table 4.2: Semantic Gap: Best and worst-case scenarios for attestation

Best-case features Worst-case features

Attesting few, small components Attesting numerous large components
Platform is offline, or is only connected to
an internal network, or has very few inputs

Platform has many inputs and open ports

Attesting robust software Attesting software with known exploits
Platform has been hardened specifically
against runtime attack

Attesting off-the-shelf software with no se-
curity consideration

Platform inputs are validated and have
simple data structures to parse

Platform has many interfaces, each requir-
ing a large amount of software to handle

Platform restarts regularly Platform stays running indefinitely
Platform upgraded when new exploits dis-
covered

Platform cannot apply patches quickly

Table 4.3: Runtime: Best and worst-case scenarios for attestation

59

Best-case features Worst-case features

Attesting few components Attesting many components
Configuration of attesting platform al-
ready known to challenger

Challenger must assess previously un-
known platforms

Components are rarely changed or
patched

Components change regularly

Changes to components are published,
along with expected hash values and prop-
erties

Components changes (and reasons for
them) are not made public

All components are part of one package
management system

Applications are downloaded and in-
stalled individually, from many sources

Executables have a common hash value Executables are often recompiled, patched
or customised, making their correct hash
unknown to challengers

One whitelist only, handled by a dedicated
party

Many different relying parties, each with
their own whitelist to update

The particular combination of components
on the platform is unimportant

The order and combination of applications
matters

Table 4.4: Whitelisting: Best and worst-case scenarios for attestation

Best-case features Worst-case features

Shallow certificate hierarchy, many issued
from same authority

Large hierarchy, different authorities, mul-
tiple vendors

Reference measurements signed by one
authority

Many vendors and authorities produce
reference measurements

Few applications and few platforms Attesting multiple machines with different
configurations from different vendors

Table 4.5: Trusted Parties: Best and worst-case scenarios for attestation

Best-case features Worst-case features

Occasional or one-off attestation Regular attestations by multiple parties
Infrequent use of sealing All incoming data sealed with PCR-bound

key
Opportunities for caching or performing
software cryptography

Only TPM-based cryptography possible

Table 4.6: Performance: Best and worst-case scenarios for attestation

60

more. Many of these have plug-in architectures, and all would need modifications to support
attestation. This is an enormous stack of software, running on a commodity operating system,
the most popular of which are closed source, allowing only black-box testing. The large number
of programs also means more frequent updates, increasing the whitelisting problem further.
The number of targets for a runtime attack is huge, and the operating system may offer little
memory isolation for each application. This effectively makes the TCB of the system include
all applications, as it is a user-level application that would need attesting. The platform will be
connected to multiple servers and have many interactions using different protocols, increasing
the chance of runtime compromise. In addition, the platform has constant human interaction,
which may affect platform state and require reporting. The certificate hierarchy will be large,
as there will be multiple vendors, many authorities and third parties. Most importantly, until
the operating system provides stronger isolation, the TCB of a client machine will be too big
to attest.

All these issues add up to mean that home users are unlikely to benefit from attestation
without serious changes to how operating systems and other software are structured. Future
attempts to improve application isolation would help, but will not mitigate many of these
issues.

Corporate client platforms

Companies often allow remote working from laptops or mobile platforms. Securing these
machines is important in order to maintain control over company data and prevent information
leaks and viruses. This is the scenario proposed by Sailer et al. [179].

The advantages in this situation are similar to those of the home user. In addition, the
number of allowed applications may be far smaller, and the platforms may have been pre-
installed to a trustworthy configuration by the company. This will make creating a whitelist and
policy much easier. Having a smaller range of possible configurations also removes privacy
concerns and increases the trustworthiness of the platform in the face of runtime attacks. There
may be a much smaller certificate hierarchy, too, as the corporation may run its own certificate
authority and certify its own hardware.

Many of the same disadvantages remain. There is still a large amount of software, with
all the problems highlighted in the previous section. Over time, many new configurations
will appear, and within one organisation, there may be a need for many applications to be
supported. Commodity operating systems will still be used, as will standard web browsers
and email clients. These are complex applications with a history of published vulnerabilities.

Overall, the corporate platform is much more amenable to attestation than general home
platforms, but still suffers from the use of large, complex software, resulting in a big trusted
computing base.

61

A public web service

One of the goals of web services (and other online interoperable platforms) is to allow dynamic
collaborations of multiple services that may reside in any public location on the Internet. For
this to be achieved, some services will need to offer guarantees of trustworthy operation, for
example, e-commerce systems, cloud services and online banking. Attestation could be used
to provide part of this guarantee, demonstrating that no outsider has attacked the system. It
could also prove that the server will behave in the manner it claims to.

The advantages begin with a smaller trusted computing base. Compared to a client ma-
chine, there are far fewer components, often serving only one purpose. It might consist of a
small operating system, middleware, applications and remote data storage. The smaller TCB
has many knock-on effects. There will be fewer applications running, so fewer targets for
runtime compromise. Whitelists can be smaller, and as only one platform needs attesting, it
does not need to cover multiple hardware configurations either. This in turn reduces the rate
of updates and patching. In addition, servers seldom need graphical interfaces, or to interact
with local users at any time. This means that load-time properties are strongly related to
runtime properties. Other advantages include the popularity of open source server software,
and the fact that many software components will be hardened by administrators with real
expertise, in comparison to a home user. This allows them to run cut-down applications,
or even a microkernel operating system. It is also possible to separate the service provider
from the hardware, through cloud computing or remote hosting providers. This eliminates
the possibility of hardware-based insider attack. Finally, servers are likely to be providing (or
guarding) important, useful functionality. This makes them much more relevant to attest, as
the required effort in attestation matches the reward. Many client machines can benefit from
one trustworthy server.

There are disadvantages. More effort is required of the end user. They must be able
to cope with validating the certificate hierarchy. On the other hand, this is already true of
transport security on the web today. They must also have trustworthy software for verifying
the attestation certificates. More importantly, servers have availability requirements, and are
therefore rebooted infrequently. This makes attestation less likely to spot malicious activity.
However, in the world of web services, servers are often designed to be stateless. This means
that services could be restarted more frequently, as there would be no internal state to save and
reload. Other disadvantages include the untrustworthy nature of the challenger, who might
use platform configuration information to identify targets for attack. Performance is reduced,
as servers may need to attest to many clients. Furthermore, servers use many configuration
files and scripts which are harder to attest properties of. This is also true of client machines,
however. The last issue is that server middleware is often large, with a huge code base, making
it a big target for runtime attacks. In web services, this middleware must also interpret many
complex data formats, such as SOAP, WSDL and SQL.

62

Internal corporate web services

The advantages and disadvantages identified with external services remain largely true of
internal service-oriented architectures, although the risk/reward ratio changes slightly. Some
issues are mitigated – only trusted clients will attest the server, the certificate hierarchy and
client software can be managed by the internal IT department, and whitelists are also easier to
manage. However, the benefit is smaller, as an internal service should be largely isolated from
the outside, where many intruders originate. The threat from a malicious insider can still be
reduced, but may be less significant, as many other techniques exist for mitigating this.

Summary

From this high-level analysis, it appears that all attestation scenarios are difficult, but that
arguably public servers offer the best trade-off between trustworthiness added and practical
problems to overcome. It also seems that the severity of many of the problems depends largely
on how many applications are in the platform’s TCB. In order to test the hypothesis that a web
service is a good match for attestation, the following section will look at one of the key metrics:
how many pieces of software it must attest.

4.2 Quantifying the Software Update Problem

An experiment was designed to quantify the difficulty of attesting a typical web service
platform by counting how many measurements would need to be maintained in an integrity
measurement database. If a large number of reference values must be stored, then this would
support the argument that integrity measurement is impractical.

To attest one service, the database would be as big as the number of unique pieces of
software that it runs. However, software is often updated, so the experiment had to take into
account the rate of change of the platform. Information from two sources was used: the Ubuntu
Linux package repository [224] and the Sun website. A two and a half year period (June
2006 to January 2009, inclusive) was studied. The overall plan was to install a 2006 software
stack, modify it to support authenticated boot and then count the size of the measurement log it
produced. After this initial baseline count, the platform would be updated in line with released
software updates, counting the number of new integrity measurements (hashes) required after
each update. The rest of this section details how the web service platform was configured, and
the methodology for counting updates.

4.2.1 Methodology

The experimental platform was based on popular web service software from 2006 including
the Ubuntu Linux 6.06 operating system, OpenJDK Java runtime and the Glassfish application
server. The service was written in Java and had just one function: attesting to clients using
standard SOAP requests and responses. No further functionality was considered in order to
make this experiment reasonable for all generic web services.

63

The BIOS and bootloader were measured but the number of measurements was not in-
cluded in the results. This is because new Intel and AMD processors support a late launch
feature (see Section 2.3.5), which combined with a bootloader such as OSLO [103] makes veri-
fying these components unnecessary. Furthermore, they add only a constant, relatively small
number to the final results.

Several modifications were made to standard software in order to support authenticated
boot. These were based on the most popular and reliable trusted computing libraries available.
A custom version of the Ubuntu 6.06 kernel was compiled, initially version 2.6.22.1, complete
with the IMA [180] patch to measure executables and kernel modules. A modified version
of the OpenJDK based on work by Dietrich et al. [58] was then installed on it, along with
standard versions of the Glassfish Application Server, to run a simple web service which
answered attestation challenges. The IAIK JTSS [101] libraries were used to communicate with
the TPM from the web service. Using this software, attestation requests from another platform
we made and the results were recorded in a database. This set of software was chosen for
its popularity for servers – Ubuntu Linux is increasingly being used for servers [57] and the
Glassfish application server was downloaded 3.5 million times as of June 2007 [161]. This
makes the test platform a reasonable case study.

Because of the need to recompile the Linux kernel and Java to support integrity measure-
ment, the process of counting software updates was not always as simple as just applying the
upgrades and re-attesting the system. The first step was to get a baseline, initial attestation of
the platform. This contained a list of all executables that were run, without any user logins
to the machine. Each application was then analysed to see how it would change after an
update. The final output was a timeline, containing all files that were changed and the date
the new versions were released. A pro-active administrator is assumed: someone who applies
all patches as soon as they are available, but does not upgrade the entire OS distribution.

Operating system. Every version of the kernel that was released in the Ubuntu repositories
for the 6.06 distribution was counted. Every new version had entirely new hash values
for each kernel module. Because the IMA patch measures every kernel module, the
total number of measurements recorded of the kernel was the initial number of kernel
modules loaded multiplied by the number of kernel updates.

Core executables. Programs and libraries such as bash and glibc were updated. This was
simulated by counting the number of updates released in the Ubuntu repositories, and
then looking at how many measured executables would be affected, with reference to
the baseline attestation.

Java. Java updates were handled manually through the Sun website. It was assumed that a
new version would be installed whenever available, and that the migration from Java
5 to Java 6 would happen at the first opportunity. Because a customised version of the
JRE was being used (compiled from source) to support integrity measurement, it was
impossible to install each new version and re-run the attestation process. Instead, a list
of files that our custom JRE used was created, and then it was worked backwards to see

64

which updates modified files on this list. It is anticipated that a few libraries will have
been missed in this process, but that number should be small. Versions 5.6 to 5.10 and
6.0 to 6.11 of the JRE were counted.

Glassfish. The libraries and executables associated with Glassfish were counted by installing
and running it on the customised JRE. A simple web service was run on each version.
This service had only one function: returning attestations when challenged. It was
then updated with every core release of a new version of Glassfish, as detailed on the
download page of the website, excluding version three, which was still in beta. Because
Glassfish was not modified in any way, it is likely that a few libraries were loaded using
an unmodified classloader and therefore not included. Again, however, it is expected
that this number is small.

Configuration Files. The measurement of executables over time does not take into account
configuration files. This is an oversight, because much of a platform’s behaviour can be
controlled through configuration. It is likely that any standard operating system would
need to attest certain settings, such as firewall rules. However, there are good reasons
for not including them. Firstly, it is difficult to establish which files would be important
and need attesting. Some (/etc/motd, for example) clearly have no relevance to the
trustworthiness of the platform, but knowing which ones would require an enormous
amount of time. Secondly, it was impossible to anticipate how configuration files would
need to change to reflect application updates. Generally, the number of files would stay
the same, and the content might be added to. It was therefore decided to get approximate
figures by measuring the total number used, and then estimating an upper bound on
how many would be relevant, ignoring change over time.

A total figure was established by augmenting the IMA patch with an extra SELinux hook
– dentry_open – and logging every access. The system was then booted and Glassfish
started. All binary files, logs, and non-configuration related shell scripts were eliminated.
Unfortunately, it is possible that JAR files could contain configuration settings which
were not included. The number of lines in these files was measured using ‘wc -l’ with
comments removed.

4.2.2 Results

The baseline system had 277 components which were recorded in the integrity measurement
log, consisting of 17 JRE 5.7 libraries, 50 Glassfish v1 libraries, 4 jTSS jar files and 53 kernel
modules. The rest were standard applications and shared libraries. Between June 2006 and
January 2009 (32 months), 1137 measured files were updated, approximately 35 files per month.
This made a total of 1414 hash values recorded on the measurement log. Apart from those
already mentioned, there were 13 base packages updated, including gzip, udev and e2fslibs.

From the record of configuration files, it appears that a total of 113 were read, with 49 that
were either empty or considered unimportant, leaving 64 that might need to be measured.
These contained a total of 6370 lines, with just under 5000 in the 64 important files. The vast

65

Java Runtime

Other

Glassfish

Kernel

0 100 200 300 400 500 600

Updates
Initial

Number of measured files (unique hashes)

So
ft

w
ar

e
ty

pe

Figure 4.1: Measurements and updates by component

majority of these (3414) were in Glassfish XML documents. It is likely that some of the Glassfish
schema files considered significant would never change and could be attested using a hash,
making line count unimportant.

4.2.3 Analysis and implications

On assessing platform trustworthiness

The number of hash values recorded is not sufficient to show that attestation is feasible in this
scenario. This depends on the purpose of the attestation, the property to which the server is
trying to attest.

For the purpose of identifying running applications and checking their integrity, these
results look promising. Any database can store 1414 values, and the vast majority of hashes
can be obtained from a few public repositories. The only assumption that must be made is
that each step in the boot chain follows measure-before-load, not allowing any unmeasured code
execution. Having identified the running applications, the vendor and patch-level are easy
to check, which can be useful when assessing other properties of the platform. For example,
Munetoh et al. [142] use this information with an online vulnerability database to calculate
how many vulnerabilities a platform is known to have.

The relatively small number of possible hash values means that there is no reason for an
unknown application to ever be run or attested. Challengers can therefore take the presence
of an unknown hash in an attestation log extremely seriously. This makes it unlikely that a
server with a malicious root kit would be trusted by a remote user. Again, it is assumed that all
applications support integrity measurement. These results reinforce the idea that attestation

66

Best-case features Worst-case features

Few pieces of software on platform Large stack of software to attest
Applications do not load executable con-
tent

Applications use plug-ins and macros

Applications designed so that loading
happens only in one place, making mea-
surement easy to implement

Poorly written applications load files and
input data at different places in source code

Applications designed with specific prop-
erties in mind, making attestation and ver-
ification easier

Applications lack specific security proper-
ties

Operating-system level modifications can
record loaded content with no application
modification needed

Applications load data files, only some of
which are executed, making it difficult to
manage by the operating system

Table 4.7: Compatibility: Best and worst-case scenarios for attestation

Jun 06 Sep 06 Dec 06 Mar 07 Jun 07 Sep 07 Dec 07 Mar 08 Jun 08 Sep 08 Dec 08
0

200

400

600

800

1000

1200

Kernel Modules
Glassfish

Java

Other

Month

U
pd

at
es

Figure 4.2: Cumulative updates by component over time

67

Month Java Glassfish Kernel Other Total

Jun 06 12 0 53 1 66
Jul 06 0 0 53 1 54
Aug 06 0 0 0 0 0
Sep 06 0 0 53 6 59
Oct 06 8 0 0 0 8
Nov 06 33 0 0 6 39
Dec 06 0 53 0 0 53
Jan 07 0 0 0 44 44
Feb 07 0 0 53 17 70
Mar 07 10 0 0 14 24
Apr 07 0 0 0 2 2
May 07 0 0 0 0 0
Jun 07 12 0 0 0 12
Jul 07 0 0 0 0 0
Aug 07 0 0 53 2 55
Sep 07 9 88 0 2 99
Oct 07 0 0 53 20 73
Nov 07 0 0 0 0 0
Dec 07 13 67 0 6 86
Jan 08 0 0 53 1 54
Feb 08 9 0 0 0 9
Mar 08 11 0 0 0 11
Apr 08 0 57 0 2 59
May 08 0 0 0 1 1
Jun 08 0 0 53 2 55
Jul 08 0 0 0 0 0
Aug 08 9 0 0 0 9
Sep 08 16 0 0 0 16
Oct 08 0 0 0 27 27
Nov 08 9 0 53 1 63
Dec 08 0 0 0 3 3
Jan 09 0 86 0 0 86

Total 151 351 477 158 1137

Table 4.8: Updates applied by month

is suitable for establishing that a platform did not, at boot-time, have a root kit installed.
Another property that can be attested by the platform is that nobody has logged into

a terminal, either locally or remotely. This is because certain executables are run at login,
including the pam security applications and (locally) /bin/login. Any fresh attestation of a
platform that does not include these has not yet been logged into. This does not, however,
discount logging into the administration console on Glassfish (or through any other executable)
but if no executable has been run that supports remote login, it seems possible to attest this
general property. This could be useful for internal monitoring, or when trying to mitigate
insider threats.

A more difficult property to establish is whether or not a platform is deemed trustworthy.

68

Attestation cannot be used to establish a platform’s correct behaviour, as none of the hardware
or software has been analysed for this. But will the software behave as expected? It might
be assumed that this is the case, as Linux, the JVM and Glassfish do generally work in their
expected way. However, runtime attacks remain a problem. Any of the running processes
may have been exploited since system boot and no longer behave in their usual manner.
Unfortunately, exploits for large operating systems and applications are being discovered
regularly, and this makes it impossible for attestation to support any claim of trustworthiness.
This is a well known criticism of common operating systems [117]. It is therefore not possible
to establish trustworthiness because the security state of the server cannot be assess through
TCG attestation alone.

In order to move from identified to trustworthy, the chance of runtime exploit needs to be
reduced. This means limiting the number and size of applications running on the server, and
improving the quality of the code. In Chapter 5 an approach for doing this is discussed.

On measuring configuration files

Configuration files raise a number of challenges for implementing attestable systems. They
can have a great impact on the behaviour of a platform, and bad settings can make otherwise
trustworthy applications vulnerable to exploit. However, attestation of configuration settings
is complicated, as simply providing a file hash is insufficient. Two files can have the same
configuration semantics but produce different hashes, due to comments or whitespace. These
results show that a significant amount of configuration must be dealt with, but no existing
solutions exist for doing so. Chapter 6 discusses this problem further and presents a solution.

On obtaining reference values

Collecting 1414 measurements would not be difficult for an end user system, but keeping track
of which of these entries is trustworthy or requires updating is more so. It is unlikely that
every user will want (or be able) to compile this list themselves. The TCG suggest [207] a more
sophisticated architecture which has many sources of reference measurements, aggregated
into a Reference Manifest Database (RMDB). This is then used by a verifier, who reads each
attestation and makes a decision about trustworthiness based on a policy database (perhaps
informed by a configuration management tool). The decision is then passed on to the relying
party. The TCG infrastructure puts a low verification overhead on each user, but requires
several intermediate steps and parties.

These results show that an integrity database could be small, and therefore some of these
steps could be combined to allow decisions to be made on the users’ own platforms. For
this to happen, a complete copy of the integrity database and sufficient quality information
about each item in it must be made available. If instead, users downloaded a signed copy
of this information from an RMDB and verifier at regular intervals, then these two platforms
no longer need to be constantly available, avoiding a potential denial of service attack. The
above results can arguably justify this alternative approach. There were updates on 56 different

69

days, excluding those released on the same day, averaging 17.3 days between each update,
with a range of 1 to 68 days. The number of new files per update was often small, between
1 and 88, averaging 20. Being pessimistic, and assuming every update invalidated as many
measurements as it validated, there would be potentially 20 measurements every 17 days,
with 40 new trust values. This seems a manageable quantity and such an overhead would be
reasonable to impose on client machines and central repositories.

Software layers

The rate of updates depends largely on three components: the operating system, language
runtime, and service middleware. It is not unreasonable to assume that the service itself will
change frequently, too, as the developers add features or fix bugs. This means that the rate
of change of the system does not change throughout different logical ‘layers’ of the system.
The operating system, middleware and application are all significant sources of update and
change. This might not be the case with a hypervisor layer, but there is no evidence to suggest
otherwise. This contradicts assertions made by Marchesini et al. [126] that it is worth splitting
software into long, medium and short-lived categories. From this experience, very few pieces
of software are long-lived.

Is the right information being analysed?

In one way, these results can be considered an upper bound on the number of measurements
over this period. This is because an extremely proactive update cycle was assumed which is
unlikely to be followed by many administrators with concerns over availability. It would make
more sense to limit updates to those with security implications. However, this is difficult to
do, particularly in the Linux kernel, where security bugs are not always marked.

On the other hand, these results do only consider measurement, not assessment. As a
result, when one element changes, the entire platform (in theory) needs reassessing, as any
single executable could invalidate a security property. This means that the assessor’s job is
not to test every item individually, but to test the whole platform after every update. This will
make the testing process much more time-consuming. If a test is written for every piece of
software (around 277 at any given time) then they must be rerun and altered for every update
batch. As 56 batches occurred, this means a theoretical 15512 test runs, excluding integration
testing of the entire system. Of course, this is not realistic (many items will not need testing)
and it is likely that only components such as the kernel, modules, JVM and Glassfish would
need regular testing. This means a baseline of about 123 applications, and 6888 items of test
data, plus integration tests. However the software is tested, the number of components is
probably too large for a high level of assurance.

4.2.4 Comparison with client platforms

The comparative difficulty of measuring a standard client platform was explored with a brief
experiment using Ubuntu Linux 9.10. The integrity logs were checked twice – once before user

70

Platform Description Measurements

Ubuntu 9.10, Pre-login 1859
Ubuntu 9.10, Pre-login, list filtered 1442
Ubuntu 9.10, Post-login 2304
Ubuntu 9.10, Post-login, list filtered 1802

Table 4.9: Client platform integrity measurement count

login and once after user login using the X windowing system. Table 4.9 shows the results.
It should be noted that newer versions of IMA and Linux were used, which increased the
number of results. To make the logs comparable, however, the integrity measurements were
filtered to remove the extra file types reported by the newer version of IMA. Filters removed
the .config, .rules and python scripts, erring on the side of removing measurements where
possible. Both pre-login and post-login are relevant, as while a web service may never need
to be logged into, a client machine certainly will. The results given do not include any specific
applications (such as a web client, email client, etc.) and it seems likely that using these would
greatly increase the number of measurements.

Although this experiment was not carried out over time, it does show how much more
difficult the problem of integrity measurement is for client machines. A server baseline of
277 measurements means a whitelist only 15% as large as for a logged-in client platform. The
implication is that standard TCG approaches are much more suitable for servers than clients.

4.3 Conclusion

From the experiment presented in the chapter, it is possible to conclude that attestation of an
individual service is entirely feasible. However, there are challenges with making use of the
attested information. The testing (or any assurance method) effort is enormous, particularly
due to the rate of updates. Furthermore, it is unclear how to measure configuration, or even
how to interpret these measurements to establish platform state. There would be little point
in performing any software assurance technique on the service code itself (or any individual
component) as the amount of code it represents is dwarfed by the large code base of the
operating system and middleware. The first step in making attestation more useful is to reduce
the TCB of the platform, as this would reduce the number of updates and measurements and
make assessment easier.

71

72

Chapter 5

Reducing The TCB of an XML Web
Service

The size of a system’s trusted computing base has been identified as a key metric for assessing
suitability for attestation. Unfortunately, an individual web service contains a considerable
amount of software, most of it in service middleware and the operating system. However,
the measurements taken in Section 4.2 were made of a standard web service and no special
effort was made to shrink the example platform. By modifying the configuration, several
applications could be removed. This would have a cumulative effect over time, as fewer
components mean fewer total updates.

One way in which this could be achieved would be to reduce integrity measurements
made by the operating system. Kernel modules could be compiled statically into the kernel,
rather than loading at runtime causing an extra measurement. This would result in 53 fewer
measurements per boot and therefore 53 fewer new measurements every time a new kernel is
installed. Alternatively, when updating the kernel, greater care could be taken to make sure
that only critical modules were changed. Both of these methods may simplify or reduce mea-
surements, but ultimately, trusting a large operating system is a fundamental problem [117].
A better approach would be to use a smaller system, perhaps with a microkernel architecture,
making it feasible to verify formally [106].

Glassfish libraries were the second largest source of measurements, and alternatives could
have a smaller footprint. Unfortunately, it is not an unusually large service environment.
Apache Axis2/Java 1.4, which offers similar features, uses only 8 fewer JAR files than Glassfish
2.1. This implies that the amount of functionality is the problem, not the specific implementa-
tion.

The size of other core applications could be reduced. The IAIK Privacy CA project [151]
uses a system trace to remove all unnecessary class files from their JVM, and a similar method
could be used here. This would reduce the application of unnecessary patches. However,
there is a limit to the amount of code which can be removed without reducing functionality.
This also encourages the hand-crafting of code, which may make it difficult for remote parties

73

to find comparable hash values. The complexity of data formats such as SOAP and XML mean
that a web service platform must contain certain large applications.

In this chapter a method for reducing the middleware problem [50] is discussed, with a
focus on maintaining compatibility with web service standards. This is the key component
of a service that allows for interoperability and this should not be compromised. A solution
to this problem is proposed in Section 5.1. Section 5.2 then deals with additional problems,
Section 5.3 provides a security analysis, Section 5.4 explains some of the design choices made
and Section 5.5 considers performance. Finally, a comparison with similar work is presented
in Section 5.6 and the overall benefit of this approach in summarised in the conclusion. A
shorter version of this work was originally published in conference proceedings [123].

To evaluate the success of this approach, Section 8.2 presents an example service that has
used the proposed solution.

5.1 A Split Service Architecture

Service middleware is complicated in part because it must support complex data formats, as
well as other features such as load balancing and auditing. To test this theory, some of the
experiments performed in Chapter 4 were repeated using Java RMI rather than SOAP-based
interfaces. Exactly the same system was used as in the earlier set-up, but the attesting service
was configured to be accessed through an RMI interface. There was a significant improvement
in the number of integrity measurements, as the new system required 78 (28%) fewer entries
in the log compared to Glassfish. There is a similar effect over time, saving 351 updates as
well as the 78 initial measurements, 30% of the total. This makes the idea of removing service
middleware attractive. However, doing so would come with a cost: reducing functionality
and interoperability. On the other hand, as the application server must parse lots of data in
different formats, it is probably one of the main targets for a remote attack, and removing it
would enhance the platform’s overall security.

Fortunately, there is a way to use minimal software and heavyweight protocols and features.
This chapter explores splitting a web service into two distinct components, one trusted and one
not. The untrusted component is at the front-end and can parse the SOAP and XML requests.
It can also perform any management features, load balancing, and other complex functions.
Messages arrive at the front-end and are forwarded on in a simpler format, such as Java RMI,
to the trusted back-end. The back-end provides all the real functionality and logic. In a data
processing scenario, the back-end platform could either be the data store, or be responsible for
contacting it and forming queries. Figure 5.1 illustrates this system, with VM2 as the trusted
back-end, and VM1 as the front-end. VM1 receives SOAP requests from the client, and then
translates them into RMI for the back-end to process. The client only needs to attest to the
back-end, as it has the functionality of interest.

The advantage of this architecture is that the small back-end component is much more
reasonable to attest. Having removed all of the software that should not affect algorithmic
behaviour, only the programs that will are measure and reported. The operating system and

74

VM2 VM1

Hypervisor

OS OS

Glassfish

RMI XML

JVM JVM

Application

SQL RMI

Database

Client

Service

Figure 5.1: The split web service architecture

software can be minimised extensively, as only the exact features required by the platform will
be needed. It might even be possible to run a web service application natively on a bytecode
processor [132, 240], taking the operating system out entirely. In effect, the back-end becomes
a platform designed specifically with attestation-based assurance in mind.

5.2 Implementation Issues

5.2.1 Establishing a secure channel

Having attested the back-end service, a secure channel must be established to guarantee that
the service user will be communicating with it. This is difficult, as the untrusted ‘front-end’
could potentially forward messages on to any host after a valid attestation. This style of
platform in the middle attack [12] is difficult to avoid and requires the user to know that the
platform that attested is the same one that requests are being sent to. This problem has been

75

discussed many times before (see Section 3.1.8 and [72, 74]). In this scenario, transport-level
encryption is inappropriate, as it would prevent the front-end platform from translating and
forwarding requests to the back-end. Instead, message-level cryptography as specified in the
XML encryption and security token standards [153] must be used. One approach is for the
trusted platform to publish a public key, along with proof that the private half is held in its
TPM. Such proof can be gained from the TPM CertifyKey command, which uses an AIK to
sign the certificate [209]. If the same AIK were used for the attestation process, this establishes
that the key belongs to the attested platform.

An initial request for a service’s public key could be performed earlier, using the WS-Trust
specification [154]. The two-step protocol below shows the user (U), credential repository (C),
service (S), service public keys (PK(S1), PK(S2)) and service AIK (AIK-SK(S)1). Line 5.1 is a
request for a service’s public, bound TPM key, and line 5.2 is the response, containing a service
key and TPM credential, signed by service’s AIK. These steps must be performed in a transport
session with a known, trustworthy credential repository:

U→ C : RequestSecurityToken, S (5.1)

C→ U : PK(S1) , AIK-PK(S)1 , CertifyInfoAIK−SK(S)1 {| PK(S1) |},

PK(S2) , CertifyInfoAIK−SK(S)1 {| PK(S2) |} (5.2)

Having a known public key for the endpoint means that service requesters can use it to
encrypt messages. These can then be forwarded to any platform by the untrusted component,
without fear of compromise. Furthermore, any reply message generated by the endpoint can
be signed, proving the source of the reply. Of course, it would be necessary to establish a
session key rather than relying on just one public key. We therefore propose the following
protocol, with the service front- and back- ends denoted as F and S respectively:

U→ F : RequestSecurityToken,AIK-PK(S)1,nonceU (SOAP) (5.3)

F→ S : AIK-PK(S)1,nonceU (RMI) (5.4)

S→ F : QuoteAIK-PK(S)1 {| pcr0−15,nonceU |} (RMI) (5.5)

F→ U : QuoteAIK-PK(S)1 {| pcr0−15,nonceU |} (SOAP) (5.6)

U→ F : Method(SYMENCK{| arg1, arg2... |}),ENCPK(S1){| K |} (SOAP) (5.7)

F→ S : Method(SYMENCK{| arg1, arg2... |}),ENCPK(S1){| K |} (RMI) (5.8)

S→ F : Reply,HMAC(SK(S2) , reply) (RMI) (5.9)

F→ U : Reply,HMAC(SK(S2) , reply) (SOAP) (5.10)

Line 5.3 is the WS-Attestation request [239] to the service with an already-known AIK and
nonce. Lines 5.4 is an attestation challenge, and lines 5.5 and 5.6 are TPM Quote responses
forwarded to the user, via the front-end. Line 5.7 is the SOAP method invocation with session

76

Figure 5.2: Sequence diagram showing steps from the protocols in from Section 5.2.1 and the
message formats from Figure 5.3

key K applied to all fields, which is then translated and forwarded via RMI in line 5.8. The
reply is generated in line 5.9 and translated again to conform to WS standards in line 5.10.

One additional consideration is mitigating the platform reset attack, where the platform is
booted into an acceptable configuration for attestation, and then rebooted into a malicious
one when it receives the actual data. One way of avoiding this is to use a ‘sealed-key’ [116]
approach. This means using a key bound to PCR values in the TPM, and adding PCR details
to the key certificate as proof for the remote user. This would allow lines 5.3 to 5.6 of the
above protocol to be removed, as run-time attestation is no longer necessary. Alternatively,
the monotonic counters could be used to record the number of times the platform has been
booted, as suggested by Sailer et al. [180].

77

5.2.2 Preserving integrity and confidentiality

The protocol described in Section 5.2.1 is simplified in terms of signatures and encryption.
Decryption of incoming messages, and signing of the result, must be performed on the back-
end platform, as only it has access to the TPM-stored keys. However, this means that only
individual fields can be encrypted, not complex XML structures, as the back-end has no way
of processing the XML. This is an important limitation. An attacker now has the opportunity
to re-order fields, as nothing binds the content of the field to its location in the document. If
the encryption is just of the field itself, then it will also be vulnerable to replay, as no freshness
information is present.

Similarly, the response from the back-end service should be signed, but as the front-end
must translate to XML, the signature cannot be of the entire response. One alternative would
be to sign a digest of the important individual fields. However, this has the same issues as
with encryption.

To provide both freshness and structure to the elements, without breaking web service
standards, fields must be added to the internal methods and the response. The requester
must know that the endpoint was given the correct input, and that any result has not been
modified or replaced in transit. This implies that the response should contain a hash of the
original input, result and a nonce. To avoid the endpoint from needing to process XML, a set of
identifiers can be included internally, linking the expected XML structure to the internal fields.
The identifier-result structure is then signed by the endpoint, and included in the response.
The example in Figure 5.3 demonstrates this system. Note that the response structure and
labels are hard-coded, and not calculated from the incoming message. The verifying party can
then compare the request and result against the arguments and result the endpoint declares
that it has used.

XPATHS have been used as identifiers as these should be predictable and easy for the
verifier to process. The identifier-result structure can be described using a syntax close to
ASN.1. The combination of XPATH and ASN.1 allow the description of an XML document
without the platform needing to be able to interpret or process it. In many situations this will
be more complex than necessary — for example, if only one field is encrypted originally, or if
the result is a single item.

The property established by this system is that if the final response contains a signed
structure that correctly described the user’s input, then no man-in-the-middle could have re-
ordered fields and the service will have responded in the expected way. This does not mean
that all requests can be trusted in advance – to do that, an additional phase is required. The
message must be sent to the service, a validating reply message received, and then an encrypted
‘commit’ message must be sent to the service, to confirm the result.

The protocol in Section 5.2.1 also does not provide any confidentiality of the result of
the web service request, only integrity. In order to protect message confidentiality, it would
potentially (depending on key sharing assumptions) sufficient for the back-end to re-encrypt
the result using key K. It is also assumed that any data sent to the back-end platform will be
securely deleted after use.

78

2) Encrypted SOAP Request
<soap:Header>
 <wsse:Security>
 <xenc:EncryptedKey>
 ...
 <ds:KeyInfo ... >
 <ds:KeyName>
 Endpoint Pub Key XYZ
 </ds:KeyName>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>
 [Encrypted Symmetric Key]
 </CipherValue>
 </CipherData>
 <ReferenceList>
 <DataReference URI='#content'/>
 <DataReference URI='#name'/>
 </ReferenceList>
 <CarriedKeyName>
 EndpointKey
 </CarriedKeyName>
 ...
 </xenc:EncryptedKey>
 ...
 </wsse:Security>
</soap:Header>

<soap:Body>
 <m:Entry>
 <m:from>
 <xenc:EncryptedData Id="name">
 <xenc:CipherData>
 <xenc:CipherValue>
 [Encrypted Name]
 </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </m:from>
 <m:content>
 <xenc:EncryptedData Id="content">
 <xenc:CipherData>
 <xenc:CipherValue>
 [Encrypted Content]
 </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </m:content>
 <m:nonce>36829463846238</m:nonce>
 </m:Entry>
</soap:Body>

1) Original SOAP Request
<soap:Envelope ... >
 ...
 <soap:body ... >
 <m:Entry>
 <m:from>
 Joe Bloggs
 </m:from>
 <m:content>
 Joe Bloggs is a patient
 at Area Hospital...
 </m:content>
 <m:nonce>
 36829463846238
 </m:nonce>
 </m:Entry>
 </soap:body>
</soap:envelope>

3) RMI Request
MessageResponse response =
 endpoint.submitEntry(
 [encryptedSymmetricKey], // session key
 "Endpoint Pub Key XYZ", // Endpoint TPM key ID
 [Encrypted Name], // encrypted field
 [Encrypted Content], // encrypted field
 36829463846238 // nonce
);

4) ASN.1 style response structure
messageInfo MessageInfo ::= {
 input {
 encrypted-symm-key [encryptedSymmetricKey],
 pub-key-id � Endpoint Pub Key XYZ� ,
 variables {
 { field-xpath � //m:Entry/m:from� ,
 field-value [Encrypted Name] },
 { field-xpath � //m:Entry/m:content� ,
 field-value [Encrypted Content] },
 { field-xpath � //m:Entry/m:nonce� ,
 field-value 36829463846238 }

},
 result {
 { field-xpath //m:EntryResponse/m:Success,
 field-value 1 }
 }
}

5) RMI Response
return new MessageResponse (
 result,
 messageInfo,
 SHA1(messageInfo),
 Sign(SHA1(messageInfo))
 // signed with endpoint private key
);

6) SOAP Response
<soap:Envelope >
 <soap:Header>
 ...
 <Signature ... >
 <ds:Signature ... >
 <ds:SignedInfo>
 ...
 <ds:Reference URI="#MsgVerification">
 ...
 <ds:DigestValue>

 [SHA1(messageInfo)]
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 [Sign(SHA1(messageInfo))]
 </ds:SignatureValue>
 </ds:Signature>
 </Signature>
 <!-- Key information included here -->
 </soap:Header>

 <soap:Body ... >
 <m:EntryResponse>
 <m:Success>1</m:Success>
 <m:Verification id="MsgVerification">
 [messageInfo]
 </m:Verification>
 </m:EntryResponse>
 </soap:Body>
</soap:Envelope>

Figure 5.3: Service request and response transformations

79

5.2.3 Changes to services and middleware

For the front- and back-end components to communicate, incoming SOAP messages must be
translated by the front-end to the internal protocol. This is part of the functionality provided
by JAX-WS [97], turning SOAP into RMI, but in this case the processing occurs on a different
platform to the translation. Complications arise when using encryption, however, as any en-
crypted messages cannot be translated, as the front-end does not have access to the decryption
key. Instead, they must be forwarded to the back-end. This means that middleware such
as Glassfish [161] must be simplified to pass on encrypted messages and any session keys.
Similarly, signed results must be converted by the middleware to conform to SOAP standards,
without needing any re-encryption. The example in Figure 5.3 demonstrates this.

5.3 Security Analysis

5.3.1 Web service threats

Demchenko et al. [55] and Bhalla and Kazerooni [18] identify key threats to XML web ser-
vices. These include misuse and theft of user credentials, snooping on unencrypted SOAP
messages, maliciously formed input (XPATH queries, SQL injection) exploiting XML parsers
and validators, WSDL enumeration, poor site configuration management and error handling.
The proposed system reduces the impact of some of these issues, in comparison to a standard
web service endpoint that also uses message-level encryption.

5.3.2 Threats mitigated

Most significantly, threats from XML and SOAP parsers are eliminated in this architecture,
as they can only compromise the untrusted front-end. These threats are significant, and
several attacks have been published on XML parsers. Microsoft XML Core Services had a
buffer overflow exploit allowing remote code execution (Secunia Advisory SA22333), and five
SOAP server XML parsers had denial of service issues in 2003 (Secunia Advisory SA10398).
Of course, vulnerabilities in the parser used to communicate between front- and back-end
components would still have an impact, but the protocol is significantly less complex, and few
vulnerabilities in Java RMI (for example) have been published.

Similarly, vulnerabilities in popular web service application servers, such as Glassfish and
Apache Axis 2, would be mitigated in this architecture. The attack surface is smaller on the
untrusted platform and should contain fewer vulnerabilities.

The use of remote attestation helps users avoid services that have poor site management and
misconfiguration, assuming integrity reporting covers these components. This is true of any
attestation-enabled platform, but this architecture reduces the number of components to report
upon, thus reducing complexity and making it easier for a verifier to establish the properties he
or she wants. Furthermore, as the TPM contains the encryption keys, no unencrypted SOAP
messages can be copied. If keys are sealed to the precise PCR value of the endpoint (including

80

all software) then users can be assured that data encrypted with this key will only be processed
by the right software and platform.

5.3.3 Remaining issues

Some problems remain. Most importantly, though the front-end service may be untrusted, it
can impact the availability of the service, resulting in a denial of service attack – as the service
has only been split into two components, rather than increasing the amount of software, and
is no worse than before these modifications. However, a malicious front-end could forward
messages and betray unencrypted secrets.

Other attacks that have not been mitigated include credential theft and error handling.
Improper use or storage of credentials may remain a problem, regardless of how the server is
structured. Error messages revealing too much information will also not be changed, although
this system presents two different opportunities for errors to be censored, at the front- and back-
end. Furthermore, these two issues are related to the quality of design and implementation of
the end service, a property which will be easier to assess in this architecture, particularly in
combination with work discussed in the following chapters.

5.4 Observations and Design Choices

5.4.1 Composite services

Composite web services are common, as one service may be an abstraction for a more complex
workflow involving several separate ‘sub’ services. This presents a problem for this archi-
tecture, as the back-end platform is designed to only communicate with the front-end, and
not have the capability of communicating in higher-level protocols such as SOAP. A solution
(as used in Section 8.2.2) is to allow the front-end to proxy and translate any external com-
munications. However, this has a negative impact on performance, and increases complexity.
Furthermore, the key management overheads may become large, as each inter-service commu-
nication will need to use a different key. These are largely technical challenges which may be
considered a reasonable trade-off against the increased trustworthiness of the overall system.

A more fundamental issue is that an attestation of one service, when in fact several are
being used, has significantly lower value. If one of the sub-services is behaving maliciously,
the user will not be able to tell. Instead, the chain of trust must extend to all of the component
services. Furthermore, the end user must be able to tell which services have been used, how
they have attested, and what results they provided. Establishing this through an attestation
may be difficult.

This issue is analogous to problems with credential management in composite web ser-
vices. When passing credentials to a service, should the service re-use these credentials when
contacting others, or should it use its own? Similarly, is verifying the integrity of the top-level
composite service sufficient, or should all sub-services be checked as well? One solution to
this problem in grid systems is delegation [116]. Grid nodes are only selected if they guarantee

81

to pass on jobs to nodes with platform configuration values present on an agreed whitelist.
Such a system might work here, but a more comprehensive solution would be required to
demonstrate to the end user that this selection was happening. A trustworthy message router
(or a trustworthy endpoint selector) as described by Watanabe et al. [234] might be a suitable
mechanism.

5.4.2 Multiple back-end instances

One advantage of splitting the service is that one front-end can talk to multiple back-end
servers. This would be useful for load balancing. Furthermore, it would allow the back-end
systems to be restarted frequently, a useful property for attestation. An additional benefit is
that individual service functions can be further isolated into different virtual machines. In this
way, one logical service can use different virtual machines. This would be useful if many of the
functions were simple and one was much more complex, for example. Similarly, the front-end
service can be multiplied for performance or availability reasons.

5.4.3 Comparison to XML firewalls

This design is remarkably different from an XML firewall [115], one of the more common
techniques for securing web services. An XML firewall filters incoming SOAP messages for
malicious input, based on a number of criteria, such as oversized payloads and SQL injection.
The proposed method does not rely on any filtering, as messages are translated to RMI before
being forwarded. If a malicious messages was designed to crash the SOAP parser, only the
untrusted host would be affected. If it was more sophisticated, and designed to exploit a bug
on the trusted host, then there would be a problem. In Chapter 7 application security itself is
considered, as are methods for providing automatically generated input validation.

5.5 Impact on Performance

The proposed architecture will have a performance overhead. The precise impact will depend
on what it is compared to, and Figure 5.4 shows flow charts for four different systems, with
the processing steps that each involves. All services must send and receive messages from
the network, parse and format the results, as well as doing the required task. Introducing
encryption and signing will add another two steps, and if the keys are held in the TPM,
this will involve communicating with it as well. The proposed architecture only adds two
additional stages at the server – the RMI communication between platforms.

From existing literature, it is apparent that the use of WS-Security is a significant overhead.
Gray demonstrates a factor 100 [80] slowdown when using WS-Security on a single machine.
Although this is not directly applicable to this architecture – as the web service does not decrypt
the messages directly – it seems reasonable to assume a similar performance hit. Furthermore,
Gray shows that RMI invocations are generally an order of magnitude faster than WS-Security
enabled XML web services, so the additional RMI step can be expected to have a relatively small

82

Parse ProcessNetwork Format Network

Decrypt
Sign &
Encrypt

Parse Process FormatNetwork Network

Sign &
Encrypt

Parse TPM TPMDecrypt ProcessNetwork NetworkFormat

Decrypt
Sign &
Encrypt

Parse FormatTPM TPMRMINetwork Process NetworkRMI

(a)

(b)

(c)

(d)

Figure 5.4: Flow chart for four different service architectures, showing (a) no encryption
(b) standard WS-Security (c) TPM-enabled cryptography and (d) the proposed TPM-enabled
split-architecture.

impact on overall round-trip time and latency. The figures given show complete invocation
and message time of just over 1 millisecond for RMI. The split-architecture system involves
two such invocations, comparing favourably to the 100s of milliseconds given for WS-Security.
And should the front- and back- end services be hosted on the same platform (such as in Figure
5.1) then there is room for more optimism.

The impact of using the TPM is worth considering, although the number of TPM commands
is not necessarily increasing in comparison to a web service that already uses a TPM for message-
level cryptography. For each message, the TPM must decrypt a symmetric key using a key
bound to the TPM, and then sign a digest using another bound key. The overhead was
simulated to measure how long the TPM took to unseal a 128 bit value using a TPM storage
key, and to then sign a 20 byte digest with a TPM signing key. Both keys were stored in the
TPM and bound to PCR values. The results were calculated with an Infineon 1.2 TPM and used
Brent Boyer’s Java benchmarking tool [22] with the IAIK JTSS libraries. Theses operations took
an additional 800ms, which would be added to the round trip time of each message. When
run individually, both steps took approximately the same amount of time, the bottleneck being
communication with the TPM.

There are several ways in which this can be optimised. Firstly, this task is parallelizable,
as several back-end platforms can be used, each with its own TPM. This would improve
throughput, although clients would need to encrypt the symmetric session keys (K in line 5.7
of the protocol in Section 5.2.1) with several different public keys. Making a different trade-off,
the same session key could be used repeatedly for messages sent to the service, which would
eliminate subsequent unseal operation on messages from the same client. Furthermore, a
key generated from the session key could be used as an alternative to signing with the TPM,
meaning only one TPM operation in total. The disadvantage to doing this is that the key is
stored in unprotected memory for a significant period of time, making it more vulnerable to
compromise. Further optimisation may be possible with virtual TPMs, operating mostly in

83

software. It is expected that future versions of the TPM will be faster [221], reducing this
problem.

5.6 Comparison With Related Work

Minimising the trusted computing base of a platform has been discussed frequently in the
literature. Wei et al. [236] split the Apache Axis2 web service middleware into two components,
one trusted and one untrusted. They suggest that incoming messages should be intercepted
by a ‘message splicer’ which replaces sensitive information with references. All operations on
sensitive data must then be performed by the trusted component, as only it has access to the
real data. The untrusted and trusted components are isolated in separate protection domains.
This solution presented here is similar, but taken further, allowing a remote user to gain
assurance in the web service, rather than just hardening the internal structure. Furthermore,
this system considered how messages would be sent between the user and service, noting that
a server-side message splicer could not be considered trustworthy by a cautious remote user.
The application of trusted computing to this issue seems an essential part of the solution.

Similarly, Jiang et al. [98] attempt to mitigate the threat from malicious insiders by using a
secure co-processor, the IBM 4758. This acts as a guardian, performing some important parts of
the functionality of the web application. Users can establish a secure session with the guardian
and verify they are communicating with it. Their approach does allow for user assurance,
but does not work with existing standards for web services. They are also constrained by
the use of an expensive secure co-processor, whereas this design can use a standard, low-cost
Trusted Platform Module. Furthermore, the threat that Jiang et al.’s system mitigates is that
of malicious insiders, whereas the split architecture proposed here will also reduce the risk of
external attacks.

Watanabe et al. [234] have an alternative approach, separating the communications com-
ponent – the ‘Secure Message Router’ – from the application itself. This SMR is a trusted
component, and is used to create high-integrity virtual domains. This is the opposite of the
architecture discussed in this chapter, and focuses on establishing guaranteed secure com-
munications, rather than service integrity. It is not clear how service middleware would fit
into this scheme. However, having a secure router might be the solution to the problem of
composite services. A hybrid approach may be worth exploring in the future.

Cooper and Martin [50] were one of the first to consider the middleware problem and have
much the same aims in mind – to reduce the TCB of a grid platform. Their approach is to allow
untrusted middleware to pass encrypted data to a virtualized platform which executes it in
the presence of a job security manager. More details of this approach are given in Section 3.2.9.
The key differences are that web service messages are structured, whereas grid jobs are not,
resulting in the problems identified in Section 5.2.2. Furthermore, Cooper and Martin must
consider the staging of offline data, whereas this system is assumed to be continuously live.
Another difference is that this is the attestation of a service with pre-defined functionality, not
an arbitrary grid job. The aim in this chapter is to allow for attestation of a service application,

84

not the infrastructure.
Finally, this approach could be compared to the Flicker [131] and TrustVisor [129] systems

described in Section 3.2.14. However, their approach is only applicable to small, security-
critical parts of an application, although it does provide a greater degree of minimisation.
The technique described in this chapter is more appropriate for providing a slightly lower
degree of assurance in a more significant amount of code. A combination of these approaches
would be interesting, as the crucial security-critical portions could be further isolated and
more accurately attested through TrustVisor with the rest of the system – still important for
behavioural guarantees – attested through the method described here.

5.7 Conclusion

The architecture proposed in this chapter demonstrates that the overhead of integrity mea-
surement can be reduced, and therefore attestation may become more feasible as a method
for establishing trust in a web service. While only a 30% improvement can be made by re-
ducing middleware, the general approach could be applied to the operating system and Java
runtime as well. Unfortunately the operating system is still the biggest problem. There is a
great deal of existing literature on the subject of minimising operating systems and improving
their trustworthiness [106, 204]. For this reason, as well as due to time constraints, significant
modifications to existing operating systems have not been considered in this thesis.

Although the number of integrity measurements has now been significantly reduced, there
are more challenges to solve based on the earlier gap analysis. Firstly, it is still not obvious
how to interpret attestations to establish system state, even with reduced OS and middleware
functionality. Integrity measurement logs only provide a simple, linear overview of the boot
process, and say nothing about system behaviour. Use of event reporting (see Section 3.3.2)
can close some of the gap, but this makes interpreting PCR values even more difficult. This is
a necessary step before individual applications can be assessed and is the problem dealt with
in the next chapter.

85

86

Chapter 6

From Measurement Logs to System
Models

This chapter investigates integrity verification from the perspective of the challenger: can
trustworthiness really be established from attestation of an integrity measurement log? Trust-
worthiness is defined by the Trusted Computing Group as being about how a system behaves,
but attestation only reports evidence of the execution integrity of the platform. This was de-
scribed in Section 3.1.1 as the semantic gap problem and refers to the fundamental difference
in what attestation does – provide a history of program execution on a platform – and what
a relying party will want to use it for – establishing whether programs on the platform will
behave as expected. The difference between these two concepts directly affects how practically
useful attestation can be, as reporting execution integrity is a more specific system property
than reporting general system behaviour.

Section 6.1 provides an analysis of how execution integrity is established through the TCG-
defined chain of trust and why this is inadequate for establishing behaviour. An alternative
method is proposed in Section 6.1.3 which does allow the reporting of platform behaviour
through the use of system behaviour models and the integrity measurement log. Following this,
Section 6.2 discusses how to create these models and Section 6.3 and 6.4 explore two alternative
implementations, which are then used to describe the TPDMenu program in Section 6.5.
Sections 6.6 and 6.7 discuss related concepts and approaches, and finally Section 6.8 concludes.

6.1 Attesting Execution Integrity or Behaviour?

TCG Attestation is about establishing the execution integrity of a platform – the identity and
integrity of all executable programs – and the process for doing so has been defined in TCG
specifications. However, no specification explains how to link this concept to the attestation of
platform behaviour or state. This section first explores the existing attestation process and then
identifies how the chain of trust must be augmented to include behavioural information.

87

6.1.1 Execution integrity reporting

The TCG Attestation approach is well understood, and consists of the following steps.

1. The target platform begins the boot process with a Root of Trust for Measurement (RTM).

2. The RTM and all programs follow the authenticated boot process, building up a chain of
trust.

3. A challenger requests the target platform to attest to its execution integrity.

4. The integrity measurement log (IML) and attestation evidence (backed by the Root of
Trust for Reporting) are reported to the challenger. The IML contains list of hash values
relating to programs and takes the form of a list of lists, one list of hashes per PCR
number.

5. The challenger checks that the attestation is valid and roots of trust are trusted.

6. Each reported program hash is checked against a reference ‘known good’ hash value to
ensure integrity of binaries.

7. If all measurements match the reference ‘known good’ values, and all programs are
trusted, then the platform can be trusted.

This process allows the challenger to make sure that unmodified software is running on the
target platform – the property of execution integrity – and can be used to enforce a whitelist
policy. For client machines, for example, this should be sufficient to check that all software is
at the highest patch level, or that no malware is running. This process is elegant and relatively
straight forward because the chain of trust concept guarantees integrity in a simple hierarchical
manner: the integrity of each program relies only on the integrity of the earlier programs.

However, for assurance properties beyond execution integrity a more sophisticated process
is required. For example, questions such as ‘will the platform keep my data confidentially?’, ‘is
application X still running?’ and ‘is the system currently being administered by a super user?’
rely on platform behaviour being known rather than just the integrity of each software compo-
nent. As a result, the chain of trust concept alone becomes inadequate and must be modified to
include a new set of verification steps. Unfortunately, only PCR values can be attested in TCG-
defined integrity reporting, and further system properties cannot directly be attested. The
question posed by this chapter is whether existing TCG attestation techniques – TPM_Quote –
combined with a new verification approach is sufficient to report further behavioural evidence.

6.1.2 Behavioural evidence reporting

Evidence of how a platform has and will behave may be more useful to a relying party. They
might be able to check to see whether any highly sensitive operations have been carried out or
whether a backup process has been run.

88

The chain of trust can be seen as one piece of evidence about behaviour: the order in which
certain pieces of software are loaded on the platform. Knowledge about the behaviour of each
piece of software can then be used to predict and trust future behaviour. However, the process
for doing this is less well-defined, as each piece of software can behave in many different ways,
and the chain of trust only states that a program has be measured, not that it has actually
run or performed any particular task [53]. Additional internal information about what each
program has done would help provide evidence of a platform’s behaviour before the point of
attestation, as well as providing an indication of current runtime state.

In order to provide extra information about what each program has done, PCR measure-
ment can be used for event reporting (see Sections 3.3.2 and 3.3.3). This is where particular
events or significant state changes are recorded into PCRs. For example, in Appendix A a sim-
ple ballot box is described which extends the content of each ballot into a PCR value. Similarly,
Naumann et al. [147] and Alam et al. [4] extend PCR measurements as part of ‘Model-based
Behavioural Attestation’ to record when a resource has been accessed and how it is used.
Events can be represented as the hash of a string of text, and extending them into PCRs has the
advantage of making the event attestable and impossible to erase. In the ballot box example,
this means that the platform cannot delete any votes after they are originally recorded. This
use of PCRs for event reporting starts to provide more information about the behaviour of
the platform and can be used to implement a wide range of custom behavioural assurance
properties.

Using PCRs for recording both the chain of trust and program-specific events makes the
challenger’s task of verifying attestations more complicated. As well as having a ‘known-
good’ reference integrity measurement, each program must now also have some ‘known good’
reference PCRs usage, so that a verifier can tell that if, for example, the string ‘error’ is extended
into PCR 10, the platform should not be trusted. This becomes more difficult because multiple
pieces of software may be running at any one time, so integrity measurement logs may contain
a set of interleaved event measurements from different programs. Furthermore, programs may
run throughout the whole time the platform is switched on. This is demonstrated in Figure
6.1 where the difference between verifying a chain of trust and platform software state can be
seen clearly. An example of this is the code running within the Pentium System Management
Mode [60]. This may be measured early in the boot process but can still be entered into at any
time, making it a relevant part of the overall platform state. Another problem with measuring
events, unlike execution integrity, is that the order of is likely to be more important and more
liable to change. Event reporting therefore requires a more sophisticated verification process,
as well as more information about each program that uses it.

6.1.3 Attesting events

Attestation of events recorded in PCRs requires a more complicated process than the one
used in Section 6.1.1 for execution integrity. It is still necessary to check the integrity of each
program, but also to identify how each program will behave in combination with the rest of
the platform. Behaviour in this context is equated to the events recorded by programs into

89

PCR values. The following process is required, with new steps given emphasis.

1. The target platform begins the boot process with a Root of Trust for Measurement (RTM).

2. The RTM and all programs follow the authenticated boot process, building up a chain of
trust.

3. A challenger requests the target platform to attest to its current state.

4. The integrity measurement log (IML) and attestation evidence (backed by the Root of
Trust for Reporting) are reported to the challenger. The IML contains list of hash values
relating to programs, as well as hashes created by programs to mark significant events and state
changes.

5. The challenger checks that the attestation is valid and roots of trust are trusted.

6. Each reported program hash is checked against a reference ‘known good’ hash value to
ensure integrity of binaries. A trusted reference behavioural model is identified which explains
what events the program may extend.

7. The models for all programs are combined to create a model for the entire platform.

8. This platform model is ‘run’ against the reported integrity measurement log to establish what
state the platform is in according to the log.

(a) If the platform is not in any valid state, this means that the platform is exhibiting unexpected
behaviour and should not be trusted.

(b) If a valid state of the system model is found, the state and model can be queried from a policy
to establish behavioural properties.

9. If the platform satisfies the challenger’s policy, trust the platform

This process requires an additional artefact for each program on the attesting platform: a
model explaining how it will behave with respect to PCR values. Figure 6.2 gives an intuitive
overview of what these models may look like, and Figure 6.3 shows how the process works
to establish trustworthiness. It is also necessary to have a way of combining these models
together, running them against the integrity measurement log and querying the platform
model for behavioural properties. The following sections will investigate the requirements
for program models and model running tools as well as details for how they can be used for
establishing the current state of a software platform.

6.2 Modelling Programs and PCR Usage

The rest of this chapter investigates how programs which use PCRs to record significant events
or state changes can be modelled so that their actions can be interpreted from attestation of
an integrity measurement log. There are several open questions, in particular what software

90

Glassfish Glassfish

BIOS

SMM

Option ROMsOption ROMsOption ROMs

Boot loader

Kernel

Daemons

Database

DaemonsDaemons

...

Web service

Kernel

SMM

Startup scripts

DaemonsDaemonsDaemons

Database

Web Service

BASH Shell

Not running, but could be
loaded at any time

Chain of trust System state

Can be triggered via
a system interrupt

Constantly executing

Execution
finished

BASH Shell

Figure 6.1: Comparing the chain of trust with platform execution state

91

Code

RIM
[0xF32755...]

PCR Event Model

Binary

 1 Main() {
 2
 3 B = getB();
 4
 5 for i:1 to 100 {
 6 arr[i]+= b;
 7 }
 8 doX(arr);
 9
10 }

Developers: Produce binary, RIM and PCR event model

The model describes how the binary
will interact with PCRs, and how this
translates to state transitions.

Figure 6.2: Creating models describing program PCR usage

models should consist of, and what technology should be used to check them against an
integrity measurement log and identify the current platform state.

As discussed previously in this chapter, program models are used to provide additional
information about what a program has done and therefore what state the system is in and
whether or not it should be trusted. Examples of the kinds of ‘events’ that might be recorded
include:

• a super-user logging into the platform (and event measured by the operating system
shell);

• a document or file being opened (and more usage control properties, discussed in Section
6.7);

• a system backup being run;

• a connection being established to an external service.

A key challenge is that program models should be able to describe smaller pieces of software
such as a bootloader, as well as monolithic programs like the operating system. This section
identifies design principles for the modelling language, assumptions and limitation of the
modelling and verification process and then discusses potential implementation options.

6.2.1 Design principles

The following principles were used to guide the implementations discussed in later sections.

Generality. Program models should be useful for describing any software component on the
platform. This means that they must be cross platform and not make too many system-
level assumptions. The assumptions that are made should strike the correct balance

92

Program

Program

Program

Program

Program

Web Service Platform

0: [0x534..., 0xF01..., ...]

1: [0x137..., 0xA2D..., ...]

2: [0x51E..., 0x778..., ...]

3: [0x490..., 0x2FF..., ...]

10:[0xDE3..., 0x8A7..., ...]

11:[0x119..., 0xBF4..., ...]

Integrity Measurement Log

Challenger / Verifier

Attestation

1. Identify components

Model runner

2. Combine

Platform State

3. Run model against
integrity measurement
log: find platform state

Policy

4. Make trust decision
based on platform
state and policy

Authenticated boot

Figure 6.3: An overview of the proposed program modelling approach

93

between simplicity, to avoid over specification, and yet be platform-agnostic. As a result,
some common operating system behaviour may have to be built into the modelling
system as opposed to the definition language so that the OS does not require too large a
definition.

Uniformity of description. Programs can be written in many languages, including simple
shell scripts, and may be modified by textual configuration files. These do not lend
themselves well to integrity measurement. Program models must be able to describe
these types of programs and files in a common way so that a verifying party only has to
understand the mapping from a file to its model, rather than from a file to any particular
behaviour.

Composability. Systems should be constructed by composing known program descriptions
together. This way a verifying party can use an independent model provided by the
developer (or distributor) whom they may trust. For this to work, it should be easy to add
program models to an existing system definition without any significant modification.

Support for concurrency. Program models must support concurrency. This adds a great deal
of complexity, and platforms wishing to attest will want to avoid too many active,
concurrent processes.

Low complexity. The models should be simple to create and interpret, in order to aid usability
and verification. This means that program models will need to balance accuracy and
simplicity.

TCG compatibility Where possible, TCG concepts should be used, for example, PCR num-
bers, reference integrity measurements, and measure-before-load. This will also make
this work easier to integrate with other trusted computing systems.

Practicality. Ultimately, the goal is to create a practical set of program models that can be used
to model a real system. As a result, some of the above principles will face compromise,
particularly at the cost of increasing complexity or reducing the generality of the solution.
The approach must be capable of describing real programs, and the states they transition
between.

Support for hierarchies. Many programs will run alongside (or within) others, and be re-
stricted in what they can do. For example, Java programs run alongside the JRE and are
constrained by it. This should be possible to express in the component model.

A program model will naturally be a huge simplification of the program itself. Only PCR
usage, passing of control, and event descriptions are of interest. This means that it should be
feasible to model large programs such as operating systems.

6.2.2 Assumptions

The use of program models makes several assumptions in principle, even before considering
specific implementations. Firstly, each program must have an accurate model which reflects

94

its real behaviour. Models could be specified incorrectly or be dishonest in what each measure-
ment represents. This means that the model must be trusted and should therefore come from
a trustworthy source, in the same way that a reference integrity measurement should. Indeed,
models could be included with the signed RIM of a piece of software, and when a platform
loads a program matching the RIM the correct model could automatically be loaded and used
in the verification process.

Another challenge comes with modelling configuration files. Configuration files can modify
a program’s behaviour and may alter the events it will report. They must therefore be part
of the system model, and verifiers must make all the same assumptions about the accuracy
of a model describing the configuration file that they would about an executable program.
However, configuration files are unlikely to come from the same source as programs, as they
will be customised for each platform. A solution to this is for the attesting party to provide
a complete copy of the configuration file, and for the verifier to generate a model for it. This
generation step could be automated in many cases.

The next assumption for a challenger is to decide whether they trust the overall system
model (which is now assumed to be built from accurate program and configuration models)
and the reported state that the attesting platform is apparently in. This is difficult, but the
interpreter can at least say whether or not an unexpected event measurement has occurred,
which might imply runtime compromise or an error. However, a policy will still need to be
defined for interpreting the reported system state. The system model may define some states
which are explicitly untrustworthy (for example, if the user ‘root’ logs-in and starts a new
terminal). However, some of these policies could be context-specific and therefore defined
only by the challenger. The problem of creating policies is not considered in this chapter.

There is still potential for runtime attack as if any program is exploited at runtime they
may deviate from the model. However, if the event reporting is designed well then any attack
will be made visible by an unexpected state change in the event log. Because these cannot be
modified later, the attack can be spotted and subsequent actions can be marked as untrusted.
Furthermore, this approach can work in combination with a runtime agent in order to provide
defence in depth. If the agent is compromised, then the event log may provide evidence
of this. If the running application is compromised, the runtime agent may alert the relying
party. Either way, this approach will automate the verification process so that a decision about
trustworthiness is easier to make.

Finally, there will be more assumptions made by the specific model and implementation.
These are discussed in later sections.

6.2.3 Limitations: predicting the future

The general approach described in this chapter can be used for verifying an integrity measure-
ment log against an expected platform model. However, there are some significant limitations
which should be established. It is not possible to use these models to predict potential future
behaviour. This is because any program might be loaded into memory and executed: the in-
tegrity measurement log only provides evidence of what has happened, rather than what will.

95

Active components

Integrity Measurement Log

PCR 10:
 ...
 /etc/backup-script 0xf339d31d6d234f
 /bin/grep 0x4578f0659f1af0
 /bin/login 0x5a55a90a76bc21
 /bin/mount 0xee9a75f599c896
 /bin/logrotate 0x011f728174aff1
 ...
 /usr/bin/admintool 0x011f728174af12

/bin/admintool – 0x011f728174af12

Menu

Launch
/bin/logrotate

Launch
/bin/mount

Launch
/bin/backup­script

Current state

Predictable behaviour

Active components

Integrity Measurement Log

PCR 10:
 ...
 /etc/backup-script 0xf339d31d6d234f
 /bin/grep 0x4578f0659f1af0
 /bin/login 0x5a55a90a76bc21
 /bin/mount 0xee9a75f599c896
 /bin/logrotate 0x011f728174aff1
 ...
 /usr/bin/admintool2 0xa952c76e9e14d2

/bin/admintool2 – 0xa952c76e9e14d2

Menu

Launch
/bin/logrotate

Launch
/bin/backup­script

Launch
/bin/emacs

Current state

Unpredictable behaviour

Figure 6.4: An example of the conditions required for predicting future behaviour based on an
attestation

A new executable could be malicious, or have been altered in an unexpected way. However, by
making some assumptions, it is possible to have a degree of assurance as to future behaviour.

There are two conditions where this might be true. The first is if one of the running
programs allows for an already-measured component with a given file name to be executed.
Because the file name and hash are already in the log, the challenger knows that that program
may be run in the future. If all possible future states of the active model satisfy this constraint,
then the range of all possible actions can be constrained to just these — assuming, of course,
that the filename-hash mapping is preserved and cannot change. This could be enforced by
the operating system. It is also assumed that the active model contains all possible events,
including any interrupt handlers, device drivers and running processes. An example of this
constraint can be found in Figure 6.4.

The second condition is if a secure-boot style system is followed. Using the example in
Figure 6.4, if the menu was also programmed to only execute those files if they had a certain
hash, and the menu was trusted to enforce this, then future actions are similarly constrained.
This is unlikely to be the case for most applications, but is a useful alternative when trying to
limit the range of possible future behaviour.

6.2.4 Implementation options

Having defined the assumptions and goals of an event attestation model the next two sections
describe alternative implementations. Both have advantages but neither is a perfect solution.

96

For the sake of clarity all models shown in this chapter do not extend hashes, but text values
into PCRs. These would need to be converted in a real implementation.

6.3 CSP Program Models

Communicating Sequential Processes (CSP) is a process algebra commonly used to describe
interacting concurrent systems. It allows the definition of individual components which can
be composed together to produce larger system models.

A full explanation of CSP can be found in [174]. Processes are defined by name and make
a series of communications before either stopping (taking the behaviour of process ‘STOP’
which is defined as a process that never communicates) or behaving like another process. For
example, process P communicates a and then behaves like Q. Process Q communicates b and
then never communicates again:

P = a→ Q

Q = b→ STOP

Arrows (→) show the sequence of events. Processes may be composed in parallel and must
synchronise on any communications they share. These are defined explicitly in the composi-
tion, for example P |[a, b]| Q shows process P and Q must synchronise on communications a
and b. External choice is shown with a square (2).

Messages can be communicated between processes through channels which have inputs
and outputs. In the diagrams in this chapter, inputs are shown with a question mark and
outputs are shown with an exclamation mark. For example, the TPM process in Figure 6.5
shows the TPM waiting to synchronise on channel extend, where it receives a message into
object x and then outputs the same value on channel tpmextend. Multiple input and outputs
are separated using the same question mark, dot or exclamation mark. If a specific message is
defined for the input, the process will only synchronise if the right output on that channel is
given by another process. For example, the PCRLOG1 process in Figure 6.7 synchronises on
two values, the first of which must be 1 and the second must be bios.

6.3.1 Using CSP to verify integrity measurement logs

Assuming that all program models are defined using CSP, the FDR2 tool [64] can be used to
check a system model against a trace of actions through trace refinement. Trace refinement [174]
can confirm that a measurement log could have been produced by the system model. In the
model defined in Figure 6.5 this can be done by converting the measurement log into a single
sequential process of tpmextend!name actions and then checking that the system model is a
refinement of this measurement log model. In other words, the system model should have
been able to produce this trace. The ProBE tool [49] can then be used to visualise the state of

97

the model after the trace has been run.
CSP provides several concepts which are immediately applicable to integrity measurement.

The behaviour of the system given this measurement log (LOG) has been reported is defined
as the ‘afters’ (SYSTEM/LOG) of the trace. This is useful for establishing what possible events
could occur given the current system state after the trace. For example, after an administrative
intervention, will the platform still accept user input? CSP defines refusals and failures which
fit well for specifying these policies. A refusal set is a set of events that a process will never be
able to accept anything from. A failure is a pair (s,X) where s is a trace of process P and
X is a member of the set of refusals of P/s. In other words, after the trace s, process P is unable
to ever accept any of the events in set X.

CSP can satisfy many of the properties listed in Section 6.2.1. It supports non-determinism
and parallel processes. It is suitably abstract and can model any application. Configuration
files can be specified as additional processes. Indeed, the example in Figure 6.10 shows that
configurations can be composed with applications, so long as they use known message types.
TCG concepts are also easy to encode (the idea of PCRs, a single TPM, and a measurement list
fit well). For verification, individual logs are composed together, as shown in Figure 6.7.

The following examples demonstrate how CSP can model parts of the boot sequence. In
Section 6.3.4 validation of these models against a measurement list is considered, and Section
6.3.5 discusses outstanding problems with the implementation.

6.3.2 Example platform model

An example simplified system model can be seen in Figure 6.5. It shows an authenticated
boot process consisting of the TPM, BIOS, Bootloader, IMA Linux operating system, the TTY
and then the undefined process APPS which is a place-holder for any other programs also on
the system. The TPM is a constantly running process which receives messages on the extend
channel, containing two arguments: the PCR number and the value to extend. When it has
finished, it responds with a finishextend message with the same arguments, making it a
synchronous process. The BIOS is the root of trust, extending itself and then calling for the
bootloader to be extended and executed. In turn, the bootloader extends ima, the operating
system. The IMA process runs continuously, waiting for either launchreq messages – which
are requests to launch application x – and extendreq messages which are arbitrary requests
to extend a value to PCRs. The model also corresponds to how the real IMA system works,
caching program measurements, so that only new programs are measured into a PCR. Each
application begins with a launchreq!APP-NAME, so that measurements are triggered. For
example, the TPDMenu process shown in Section 6.5 would be one of the processes in Apps.

The final SYSTEM process is the parallel composition of the other processes, forcing them
to synchronise on certain channels. The SYSTEMH process is the SYSTEM process with
internal communication hidden, so only the TPM processes tpmextend communication is
visible, allowing it to be compared to a integrity measurement log process (see Section 6.3.4).

98

SystemBoot
channel

extend, tpmextend, finishextend

channel
channellaunch, launchreq, extendreq, hasextended

process
TPM = extend?p?x→ tpmextend!p!x→ finishextend!p!x→ TPM

process
BIOS = extend!1!bios→ finishextend?1?bios→

extend!2!bootloader→ finishextend?2?bootloader→ BOOTLOADER

process
BOOTLOADER = extend!7!ima→ finishextend?7?ima→ IMA(〈〉)

process
IMA(s) = launchreq?x→ CACHER(s, x) 2

extendreq?x→ extend!10!x→ finishextend?10?x→ hasextended!x→ IMA(s)

process
CACHER(s, x) = if elem(x, s)

then launch!x→ IMA(s)
else extend!10!x→ finishextend?10?x→ launch!x→ IMA(s a seq x)

process
SYSTEM = (TPM |[extend, finishextend]|

(BIOS |[launchreq, launch, extendreq, hasextended]| (TTY ||| APPS)))

process
SYSTEMH = SYSTEM \

{extend, finishextend, launch, launchreq, extendreq, hasextended}

process
TTY = launchreq!shell→ TTY

Figure 6.5: CSP model of platform boot and IMA Linux

6.3.3 Example script model

The kernel start-up process was modelled in order to test how well CSP could describe scripts
and configuration. On Linux this involves reading scripts from the subdirectories of /etc/rc.d
directory and executing them in order. Many are shell scripts. Figure 6.6 gives an example of
how this can be modelled. It is worth noting that BASH is particularly difficult to model. As
will be discussed in Section 6.3.5, the interaction between the script and interpreter is hard to
define in a simple manner. The ‘...’ sections show where the script behaviour would need to
be specified.

99

StartupScripts
scriptlist = 〈script1, script2, script3〉
process

RCD = launch?rcd→ RCDINNER(scriptlist)

process
RCDINNER(〈〉) = STOP
RCDINNER(〈s〉a t) = launchreq!s→ RCDINNER(t)

process
SCRIPT1 = launch?script1→ launchreq!bash→ ... → STOP

process
SCRIPT2 = launch?script2→ launchreq!bash→ ... → STOP

process
SCRIPT3 = launch?script3→ launchreq!bash→ ... → STOP

Figure 6.6: CSP model of platform startup scripts

6.3.4 Verification process

The purpose of verification is to establish that the attesting system used PCRs in the manner
defined by the program models. If verification fails it may imply:

• a failure of a program to properly follow measure-before-load, resulting in unmeasured
code being able to modify the TPM;

• an error at runtime, possibly due to a bug or runtime attack;

• an unexpected program (without trusted model) being executed; or

• the modification of a program, resulting in a different hash value.

However, if verification succeeds, this implies that the used program models may be a good
model for the system. However, verification does not prove that a runtime attack has not
occurred, or that a program has obeyed the measure-before-load policy. If the model has
ambiguities, or if the program has undocumented behaviour, there can still be difficulties.
Verifying the PCR usage models is just one necessary step in the larger assurance process.

Once models have been defined, the following steps should be used to verify the mea-
surement log. First, the appropriate models are selected based on the integrity measurements
shown in the log. The CSP models are then composed together into one FDR script. The
attesting platform’s measurement log is converted into a process showing the TPM’s actions.
Next, FDR2’s trace refinement checker is used to compare the log against the system model.
The result of this shows whether or not the platform has behaved as the model specifies. An
example of this is shown in Figure 6.7 for verifying the system in Figure 6.5. It shows that the
measurement log refines the system model, which means that the traces defined in the log are

100

a subset of the possible traces defined in the model. In other words, the log shows that one
of the possible ways in which the model could have transitioned has been followed. In order
to inspect the resulting platform state, the ProBE tool can be used to identify the applications
that are still running, and the current process model. Many further checks are possible but are
left for future work.

Note that the tpmextendmeasurement values are all names rather than hashes: converting
to hashes requires an additional step before model execution. The actual cryptography and
hashing functions are also not modelled in this approach.

LogVerificationExample
channel

extend, tpmextend, finishextend

process
PCRLOG1 = tpmextend.1.bios→ ...

process
PCRLOG2 = tpmextend.2.bootloader→ ...

assert
SYSTEMH vt (PCRLOG1 ||| PCRLOG2...)

Figure 6.7: CSP log verification example

6.3.5 Problems

There are several problems with using CSP. The first issue is tool support. It is difficult to
observe the resulting platform state after the integrity measurement log have been verified.
FDR2 is also a problem – in the examples in Figure 6.5, FDR2 cannot check trace refinement due
to a state-space explosion caused by the caching process. Removing this allows for refinement
checking, but makes the model less accurate and implies that this approach will not scale well
for larger models.

The second issue is that models of configurations and scripts are far from intuitive. Con-
figurations are not equivalent to processes, but must be modelled in this way. Furthermore,
scripts present difficulties. Should the behaviour be described in the model for the script file, or
as an argument for the interpreter? The script is not the actual process performing the actions,
but it does make sense to encapsulate its behaviour in this way. As the script may not know
which version of the interpreter will be used, how does it state that, for example, BASH might
be expected to run? A similar problem is found with managed code. The interaction between
the JVM and Java classes, for example, is quite complicated, but CSP does not provide any
obvious language features for encapsulation or containment of processes.

The lack of process hierarchies also means that there is no sense of ownership: the process
representing the OS cannot kill other processes without explicit design, adding a great deal

101

of complexity. This problem is apparent when trying to model the idea of a user logging in,
starting processes, and then logging out. This should result in the run processes being killed,
but this is difficult to model. There are other minor issues when describing applications in
this style – the change in semantics means it may be harder for developers to describe their
programs. Furthermore, FDR2 does not support passing arbitrary strings as messages, which
is necessary for implementing Behavioural Attestation [4] and the loading of arbitrary files.
Directories also have to be modelled as files. This means that the /etc/init.d directory,
which is normally opened to find individual scripts, must be treated as one process. A better
abstraction would allow statements such as ‘load each process from list X.’ Finally, it is difficult
to compose applications which are unaware of each other in a sequential manner. This results
in an interleaved message-passing system which is counter-intuitive for describing sequential
actions.

Overall, the CSP approach is extremely promising and provides an elegant way to describe
some applications. However, further investigation of alternatives is required to overcome
some of the problems. The next section investigates whether a custom program description
implemented in Prolog would be a better solution.

6.4 Implementation in Prolog

The logic programming language Prolog can be used to implement both the description lan-
guage and the modeller. A full background of the language is not provided in this thesis, but
a good Prolog tutorial can be found at [100]. Prolog and CSP are very different: Prolog is not
a process algebra but a programming language, and therefore requires the development of a
custom process model and language for describing programs. However, it does inherently
support non-determinism, which is useful for matching the integrity measurement log to a
system model, as several non-deterministic cases are possible. For example, when the same
program is run multiple times concurrently on the platform, both of which can extend the
same measurements.

There are several immediate advantages over modelling in CSP. A Prolog implementation
must define its own process model, with custom-made data types for the programs and
processes involved, and can therefore be more intuitive to read and design than a CSP model.
As a result, programs can define internal state and how they transition from one state to
another. They can also be hierarchical, and communicate in custom ways. Furthermore, the
Prolog system that was developed can both validate measurement lists and produce plausible
lists based on a given set of programs. This may be useful during system or program design.

Configuration can also be modelled as a special case. In the implementation described
in this section, configurations override the behaviour of pre-defined applications. This makes
sense for many situations, such as when a feature can be turned on or off. To prevent impossible
configuration settings, the applications can define precisely which behaviour is overridable.
An example of overriden states can be seen in the JRE model in the following section.

102

6.4.1 Example models

The following models demonstrate the boot process of a platform, similar to the CSP models
discussed previously. Programs are modelled as transitioning state machines which can be
interleaved to model parallelism. Programs have a label and start-state, and each state consists
of an application name, state id, priority (lower is better, 0 is the minimum), measurement to
extend to a PCR (may be empty), and a next-transition function. Measurements are shown as
strings for readability, but must be converted to hashes on a real implementation. Transitions
are either to internal states (newstate) , the loading of a new application, or can be operators
such as parallel or choice. An app transition loads a new application, with the second part
of the tuple being arguments to the program. This program and its arguments are measured
automatically. An advantage of this modelling approach is that new types of transitions can
be defined so that application-specific concurrency or transitions can easily be implemented.
The models shown in this section demonstrate the flexibility of the Prolog-based approach.

The system model starts with a definition of each component on the platform using the
programme clauses. The first argument is the program name, and the second is the set of initial
transitions. In this case, there are 12 programs, including the BIOS, bootloader, operating
system (Linux) and various applications:

% Programmes are defined with a unique name and initial state.

programme(bios, [newstate(bios-init)]).

programme(bootloader , [newstate(bootloader -init)]).

programme(linux, [newstate(linux-init)]).

programme(cron, [newstate(cron-init)]).

programme(webservice , [newstate(ws-init)]).

programme(tpdmenu, [newstate(tpdmenu-init)]).

programme(psapp, [newstate(psapp-init)]).

programme(whoapp, [newstate(whoapp-init)]).

programme(backup-script, [newstate(backup-init)]).

programme(logrotate -script ,[newstate(logrotate -init)]).

programme(bash, [newstate(bash-init)]).

programme(jre, [newstate(jre-init)]).

The initial boot sequence is given below. The BIOS begins, has the chance to perform some
measurements (in this case, ’bios init’), and then loads the bootloader. Recall that each app
transition will automatically generate a measurement, so this does not need to be given in the
model. The bootloader is given the configuration file grubconf as an argument. This contains
the state bootloader-stage1which transitions to the operating system.

% The initial boot sequence: BIOS, and grub bootloader.

% Each programme can have multiple states, each state consists of

% The programme name, state name, priority, measurement and next

% transition

state(bios, bios-init, 0, ’bios init’, app(bootloader ,[grubconf])).

state(bootloader , bootloader -init, 0, ’bootloader init’,

103

newstate(bootloader -stage1)).

state(grubconf , bootloader -stage1, 50, ’grub config’,

choice([app(linux,[linux-passwd, linux-initd])])).

The operating system, in this example, also includes the loading of device drivers or
modules. To simulate the potential uncertainty in the order that these are loaded, modules are
run in parallel. Although in this example they exist as states, they could also be implemented
as separate components. The order of events is: the kernel starts, three drivers are loaded, and
then services and the TTY process start in parallel. Each kernel module extends a ‘loading’
message, which in a real system would be replaced with the hash of the kernel module.

state(linux , linux-init , 0, ’linux started’,

dothen(

parallel(

[newstate(linux-vid-drv),

newstate(linux-kbd-drv),

newstate(linux-usb-drv)]),

newstate(linux-finished -init))).

state(linux , linux-vid-drv, 0, ’loading video driver’, end).

state(linux , linux-kbd-drv, 0, ’loading keyboard driver’, end).

state(linux , linux-usb-drv, 0, ’loading usb driver’, end).

state(linux , linux-finished-init, 0, ’linux finished INIT’,

parallel([newstate(linux-svc),newstate(linux-tty)])).

The TTY process allows for multiple concurrent logins as either root or the user ‘PDUSER.’
The option of users and shells is defined in the linux-passwd states, modelling the /etc/passwd
file in Linux. In this example, root does not have a shell defined, and the login process has
been modified to extend two values: LOGIN on login and then the user name.

% The login and terminal process. Concurrent sessions are possible, and

% either a root user or a menu-based shell user may log in.

state(linux , linux-tty, 0, ’TTY’, parallel([newstate(linux-login)])).

state(linux-passwd, linux-login, 0, ’LOGIN’,

choice([newstate(tty-pduser), newstate(tty-root)])).

state(linux-passwd, tty-pduser, 0, ’PDUSER’, app(tpdmenu ,[])).

state(linux-passwd, tty-pduser, 0, ’ROOT’, end).

The following examples show the service daemons started by Linux. These include CRON,
for scheduled tasks, and a web service stub. The CRON program regularly checks the
CRONTAB file, which is a configuration file modelled in the crontab states. This runs the
backup-script and logrotate-script, both of which run inside Bash. Again, many additional
measurement states have been added to these models to show the additional behavioural
information that could be gained from this approach.

% The startup scripts.

state(linux-initd , linux-svc, 0, ’start services’,

104

parallel([app(cron,[]),app(webservice ,[])])).

% The CRON background task

state(cron , cron-init, 0, ’CRON STARTED’, newstate(cron-loadconfig)).

state(cron , cron-loadconfig , 0, ’loading cron config’,

dothen(loadconfig(crontab), newstate(cron-start))).

state(crontab, cron-start, 0, ’CHECKING CRONTAB’,

parallel([app(backup-script ,[]), app(logrotate -script ,[])])).

% Some example maintenance scripts

state(backup-script, backup-init, 0, ’starting backup’,

app(bash, [backup-script])).

state(backup-script, bash-script, 0, ’starting backup in bash’,

newstate(cron-start)).

state(logrotate -script, logrotate -init, 0, ’starting logrotate’,

app(bash, [logrotate -script])).

state(logrotate -script, bash-script, 0, ’starting logrotate in bash’,

newstate(cron-start)).

% Bash. Note that this just calls the script

state(bash, bash-init, 0, ’starting bash’, newstate(bash-script)).

% A stub for a Java web service

state(webservice , ws-init, 0, ’WS STARTED’, app(jre,[ws-java])).

The next model shows a Java runtime environment and stub web service application. The
JRE loads a number of libraries when it start up, and then gives empty states jre-loadclasses
and jre-app-start which can be overriden by the Java program given as an argument. In
parallel with running the application, the garbage collector is shown to run constantly, and
perform a measurement when it does so. The ifopenstates transition will call the next
transition only when the application itself has remaining states to transition to.

% The JRE with libraries , a garbage collector , and stub web service.

state(jre, jre-init, 0, ’JRE start’,

dothen(parallel(

[newstate(jre-measure-sys1),

newstate(jre-measure-sys2),

newstate(jre-measure-sys3)]),

dothen(newstate(jre-loadclasses),

parallel([newstate(jre-app-start),

ifopenstates(newstate(jre-gc))])))).

state(jre, jre-measure-sys1, 0, ’jre-libverify.so’,end).

state(jre, jre-measure-sys2, 0, ’jre-libjava.so’,end).

state(jre, jre-measure-sys3, 0, ’jre-libzip.so’,end).

state(jre, jre-gc, 0, ’garbage collect’, ifopenstates(newstate(jre-gc))).

state(jre, jre-end, 0, ’JRE shutdown’, end).

105

state(jre, jre-loadclasses , 100, ’’, end).

state(jre, jre-app-start, 100, ’’,end).

% These are examples of overriden states, in this case to show how

% a Java application can be started.

state(ws-java, jre-loadclasses , 50, ’service.jar’, end) .

state(ws-java, jre-app-start, 50, ’WS Java loaded’, newstate(...)).

6.4.2 Running the model

The algorithm for executing the model is shown in full in Section B.2 but is summarised as
follows. The iterate_start(_,_,_,_) statement is defined, which takes a starting program,
list of configuration files, measurement list, and final platform state. It will return yes or no,
depending on whether the given platform state and measurements are consistent. This is
calculated by treating the final platform state and measurement list as outputs of running the
given starting program.

Program models are executed by maintaining a list of currently-running programs, ini-
tially containing the first argument to the iterate_start function. A program is chosen
non-deterministically from this list, and allowed to output a measurement, based on the con-
figuration of the states it can transition to. This may alter its internal state, or result in a new
application being run and added to the list. This process continues while new transitions are
still possible.

6.4.3 Verification

To verify a measurement log, the following steps are needed. First, all the program models
are given as facts in the Prolog script through programme and state clauses. Having defined
the behaviour of all programs, the following statements need to be executed by the Prolog
interpreter:

iterate_start(bios, [], [... measurement list ...], PSTATE).

% iterate_state function, arguments:

% 1 - root of trust component ,

% 2 - any initial configuration options for the first programme ,

% 3 - integrity measurement log,

% 4 - resulting platform state.

This will return all possible PSTATE variables which could explain the measurement list,
assuming the BIOS program started first without any new configuration. Alternatively, if the
measurement list is left as an ungrounded variable (MLIST), the model can be used to generate
all possible measurement lists and states:

iterate_start(bios, [], MLIST, PSTATE).

106

Measurements are either shown as measure(App,Configs) called for application measure-
ments, or just text strings. A program state takes the form of a tuple, with program id
(generated at instantiation), program name, state table, parent process id, and the set of pos-
sible next transitions. An example measurement list and platform state based on the models
given in the previous section is shown below.

MLIST = [

measure(bios, []),

’bios init’,

measure(bootloader , [grubconf]),

’bootloader init’,

’grub config’,

measure(linux, [linux-passwd, linux-initd]),

’linux started’,

’loading video driver’,

’loading keyboard driver’,

’loading usb driver’,

’linux finished INIT’,

’start services’,

measure(cron, []),

measure(webservice , []),

’TTY’,

’LOGIN’,

’PDUSER’,

measure(tpdmenu, [])

]

PSTATE = [

(t38, tpdmenu, [...], t35, [newstate(tpdmenu-init)]),

(t37, webservice , [...], t35, [newstate(ws-init)]),

(t36, cron, [...], t35, [newstate(cron-init)])]

The PSTATE variable shows that three processes are still able to run: the tpdmenu program,
a web service and the cron daemon. The measurement list records all the measurements made
in the boot process of the platform, including three kernel modules, the operating system, and
more.

In order to simulate the caching behaviour of IMA Linux, the output of the iterate_start
function must be fed into another function to remove duplicate measure entries. This is
inelegant, but easy to implement. The alternative would be to have more complex program
definitions, which allow for internal variables to be kept track of. For the majority of programs,
however, this is unnecessary. An additional step is also required. All ‘measure’ entries must
be replaced with the actual SHA1 hash values of the executables. This can be implemented
as a simple look-up table. Other event strings, such as ’start services’, will also need to be
replaced with their hash, or might be removed.

107

Several explanations are produced which show what state the platform could be in. These
should all be iterated through to make sure none contain an untrustworthy state.

6.4.4 Problems

Unfortunately, the increased flexibility of Prolog has an attached cost. Models are more
complicated, as is the interpreter. This makes it more likely that an error will be made
in a model, reducing accuracy and trustworthiness. Furthermore, this makes it harder to
standardise models, and more difficult to assess whether a model is a reasonable approximation
of the component. Part of the added complexity comes from the fact that concurrency must be
programmed in, unlike with CSP. Finally, there are issues with verification. Prolog performs
a depth-first search, and the model implemented here can go into infinite loops, endlessly
extending the measurement log rather than taking a different path. While this could be fixed
to some extent, it does spoil the elegance of the solution. By having to manually implement a
breadth-first search, many of the benefits of using Prolog are lost.

6.5 The TPDMenu Shell

Figure 6.8: An example instance of PDMenu.

One of the problems discussed in Section 6.2.3 is of using attestation to have trust in future
behaviour. This can only be achieved if the attested processes all have well-defined future states
and no new executable has the chance to be launched at any time. This is not possible when
user-input or administration is allowed at a Unix shell, as is often the case. One alternative
is to provide limited administration through a pre-defined menu, for example, menus used
by application servers to configure web services. However, these tend to be part of a larger
middleware stack, and work in Chapter 5 has avoided putting these on attested platforms.

A light weight alternative is a menu-based command shell. This restricts the administrative

108

user to just the commands presented on the menu. If set as the user’s default shell, it should
be infeasible to break out of. PDMenu [89] is one such shell, which has a simple configuration
file defining the menu commands that can be executed. PDMenu was modified to support
integrity measurement so that every command string is measured before being run. As the
kernel still measures the actual binaries, this means that all actions are measured before being
run. An example of the menu configuration file can be found in Figure 6.9, and an example
of the menu itself in Figure 6.8. In order to guarantee that this shell is running, and not any
other, the kernel’s login program will measure the shell launched.

Menu-based shells can also be used to implement ‘break-the-glass’ style policies [62]. These
allow emergency actions to be performed, so long as they are reported or result in additional
constraints. The menu item ‘exec:[emergency] Open a BASH shell’ given in Figure 6.9 is
an example of this. A bash terminal can be opened, but results in PCR 12 being extended.
This will be reported in attestations, and data can be sealed to the value of PCR 12 so that it is
made unavailable after this action. To maintain a record of this event after system reboot, TPM
counters can be used in a similar manner to the ballot box implementation in Appendix A.

An example of a TPDMenu CSP model is shown in Figure 6.10, complete with a modification
to the /bin/login program at the time in which the /etc/passwd file is read, and a shell is
started. In this case PCRs are invalidated when a BASH shell is run. Note that this model
demonstrates configuration.

menu:main:Main Menu
exec:Change administrator password:p:passwd
exec:Vi::vi
exec:Start rmiregistry:p:rmiregistry &
exec:Kill rmiregistry:p:killall rmiregistry
exec:[emergency] Open a BASH shell::

./jtt.sh pcr_extend -f emergency.txt -p 12; bash
exec:Process Viewer:truncate:ps aux
exec:Who’s online?:truncate:echo "These users are online:";w
exec:Show IMA measurements:display:cat /sys/kernel/security/ima/ascii*
exec:Display event Log:display:cat ./menulog.txt
exec:Show PCR values:truncate:./jtt.sh pcr_read
exit:Exit

Figure 6.9: An example PDMenu terminal configuration file

A Prolog version of the TPDMenu shell is defined below. It is given the pdmenurc argument
at login, simulating the real behaviour of the shell and its configuration file. In this example,
the configuration file allows the user to run the ps and who commands.

% The menu-based shell.

state(tpdmenu, tpdmenu-init, 0, ’TPDMENU START’,

choice([newstate(tpdmenu-exit), newstate(tpdmenu-menu)])).

state(tpdmenu, tpdmenu-exit, 0, ’TPDMENU EXIT’, end).

state(tpdmenu, tpdmenu-menu, 0, ’LOADING MENU’,

dothen(loadconfig(pdmenurc), newstate(tpdmenu-menu-config))).

109

% Menu configuration: choice between two options.

state(pdmenurc , tpdmenu-menu-config, 0, ’TPMENU CHOICE’,

choice([app(psapp ,[]) , app(whoapp ,[])])).

% Some example menu options

state(whoapp, whoapp-init, 0, ’who launched’, end).

state(psapp, psapp-init, 0, ’ps launched’, end).

TPDMenu is an example of a program which has a simple model and can make integrity
measurement more meaningful. By modelling the configuration and the application, it is clear
that only certain actions are possible and therefore that the platform may be trusted for the
duration of this boot. The configuration file is easy to parse, and effectively works like a
whitelist.

TPDMenu
process

TTY = launch?shell→ (launchreq!tpdmenu→ STOP)
2

(extendreq!invalidatepcr
→ hasextended.invalidatepcr
→ launchreq!bash→ STOP)

process
TPDMENU = launch?tpdmenu→ TPDMINNER

process
TPDMINNER = extendreq!started→ hasextended?started→ TPDMCONF

process
TPDMQUIT = extendreq!finished→ hasextended?finished→ TPDMENU

process
TPDMCONF = extendreq!who→ hasextended?who→ launchreq!who

→ TPDMCONF
2

extendreq!ps→ hasextended?ps→ launchreq!ps
→ TPDMCONF
2

TPDMQUIT

Figure 6.10: CSP model of the TPDMenu menu-based shell

110

6.6 Discussion

Problems encountered with Prolog and CSP implementations have highlighted some interest-
ing further issues. It seems clear that the CSP model works well for relatively simple processes
without hierarchical behaviour. The tools can scale well until memory is required, making
them appropriate for early on in the boot process. The Prolog system is much more flexible, and
more suited to describing complicated applications. By using both tools, many of the problems
can be reduced. However, the overall conclusion of these attempts is that the problem would
be greatly reduced if the amount of software was also reduced. A smaller operating system
and less middleware would aid in verification and modelling. There are some further issues
and design decisions which are discussed in the rest of this Section, including where to store
hash values, how to integrate modelling into the build process, dynamic roots of trust, the use
of a measurement agent as an alternative, and more.

6.6.1 Program hashes: Part of the model?

One of the most difficult design choices in modelling has been where to include binary hashes
of programs. These are recorded in the RIM of the application, but should they also be in the
model? The problem is that the program responsible for measuring the hash is, in fact, the
program that loads the binary, not the binary itself. Therefore, it makes sense to include the
hash in the preceding component. Unfortunately, this is a bad idea in terms of encapsulation:
the hash is something known by the developer of that piece of software, and as they provide
a RIM anyway, it should arguably be at the start of its own model.

This problem can be partially solved by not using hashes in the model, but matching them
later on. For example, the BIOS process measures the place-holder string ‘bootloader’ rather
than a hash. When the model comes to be validated, the actual hash in the IML is replaced.
The hash is still important and must be processed – it validates which bootloader model to
use. In more complicated scenarios, such as IMA, an alternative solution was to make each
application wait to be measured before allowing it to continue.

6.6.2 Integration into the build process

Creating program models is a tedious task and there is no guarantee of their accuracy. A more
appealing approach is to generate models from the source code of the application. In this way,
developers can release a trusted RIM of the application, along with a model, requiring little
additional development effort.

There are several promising approaches for implementing this idea. An aspect-oriented
system could separate the use of PCRs from the rest of the system, and then publish a model
based on just these aspects. Win et al. [237] have already discussed separating security func-
tionality through aspects. Alternatively, a model-driven approach such as that taken by Booster
(see Section 2.4.4) would allow parts of the original model to be reused for specifying PCR
usage. Other systems such as CHSM [120] allow programs to be written with their state chart

111

in mind.

6.6.3 Modelling further actions and constraints

To simplify models only PCR events have been described. However, several other actions
could potentially be included. The TPM Quote operation, for example, could be part of the
platform description. This would add further legitimacy to the model as the measurement log
must describe a platform state in which a TPM Quote could have happened. Other events of
interest could be exception handling: what happens when something unexpected occurs on
the platform? What gets extended into PCR logs? Timing information might also be useful.
These refinements all depend on the accuracy of the model for PCR extend actions and are left
as future work.

One drawback of the proposed approach is that any access controls implemented by a higher
level program (such as the operating system) might prevent an application from extending a
PCR. This would have uncertain consequences depending on the error-handling code in place
at the application. Furthermore, memory protection and isolation are not modelled at all which
may result in invalid trust assumptions. Introducing access controls and memory protection
would make the models significantly more complicated. However, it may sometimes be
necessary. In the CSP IMA model in Figure 6.5, more filtering of messages on the ‘extendreq’
channel would be one approach to dealing with applications that are not given access to
PCRs. Rather than replying with a ‘finishextend’ message, either no response could be given
(resulting in deadlock for the application) or an error-handling routine could be specified.

The proposed approach could also be extended to non-PCR, software-based event mea-
surement. For example, some virtual TPMs [14] use a trusted software component to record
hash values instead of the TPM for performance and management reasons, as does the ap-
proach taken by Cabuk et al. [29]. These alternative measurement approaches still have the
same fundamental abstraction and can be seen as just another set of PCRs. They could be
modelled by this system without significant modification, although the trustworthiness of the
‘soft PCRS’ could not be assumed.

6.6.4 Late launch

The models designed in Section 6.3.1 and 6.4.1 assume a static root of trust, from the BIOS
onwards. However, a dynamic root of trust would reduce the measurement list. Producing a
model of a dynamic root of trust would be interesting future work, particularly as it involves
a resettable PCR.

Indeed, this method would be immediately applicable for describing and assuring systems
developed using the Flicker [131] and TrustVisor [129] systems described in Section 3.2.14. The
sequence of executing PALs would be described on measurement logs, which would become
increasingly complex, particularly if many are operating concurrently.

112

6.6.5 Multiple platforms

Assuming a complete platform state can be modelled using methods discussed in this chapter,
the next step would be to combine PCR measurements from multiple platforms, to see if they
would work together in a compatible and trustworthy manner. Particularly for web services,
this would mean that composite services could be modelled usefully.

6.6.6 The TCG Platform Trust Service

An alternative to event reporting is using a trusted agent on the attesting platform to report
on platform state at runtime. The TCG Platform Trust Service [208] is an example of this
approach. The PTS software is measured as part of the trusted computing base of the platform
and can then be requested to report on the integrity of important files and applications in
memory. This approach has many advantages, providing dynamic, runtime information
about the platform and supposedly avoiding the need to adapt user-level programs to support
integrity measurement. It can also be used to report the content of configuration files and
system settings.

However, the PTS has several problems. Firstly, it places a large and complex application
in the trusted computing base of the platform. If the PTS is capable of analysing programs
in memory, reading arbitrary files, and communicating with a third party, this presents a
security concern. The OpenPTS project [155], for example, is made up of 16 thousand lines of
Java (line count generated using David A. Wheeler’s ‘SLOCcount’) and only supports basic
reporting. Runtime compromise of the PTS would result in the platform becoming completely
untrustable. While there may be no way to completely avoid this threat, a more robust and
auditable approach would be beneficial.

Another problem is that the PTS is responsible for selecting the hardware and software
that is reported beyond the trusted computing base [208]. This means that the attested state
of the platform will rely on the challenger asking the PTS the right questions, and assuming it
answers them correctly. While it might sound reasonable for the challenger to ask the PTS to
measure files for it, it is not always obvious which files are important. Many applications can
be configured using different files sometimes with a priority order. If the requester looks at
the standard location for Apache’s httpd.conf, for example, they may miss the configuration
passed in at the command line. This becomes even more complicated when considering
applications such as the JVM, where class loading rules are elaborate.

Furthermore, measuring configuration files is only one part of the problem. The challenger
must understand how to analyse them to assess trustworthiness. In some cases this might be
checking for one particular setting (PHP’s register_globals being a good example of a single
configuration setting with known security issues) but often it is more complicated. The general
problem of being able to process and understand configuration files in any format appears to be
a significant challenge. This is also true because the line between a static configuration file and
an application is blurred. Some programs (such as Linux distributions) use bash scripts to alter
the platform, and Java classes could also be considered data rather than code. Moreover, some

113

files contain sensitive information, such as passwords or port numbers, which a challenged
platform will be unwilling to release. A generalised scheme for representing these files seems
necessary.

The root issue lies in the fact that a PTS breaks application encapsulation. Only a program
itself can know which configuration it is loading, and how it should be properly interpreted.
The same is true for user input, environment variables and command line options. A PTS can
be configured to attest some of this information, but full comprehension is probably infeasible.
The burden of integrity measurement should fall on the application, not an external runtime
agent. Furthermore, every PTS configuration will be entirely application and context specific,
with no generality. This means that companies will be forced to independently produce policies
for similar situations.

6.7 Comparison With Related Work

Some of the techniques used in this chapter refer to fundamental computer science concepts.
Applications are modelled similarly to concurrent hierarchical state charts [120], with the
Prolog model allowing similar transitions and structures to Petri nets. Some of the models
shown in this chapter are sequential but non-deterministic, and can be considered Kripke struc-
tures [27]. However, having multiple concurrent Kripke structures means that process algebras
are appropriate for modelling each component. A great deal of literature exists on CSP [174]
and its use for model checking systems, including the FDR tool and trace refinement [64].

In trusted computing literature, process algebra and model checking have rarely been
used. Rohrmair [173] has analysed trusted computing protocols in CSP and created similar
boot models to those presented in this chapter. However, the focus of his thesis is verifying the
integrity reporting process to identify attacks, rather than aiding the challenger in identifying
trustworthy platforms. He demonstrates that simple time-of-check-time-of-use issues are
present, and suggests that a trusted agent might help. He also identifies that the measurement
lists may not scale and might become unmanageable. The main difference with the work
presented in this thesis is that CSP is used as a method for identifying platform state, and is
not used as a formal verification tool in the same manner. Indeed, it is just one step in a more
complex process. Furthermore, this chapter includes many more examples and an alternative
implementation. In other related work, Pitcher and Riely [165] use a form of the π-calculus to
specify and check enforcement of access controls on attesting platforms.

The event reporting approach has been used before, and perhaps the most relevant work
is in various papers by Naumann et al. [147] and Alam et al. [4] on Model-based Behavioural
Attestation. They propose to log and attest to all behavioural updates. Their verification
framework has been refined for enforcing usage control, rather than the validation of reported
attestations. The requirement for a domain-specific verification process is common: the ap-
proach suggested by Naumann et al. [148] for the Android platform requires a new process,
as does the UCLinux [111] platform. These example strengthen the argument that a common
and composable method for describing PCR event-measurement schemes is required.

114

Log verification with trusted computing technology has been discussed by Huh and Mar-
tin [93], although with a focus on maintaining the integrity of logging components, rather
than verifying the meaning of the logs themselves. Semantic Remote Attestation (see Section
3.2.4) tries to make attestation more meaningful, but does so by attesting runtime properties
as logged by a virtual machine. This approach is reasonable, but requires all programs to be
running under the trusted VM. It would be possible to model semantic attestation within the
framework proposed in this chapter.

Another approach for verifying integrity reports (and integrity measurement) is taken by
Datta et al. [53]. They use a concurrent programming language to specify, in detail, exactly
the operations performed during authenticated boot, in order to prove properties such as code
execution. Their approach is low-level, focusing on trusted computing primitives, memory
separation and protocols. Their concern is primarily with proving safety and security proper-
ties, rather than associating high-level system state with attestations. Whether their approach
will scale to a real runtime system is unclear. Conversely, the approach taken in this chapter is
intentionally high-level, and assumes properties such as memory isolation and the trustwor-
thiness of PrivacyCAs, and software implementations. Abadi and Wobber have also attempted
to reason about attestation using an authorization logic [1].

A further solution to the increasingly complex task of integrity measurement in a virtualized
platform is given by Cabuk et al. [29]. They propose using standard integrity measurement
to measure the usual boot process up to a new, pre-VM component called the ‘Software-based
Root of Trust for Measurement (SRTM).’ The SRTM is responsible for collecting further mea-
surements from VM instances. This provides a hierarchy of measurement, and is further
elaborated to provide a solution to different integrity dependency models, including com-
pletely independent virtual machines and those that depend on each other or common shared
components. The relation to this chapter is that integrity dependence models ought to be mir-
rored by integrity measurement models. The trustworthiness of the integrity measurement
system is dependent on whether this is the case. Interesting future work would be to integrate
these concepts further, or perhaps derive the true dependence model from the measurements
provided and identify any discrepancies.

6.8 Conclusion

Existing approaches for interpreting measurement logs are generally restricted to only sup-
porting a simple whitelisting policy. More sophisticated assurance requirements are difficult
to implement, and generally either rely on a runtime measurement agent [208] or are ad-hoc
and specific to a particular problem [148]. This chapter provides an alternative, a framework
for any system which uses integrity measurement to report on more detailed behaviour of
the platform. This allows a picture of platform state to be built from the measurement log
in combination with models of program behaviour. Two implementations have been investi-
gated, using CSP and Prolog. Issues with both have been discussed and act as a good starting
point for future development of a generalised, standard verification system. However, more

115

work is required in order to overcome some of the issues, particularly the description memory
protection and dynamic roots of trust. From the experiences gained by modelling several
real components it appears that a combination of the approaches used in this chapter will be
appropriate.

The strength of this process – the fact that it does not require a custom process or runtime
agent – is also a limitation. Applications must be accurately modelled and not suffer from
unrecognisable remote attacks. While the accuracy of the modelling is probably reasonable,
as PCR-usage models are small and simple, this is still a concern. Potential solutions to
this problem have been discussed in Section 6.6.2 and a further analysis is carried out in the
evaluation. This is left as future work.

However, a more important limitation is that models only describe PCR usage, not overall
behaviour. As a result, users still cannot be sure of the behaviour of a remote platform. This is
particularly true if they have no experience of using it in the past, or if it is running custom-built
software. This is true of most web services: they offer unique functionality, and do not have
readily available source code for analysis. The next chapter looks at connecting more detailed
functional behaviour to attestations, with exactly this problem in mind.

116

Chapter 7

Uniting Program Definition and
Platform Attestation

Remote attestation suffers from the semantic gap problem, explained in Section 3.1, since in-
tegrity measurements describe only the execution state of the platform, not its trustworthiness.
While the previous chapter demonstrated how to link integrity measurement to some notion
of platform state, it is still not easy to work out whether the platform will behave as expected.
The argument put forward by Proudler [169] and the Trusted Computing Group is that this
knowledge can be gained through previous experience of the platform and applications in ques-
tion. As discussed in Section 2.1.1, however, this may not be sufficient for web services. In
particular, remote services are hard to gain past experience with, as their implementations may
be updated frequently.

In addition, web services are likely to offer some form of unique functionality, which
must by definition be unknown to external users. Attesting to custom-built software [134] is
difficult because of the lack of reference values to compare against. No public hash values
will exist of the application, except those published by the developers themselves. Should the
developers introduce flaws, maliciously or accidentally, then this reference measurement has
little purpose. Service users can only hope that the service was implemented correctly.

To bridge the gap between attested binaries and platform behaviour, this chapter looks at
creating compile-time guarantees of service applications. A shorter version of this work was
originally published in conference proceedings [121].

7.1 Attesting Platform Behaviour, Not Execution State

Rather than attesting to the binary image of an application, it would be more useful to know
the source code that built it. Although there are dangers in assuming that the semantics
of the source code are directly implemented by the binary [217] it can be argued that the
increased behavioural knowledge obtained from the source code is still a significant advantage.
Furthermore, the area of code analysis has been well-explored, with known techniques for

117

proving properties of small applications (see Section 2.4). If it were possible to attest to
software with proven code properties, the semantic gap problem would be reduced.

A basic scheme, therefore, would be to release the source code of the application that needs
to be attested and let users analyse it themselves. They would then know what it can do, and
be able to compile it, creating a comparison hash value. When the application was run by a
remote platform, and attested, they would be able to match the hash value present in PCRs
against their locally compiled version. There are a number of assumptions necessary for this
to work in a web services scenario:

• The user must be capable of analysing the code. This may depend on the availability of
numerous code libraries, operating system features, and so on.

• The middleware and OS running at the web service must also be trusted by the user.

• All important configuration settings must be made available.

• The middleware and OS of the web service must be attestable. Each part of the software
stack must support integrity measurement. It must be possible for the user to receive a
remote attestation and interpret it. This implies the existence of an integrity management
infrastructure, which has a whitelist of trustworthy pieces of software. Every binary
running on the service platform will need to be on this list.

While the last three points have been addressed in previous chapters, a number of prac-
tical problems remain. Application providers may be unwilling to release their source code,
particularly if it offers some form of unique functionality. Users may find it difficult to recreate
the same build environment as the provider, which would alter the comparison hash value.
Much more significantly, the code analysis may be difficult, and it is unreasonable to expect all
end users to do it themselves. One solution might be to devolve compilation and verification
responsibility to a trusted third party. However, the introduction of an additional party would
be worth avoiding if possible, as attestation already suffers from too many trusted authorities
(see Section 3.1).

The rest of this chapter proposes to use remote attestation to allow the provider to perform
the verification process and then demonstrate that they have done so to the user.

7.2 Trustable Remote Verification: Establishing Properties With-

out Source Code

There are two main approaches to program verification. It can be done by a trusted third party,
but they may charge a high price for their services. The alternative is to verify an application
locally: if source code can be inspected before compilation, any errors can potentially be
spotted before the application is run. However, given the size of any complex application,
even a highly skilled programmer would struggle to spot potentially erroneous behaviour in
source code. This has been improved by Proof Carrying Code [149], where the majority of the

118

effort is carried out by the application distributor. However, this is not a suitable solution for
web services, where all applications are running remotely. Users have no idea what source
code is being run at the service, and have no way of verifying it. Neither third-party nor local
analysis can therefore be considered appropriate for service-oriented computing.

The rest of this chapter introduces the novel concept of trustable remote verification, a way
to let the provider perform verification and then prove to users that they have done so. An
overview of how this is implemented using trusted computing and the authenticated-boot
process is shown in Figure 7.1.

Root
Of Trust 1 BIOS

Boot
loader2 OS3 Verification Script4

JML Annotations

Compiler

Analysis Result

Compiled WAR

Code analyser

Source code

Source code

Measures &
extends to PCR

creates

6

TPM Quote + Log

loads

Measures & extends
5

creates

TPM

Figure 7.1: An overview of the trustable remote verification process, showing the order of
execution and all items measured into PCRs.

7.2.1 Overview

The principle behind trustable remote verification (TRV) is the use of TPM attestations as long-
term credentials. The service provider (W) performs program analysis using a local machine
(the verification platform, V) and then attests the result. The relying party can then check the
attestation to see if the verification process has been carried out properly, and what the results
were. To do this, V must authenticated-boot into a trustworthy OS, which measures and
extends each step into a PCR. After boot, the annotations (Wann) which represent the service
contract are measured. These will specify some important property of the service which the
requester requires (see Figure 7.2 as an example). Then a program verifier (TV) is measured
and loaded, and the source code (Wsrc) is analysed against its annotations. The result of this
step (TVres) is also measured and extended into a PCR. Next, the source code is compiled by
a trusted compiler, TC. A hash of it and all the compiled binaries (Wbin) are measured and
extended. At the end of the process, a quote is produced which contains two PCRs, holding
measurements:

119

/*@ requires

@ accFrom != null && accTo != null && amount > 0;

@

@ ensures

@ ((accFrom.getBalance() == \old(accFrom.getBalance())) &&

@ (accTo.getBalance() == \old(accTo.getBalance()))) &&

@ (errLog.content.theSize == \old(errLog.content.theSize+1))

@ ||

@ ((accFrom.getBalance() == (\old(accFrom.getBalance()) - amount)) &&

@ (accTo.getBalance() == \old(accTo.getBalance()) + amount) &&

@ (transLog.content.theSize == \old(transLog.content.theSize+1)));

@*/

public void makeTransfer(Account accFrom, Account accTo, int amount) {
...

}

Two outcomes are specified in the above code: either the account balances change in the expected way,
or both remain the same. An entry is added to the transaction log in the first case, and to the error log
in the second.

Figure 7.2: An example web method, complete with JML annotations.

Wquote = QuoteAIK−SK(W)1


 pcr0−10 = { boot process }

pcr11 = {TV,TC,Wann,TVres,Wbin}

 , nonce

 (7.1)

This is a credential, which will be used by the provider to show that a program binary, Wbin,
was compiled from source code which was verified against its annotations, with analysis result
TVres. In the ideal case, TVres would state something simple such as ‘verified.’ The credential
can be checked by making sure that TV, TC and the boot process are all trustworthy, checking
that TVres does not show any errors and finally verifying that the annotations are sufficiently
strong for the program to be trusted. Note that a nonce is unnecessary as the freshness of this
credential does not affect its trustworthiness.

7.2.2 Assumptions

Trustable remote verification relies on several assumptions.

• The platform performing verification has a valid TPM which has not been tampered
with.

• There exists a verifier, a piece of software which can read the program contract and source
code and automatically decide whether the latter corresponds with the former. This must
be trusted to work properly by the client. In the proof-of-concept implementation, JML
annotations are used as a contract and ESC/Java2 is used for verification.

120

• There is a simple operating system, again trusted by the client, which the verifier can run
on without interference. This OS can measure every step of its boot process into PCRs.

• The verifier, compiler and operating system have SHA-1 identities known to the client.

• Any third-party libraries that the verified application uses are either annotated and
verified with the service, or their identities are published by the server and trusted by
the client.

• All configuration files used by the web service or the verifier are made available to the
client.

7.2.3 The new chain of trust

TRV decouples the process of certification and application execution. Once the web service
binary has been verified, it can be run on any service which supports secure boot, and the
same credential can certify it. This is desirable from an end-user perspective, as the amount
of effort required to establish trust in a set of remote services (perhaps implemented for load-
balancing reasons) is greatly reduced. The disadvantage is that the chain of trust is now longer,
and contains potentially two TPMs, one for the web server (TPMW) and one for the verifier
(TPMV).

BIOS Boot Loader OS Verifier (TV) &
Compiler (TC)

BIOS Boot Loader OS
Web Service
Application

TPM
W

Web
Server (W)

Verifying
Platform (V)

TPM
V

CRTM

CRTM

Figure 7.3: The chain of trust for trustable remote verification, showing execution order and
measurement storage.

7.3 Prototype Implementation

Two parts of this system were implemented: the credential-creation stage on V and requester
validation stage at R. In the prototype system, services are written in Java, with methods from
one class exposed as a web service. This class is annotated with JML assertions, which are the
properties that this service promises to fulfil. ESC/Java2 is used as the program verifier (TV),
and Ant plus the standard Sun JDK are used as the compiler (TC). The result of compilation is
a WAR file which is run from the Glassfish Application Server.

121

7.3.1 Server credential creation stage

The program verification stage requires the following steps:

1. The service source code and configuration files are placed onto V.

2. An AIK certificate is obtained from a Privacy CA.

3. The trustworthy OS with secure boot is started.

4. The OS measures the JVM, and then runs the verifier. This measures the following items
into the TPM:

The front-end JML annotations of the service.

All libraries and files necessary for compilation.

The WAR archive (binary) created by compiling the service.

The output of running ESC/Java2.

5. A quote is created, signed by the AIK, containing two PCR values. One has the current
OS and application measurements and the other has all the measurements made by the
verifier.

Additionally, an archive (see Equation 7.2) is created to help the service requester validate
the measurements. This includes references to external libraries, ESC/Java2 output, JML
annotations and a log of the entire process. It is used by the requester to validate the process
later on. References to external libraries should point to where the end user can download the
library to verify its identity.

Warch = {Wquote, [libraries],Wann,TVres, log , [config files]} (7.2)

7.3.2 Credential validation steps

The service requester, R, must obtain and verify the credential that was created using the steps
in Section 7.3.1. This requires the requester to download Warch and Wquote and then do the
following:

1. Check that the software running on W is trustworthy, and that the web service application
has the identity Wbin, equal to the one in Wquote. In other words, make sure that the
executing web service binary matches the compilation output of the server credential
creation stage.

2. Check the AIK used to sign Wquote.

3. Check that V’s OS and boot process are trustworthy.

4. Check that the verification program (including TV and TC) is trustworthy. This would
probably involve checking against a public list of verifiers (with available source code)
which are known to be sound and complete.

122

5. Warch contains a log of the verification process, which will need to be checked against the
PCR values held in Wquote.

6. Each individual step described in the log must now be verified. The server must provide
any comparison resources that the client does not have access to. This includes:

All configuration files used in the verification process.

The external libraries used and any assumptions made about them.

The verification result itself.

The verified service annotations.

Additionally, some useful service properties must be described in the annotations, and the
verification result should not show any situation where they do not hold. In the prototype
implementation, some of the checks described are performed manually, but it would be feasible
to create automated tools. Part 1 and 3 require an integrity management infrastructure, such
as IMI [142].

7.3.3 Configuration files and compilation with Ant

Because the credential-creation step is complex, involving program compilation and creation
of web service artefacts, there are a number of configuration options. These could potentially
make the verification process untrustworthy (for example, running ESC/Java2 on one piece of
software and then compiling and measuring another). Therefore, the configuration files are
measured and included in Warch.

Program compilation can be complicated, involving libraries, configuration, and archive
creation. As a result, most Java developers use Ant rather than just javac. For the compilation
step of the prototype, the same issues are present, so the Ant build file approach seems sensible
to reuse. However, Ant is an extremely powerful program and it might be possible to write a
malicious build file. This could make it appear that the program was compiled verified when
it actually hadn’t been. In order to stop this from happening, the build file must be measured
into the quote and included in Warch. It must also be checked by the requester, along with all
the libraries and files it references. In the prototype this must be done manually. This problem
could be avoided (to some extent) by insisting on the use of a safe subset of Ant, rather than
allowing the whole set of features.

7.4 Evaluation and Observations

7.4.1 Benefits of trustable remote verification

In trustable remote verification, it is possible to determine, with a fairly high level of assurance,
something about what a remote service will do when invoked. This something will range from
a complete logical description of the functionality of the service, down to perhaps a simple
invariant. In the example given in Figure 7.2, the new assurance property is that the method

123

makeTransfer will at least revert back to our previous state rather than fail in an unknown
way. The error log is also guaranteed to keep track of any failures. In terms of security,
assertions about information flow could be used to be sure of confidentiality. JML has also
been used before for security properties [158]. Importantly, the remote verification process is
independent of the verification and specification tool, so any can be used.

No additional third party is required to create the service credentials, beyond a Privacy CA
which is likely to exist already. The client and server-side code needed to implement these
features is fairly small (the prototype is under 3000 lines of code), with the only significant
extra requirement being an operating system that supports secure boot. Furthermore, this
system allows for software update, as each new version of a service can be re-verified and a
new credential produced. This can be part of the standard build-cycle for a project. Another
key benefit of this system over the basic architecture is that the source code of the service never
needs to be revealed, not even to a third party. This would be attractive to a company with
valuable or confidential code.

7.4.2 Trustworthiness of the architecture

The strength of TRV can be measured by how difficult it is for a provider to falsely claim that
a service has certain properties. Any system can be broken through weaknesses in its trusted
components. In TRV, these include one (or more) TPMs, a verification OS, verification tool,
compiler and the software stack running at the web service. TPMs are designed to be immune
from software attack, and hardware attacks are non-trivial. They are therefore unlikely to be
the weakest point in the system.

The verification environment needs to be a trusted component. However, the verification
OS can be small and simple and only needs to be able to run a program verifier and compiler.
It does not need network access, or the ability to accept user input at runtime. Future CPUs
which run bytecode might be a good way of avoiding vulnerabilities, as might a microkernel-
based OS. The verifier and compiler, on the other hand, are a bigger issue. They are necessarily
complex systems, which accept input in the form of program code and configuration files.
Arguably, however, compilers must already be trusted, and there are several open source
compilers which have gone through considerable scrutiny. A weakness in the verifier would
be a problem. If it produced false negatives, it could then potentially certify a system which
does not maintain its properties. There is no obvious solution to this problem, but creating one
acceptable verifier or compiler is likely to be easier than creating many perfect applications.

Perhaps the most significant trusted element is the rest of the software running at the
web service. If a bug or vulnerability causes it to behave in an unexpected manner, then the
properties guaranteed by the web service application are irrelevant. This is why, in Chapter 5,
an architecture for limiting service middleware was proposed.

Overall, TRV is limited in the level of trust it can establish, and is not appropriate for
extremely high assurance systems. Instead, it would work best as an additional check for
service providers who are attempting to improve their perceived reliability in the marketplace.
In such a scenario, one threat is that a company with normally good intentions tries to subvert

124

the system for a new version of their service. They might try to rush a new feature, at the
expense of verification. TRV would make this much more difficult to do, and so the provider
would be more likely to spend the extra effort in verification. However, the strength of the
guarantee is directly linked to the verification tool, so higher assurance might be possible in
the future.

7.4.3 Multiple verifications

One useful property of this system is that the credential-creation process is entirely separate
from the runtime attestation. As a result, the prototype can be extended to offer multiple,
potentially independent verifications and certificates of the same service. For example, one
service provider could first verify their source code with ESC/Java2, producing a certificate,
and then do the same with an alternative program analyser. This might satisfy users who will
only trust a particular analysis program.

Furthermore, multiple organisations can verify the same service. Assuming they are given
the source code, they can all independently run a verifier and produce a certificate. This
significantly strengthens the chain of trust, as it is no longer ‘anchored’ by just one TPM. The
problem highlighted in Figure 7.3 – that two TPMs are now trusted – is no longer as significant
a problem, as the verifier chain can be repeated on different platforms, each one increasing the
trustworthiness of the chain itself. This might be useful for high-assurance systems, such as
e-voting.

7.4.4 Verifying multiple services

Verifying services which themselves contact other services have not been considered. This is a
common scenario, and a significant limitation of the prototype. However, there do not seem
to be any obvious reasons why any services which have also followed this scheme could not
be incorporated. These ‘sub services’ could be wrapped by a stub object, which asserts the
same annotated properties. This would not be verified, and instead all the certificates could
be presented to the user. Implementing this in a user friendly and secure manner would be a
challenge. There would also be other difficult problems, such as what to do when one of the
sub services is no longer considered trustworthy.

7.4.5 Attestation as proof of execution

It is possible to generalise trustable remote verification (and similar work) to use TPM attesta-
tion as a mechanism for generating proofs (in the informal sense) of program execution. TRV
is one example, as in fact the attestation just proves that a compiler and static checker have
been executed and produced a certain result. There are numerous other possibilities, as any
program can be shown to have run and produced a result. However, it is not possible to show
that a program has not been run, and full program verification is required to show that the
result is in any way useful or correct. However, this is still a useful feature. A general model,
using only TPM attestation, can show this technique fully.

125

TPM

Application

2. perform query
3. extend query &
 result
4. create TPM quote

1. send query

5. return result & quote

 TPM_Quote {
 pcr0­7 = config,
 pcr15 =

 {query,result}
 }

Figure 7.4: Using TPM attestation to produce proof of execution

One issue is that the values extended for one proof of execution must then be included
in the attestation for every subsequent request. This can be avoided by using a resettable
PCR for the result of the computation, although this has different security properties. As the
trustworthiness of the software running on the platform must be relied upon anyway, using
a resettable PCR should not alter the trustworthiness of the resultant value. However, this
might not be the case if the machine was compromised at runtime, the PCR reset, and a new
value inserted. Use of a resettable PCR is therefore only sensible when the software is resistant
to attack. This point is important, as the main benefit of providing a TPM-based proof of
execution is that it cannot be forged, even by an insider.

Optionally, a time stamp could be included in the query. This would be useful if the
computation was time-sensitive. Similarly, more contextual information, such as the platform
runtime state, could be extended to PCRs if it affects the outcome of the query.

This general approach is appropriate in many situations. For electronic voting, it might
provide proof of a cast vote (see Section 8.2.6). For a remote data source, it could provide
provenance information for the result of a query. In each case, should a vulnerability or bug
be discovered in one of the programs included in the measurement log, it would be possible to
trace which results were affected. If, for example, a badly implemented algorithm produced
inaccurate results, its implications could be discovered after the fact. This could be useful in
e-science and grid computing scenarios.

The advantage of tying execution to a TPM-generated guarantee is that it becomes difficult
to maliciously alter a result. This would not be the case if the result was signed by a key held
in software. Furthermore, this could combine information about the AIK to guarantee which
machine generated the result. See Appendix C for more details.

126

7.5 Alternative Implementations and Approaches

An advantage of trustable remote verification is that no specific compiler, source language
and verification technique is required. The most appropriate one can be used in any situation.
There are several possibilities beyond JML and ESC/Java, some of which are discussed in this
section.

7.5.1 Trustable remote compilation

Is there anything to be gained from removing the verification step and simply attesting to the
compilation process? There are situations where this may be useful. For example, parallel
work by Meng et al. [134] suggests that this would be useful for showing how a standard
application has been modified. In addition, it could be used to identify which bits of the
system need to be attested: those which affect the properties of the system. Alternatively, this
could be used to demonstrate, for example, which patches have been applied to a standard
Linux kernel. More exotic properties require a more sophisticated compiler, several of which
are discussed in this section.

Another advantage of attested compilation is the added provenance information. While
most developers will know which compiler they use each day, it is unlikely that many know
which compiler was used to create the related libraries or the compilers themselves. If an
earlier compiler was shown to be weak, or contain a hidden flaw, its full impact could be found
by referring to the chain of compilation certificates. Assuming the original compiler was not
flawed, any step in the compilation of subsequent compilers that is known to be untrustworthy
could be identified. This would make Ken Thompson’s “Reflections of Trusting Trust” [217]
attack more noticeable.

7.5.2 Booster

Booster (see Section 2.4.4) is one way of implementing trustable remote verification. The
compilation phase must include the Booster code generator, and the verification process need
only interpret the formally-described model in the build file. This relies on the fact that the
Booster code generator is correct, and will produce an end program with the same properties
as its specification.

The user could be given the entire build file as a property to rely on. This is similar to
releasing full source code, but would be easier to analyse. Alternatively, properties could be
derived from the specification in the verification step. These properties can be potentially
fine-grained, such as ‘no user can create a report and sign it off’ and about model correctness:
‘all students have a supervisor and all supervisors are member of a department.’ Some work
has already been done on reasoning about Booster specifications, including properties relating
to intra-object behaviour [31]. The certificate issued by the verification platform would contain
the list of properties guaranteed rather than the entire model.

Using properties rather than a complete specification makes it much easier to deal with

127

software upgrades. The issue is that if the model needs to change, perhaps to accommodate a
new data field, it must be re-compiled and lose all data sealed to the old application measure-
ments. Instead, any model with the same properties should maintain access to the old data,
no matter how many small changes are made. One solution is to use a ‘sealed-key’ approach
to encrypting data (see Section 3.2.12), much like in Chapter 5. When the model is compiled,
the certificate created by the trusted party includes a public key. Users encrypt sensitive data
with this key when it is sent to the service. The private part of the key is issued to the service
provider, but sealed to its current software measurements. It is therefore accessible only when
this specific compiled version is running. However, the difference comes when the model is
re-compiled. This time, the same private key can be issued to the service, sealed to the new
measurements. Old data therefore remains accessible. The only time when the private key
would not be re-issued is when the newly compiled model no longer fulfils the same properties
that the original did.

The advantage of this modification is that small changes to the model are no longer a
problem for the user or provider, as the same keys are used. The service provider can keep
using old data. However, it does mean that providers must be careful with the properties they
decide to guarantee. If too many are specified at the beginning, failing to meet one later will
result in a loss of stored information. It should be noted that the validation of other software
components will also need to be modified similarly to allow for upgrades.

In addition to specifying Booster properties, the model-driven approach may have other
advantages. In the previous chapter, one of the disadvantages to building a system model was
that the model itself had to reflect real application behaviour. The only thing linking the two
was the signed word of the application developer. With trustable remote verification, however,
a model-driven build process (demonstrated by Booster) could be reported, demonstrating
model compliance. This means that a previously unknown application can be fit into the
modelling scheme without difficulty.

7.5.3 Runtime checking

A similar but alternative approach to the one taken in the prototype is to use the JML com-
piler [112], jmlc, as opposed to the Java compiler. jmlc adds runtime assertion checks into the
program bytecode in addition to normal compilation. These will raise an exception if any of
the preconditions, postconditions or invariants fail. Except for a small performance hit, this
behaviour is transparent unless one of the assertions is violated.

The advantage of this scheme is that static analysis is no longer necessary. As a result, run-
time components such as configuration files and databases can be accessed without breaking
the assertions. However, the downside is that an untrustworthy service can make promises,
and then break when they are not fulfilled. This might result in lost data and an unreliable
system. The best this would be able to say is that if the service does not fail, it will work as
expected.

128

7.5.4 Runtime input validation

A specialised use of the runtime checking approach is to do runtime input validation. When
a web service receives data, it is first checked against the XSLT schema to make sure it is
syntactically sound. However, this does not show that the structure is semantically correct, and
could be maliciously (or unintentionally) formed to disrupt the service. To avoid this, JML
pre-conditions can be placed on the inputs of the web service front-end. Any messages failing
to meet these conditions will automatically be rejected. By specifying this behaviour at compile
time, users can find out the exact conditions on their requests, and be sure that malicious input
will not affect the service at this level. If it is assumed that XML-level vulnerabilities have
been eliminated with the split-service architecture described in Chapter 5, then this provides
further defence in depth. The JVM itself could have vulnerabilities, however, which are not
mitigated.

7.5.5 Using a PAL-based compiler

Another implementation option would be to take advantage of the Flicker [131] and TrustVi-
sor [129] systems described in Section 3.2.14. Assuming compilation and verification could be
performed in the limited late-launch environment, this would reduce the size of the chain-of-
trust on the verification and compilation platform significantly.

7.6 Comparison with Related Work

Several pieces of existing work cover broadly similar approaches to trustable remote verifi-
cation. Both the SAConf system [232] and work by Meng et al. [134] work in the same way,
and were developed in parallel with this (and published after [121]). SAConf is proposed
to be used for validating configurations and policies, and is not separated into the certifica-
tion and attestation stages as proposed in this chapter. The Tisa system proposed by Rajan
and Hosamani [170] has the same goal as TRV, but is implemented through a runtime mon-
itor attached to the web service. The advantages are that the service itself does not require
modification on annotation. However, the runtime monitor must be configured correctly,
and it must be possible to gain meaningful information from the traces and execution history
recorded. Moreover, it only provides a history of actions, rather than a statement of future
trustworthiness.

Certified compilation has also been the topic of much prior research. Hornof and Jim [91]
describe a system which provides a type-safety certificate for a subset of C. However, it
is assumed that the verifying party will perform the compilation themselves, rather than
attestation of this process. Appel et al. [8] have built a trustworthy proof-checker, designed for
Proof Carrying Code systems. This is particularly promising, as they have a TCB of only 2700
lines of code. This would minimize the chance of an attack on the verification platform. They
also have a good discussion of the difficulty of trusting compilers and verification.

129

7.7 Conclusion

This chapter has proposed a new mechanism for assessing applications without access to their
source code. This has the potential to reduce the semantic gap problem of attestation for service
platforms. The trustable remote verification approach is independent to the software verifica-
tion mechanism used, can be strengthened with multiple verification stages, and certificates
can be reused on different platforms. In combination with a minimal service infrastructure,
and trusted compilers and verifiers, it can finally allow a service provider to attest to their
current execution state in a meaningful manner. When combined with the modelling approach
described in the previous chapter, previously unknown applications can be composed together
with the rest of the platform to give a coherent and attestable picture of the entire system.

The last three chapters have introduced individual parts of this solution. In the evalua-
tion, the complete set of improvements are assessed to see how much more feasible remote
attestation of web services has become.

130

Chapter 8

Evaluation

The last three chapters have introduced solutions to the practical problems associated with
attestation and integrity measurement. This chapter will evaluate these contributions to de-
termine to what extent attestation can now be considered a feasible technique for assurance
in service-oriented computing. This is done by implementing an example service using the
methods proposed in the last three chapters. After explaining the evaluation approach in
Section 8.1, the example service is described in Section 8.2. Sections 8.3 and 8.4 provide an
analysis of the implementation and Section 8.5 identifies the attestable assurance properties.
Finally the thesis question is reconsidered in Section 8.6.

8.1 Evaluation Approach

To evaluate the contributions made in this dissertation the original problems with attestation,
as described in Chapter 3, must be revisited. These included privacy, semantic gap, runtime
attacks, whitelisting, trusted parties, performance, application compatibility, trusted path and multiple
domains. However, methods proposed to tackle these issues, as described in the previous
chapters, first need to be combined together to present a realistic platform for evaluation.
Although a few components were not implemented, most were, and the next section presents
the resulting system.

The modified system will then be assessed with regard to how much assurance can be
gained from attestations. The focus will be on practicality and security, as well as looking
at other associated overheads. For example, the use of trustable remote verification certainly
helps to provide additional assurance, bringing attestation and behaviour closer together, but
does require more effort from the developers and relying parties. It also has some potential
vulnerabilities. The key metrics will be improvements to the issues discussed in Chapter 3.

A ballot box for e-voting was chosen as the evaluation scenario. This is because it has a
limited number of features, making it possible to implement easily, but has security require-
ments. Particularly, it must maintain high integrity, despite being a reasonable target for
attack. Furthermore, it can be designed to take advantage of TPM features (making attestation

131

a sensible approach), and may rely on communication with another party, making the problem
more interesting. It is a similar problem to that of Attested Append-only Memory (see Chapter
3.2.3), often discussed in related literature.

8.2 The Complete Attestable Service Architecture

Appendix A presents the specification of a ballot box service, designed to provide voting
integrity. The TPM’s monotonic counter and PCRs are used to count the number of votes
submitted, and attestations provide evidence of successful ballot submission. This is a novel
contribution in itself, as well as using principles described in the literature on Attestable
Append-only Memory [43, 113]. More interesting, however, is how the service has been
implemented so that attestation does not suffer from the problems described in earlier chapters,
particularly when using PCRs for integrity measurement and recording votes. The system has
been implemented (apart from a few components) using the techniques described in the last
three chapters. Details of the development approach, integrity measurements and verification
procedure are outlined in the rest of this section.

8.2.1 Assurance goals

The goal of using trusted computing for a ballot box is to provide assurance in the integrity of
the voting process. Informally, the aim is to prevent votes from being modified after they are
collected. The following properties are guaranteed, assuming the software is trustworthy:

1. No message received will be modified. This property holds providing a secure channel
is established between the voter and the ballot box, the ballot box has been implemented
correctly, the correct software has been run (the authenticated boot-process pcr0−7 should
demonstrate this), and that the ballot box has not been compromised at runtime.

2. If the ballot box can report a fresh attestation and integrity measurement log which lists
every message and skips no counter values, then every message the application received
was recorded.

3. If any counter values have been skipped, the implication is that messages have been lost.
The period in which these messages were lost can be seen in the last complete timestamp.
Nothing can be inferred about these messages, as they could be due to the platform being
booted in another configuration and modifying the counter.

4. The order in which messages are recorded is the same as the order in which the application
received them.

However, the platform cannot guarantee that no messages were lost due to potential
hardware failure.

132

8.2.2 Architecture

Two services were required to implement the ballot box: the ballot box (BB) itself, where votes
are submitted and collected, and a time stamp (TS) service which could be requested to regularly
certify the current state of the platform. Both of these were split into trusted and untrusted
components as described in Chapter 5. This was automated by the build scripts (see Section
B.1) to make the process as simple as possible. The RMI interface, web service and WSDL
are all generated during compilation. These were then deployed on different systems and
connected together. For the evaluation, both back-end services were placed on one platform,
supporting authenticated boot, and the front-end services on another that did not.

One complication was the communication between the two services. The ballot box service
had to request a timestamp regularly. As the two services were both on the same platform, this
could be done through simple RMI calls. However, in the general case this wouldn’t work.
The solution was to provide a proxy on the untrusted platform, that could forward requests
from the ballot box back-end to the time stamp front-end, and back again. Figure 8.1 shows
all the components. However, it is likely that the ‘Time Stamp RMI Proxy’ and ‘Ballot Box
Front-End’ would be the same platform running two different processes. The proxy was not
automatically generated, but it would be straight forward to do so.

The result of this architecture is that only the two back-end services need to be attested by
a trusting party. As these are combined onto one platform, only this needs to be integrity-
checked.

In terms of software configuration, the back-end server is running a similar set of programs
to the platform used in Section 4.2. The same version of the kernel is in use, as well as the same
integrity-measuring JVM. The front-end is running the Glassfish application server.

Figure 8.1: Sequence diagram of a request to the ballot box evaluation example

133

8.2.3 Writing and compiling the code

The services were written in Java, and annotated using JML pre- and post-conditions, in a
similar manner to the approach used in Chapter 7. However, rather than using the ESC/Java2
checker, the JMLC tool compiled the code to automatically introduce condition checks. A sim-
plified build script for the Time Stamp service can be found in Section B.1. This demonstrates
the compilation of the base service code, then the JML-annotated interface, and then automatic
conversion to an RMI and web service. This file also shows how the build process goes about
measuring the compiled output, using TPM extend, TPM quote and a log file.

The code itself is unremarkable. The ballot box service interface has some pre- and post-
conditions applied. These are shown in full in Figure 8.2 and include:

• The getCurrentVotes()method, which returns a list of ballots, was defined to be pure,
having no side-effects.

• The addVote(...)method ensured that after being run, the getCurrentVotes()method
would return a greater number of entries. This could also state that the last entry was
the same as the argument given.

• The getHistory(Date start, Date end), which returned all logs of ballots cast be-
tween a certain date, was guaranteed to return only contiguous records. It would also
only return logs with a start date before the required end date, and an end date after
the required start date. This requirement was implemented as a separate verification
method.

No suitable conditions were applied to the ‘checkpoint’ method, which saved all current
ballots to a file, as well as an attestation. This was because it is not a pure method (it does
change internal state), but it has no visible side-effects to the user, except altering the result
of future getHistory(...) requests. This is difficult to describe concisely. The Time Stamp
service also had JML conditions, mostly for simple type checking, including a pre-condition
that the ballot box sent a valid AIK credential.

8.2.4 Server administration

On the back-end server, the TPDMenu (see Section 6.5) shell was installed to allow adminis-
trators to log in, but be constrained in their actions. In this case, administrators could start and
stop the RMI services, as well as the RMI registry. Root login into BASH is also possible, but
should result in the invalidation of a PCR, in this case PCR 11. This allows a remote user to
seal to the state of PCR 11, and make data unavailable should an administrator log in as root.
This functionality was not implemented in the prototype, but would be straightforward. All
administration must be through SSH or terminal log in. Login can be detected through IMA
extending the ‘pam’ authentication modules.

134

/*@ requires message != null;

@ ensures tbb.getCurrentVotes().size() >

\old(tbb.getCurrentVotes().size()); */

public void addVote(String message) { ... }

/*@ requires nonce != null && nonce.length >= 20;

@ ensures (\result != null) && (\result.getAttestation() != null);

@ ensures \result.getTickCount() > \old(getCurrentMessages().size()); */

public BoardLogAttestation attest(byte[] nonce) {...}

/*@ ensures \result != null; */

public /*@ pure @*/ List getCurrentVotes() {...}

/*@ requires start != null && end != null;

@ ensures historyComplete(\result, start, end); */

public List getHistory(Date start, Date end) {...}

public /*@ pure @*/ static boolean historyComplete(
List history, Date start, Date end) {

long startVal , endVal = -1;
long counterLabel , msgCount = 0;
for (int i=0; i< history.size(); i++) {
BoardLogSaveFile h = (BoardLogSaveFile) history.get(i);

if (h.getEnd() != null && h.getEnd().before(start))
return false; //history item ended before the start time

if (h.getStart() != null && h.getStart().after(end))
return false; //history item began after the end time

if (i==0) {
startVal = h.getCounterStartVal();

endVal = h.getCounterVal();

counterLabel = h.getCounterLabel();

} else {
if (h.getCounterStartVal() != endVal)
return false; // counter has skipped an item in the history

if (h.getCounterLabel() != counterLabel)
return false; // counter has changed label

endVal = h.getCounterVal();

}

msgCount += h.getAttestation().getBoardEntries().size();

if (msgCount != (endVal - startVal))
return false; //total count of votes is wrong

}

return true;
}

Figure 8.2: Code extracts demonstrating the JML in the Trusted Ballot Box service

135

8.2.5 Integrity reports

The running back-end platform, containing both services, has a total of 206 measurements.
As a point of comparison, this is 71 fewer than the service implemented in Section 4.2.2. This
platform was running two RMI services, the TPDMenu shell, accessed through SSH. Before
attesting, it had been queried by a remote platform to add a ballot to its store.

8.2.6 Verification model

The verification process includes use of the modelling approach defined in Chapter 6. This
requires a model for each program on the platform, all of which are combined to create a
full platform model. The following model is for the ballot box service itself. It shows how
the service transitions, and how PCRs are modified. It interacts with the JRE model found in
Section 6.4.1.

The launch script is defined as ws-script and launches the JRE application, with the
configuration defined in states ws-script and ws-java. The script itself will also be measured
as it is defined as a programme. The first state defined in ws-script overrides the JRE’s default
classpath to add the service archive. Recall that a non-zero third argument in state definitions
shows an overriden state:

programme(

ws-script, [app(jre,[ws-script,ws-java])]

).

state(ws-script, jre-loadclasses , 50, ’service.jar’,

end

).

The behaviour of the service is defined in the following states. The last state is idle, and
will transition depending on the input received:

state(ws-java, jre-app-start, 50, ’Ballot box start’,

newstate(ws-bb-checkpoint)

).

state(ws-java, ws-bb-checkpoint , 0, ’Checkpoint’,

newstate(ws-bb-checkpoint2)

).

state(ws-java, ws-bb-checkpoint2 , 0, ’TimeStamp’,

newstate(ws-bb-init)

).

state(ws-java, ws-bb-init, 0, ’Ballot box waiting for input’,

choice([newstate(ws-bb-receive),

newstate(ws-bb-shutdown),

newstate(ws-bb-checkpoint)])

).

136

Finally, the next two states define what happens when a ballot is received. Ballots are
measured as ballot(...), allowing any input in this format. However, this can be translated
in the real validation to match whatever form the ballots actually take.

state(ws-java, ws-bb-receive, 0, ballot(X),

newstate(ws-bb-init)

).

state(ws-java, ws-bb-shutdown, 0, ’Checkpoint’,

newstate(jre-end)

).

The example used in Section 6.4.1 could be modified for the rest of the programs on the
platform. The main assumptions made when using these models is that the code is accurately
described by the model, and that no runtime attacks occur.

Having defined the behavioural model, the integrity measurement log can be interpreted
by it to check that no unexpected state transition occurs – e.g. every checkpoint has a new
timestamp – and the resulting view of platform state can be used to count the number of ballots
received and even extract their content.

8.2.7 Verifying the vote tally

The overall verification procedure requires a complete list of records for the whole period of
the election. Because the election system may have shutdown and restarted on occasion, there
may be multiple attestations and logs to verify. The following artefacts are needed in this
process:

• The AIK certificate of the platform: AIKCredentialSK(PCA){| AIK-PK(B)1 |}.

• A list of voting records for each time the election system has been in used. Each record
consists of:

– An integrity measurement log, showing which hashes were extended to pcr0−11.
Examples of the IML can be seen in Section A.3.8.

– A TPM Quote: QuoteAIK−SK(B)1 {| pcr0−11,nonce |}.

– A signed monotonic counter value.

The first step in the process is to check that all AIK credentials are signed by a trusted
Privacy CA, each credential is still valid, and that the same AIK has been used to sign counters
and TPM Quotes. Then the TPM Quote can be compared to the IML, to check that the hash
chain matches the PCR value. This verifies that the logs are a genuine account of PCR actions.
Freshness is guaranteed by the final record, which will contain a nonce set by the challenger.
Subsequent records are not fresh, but the counter value can be used to order them.

Starting at the first record (with the lowest counter value), the following algorithm checks
that no votes are missing. For each record recordn:

137

1. Run IMLn through the model-runner, using a set of component models already obtained.
This shows that the behaviour of the platform followed the behaviour of the specified
programs.

2. Make sure that all of the programs that have been run are considered trustworthy.

3. Identify the first ballot (ballot0
n) from IMLn, and the counter value associated with it

(count0
n).

4. Check that for each subsequent counter value (count1
n, count2

n, ...), another entry has been
extended into the PCRs and in the log.

5. At the end of the log, check that the number of votes (v) recorded equals the final counter
value (countv

n), less the original counter value (count0
n).

6. Find the next log (IMLn+1) and record, and check that it begins with a counter value equal
to the end counter value of the previous log: count0

n+1 = countv
n .

8.2.8 Verifying the software

The final step is to check that the voting software is trustworthy. If not, it could invent
spurious votes or change the value of the vote entered. This is achieved through trustable
remote verification as outlined in Chapter 7.2. The key assumptions are that the compilation
tools are trustworthy (Ant, JMLC, Java) and that the JML annotations demonstrate suitable
properties.

8.2.9 Unimplemented features

Some necessary features remain unimplemented. This is because of time constraints and the
fact that some of the less novel programs were unlikely to contribute to the evaluation process.
Most importantly, messages to each service should be encrypted with a TPM key, as defined
in Section 5.2.2. This involves modifying the web service middleware, a time-consuming
(although probably not too complicated) process. Signing of the results was similarly left out.
Another required modification is to make the back-end platform measure additional runtime
events. The login application needed to measure files such as /etc/passwd and /etc/shells ,
and invalidate PCRs on root login. From the experience of developing TPDMenu, this should
not involve many lines of code.

For the compilation phase, Ant scripts support PCR usage, but the Ant interpreter itself
needed to be modified to properly support integrity measurement. However, much of the
work can be done by the trusted JVM that Ant runs on.

TPDMenu was modified as described in Section 6.5. However, running on the target plat-
form was a problem, as it used an incompatible TPM library. For the purpose of the evaluation,
its behaviour was recorded on a different machine. Finally, attestations of monotonic counter
values were not implemented, due to limitations with the TPM libraries.

138

8.2.10 Summary

The ballot box implementation demonstrates that the methods proposed in the rest of this
thesis are practical and possible to use. It also shows how much complexity is required during
the assurance process. While it is impossible to state exactly how strong the assurances are,
and how trustworthy the service is, it is clear that it takes relatively little additional work to
use these ideas. The rest of this chapter will discuss how much assurance can be gained from
attesting this platform, and therefore how feasible the use of attestation is in general.

8.3 To What Extent Have Attestation Problems Been Solved?

Several of the problems discussed in Chapter 3.1 have been solved. The main improvement is
with respect to the semantic gap problem. Because code properties can be specified and attested
to, it is now possible to gain assurance in platform behaviour, beyond simple whitelisting
of executables. The ballot box service can show that it will increment its counters on every
received ballot, and that it will report a log of events from the correct time period. Furthermore,
by taking the system modelling approach described in Chapter 6 the overall system state
can be analysed and the measurement and reporting of any background events (such as
administration) will not come as a surprise to the challenger. In some scenarios this even
means that the range of future events can be limited. It is also true that the attested platform
has relatively more code running that is interesting to the user, as the middleware resides on
the untrusted front-end. This makes attestation more meaningful with respect to the security
concerns of the challenger.

The chance of runtime attack has also been reduced. Because all of the possible integrity
measurements are fully listed in the model, any real attack that causes an unexpected mea-
surement can be taken seriously without potential for a false positive. The split architecture
also hardens the platform, greatly reducing the amount of trusted code running. The only
open ports are for the RMI communication and SSH, and no parsing of XML is necessary. The
additional runtime checks introduced by JMLC can be considered a defence against code-level
attacks. Pre-conditions potentially reduce the chance of null-pointer or injection-style attacks,
as these are specified and automatically rejected.

Support for whitelisting has also improved. Attesting a web service is more realistic than
many individual client machines (full discussion in Section 4.1.1) and with a split architecture
results in at least 30% fewer whitelist entries. The concept of a whitelist is also enhanced by the
program models. These help to solve related configuration issues, as program models serve
as a better abstraction than simple file hashes. Whitelists can also be made more complete,
including any of the libraries specified in the compilation process. This additional provenance
is an unintended advantage of the approach. In the ballot box example, there were only 206
measurements on the back-end platform, all of which were either standard components (kernel
modules, command line applications), relatively simple scripts that could have their behaviour
modelled, or the custom-made and compiled web services.

However, some problems remain. The same number of trusted parties are required as in any

139

attestable system, although it is worth noting that no extra parties are needed, despite providing
more useful levels of assurance. Privacy has not been improved, although the service owner is
now free to use any software on the front-end platform, as this does not require measurement.
Unfortunately, the compilation certificate also decreases privacy by declaring the libraries and
code used to compile the application, as well as those used to run it. These issues are less
important for the electronic voting example. Some runtime issues remain, mainly because the
operating system and libraries are likely to have vulnerabilities. Complementary platform
hardening techniques would go a long way to improving this. Another issue is that not all
behaviour can be captured by this approach due to JML limitations. However, this may be
mitigated through additional verification tools. The trusted path and multiple domain issues
have not been considered.

Success with respect to compatibility with legacy systems is mixed. The JVM and build
process required modification, and all running programs must now provide PCR usage models
as well as hashes. Any programs in the TCB must also be modified to support measure-before-
load. This is a significant practical overhead. However, moving a lot of the software to the
front-end platform helps reduce the effort. Furthermore, the runtime models can be produced
independently of the programs themselves.

Performance is an area that has suffered. The split-service approach is slow, as outlined in
Section 5.5, but may be considered a reasonable trade-off. Interpreting attestations with the
modelling approach is not necessarily performance-intensive, although this depends largely on
the model. As discussed in Sections 6.3.5 and 6.4.4, complex models featuring cached results
or recursive behaviour can be slow, which will have an impact every time an attestation is
interpreted. Remote verification, on the other hand, is a one-off event which has no significant
performance penalty in theory. In practice adding layers of indirection (as the JML compiler
does) can reduce service performance. A static ESC/Java2 analysis would have no adverse
runtime impact.

8.4 Practicality and Security of Solutions

While each new solution has been analysed in the earlier chapters, this section will discuss the
practical overheads.

Firstly, the additional assurance comes at the cost of trusting the libraries and tools in use.
Trustable remote verification requires the user to trust a significant number of tools, including
an operating system, Java, Ant, the JML compiler, and other libraries. It will be difficult to
assess all of these. However, because the overall approach is tool-agnostic, this can be reduced
in return for a less sophisticated compilation setup. The same is true for the TPM itself – it has
been shown to be vulnerable to hardware attacks [205] – but any brand of TPM can be used,
and multiple can be used for the compilation certificate.

The next overhead is the complexity on the user. The certificates require effort to validate,
including both the Ant scripts and JML annotations. This essentially requires users to have
prior training in Java. Another task for verifiers is to interpret the result of running a platform

140

model. Running a model will only produce a view of system state, and potential future
behaviour. Input is still required to decide on trustworthiness. However, both of these
requirements on the user could be reduced given further automation. A fair analysis is that
the system described in this chapter could be assessed by a well-programmed application on
behalf of the user, but is far from understandable for most users. This additional program is
another component that must be trusted by the challenger.

8.5 Assurance Properties

The assurance goals described in Section 8.2.1 rely on the more general assurance properties
discussed in Section 2.5. The important properties are that known software can be whitelisted,
unknown service software can have its behaviour securely established, runtime events are
recorded (in this case, votes being received) and runtime attacks do not occur. Having estab-
lished that attestation problems have been reduced, what is the impact on these properties in
particular?

Whitelisting requires the relying party to have an up-to-date list of trustworthy software.
In the case of this ballot box, this is achievable, as most software comes from the Ubuntu
Linux repository. The service itself does not, but the compilation credential can provide the
provenance for this application. As only around 200 entries are required on the measurement
log, this is not a problem.

Runtime events must be recorded properly. This is asserted in the source code of the
service, which uses PCR values and TPM Quotes to attest to votes being received. This can be
verified through the JMLC annotations, but more strongly through use of the TPM counters.
The runtime model also makes sure that no other software could be intercepting votes. It
also makes it easy to check that the PCR values match a sensible platform state (e.g., one that
was capable of accepting votes when it did, and that extended a PCR for every vote received).
Hardware errors, or attacks on availability mean that each vote submitted may not be recorded,
but should a vote be accepted and recorded, the PCR model and TPM counters will make later
denial impossible. JML annotations can be used to make sure the vote itself has not changed.

Runtime attacks should not occur. While it is not possible to prove this, some measures
do make this a more reasonable assumption (or, at least a more expensive attack to perform).
The attack surface of the ballot box is small – only the RMI service and an SSH daemon are
listening for input on the network – and it might be considered reasonable to trust both of
these. Assuming the RMI service and JVM are trustworthy, there could be a further problem
in the service itself. However, the service runs in managed code, and the JML annotations
will produce an error if pre-conditions on the input are not met (such as a null pointer). They
could be further elaborated to specify input lengths. This is a more trustworthy scenario than
relying on an XML and SOAP interpreter, and an improvement in this assurance property.

141

8.6 Is Attestation Feasible for Service Assurance?

Attestation is known to have many problems as an assurance mechanism, and greater analysis
does not make these issues disappear. Rather, it has helped focus what the issues are, and how
they might be avoided.

The first key point is that the whitelisting problem is much smaller in service-oriented
architectures, as demonstrated in Section 4.2. With only around 280 components, going down to
206 with the removal of middleware, this seems practical. However, validating 200 components
is still difficult. The complexity of modern operating systems, the behaviour of which may
not be trusted in the face of potential runtime attacks, is the root problem. Eliminating some
complex software has helped, but must go further.

Another criticism is that PCR values are so far from platform behaviour, that the wrong
information is being provided for assurance. However, the combination of a better defined
integrity measurement process, as well as verification and compilation certificates, means that
users can have great confidence in the behaviour of remote software. This also comes without
many of the overheads associated with runtime reporting systems. However, there are still
ways in which these systems could be compromised. A runtime attack to the verification stage,
or to one of the running programs would invalidate many of the assumptions. Furthermore,
the compilation certificates rely heavily on tools which were not necessarily designed with
integrity in mind. If the compilers cannot be trusted to protect against dishonest use, the
behavioural assumptions fail. The distance between attestation and assurance has been closed,
but at the cost of reliance on more trusted components.

The electronic voting system implemented for this evaluation is an example of both the
progress made and the problems remaining. The voting platform is single-purpose, and this
purpose is strongly linked to the implementation through JML annotations. However, the
best way of subverting the system is still through exploiting either the operating system, Java
runtime libraries, or by writing difficult-to interpret JML annotations which do not make the
guarantees they appear to. It is the tools and runtime environment that remain as weak points.
Attestation will not be able to make the potentially strong guarantees that it is capable of until
these monolithic programs become more trustworthy.

142

Chapter 9

Conclusion and Future Work

This dissertation has investigated the extent to which TCG-defined attestation is a suitable
mechanism for assurance of remote services. During the analysis, several methods have been
developed to improve service attestation. These are discussed in Section 9.1. In addition to
these, Section 9.2 outlines several future opportunities and open problems to explore. Finally,
Section 9.3 concludes by summarising the contributions of the dissertation and answering the
thesis question.

9.1 Contributions

9.1.1 Attestation analysis and measurement

The first significant contribution of this dissertation is the thorough analysis of integrity mea-
surement and attestation. Section 3.1 presents a break-down of the current problems, Section
3.3.1 shows a taxonomy of measurable components, and Section 3.3 covers all existing (and
some new) methods of measuring them. In addition, the analysis in Section 4.1 presents a set
of principles to guide where attestation should work best, and how this relates to web ser-
vices. The conclusion is that servers, rather than clients, should be considered a more feasible
target for integrity reporting. This is a novel contribution, as most existing literature concen-
trates either on technical challenges [36, 142], or attempts to apply attestation to a particular
scenario [239, 83], without considering its suitability.

Statistics on the difficulty of the well-documented whitelisting problem were gathered by
attesting a web service platform over a two-and-a-half year period. This is a longer and more
in-depth study than any previous work (which usually only included one-time measurement
counts) and was analysed to identify how big the problem is, its ongoing scale, and where
improvements could be made. This is a contribution in itself, as well as first-hand evidence
for the validity of the thesis question.

143

9.1.2 Reducing the TCB of a web service

The next contribution, presented in Chapter 5, is a technique for minimizing the number
of measurements on the platform through isolation of middleware. By splitting a service
into two components, it has been shown to reduce the number of integrity measurements
without losing functionality. This work highlights a principle that is easy to forget when using
attestation: platforms should attest only the software in which the user has, and should have,
security interest. This is why most of the middleware stack could be removed: the user is only
interested in the components which allow access to the service. The other functionality, such
as the management interface, load balancing, and auditing, may be unimportant. By removing
the middleware, 30% of integrity measurements can be removed from the user’s whitelist, and
the service itself becomes less vulnerable to attack.

An important part of this contribution was to maintain confidentiality and integrity, without
sacrificing standards. Although some compromises were made – a custom verification proce-
dure was necessary – the system works almost entirely within WS-Security standards. This
means that the challenger can attest only the core service application, but still communicate
with it through a SOAP interface.

9.1.3 Modelling integrity measurement

Chapter 6 presents the next novel contribution: a new approach to verifying integrity measure-
ment logs which allows for event reporting in order to gain more information about platform
state and behaviour. Existing attestation methods have many problems, either providing
guarantees of only execution integrity or relying on a runtime system agent. The proposed
alternative is to specify that all programs have simple PCR-usage models. These act as a level
of indirection, so that measurement logs can be converted into a more useful description of
platform state. State can then be analysed to identify trustworthiness. The main advantages
are flexibility and modularity: the system can work with any integrity measurement system,
and program models can be composed together independently, allowing for model re-use, and
enabling ad-hoc attestation of previously unknown platforms.

In addition to the general approach, two implementations were explored. A CSP mod-
elling system worked well for lower-level programs, and a Prolog tool provided additional
flexibility for more complicated usage models. Both of these were developed with a set of
design principles in mind, which should help further exploration of this approach. Although
there were problems with both implementations, these will serve as a starting point for fur-
ther model-based approaches. Part of this contribution was also the development of several
program models, based on real pieces of software. These serve as useful examples for future
work.

9.1.4 Trustable remote verification

Chapter 7 looks at the problem of attesting custom-built software. This is a challenge because of
the lack of well-known integrity measurements, unlike off-the-shelf software such as operating

144

systems. This resulted in a unique approach to remote verification – using TPM Quotes (attesta-
tions) to certify the build process of a piece of software, along with the results of performing a
static analysis on it. This has several theoretical advantages, such as not requiring the relying
party to have either the source code or executable, and allowing flexibility of verification and
build tools. This compares favourably with other techniques such as proof-carrying code,
which rely on the end user having access to the software and running a verifier. As part of this
contribution a prototype was built, and a security analysis was performed in order to assess
how trustworthy this system could be. Several alternative tools and uses for the approach
were also considered.

9.1.5 Applications

As well as the core ideas discussed in this dissertation, several other smaller contributions
have been made. Appendix A gives a specification for a trustworthy ballot-box service, which
uses the TPM (and principles of append-only attestable memory [43]). This solves a problem
highlighted by an analysis of current electronic voting implementation problems [102]. It also
was used as part of the evaluation, providing an interesting scenario (with critical security
requirements) for testing the techniques developed in this dissertation.

The TPDMenu system (see Section 6.5) was developed as a case study for the investigation
of application-level integrity measurement. Based on the existing PDMenu application devel-
oped by Joey Hess [89], this menu-based shell is both easy to attest (the menu configuration
serving as a whitelist) and restrictive, so that the range of possible administrative tasks can be
limited suitably. This approach may be useful for embedded or light weight systems.

9.2 Future Work

There is no shortage of future directions for the topic of this dissertation. As a result, below
are just some of the more interesting ideas that could be explored given time. Several other
suggestions have already been discussed in Sections 7.5.2 and 6.6.

9.2.1 Policies for integrity measurement models

The modelling approach proposed in Chapter 6 would be greatly enhanced by support for
policies. The two implementations allowed for only a visual inspection of platform state, but
policies would allow for automated decisions on trustworthiness. For CSP models, this would
probably involve defining constraints of the ‘afters’ of the trace. For example, making sure
that it is not possible to execute unknown applications, or that this can only happen if PCRs
are invalidated first. This second example might be expressed in a temporal logic, such as
linear temporal logic, which has been shown to be powerful enough to express these kinds of
properties [170].

Assuming a policy engine could be built, it would have potential applications to data
sealing. Sealing is currently brittle, as any platform update will invalidate any keys sealed to

145

that level of granularity. Cesena et al. [32] have described a sealing proxy which introduces a
level of indirection, to allow for more complex or liberal constraints. This could be integrated
with the policy engine to allow for data to be sealed to integrity-measurement polices, rather
than just platform state. For example, it could be configured to allow access to data despite
a background task extending a PCR value, but still prevent data access depending on fine-
grained application behaviour.

9.2.2 Attestable and minimal operating systems

Chapter 5 concentrates on removing middleware from the trusted computing base of a service,
but more significant impact would be had by removing the operating system. Figure 4.1
shows that the kernel is the biggest source of updates and measurements. As has already been
discussed, removing middleware does help: it allows for a smaller operating system, requiring
fewer features and drivers. However, this dissertation stopped short of investigating how to
minimize the OS with this in mind.

A smaller, more trustworthy operating system could improve the security of systems
such as trustable remote verification, as well as reducing the cost of attesting an individual
service instance. With the popularity of cloud computing, which allows the dynamic creation
of new virtual machines, assurance of the operating system seems particularly important.
Some of the opportunities for minimization include reducing the number of communication
channels, and unnecessary separation of OS and applications. If code only exists on the
platform to communicate via one piece of hardware, and one protocol, this would reduce code
rather than introduce complex firewall rules, as is the norm today. Furthermore, if isolation is
provided by the hypervisor or virtual machine monitor, and the virtual machine only provided
one application, this would allow for the elimination of OS versus user-space isolation. As
vulnerabilities allowing privilege escalation are frequently discovered in modern operating
systems, this would remove complexity without loss of security. For future work, looking into
the customised delivery of extremely low-complexity operating systems could greatly increase
the usefulness of attestation.

9.2.3 Inter-service attestation and communication

One of the issues that has been identified repeatedly in this dissertation is that online services
tend to be used in collaboration with many others, and some are composite services which
provide a simple front-end to a whole network of component services. As the evaluation has
demonstrated, this is a problem for some of the solutions discussed in Chapter 5. Furthermore,
services that rely on the results of others cannot be checked for code-correctness, making
trustable verification less useful. A solution to the problem of verifying multiple services
would be the natural next step in this project.

There are a number of potential solutions. As proposed in Section 7.4.4, the verification
problem might be solved by presenting the user with a whole set of certificates for each
service. However, this would be a problem for dynamic selection and usability. How would

146

the complete set of services be known in advance? Would users be expected to verify every
possible service? The alternative might be for users to verify the front-end’s ability to select
services which will fulfil the required constraints. This would be a challenging area for future
work.

9.3 Summary

This dissertation documents an investigation into the practicality of TCG-defined attestation,
and the extent to which it is a feasible mechanism for obtaining assurance of the trustworthiness
of remote services. This topic is inspired by the increasing need for trustworthy services, and
the potential suitability of attestation. In principle, integrity reporting, in combination with
other software assurance techniques, ought to provide exactly the assurances necessary when
using services with sensitive, security-critical data. However, several problems with attestation
have already been identified, including the effort required to maintain software whitelists, the
difference between reported execution state and security state, and the lack of protection
against runtime attacks. This dissertation questions the extent to which these issues are a
problem for assurance of service providers – rather than clients – and proposes solutions to
some of them.

Three distinct solutions have been presented. The first aimed to solve the software whitelist-
ing problem by reducing the size of integrity measurement logs, through removal of service
middleware. This resulted in a 30% decrease in measurements over time, as demonstrated by
the comprehensive analysis of a service platform over a two and a half year period. Perhaps
more significantly, the proposed two-tier architecture also increased the security of the plat-
form, without losing middleware functionality or conformance with web service standards.

The second solution was to improve the relationship between attestation and platform state,
through modelling of programs. The principle is that programs can report more information
about their current state through extending extra information into PCRs. To manage the
verification of these more complex interactions with the TPM, programs must declare how
they intend to use PCRs, and how integrity reports reflect their behaviour. This overcomes
limitations in the current state of the art – systems like IMA, and the TCG Platform Trust
Service – and provides a general-purpose model for any attesting application, as shown by
several examples. Although there is still room for improvement, this approach provides a
solid starting-point for future investigations.

Finally, the trustable remote verification approach was invented in order to solve the prob-
lem of attesting custom, unknown executables. This is a particular issue in service-oriented
architectures, as each service endpoint may offer unique functionality. By linking the attested
binaries to a contract enforced at compile-time, even unknown executables can be trusted to
behave within certain limits. This approach is tool-agnostic, and has potentially no overhead
on the service endpoint, unlike many alternatives.

These techniques were combined and used to develop an online ballot box, a key component
of an electronic voting system. The successful implementation of this provided validation of

147

these ideas, and served as a suitable target for evaluation. This identified that attestation has
become a more practical technique, and is more appropriate for service assurance with these new
contributions. However, the limitations are now largely due to the untrustworthy nature of
many of the tools used, including the operating system and standard libraries. The potential for
runtime compromise of these large components means that attestation remains less practical
than it should be.

In conclusion, attestation can provide service assurance, and should be considered an ap-
propriate way of assessing the trustworthiness of remote servers. It is entirely plausible to
use attestation for whitelisting web service software, particularly using the three techniques
outlined here. This will provide users with a guarantee of behaviour, and make it signifi-
cantly more difficult for malicious insiders, or outside attackers, to subvert service-oriented
systems. However, the levels of assurance provided may not reach the highest level due to the
untrustworthy nature of operating systems and runtime applications. With these components
improved, attestation could provide the foundation for a wide range of sophisticated program
analysis-based assurance techniques.

148

Bibliography

[1] Martı́n Abadi and Ted Wobber. A Logical Account of NGSCB. In David de Frutos-
Escrig and Manuel Núñez, editors, FORTE ’04: Proceedings of Formal Techniques for
Networked and Distributed Systems, 3235 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2004.

[2] M. Alam, J.-P. Seifert, and Xinwen Zhang. A Model-Driven Framework for Trusted
Computing Based Systems. In Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, pages 75–75, October 2007.

[3] Masoom Alam, Xinwen Zhang, Mohammad Nauman, and Tamleek Ali. Behavioral
attestation for web services (BA4WS). In SWS ’08: Proceedings of the 2008 ACM workshop
on Secure Web Services, pages 21–28, New York, NY, USA, 2008. ACM.

[4] Masoom Alam, Xinwen Zhang, Mohammad Nauman, Tamleek Ali, and Jean-Pierre

Seifert. Model-based behavioral attestation. In SACMAT ’08: Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies, pages 175–184, New York, NY,
USA, 2008. ACM.

[5] Sami Alsouri, Özgür Dagdelen, and Stefan Katzenbeisser. Group-based Attestation:
Enhancing Privacy and Management in Remote Attestation. In Sean W. Smith Alessan-
dro Acquisti and Ahmad-Reza Sadeghi, editors, TRUST 2010: Proceedings of the 3rd
International Conference on Trust and Trustworthy Computing, 6101/2010 of Lecture Notes in
Computer Science, pages 63–78. Springer, June 2010.

[6] E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska, and T. Starr. Toward an
approach to measuring software trust. In Proceedings of the 1991 IEEE Computer Society
Symposium on Research in Security and Privacy., pages 198–218, Oakland, CA , USA, May
1991. IEEE.

[7] Melvin J. Anderson, Micha Moffie, and Chris I. Dalton. Towards Trustworthy Virtual-
isation Environments: Xen Library OS Security Service Infrastructure. Technical Report
HPL-2007-69, HP Laboratories Bristol, April 2007.

[8] Andrew W. Appel, Neophytos Michael, Aaron Stump, and Roberto Virga. A Trust-
worthy Proof Checker. Journal of Automated Reasoning, 31(3-4):231–260, 2003.

149

[9] Robert Atkey, Kenneth MacKenzie, and Christopher Paton. Secure Execution of Mobile
Java using Static Analysis and Proof Carrying Code. In Simon J Cox, editor, Proceedings
of the UK e-Science All Hands Conference 2007, Nottingham, UK, September 2007. National
e-Science Centre.

[10] Fabrizio Baiardi, Diego Cilea, Daniele Sgandurra, and Francesco Ceccarelli. Mea-
suring Semantic Integrity for Remote Attestation. In Liqun Chen, Chris J. Mitchell, and

Andrew Martin, editors, TRUST ’09: Proceedings of the Second International Conference on
Trusted Computing, 5471 of Lecture Notes in Computer Science, pages 81–100, Oxford, UK,
April 2009. Springer.

[11] Shane Balfe and Anish Mohammed. Final Fantasy - Securing On-Line Gaming with
Trusted Computing. In Bin Xiao, Laurence Tianruo Yang, Jianhua Ma, Christian

Müller-Schloer, and Yu Hua, editors, ATC 07: Proceedings of the 4th International Con-
ference on Autonomic and Trusted Computing, 4610 of Lecture Notes in Computer Science,
pages 123–134. Springer, July 2007.

[12] Endre Bangerter, Maksim Djackov, and Ahmad-Reza Sadeghi. A Demonstrative Ad
Hoc Attestation System. In Vincent Rijmen Tzong-Chen Wu, Chin-Laung Lei and Der-
Tsai Lee, editors, ISC ’08: Proceedings of the 11th International Conference on Information
Security, 5222 of Lecture Notes in Computer Science, pages 17–30, Taipei, Taiwan, September
2008. Springer.

[13] V.R. Basili, L.C. Briand, and W.L. Melo. A Validation of Object-Oriented Design Metrics
as Quality Indicators. IEEE Transactions on Software Engineering, 22(10):751–761, October
1996.

[14] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. vTPM: virtualizing the trusted platform module. In USENIX-
SS’06: Proceedings of the 15th USENIX Security Symposium, pages 21–21, Berkeley, CA,
USA, 2006. USENIX Association.

[15] Agreiter Berthold, Muhammad Alam, Ruth Breu, Michael Hafner, Alexander

Pretschner, Jean-Pierre Seifert, and Xinwen Zhang. A technical architecture for enforc-
ing usage control requirements in service-oriented architectures. In SWS ’07: Proceedings
of the 2007 ACM workshop on Secure Web Services, SWS ’07, pages 18–25, New York, NY,
USA, 2007. ACM.

[16] A. Betin-Can and T. Bultan. Verifiable Web Services with Hierarchical Interfaces. In
ICWS’05: Proceedings of the IEEE International Conference on Web Services, 1, pages 85–94.
IEEE, July 2005.

[17] Aysu Betin-Can, Tevfik Bultan, and Xiang Fu. Design for verification for asyn-
chronously communicating Web services. In WWW ’05: Proceedings of the 14th inter-
national conference on World Wide Web, pages 750–759, New York, NY, USA, 2005. ACM.

150

[18] Nishchal Bhalla and Sahba Kazerooni. Web Service Vulnerabilities. Presented at Black
Hat Europe 2007 http://www.blackhat.com/presentations/bh-europe-07/Bhalla-
Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf, February 2007.

[19] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey.
ACM Computing Surveys, 37(1):1–28, March 2005.

[20] Alexander Böttcher, Bernhard Kauer, and Hermann Härtig. Trusted Computing
Serving an Anonymity Service. In Peter Lipp and Koch [163], pages 143–154.

[21] Andrea Bottoni, Gianluca Dini, and Evangelos Kranakis. Credentials and Beliefs
in Remote Trusted Platforms Attestation. In WOWMOM ’06: Proceedings of the 2006
International Symposium on on World of Wireless, Mobile and Multimedia Networks, pages
662–667, Washington, DC, USA, 2006. IEEE Computer Society.

[22] Brent Boyer. Java benchmarking. http://www.ellipticgroup.com/html/

benchmarkingArticle.html, June 2008.

[23] Uri Braun, Avraham Shinnar, and Margo Seltzer. Securing provenance. In HOT-
SEC’08: Proceedings of the 3rd conference on Hot topics in security, pages 1–5, Berkeley, CA,
USA, 2008. USENIX.

[24] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
CCS ’04: Proceedings of the 11th ACM conference on Computer and Communications Security,
pages 132–145, New York, NY, USA, 2004. ACM.

[25] Gerald Brose. Securing Web Services with SOAP Security Proxies. http:

//www.xtradyne.com/documents/whitepapers/Xtradyne-WebServices_Security_

Proxies.pdf, 2004.

[26] J. R. Brown and R. H. Hoffman. Evaluating the effectiveness of software verification:
pratical experience with an automated tool. In AFIPS ’72 (Fall, part I): Proceedings of the
Fall Joint Computer Conference, pages 181–190, New York, NY, USA, 1972. ACM.

[27] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Characterizing Kripke
Structures in Temporal Logic. In Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and

Ugo Montanari, editors, TAPSOFT’87: Proceedings of the International Joint Conference on
Theory and Practice of Software Development, 249 of Lecture Notes in Computer Science, pages
256–270. Springer, 1987.

[28] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In SOSP ’89:
Proceedings of the twelfth ACM symposium on Operating Systems Principles, 23, pages 1–13,
New York, NY, USA, 1989. ACM.

[29] Serdar Cabuk, Liqun Chen, David Plaquin, and Mark Ryan. Trusted integrity measure-
ment and reporting for virtualized platforms. In Liqun Chen and Moti Yung, editors,
INTRUST’09: Proceedings of International Conference on Trusted Systems, 6163 of Lecture
Notes in Computer Science, pages 180–196. Springer, 2010.

151

http://www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf
http://www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf
http://www.ellipticgroup.com/html/benchmarkingArticle.html
http://www.ellipticgroup.com/html/benchmarkingArticle.html
http://www.xtradyne.com/documents/whitepapers/Xtradyne-WebServices_Security_Proxies.pdf
http://www.xtradyne.com/documents/whitepapers/Xtradyne-WebServices_Security_Proxies.pdf
http://www.xtradyne.com/documents/whitepapers/Xtradyne-WebServices_Security_Proxies.pdf

[30] Damian Carrington. Q&a: ’climategate’. http://www.guardian.co.uk/environment/
2010/jul/07/climate-emails-question-answer, July 2010. Newspaper article.

[31] Alessandra Cavarra and James Welch. Behavioural Specifications from Class Models.
In Jim Davies and Jeremy Gibbons, editors, IFM 07: Proceedings of the 6th International
Conference on Integrated Formal Methods, 4591 of Lecture Notes In Computer Science, pages
118–137, Oxford, UK, July 2007. Springer.

[32] Emanuele Cesena, Gianluca Ramunno, and Davide Vernizzi. Secure storage using
a sealing proxy. In EUROSEC ’08: Proceedings of the 1st European workshop on system
security, pages 27–34, New York, NY, USA, 2008. ACM.

[33] Chang Chaowen, He Rongyu, Xie Hui, and Xu Guoyu. A High Efficiency Protocol
for Reporting Integrity Measurements. In ISDA ’08: Eighth International Conference on
Intelligent Systems Design and Applications, 2, pages 358–362. IEEE, Nov. 2008.

[34] Hao Chen and David Wagner. MOPS: an infrastructure for examining security prop-
erties of software. In CCS ’02 Proceedings of the 9th ACM conference on Computer and
Communications Security, pages 235–244. ACM, 2002.

[35] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza Sadeghi,
and Christian Stüble. A Protocol for Property-based Attestation. In STC ’06: Proceedings
of the First ACM Workshop on Scalable Trusted Computing, pages 7–16, New York, NY, USA,
2006. ACM.

[36] Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi. Property-Based
Attestation without a Trusted Third Party. In Vincent Rijmen Tzong-Chen Wu, Chin-
Laung Lei and Der-Tsai Lee, editors, ISC ’08: Proceedings of the 11th international conference
on Information Security, 5222 of Lecture Notes in Computer Science, pages 31–46, Berlin,
Heidelberg, 2008. Springer.

[37] Liqun Chen, Chris J. Mitchell, and Andrew Martin, editors. Trust ’09: Proceedings of
the Second International Conference on Trusted Computing, 5471 of Lecture Notes in Computer
Science. Springer, April 2009.

[38] James Cheney, editor. TaPP ’09: Proceedings of the First Workshop on the Theory and Practice
of Provenance. USENIX, 2009.

[39] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases: Why,
How, and Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[40] B. Chess and G. McGraw. Static analysis for security. IEEE Security & Privacy, 2(6):76–79,
November 2004.

[41] B.V. Chess. Improving computer security using extended static checking. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy, pages 160–173. IEEE, 2002.

152

http://www.guardian.co.uk/environment/2010/jul/07/climate-emails-question-answer
http://www.guardian.co.uk/environment/2010/jul/07/climate-emails-question-answer

[42] SuGil Choi, Jin-Hee Han, and Sung-Ik Jun. Improvement on TCG Attestation and Its
Implication for DRM. In Osvaldo Gervasi and Marina L. Gavrilova, editors, ICCSA
’07: Proceedings of the International Conference on Computational Science and Its Applications,
4705 of Lecture Notes in Computer Science, pages 912–925. Springer, 2007.

[43] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested
append-only memory: making adversaries stick to their word. In SOSP ’07: Proceedings
of twenty-first ACM SIGOPS symposium on Operating Systems Principles, 41, pages 189–204,
New York, NY, USA, 2007. ACM.

[44] M.R. Clarkson, S. Chong, and A.C. Myers. Civitas: Toward a Secure Voting System. In
S&P ’08: Proceedings of the IEEE Symposium on Security and Privacy, pages 354–368. IEEE,
May 2008.

[45] Ben Clifford, Ian Foster, Jens-S. Voeckler, Michael Wilde, and Yong Zhao. Tracking
provenance in a virtual data grid. Concurrency and Computation: Practice and Experience,
20(5):565–575, 2008.

[46] David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Gilles

Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean,
editors, CASSIS ’04: Proceedings of the International Workshop on Construction and Analysis
of Safe, Secure, and Interoperable Smart Devices, 3362 of Lecture Notes in Computer Science,
pages 108–128. Springer, 2004.

[47] George Coker, Joshua D. Guttman, Peter Loscocco, Justin Sheehy, and Brian T. Snif-
fen. Attestation: Evidence and Trust. In Liqun Chen, Mark Dermot Ryan, and Guilin

Wang, editors, ICICS ’08: Proceedings of the 10th International Conference on Information
and Communications Security, 5308 of Lecture Notes in Computer Science, pages 1–18, Birm-
ingham, UK, 2008. Springer.

[48] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Ken-
neth Cline. A certifying compiler for Java. In PLDI ’00: Proceedings of the ACM SIGPLAN
2000 conference on Programming Language Design and Implementation, pages 95–107, New
York, NY, USA, 2000. ACM.

[49] Lionel Cons, Karl Berry, and Olaf Bachmann. ProBE User Manual. Formal Systems
(Europe) Ltd, March 2003.

[50] A. Cooper and A. Martin. Towards a secure, tamper-proof grid platform. In CCGRID
’06: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the
Grid, 1, page 8. IEEE, May 2006.

[51] Andrew Cooper. Towards a Trusted Grid Architecture. PhD thesis, Oxford University
Computing Laboratory, 2009.

[52] M. A. Crook. The Caldicott report and patient confidentiality. Journal of Clinical Pathology,
56(6):426–428, 2003.

153

[53] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A Logic of Secure Systems and its
Application to Trusted Computing. In S&P ’09: Proceedings of the 30th IEEE Symposium
on Security and Privacy, pages 221–236. IEEE, May 2009.

[54] Jim Davies, James Welch, Alessandra Cavarra, and Edward Crichton. On the Gen-
eration of Object Databases using Booster. In ICECCS ’06: Proceedings of the 11th IEEE
International Conference on Engineering of Complex Computer Systems, pages 249–258, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[55] Y. Demchenko, L. Gommans, C. de Laat, and B. Oudenaarde. Web Services and Grid
Security Vulnerabilities and Threats Analysis and Model. In GRID ’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing, pages 262–267, Washington,
DC, USA, 2005. IEEE Computer Society.

[56] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, May 2005.

[57] Laura DiDio. Server OS Reliability Survey. http://www.iaps.com/2008-server-
reliability-survey.html, February 2008.

[58] Kurt Dietrich, Martin Pirker, Tobias Vejda, Ronald Toegl, Thomas Winkler, and

Peter Lipp. A Practical Approach for Establishing Trust Relationships between Remote
Platforms Using Trusted Computing. In Gilles Barthe and Cédric Fournet, editors,
TGC ’07: Proceedings of the Third Symposium on Trustworthy Global Computing, 4912 of
Lecture Notes in Computer Science, pages 156–168, Sophia-Antipolis, France, November
2007. Springer.

[59] Edsger W. Dijkstra. Notes on structured programming. In O.-J. Dahl, C. A. R. Hoare,
and E. W. Dijkstra, editors, Structured Programming, pages 1–82. AP, NY, 1972.

[60] Lo ic Duflot, Daniel Etiemble, and Olivier Grumelard. Using CPU System Man-
agement Mode to Circumvent Operating System Security Functions. In CanSecWest 06:
Proceedings of the 2006 CanSecWest Applied Security Conference, April 2006.

[61] Paul England. Practical Techniques for Operating System Attestation. In Peter Lipp
and Koch [163], pages 1–13.

[62] A Ferreira, R Cruz-Correia, L Antunes, P Farinha, E Oliveira-Palhares, D W. Chad-
wick, and A Costa-Pereira. How to Break Access Control in a Controlled Manner. In
CBMS ’06: Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems,
pages 847–854, Washington, DC, USA, 2006. IEEE Computer Society.

[63] Riccardo Focardi and Fabio Martinelli. A Uniform Approach for the Definition of
Security Properties. In Jim Woodcock Jeannette M. Wing and Jim Davies, editors, FM
’99: Proceedings of the World Congress on Formal Methods in the Development of Computing
Systems, 1708 of Lecture Notes in Computer Science, pages 794–813. Springer, September
1999.

154

http://www.iaps.com/2008-server-reliability-survey.html
http://www.iaps.com/2008-server-reliability-survey.html

[64] Formal Systems (Europe) Ltd. FDR2 User Manual, 1992. http://www.fsel.com/fdr2_
manual.html.

[65] M. Franklin, K. Mitcham, S.W. Smith, J. Stabiner, and O. Wild. CA-in-a-Box. In David

Chadwick and Gansen Zhao, editors, EuroPKI ’05: Proceedings of the Second European
PKI Workshop: Research and Applications, 3545/2005 of Lecture Notes In Computer Science,
pages 180–190. Springer, June 2005.

[66] Michael Franz, Deepak Chandra, Andreas Gal, Vivek Haldar, Fermı́n Reig, and

Ning Wang. A portable Virtual Machine target for Proof-Carrying Code. In IVME ’03:
Proceedings of the 2003 workshop on Interpreters, Virtual Machines and Emulators, pages
24–31, New York, NY, USA, 2003. ACM.

[67] James Frew and Peter Slaughter. ES3: A Demonstration of Transparent Provenance
for Scientific Computation. In David Koop Juliana Freire and Luc Moreau, editors,
IPAW 08: Proceedings of the Second International Provenance and Annotation Workshop, 5272
of Lecture Notes in Computer Science, pages 200–207, Salt Lake City, UT, USA, June 2008.
Springer.

[68] Ryan Gardner, Sujata Garera, and Aviel D. Rubin. On the Difficulty of Validating
Voting Machine Software with Software. In EVT ’07: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop, Boston, MA, August 2007. USENIX.

[69] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical UNIX and Internet
Security, chapter 3, page 35. O’Reilly, 3rd edition, 2003.

[70] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Archi-
tecture for Intrusion Detection. In NDSS ’03: Proceedings of the Network and Distributed
Systems Security Symposium, pages 191–206. The Internet Society (ISOC), 2003.

[71] Tal Garfinkel, Mendel Rosenblum, and Dan Boneh. Flexible OS Support and Appli-
cations for Trusted Computing. In Michael B. Jones, editor, Proceedings of HotOS ’03: the
9th Workshop on Hot Topics in Operating Systems, pages 145–150, Lihue (Kauai), Hawaii,
USA, 2003. USENIX.

[72] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and N. Asokan.
Beyond secure channels. In STC ’07: Proceedings of the 2007 ACM workshop on Scalable
Trusted Computing, pages 30–40, New York, NY, USA, 2007. ACM.

[73] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis

Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. Examining the
Challenges of Scientific Workflows. IEEE Computer, 40(12):26–34, December 2007.

[74] Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking remote attestation to
secure tunnel endpoints. In STC ’06: Proceedings of the first ACM workshop on Scalable
Trusted Computing, pages 21–24, New York, NY, USA, 2006. ACM.

155

http://www.fsel.com/fdr2_manual.html
http://www.fsel.com/fdr2_manual.html

[75] Dieter Gollmann. Why Trust is Bad for Security. In STM ’05: Proceedings of the First In-
ternational Workshop on Security and Trust Management, 157 of Electronic Notes in Theoretical
Computer Science, pages 3 – 9. Elsevier, May 2006.

[76] Dan Goodin. Feds: IT admin plotted to erase Fannie Mae. The Register, http://www.
theregister.co.uk/2009/01/29/fannie_mae_sabotage_averted/, January 2009.

[77] T. Grandison and M. Sloman. A survey of trust in Internet applications. IEEE Commu-
nications Surveys and Tutorials, 3:2–16, January 2001.

[78] David Grawrock. Dynamics of a Trusted Platform, chapter 13, pages 198–199. Intel Press,
2009.

[79] David Grawrock. Dynamics of a Trusted Platform. Intel Press, February 2009.

[80] N. A. B. Gray. Comparison of web services, java-rmi, and corba service implementa-
tion. In Jean-Guy Schneider and Jun Han, editors, AWSA ’04: Proceedings of the Fifth
Australasian Workshop on Software and System Architectures, pages 52–63. Swinburne Uni-
versity of Technology, 2004.

[81] P. Groth and L. Moreau. Recording Process Documentation for Provenance. IEEE
Transactions on Parallel and Distributed Systems, 20(9):1246–1259, September 2009.

[82] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou,
and Luc Moreau. An Architecture for Provenance Systems. Technical Report 13216,
University of Southampton School of Electronics and Computer Science, November
2006.

[83] Liang Gu, Xuhua Ding, Robert Huijie Deng, Bing Xie, and Hong Mei. Remote attestation
on program execution. In STC ’08: Proceedings of the 3rd ACM workshop on Scalable Trusted
Computing, pages 11–20, New York, NY, USA, 2008. ACM.

[84] Vivek Haldar. Semantic Remote Attestation. PhD thesis, University of California, Long
Beach, CA, USA, 2006. Adviser-Michael Franz.

[85] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic Remote Attestation -
Virtual Machine Directed Approach to Trusted Computing. In VM ’04: Proceedings of the
Third Virtual Machine Research and Technology Symposium, pages 29–41. USENIX, 2004.

[86] Ragib Hasan, Radu Sion, and Marianne Winslett. Introducing secure provenance:
problems and challenges. In StorageSS ’07: Proceedings of the 2007 ACM workshop on
Storage Security and Survivability, pages 13–18, New York, NY, USA, 2007. ACM.

[87] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake Picasso: pre-
venting history forgery with secure provenance. In FAST ’09: Proccedings of the 7th
conference on File and Storage Technologies, pages 1–14, Berkeley, CA, USA, 2009. USENIX.

156

http://www.theregister.co.uk/2009/01/29/fannie_mae_sabotage_averted/
http://www.theregister.co.uk/2009/01/29/fannie_mae_sabotage_averted/

[88] R. Heckel and M. Lohmann. Towards Contract-based Testing of Web Services. In Mauro

Pezzé, editor, TACoS ’04: Proceedings of the International Workshop on Test and Analysis of
Component Based Systems, 116 of Electronic Notes in Theoretical Computer Science, pages
145–156. Elsevier, 2005.

[89] Joey Hess. PDMenu Website. http://kitenet.net/˜joey/code/pdmenu/, August 2009.

[90] Mayumi Hori and Masakazu Ohashi. Applying XML Web Services into Health Care
Management. In HICSS’05: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences, 6, page 155a, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[91] Luke Hornof and Trevor Jim. Certifying Compilation and Run-Time Code Generation.
Higher-Order and Symbolic Computation, 12(4):60–74, December 1999.

[92] Jun Ho Huh, John Lyle, Cornelius Namiluko, and Andrew Martin. Managing ap-
plication whitelists in trusted distributed systems . Future Generation Computer Systems,
27(2):211–226, February 2011.

[93] Jun Ho Huh and A. Martin. Trusted Logging for Grid Computing. In APTC ’08:
Proceedings of the Third Asia-Pacific Trusted Infrastructure Technologies Conference, pages 30
–42. IEEE, 14-17 2008.

[94] Marty Humphrey and Mary R. Thompson. Security Implications of Typical Grid Com-
puting Usage Scenarios. Cluster Computing, 5(3):257–264, 2002.

[95] Intel. Statistical analysis of floating point flaw: Intel white paper. http://www.intel.
com/support/processors/pentium/fdiv/wp/, November 1994.

[96] Trent Jaeger, Reiner Sailer, and Umesh Shankar. PRIMA: policy-reduced integrity
measurement architecture. In SACMAT ’06: Proceedings of the 11th ACM Symposium on
Access Control Models and Technologies, pages 19–28. ACM, 2006.

[97] JAX-WS Reference Implementation Project. https://jax-ws.dev.java.net/, 2009.

[98] S. Jiang, S. Smith, and K. Minami. Securing Web Servers against Insider Attack. In
ACSAC ’01: Proceedings of the 17th Annual Computer Security Applications Conference, page
265, Washington, DC, USA, 2001. IEEE Computer Society.

[99] Willem Jonker and Milan Petkovic, editors. SDM 2009: Proceedings of the 6th VLDB
Workshop on Secure Data Management, 5776 of Lecture Notes in Computer Science. Springer,
August 2009.

[100] J.R.Fisher. Prolog Tutorial. http://www.csupomona.edu/˜jrfisher/www/prolog_

tutorial/contents.html. Retrieved in August 2010.

[101] Trusted Computing for the Java(tm) Platform. http://trustedjava.sourceforge.
net/, 2010.

157

http://kitenet.net/~joey/code/pdmenu/
http://www.intel.com/support/processors/pentium/fdiv/wp/
http://www.intel.com/support/processors/pentium/fdiv/wp/
https://jax-ws.dev.java.net/
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html
http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/

[102] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic Voting Protocols: A
Systems Perspective. In Proceedings of the 14th USENIX Security Symposium, pages 33–50.
USENIX, 2005.

[103] Bernhard Kauer. OSLO: Improving the security of Trusted Computing. In Proceedings
of the 16th USENIX Security Symposium, pages 229–237. USENIX, 2007.

[104] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, and Nishith Goel.
Early Quality Prediction: A Case Study in Telecommunications. IEEE Software, 13(1):65–
71, 1996.

[105] Chongkyung Kil, Emre Can Sezer, Ahmed Azab, Peng Ning, and Xiaolan Zhang.
Remote Attestation to Dynamic System Properties: Towards Providing Complete System
Integrity Evidence. In DSN ’09: Proceedings of the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Lisbon, Portugal, June 2009. IEEE Press.

[106] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an
OS kernel. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 207–220, New York, NY, USA, 2009. ACM.

[107] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Semantic
Annotations for WSDL and XML Schema. IEEE Internet Computing, 11(6):60–67, 2007.

[108] Dexter Kozen. Language-Based Security. Technical Report 1813/7405, Department of
Computer Science, Cornell University, June 1999.

[109] Brian Krebs. Payment Processor Breach May Be Largest Ever. The Washington Post
Website, 20th January 2009. http://voices.washingtonpost.com/securityfix/2009/
01/payment_processor_breach_may_b.html?hpid=topnews.

[110] Ulrich Kühn, Marcel Selhorst, and Christian Stüble. Realizing property-based attes-
tation and sealing with commonly available hard- and software. In STC ’07: Proceedings
of the 2007 ACM Workshop on Scalable Trusted Computing, pages 50–57, New York, NY,
USA, November 2007. ACM.

[111] David Kyle and José Carlos Brustoloni. Uclinux: a linux security module for trusted-
computing-based usage controls enforcement. In STC ’07: Proceedings of the 2007 ACM
workshop on Scalable Trusted Computing, pages 63–70, New York, NY, USA, 2007. ACM.

[112] G. Leavens and Y. Cheon. Design by Contract with JML. ftp://ftp.cs.iastate.edu/
pub/leavens/JML/jmldbc.pdf, September 2006.

[113] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. TrInc: Small
Trusted Hardware for Large Distributed Systems. In NSDI ’09: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation. USENIX, 2009.

158

http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html?hpid=topnews
http://voices.washingtonpost.com/securityfix/2009/01/payment_processor_breach_may_b.html?hpid=topnews
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

[114] Steve Lipner. The Trustworthy Computing Security Development Lifecycle. In ACSAC
’04: Proceedings of the 20th Annual Computer Security Applications Conference, pages 2–13,
Washington, DC, USA, 2004. IEEE Computer Society.

[115] Yin-Soon Loh, Wei-Chuen Yau, Chien-Thang Wong, and Wai-Chuen Ho. Design and
Implementation of an XML Firewall. In CIS ’06: Proceedings of the International Conference
on Computational Intelligence and Security, 2, pages 1147–1150, November 2006.

[116] Hans Löhr, Hari Govind V. Ramasamy, Ahmad-Reza Sadeghi, Stefan Schulz, Matthias

Schunter, and Christian Stüble. Enhancing Grid Security Using Trusted Virtualization.
In Bin Xiao, Laurence T. Yang, Jianhua Ma, Christian Muller-Schloer, and Yu Hua,
editors, ATC ’07: 4th International Conference on Autonomic and Trusted Computing, 4610
of Lecture Notes In Computer Science, pages 372–384. Springer, July 2007.

[117] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff

Turner, and John F. Farrell. The Inevitability of Failure: The Flawed Assumption
of Security in Modern Computing Environments. In Proceedings of the 21st National
Information Systems Security Conference. NIST, October 1998.

[118] Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and C. Durward Mc-
Donell. Linux kernel integrity measurement using contextual inspection. In STC ’07:
Proceedings of the 2007 ACM workshop on Scalable Trusted Computing, pages 21–29, New
York, NY, USA, 2007. ACM.

[119] Gavin Lowe, Philippa Broadfoot, Christopher Dilloway, and Mei Lin Hui. Casper: A
Compiler for the Analysis of Security Protocols. Oxford University Computing Laboratory,
Wolfson Building, Parks Road Oxford, OX1 3QD, UK, 1.12 edition, September 2009.

[120] Paul Jay Lucas. An Object-oriented Language System For Implementing Concurrent, Hierar-
chical, Finite State Machines. Master’s thesis, University of Illinois at Urbana-Champaign,
1993. http://homepage.mac.com/pauljlucas/resume/pjl-chsm-thesis.pdf.

[121] John Lyle. Trustable Remote Verification of Web Services. In Chen et al. [37], pages
153–168.

[122] John Lyle and Andrew Martin. On the Feasibility of Remote Attestation for Web
Services. In SecureCom 09: Proceedings of the International Symposium on Secure Computing,
3, pages 283–288, Los Alamitos, CA, USA, September 2009. IEEE Computer Society.

[123] John Lyle and Andrew Martin. Engineering attestable services (short paper). In
Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, editors, TRUST 2010:
Proceedings of the 3rd International Conference on Trust and Trustworthy Computing, Lecture
Notes in Computer Science, pages 257–264. Springer, June 2010.

[124] John Lyle and Andrew Martin. Trusted Computing and Provenance: Better Together.
In TaPP ’10: Proceedings of the 2nd Workshop on the Theory and Practice of Provenance.
USENIX, 2010.

159

http://homepage.mac.com/pauljlucas/resume/pjl-chsm-thesis.pdf

[125] T. S. E. Maibaum. Challenges in Software Certification. In Michael G. Hinchey

Michael Butler and Maria M. Larrondo-Petrie, editors, ICFEM ’07: Proceedings of
the 9th International Conference on Formal Engineering Methods, 4789 of Lecture Notes in
Computer Science, pages 4–18. Springer, 2007.

[126] John Marchesini, Sean Smith, Omen Wild, and Rich MacDonald. Experimenting with
TCPA/TCG Hardware, Or: How I Learned to Stop Worrying and Love The Bear. Techni-
cal Report TR2003-476, Department of Computer Science/Dartmouth PKI Lab, Hanover,
New Hampshire USA, December 2003. http://www.cs.dartmouth.edu/˜sws/pubs/
TR2003-476.pdf.

[127] Andrew Martin and Po-Wah Yau. Grid security: Next steps. Information Security
Technical Report, 12(3):113 – 122, 2007.

[128] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila

McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren

Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Semantic Markup for Web Ser-
vices, W3C Member Submission. http://www.w3.org/Submission/OWL-S/, November
2004.

[129] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil D.
Gligor, and Adrian Perrig. Trustvisor: Efficient tcb reduction and attestation. In S&P
’10: Proceedings of IEEE Symposium on Security and Privacy (Oakland 2010), pages 143–158.
IEEE, May 2010.

[130] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Arvind

Seshadri. Minimal TCB Code Execution. In S&P ’07: Proceedings of the IEEE Symposium
on Security and Privacy, pages 267–272. IEEE, May 2007.

[131] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. Flicker: an execution infrastructure for TCB minimization. In Eurosys ’08:
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems,
pages 315–328, New York, NY, USA, 2008. ACM.

[132] H. McGhan and M. O’Connor. PicoJava: a direct execution engine for Java bytecode.
Computer, 31(10):22–30, October 1998.

[133] D. Harrison McKnight and Norman L. Chervany. The Meanings Of Trust. Technical
Report wp96-04, Carlson School of Management, University of Minnesota, November
1996. http://www.misrc.umn.edu/wpaper/wp96-04.htm.

[134] Ce Meng, Yeping He, and Qian Zhang. Remote Attestation for Custom-built Software.
In NSWCTC ’09: Proceedings of the International Conference on Networks Security, Wireless
Communications and Trusted Computing, 2, pages 374–377, Wuhan, Hubei, April 2009.
IEEE.

160

http://www.cs.dartmouth.edu/~sws/pubs/TR2003-476.pdf
http://www.cs.dartmouth.edu/~sws/pubs/TR2003-476.pdf
http://www.w3.org/Submission/OWL-S/
http://www.misrc.umn.edu/wpaper/wp96-04.htm

[135] Rebecca T. Mercuri. The HIPAA-potamus in Health Care Data Security. Communications
of the ACM, 47(7):25–28, July 2004.

[136] Bertrand Meyer. Object-Oriented Software Construction, chapter Design by Contract:
Building Reliable Software, pages 331–341. Prentice Hall, 1997.

[137] Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. PrIMe: A Methodology
for Developing Provenance-Aware Applications. Technical Report 13215, University
of Southampton Schoold of Electronics and Computer Science, June 2009. http://
eprints.ecs.soton.ac.uk/13215/.

[138] Mitre Organisation. CVE: Common Vulnerabilites and Exposures Website. http:
//cve.mitre.org/.

[139] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-Salceda, John Ibbotson, Sheng

Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Victor Tan, and Laszlo Varga.
The provenance of electronic data. Communications of the ACM, 51(4):52–58, April 2008.

[140] Luc Moreau, Bertram Ludscher, Ilkay Altintas, Roger S. Barga, Shawn Bowers,
Steven Callahan, George Chin JR., Ben Clifford, Shirley Cohen, Sarah Cohen-
Boulakia, Susan Davidson, Ewa Deelman, Luciano Digiampietri, Ian Foster, Juliana

Freire, James Frew, Joe Futrelle, Tara Gibson, Yolanda Gil, Carole Goble, Jennifer

Golbeck, Paul Groth, David A. Holland, Sheng Jiang, Jihie Kim, David Koop, Ales

Krenek, Timothy McPhillips, Gaurang Mehta, Simon Miles, Dominic Metzger, Steve

Munroe, Jim Myers, Beth Plale, Norbert Podhorszki, Varun Ratnakar, Emanuele

Santos, Carlos Scheidegger, Karen Schuchardt, Margo Seltzer, Yogesh L. Simmhan,
Claudio Silva, Peter Slaughter, Eric Stephan, Robert Stevens, Daniele Turi, Huy Vo,
Mike Wilde, Jun Zhao, and Yong Zhao. Special Issue: The First Provenance Challenge.
Concurrency and Computation: Practice and Experience, 20(5):409–418, 2008.

[141] Seiji Munetoh. Practical Integrity Measurement and Remote Verification for Linux Plat-
form. In WATC ’06: Proceedings of The Second Workshop on Advances in Trusted Computing,
2006.

[142] Seiji Munetoh, Megumi Nakamura, Sachiko Yoshihama, and Michiharu Kudo. In-
tegrity Management Infrastructure for Trusted Computing. IEICE Transactions on Infor-
mation and Systems, E91-D(5):1242–1251, 2008.

[143] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.
Provenance-aware storage systems. In ATEC ’06: Proceedings of the USENIX Annual
Technical Conference, pages 4–4, Berkeley, CA, USA, 2006. USENIX.

[144] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo I. Seltzer. Making a Cloud
Provenance-Aware. In Cheney [38].

161

http://eprints.ecs.soton.ac.uk/13215/
http://eprints.ecs.soton.ac.uk/13215/
http://cve.mitre.org/
http://cve.mitre.org/

[145] Aarthi Nagarajan, Vijay Varadharajan, and Michael Hitchens. Trust management
for trusted computing platforms in web services. In STC ’07: Proceedings of the 2007 ACM
workshop on Scalable Trusted Computing, pages 58–62, New York, NY, USA, 2007. ACM.

[146] Cornelius Namiluko. Trusted Infrastructure for the Campus Grid. Master’s thesis, Oxford
University Computing Laboratory, Wolfson College, Oxford, September 2008. http:
//www.comlab.ox.ac.uk/files/2648/CorneliusNamilukoThesis.pdf.

[147] Mohammad Nauman, Masoom Alam, Xinwen Zhang, and Tamleek Ali. Remote Attes-
tation of Attribute Updates and Information Flows in a UCON System. In Chen et al.
[37], pages 63–80.

[148] Mohammad Nauman, Sohail Khan, Xinwen Zhang, and Jean-Pierre Seifert. Beyond
Kernel-level Integrity Measurement: Enabling Remote Attestation for the Android Plat-
form. In Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, editors, Trust
’10: Proceedings of the 3rd International Conference on Trust and Trustworthy Systems, Lecture
Notes in Computer Science, Berlin, Germany, June 2010. Springer.

[149] George Necula. Proof-Carrying Code. http://raw.cs.berkeley.edu/pcc.html, July
2002.

[150] Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi S. Sandhu, and Weili Han. An Access
Control Language for a General Provenance Model. In Jonker and Petkovic [99], pages
68–88.

[151] Andreas Niederl and Martin Pirker. Build Guide for Bootstrapping a Reduced
Trusted Java Compartment. http://trustedjava.sourceforge.net/index.php?item=
pca/compartment, March 2009.

[152] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System. In CCGRID ’09: Proceedings of the 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pages 124–131, Washington, DC, USA, 2009.
IEEE Computer Society.

[153] OASIS. Web Services Security: SOAP Message Security 1.1. http://docs.oasis-open.
org/wss/v1.1/, 2004.

[154] OASIS. WS-Trust Specification, 1.4 edition, February 2009. http://docs.oasis-open.
org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html.

[155] Open Platform Trust Service Website. http://sourceforge.jp/projects/openpts/,
2009.

[156] Michael P. Papazoglou and Jean-jacques Dubray. A Survey of Web Service Technologies.
Technical Report DIT-04-058, Informatica e Telecomunicazioni, University of Trento, June
2004. http://eprints.biblio.unitn.it/archive/00000586/.

162

http://www.comlab.ox.ac.uk/files/2648/CorneliusNamilukoThesis.pdf
http://www.comlab.ox.ac.uk/files/2648/CorneliusNamilukoThesis.pdf
http://raw.cs.berkeley.edu/pcc.html
http://trustedjava.sourceforge.net/index.php?item=pca/compartment
http://trustedjava.sourceforge.net/index.php?item=pca/compartment
http://docs.oasis-open.org/wss/v1.1/
http://docs.oasis-open.org/wss/v1.1/
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://sourceforge.jp/projects/openpts/
http://eprints.biblio.unitn.it/archive/00000586/

[157] Nathanael Paul and Andrew S. Tanenbaum. Trustworthy Voting: From Machine to
System. Computer, 42(5):23–29, May 2009.

[158] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman, and Jean-Louis

Lanet. Enforcing High-Level Security Properties for Applets. Technical Report 5061,
Institut National de Recherche en Informatique et en Automatique, December 2004.
http://hal.inria.fr/docs/00/07/15/23/PDF/RR-5061.pdf.

[159] The PCI Data Security Standard (PCI DSS). https://www.pcisecuritystandards.org,
October 2008.

[160] Siani Pearson, Boris Balacheff, and Liqun Chen. Trusted Computing Platforms: TCPA
Technology in Context, chapter 1, page 41. HP Professional Series. Prentice Hall PTR, 1
edition, July 2002.

[161] Eduardo Pelegri-Llopart, Yutaka Yoshida, and Alexis Moussine-Pouchkine. De-
livering a Java EE Application Server. https://glassfish.dev.java.net/faq/v2/
GlassFishOverview.pdf, June 2007.

[162] A. Perrig, S. Smith, D. Song, and J.D. Tygar. SAM: a flexible and secure auction archi-
tecture using trusted hardware. In Proceedings 15th International Parallel and Distributed
Processing Symposium, pages 1764–1773. IEEE, April 2001.

[163] Ahmad-Reza Sadeghi Peter Lipp and Klaus-Michael Koch, editors. Trust ’08: Pro-
ceedings of the First International Conference on Trusted Computing and Trust in Information
Technologies, 4968/2008 of Lecture Notes in Computer Science, Villach, Austria, March 2008.
Springer.

[164] Charles Petrie. Practical Web Services. IEEE Internet Computing, 13(6):93–96, Nov.-Dec.
2009.

[165] Corin Pitcher and James Riely. Dynamic Policy Discovery with Remote Attestation.
In FoSSaCS ’06: Proceedings of the 9th International Conference on Foundations of Software
Science and Computation Structures, 3921 of Lecture Notes in Computer Science, pages
111–125. Springer, 2006.

[166] Jonathan Poritz, Matthias Schunter, Els Van Herreweghen, and Michael Waid-
ner. Property Attestation - Scalable and Privacy-friendly Security Assessment of Peer
Computers. Technical Report RZ 3548 (99559), IBM Research, IBM Zurich Research
Laboratory, Zurich, Switzerland, October 2004.

[167] Jonathan A. Poritz. Trust[ed | in] Computing, Signed Code and the Heat Death of the
Internet. In SAC ’06: Proceedings of the 2006 ACM Symposium on Applied Computing, pages
1855–1859, New York, NY, USA, 2006. ACM.

[168] D. J. Power, E. A. Politou, M. A. Slaymaker, and A. C. Simpson. Securing web services
for deployment in health grids. Future Generation Computer Systems, 22(5):547–570, 2006.

163

http://hal.inria.fr/docs/00/07/15/23/PDF/RR-5061.pdf
https://www.pcisecuritystandards.org
https://glassfish.dev.java.net/faq/v2/GlassFishOverview.pdf
https://glassfish.dev.java.net/faq/v2/GlassFishOverview.pdf

[169] G. J. Proudler. Trusted Computing, chapter Concepts Of Trusted Computing, pages
11–13. The Institution of Engineering and Technology, 2005.

[170] H. Rajan and M. Hosamani. Tisa: Toward Trustworthy Services in a Service-Oriented
Architecture. IEEE Transactions on Services Computing, 1(4):201–213, Oct.-Dec. 2008.

[171] Christine F. Reilly and Jeffrey F. Naughton. Transparently Gathering Provenance with
Provenance Aware Condor. In Cheney [38].

[172] Frédéric Rioux and Patrice Chalin. Improving the Quality of Web-based Enterprise
Applications with Extended Static Checking: A Case Study. Electronic Notes in Theoretical
Computer Science, 157(2):119–132, 2006.

[173] Gordon Thomas Rohrmair. Using CSP to Verify Security-Critical Applications. PhD thesis,
Oxford University Computing Laboratory, Hilary Term 2005.

[174] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[175] K. Rustan and M. Leino. Extended Static Checking: A Ten-Year Perspective. In Reinhard

Wilhelm, editor, Proceedings of Informatics: 10 Years Back, 10 Years Ahead, 2000 of Lecture
Notes in Computer Science, pages 157–175. Springer, 2001.

[176] P. Y. A. Ryan and T. Peacock. Pret a Voter: a System Perspective. Technical Report CS-TR
No 929, School of Computing Science, Newcastle University, September 2005.

[177] A.C. Sabelfeld, A.; Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1):5–19, January 2003.

[178] Ahmad-Reza Sadeghi and Christian Stüble. Property-based Attestation for Computing
Platforms: Caring About Properties, Not Mechanisms. In NSPW ’04: Proceedings of the
2004 Workshop on New Security Paradigms, pages 67–77, New York, NY, USA, 2004. ACM.

[179] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. Attestation-
based policy enforcement for remote access. In CCS ’04: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pages 308–317, New York, NY,
USA, 2004. ACM.

[180] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Architecture. In Proceedings of
the 13th USENIX Security Symposium, pages 223–238. USENIX, 2004.

[181] Ravi Sandhu and Xinwen Zhang. Peer-to-peer access control architecture using trusted
computing technology. In SACMAT ’05: Proceedings of the tenth ACM symposium on Access
Control Models and Technologies, pages 147–158, New York, NY, USA, 2005. ACM Press.

[182] Daniel Sandler and Dan S. Wallach. Casting votes in the auditorium. In EVT’07:
Proceedings of the USENIX / Accurate Workshop on Electronic Voting Technology, pages 4–4,
Berkeley, CA, USA, 2007. USENIX.

164

[183] Daniel R. Sandler, Kyle Derr, and Dan S. Wallach. VoteBox: a tamper-evident,
verifiable electronic voting system. In EVT’08: Proceedings of the USENIX / Accurate
Workshop on Electronic Voting Technology. USENIX, July 2008.

[184] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. Towards Trusted Cloud
Computing. In HotCloud ’09: Proceedings of the Workshop on Hot Topics In Cloud Computing.
USENIX, June 2009.

[185] Can Sar and Pei Cao. The lineage file system. Online at http://theory.stanford.
edu/˜cao/lineage. Last modified May 2005.

[186] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and

Srinivas Devadas. Virtual monotonic counters and count-limited objects using a TPM
without a trusted OS. In STC ’06: Proceedings of the first ACM workshop on Scalable Trusted
Computing, pages 27–42, New York, NY, USA, 2006. ACM.

[187] Beata Sarna-Starosta, R. E. K. Stirewalt, and Laura K. Dillon. Contracts and Middle-
ware for Safe SOA Applications. In SDSOA ’07: Proceedings of the International Workshop
on Systems Development in SOA Environments, page 5, Washington, DC, USA, 2007. IEEE
Computer Society.

[188] Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote Attestation on Legacy
Operating Systems With Trusted Platform Modules. Electronic Notes in Theoretical Com-
puter Science, 197(1):59–72, 2008.

[189] Natasha Sharygina and Daniel Kröning. Test and Analysis of Web Services, chapter
Model Checking with Abstraction for Web Services, pages 121–145. Computer Science.
Springer, 2007.

[190] Mary Shaw. Truth vs Knowledge: The Difference Between What a Component Does and
What We Know It Does. In IWSSD ’96: Proceedings of the 8th International Workshop on
Software Specification and Design, page 181, Washington, DC, USA, 1996. IEEE Computer
Society.

[191] Kanna Shimizu, Stefan Nusser, Wilfred Plouffe, Vladimir Zbarsky, Masaharu

Sakamoto, and Masana Murase. Cell Broadband Engine: processor security architec-
ture and digital content protection. In MCPS ’06: Proceedings of the 4th ACM International
Workshop on Contents Protection and Security, pages 13–18, New York, NY, USA, 2006.
ACM.

[192] R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Informational) http://www.
ietf.org/rfc/rfc4949.txt, August 2007. Obsoletes: 2828.

[193] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance in
e-science. ACM SIGMOD Record Newsletter, 34(3):31–36, September 2005.

165

http://theory.stanford.edu/~cao/lineage
http://theory.stanford.edu/~cao/lineage
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4949.txt

[194] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth. Reducing
TCB complexity for security-sensitive applications: three case studies. In EuroSys ’06:
Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
pages 161–174, New York, NY, USA, 2006. ACM.

[195] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing, chapter Basic
Standards for Web Services, pages 19–47. Wiley, November 2004.

[196] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing, chapter Princi-
ples of Service-Oriented Computing, pages 74–75. Wiley, November 2004.

[197] Anoop Singhal, Theodore Winograd, and Karen Scarfone. Guide to Secure Web Ser-
vices. http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf, Au-
gust 2007.

[198] L. St. Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishing and Sustaining
System Integrity via Root of Trust Installation. In ACSAC ’07: Proceedings of the Twenty-
Third Annual Computer Security Applications Conference, pages 19–29. IEEE, December
2007.

[199] David Stainforth, Andrew Martin, Andrew Simpson, Carl Christensen, Jamie Kettle-
borough, Tolu Aina, and Myles Allen. Security principles for public-resource modeling
research. In WETICE ’04: Proceedings of the 13th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 319–324, Washington, DC,
USA, 2004. IEEE Computer Society.

[200] Frederic Stumpf, Andreas Fuchs, Stefan Katzenbeisser, and Claudia Eckert. Improv-
ing the scalability of platform attestation. In STC ’08: Proceedings of the 3rd ACM workshop
on Scalable Trusted Computing, pages 1–10, New York, NY, USA, 2008. ACM.

[201] Frederic Stumpf, Omid Tafreschi, Patrick Röder, and Claudia Eckert. A Robust
Integrity Reporting Protocol for Remote Attestation. In WATC ’06: Proceedings of The
Second Workshop on Advances in Trusted Computing, 2006.

[202] Masoom Alam Tamleek Ali Tanveer and Muhammad Nauman. Scalable Remote Attes-
tation with Privacy Protection. In Liqun Chen and Moti Yung, editors, INTRUST ’09:
Proceedings of the First International Conference on Trusted Systems, 6163 of Lecture Notes In
Computer Science. Springer, December 2009.

[203] Victor Tan, Paul T. Groth, Simon Miles, Sheng Jiang, Steve Munroe, Sofia Tsasakou,
and Luc Moreau. Security Issues in a SOA-Based Provenance System. In Luc Moreau

and Ian Foster, editors, IPAW’06: Proceedings of the International Provenance and Anno-
tation Workshop, 4145 of Lecture Notes in Computer Science, pages 203–211, Chicago, IL,
USA, May 2006. Springer.

[204] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can We Make Operating
Systems Reliable and Secure? IEEE Computer, 39(5):44–51, May 2006.

166

http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf

[205] Christopher Tarnovsky. Deconstructing a ‘secure’ processor. http://www.blackhat.
com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-

DASP-slides.pdf, February 2010. Presented at BlackHat DC 2010.

[206] The OpenTC Project. Proof of Concept Prototype. http://www.opentc.net/index.
php?option=com_content&task=view&id=45&Itemid=63, 2007.

[207] The Trusted Computing Group. TCG Infrastructure Working Group Architecture Part
II - Integrity Management, November 2006.

[208] The Trusted Computing Group. Tcg infrastructure working group platform trust
services interface specification (if-pts). http://www.trustedcomputinggroup.org/

resources/infrastructure_work_group_platform_trust_services_interface_

specification_ifpts_version_10, November 2006. Version 1.0.

[209] The Trusted Computing Group. TPM Main Specification, Part 3: Commands.
http://www.trustedcomputinggroup.org/resources/tpm_main_specification, Oc-
tober 2006.

[210] The Trusted Computing Group. Frequently Asked Questions. http://www.

trustedcomputinggroup.org/faq/, October 2007.

[211] The Trusted Computing Group. TCG Software Stack (TSS) Specification Version
1.2. http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_
specification, March 2007.

[212] The Trusted Computing Group. TPM Main Specification: Part 1 Design Principles, revision
103 edition, July 2007.

[213] The Trusted Computing Group. Trusted Network Connect - Frequently Asked
Questions. http://www.trustedcomputinggroup.org/developers/trusted_network_
connect/faq, September 2009. Accessed September 2009.

[214] The Trusted Computing Group. Website. http://www.trustedcomputinggroup.org/,
2009.

[215] The W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/, April
2007.

[216] R. Thibadeau. Trusted Computing for Disk Drives and Other Peripherals. IEEE Security
& Privacy, 4(5):26–33, Sept.-Oct. 2006.

[217] Ken Thompson. Reflections on trusting trust. ACM Turing Award Lectures, 1983.

[218] Ronald Toegl and Siegfried Podesser. A Software Architecture for Introducing Trust
in Java-based Clouds. In Presented at The Workshop on Trust in the Cloud, Berlin, Germany,
June 2010. .

167

http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
http://www.opentc.net/index.php?option=com_content&task=view&id=45&Itemid=63
http://www.opentc.net/index.php?option=com_content&task=view&id=45&Itemid=63
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_platform_trust_services_interface_specification_ifpts_version_10
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_platform_trust_services_interface_specification_ifpts_version_10
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_platform_trust_services_interface_specification_ifpts_version_10
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/faq/
http://www.trustedcomputinggroup.org/faq/
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/developers/trusted_network_connect/faq
http://www.trustedcomputinggroup.org/developers/trusted_network_connect/faq
http://www.trustedcomputinggroup.org/
http://www.w3.org/TR/soap/

[219] TrouSerS: the open-source TCG software stack. http://trousers.sourceforge.net/,
2008.

[220] Trusted Computing Group. TCG Schema. http://www.trustedcomputinggroup.
org/resources/infrastructure_work_group_reference_manifest_rm_schema_

specification_version_10, November 2006.

[221] Trusted Computing Group. Summary Of Features Under Consideration For The Next
Generation Of TPM. http://www.trustedcomputinggroup.org/resources/summary_
of_features_under_consideration_for_the_next_generation_of_tpm, 2009.

[222] Trusted Computing Group. TCG Storage Architecture Core Specification.
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_

core_specification, April 2009.

[223] W.T. Tsai, X. Wei, Y. Chen, B. Xiao, R. Paul, and H. Huang. Developing and assuring
trustworthy Web services. In ISADS ’05: Proceedings of the Internation Symposium on
Autonomous Decentralized Systems, pages 43–50. IEEE, April 2005.

[224] Ubuntu Packages Search Website. http://packages.ubuntu.com/, 2009.

[225] Ülle Madise and Tarvi Martens. E-voting in Estonia 2005. The first practice of country-
wide binding Internet voting in the world. In Robert Krimmer, editor, Proceedings of the
2nd International Workshop on Electronic Voting, 86 of GI Lecture Notes in informatics, pages
15–26, Castle Hofen, Bregenz, Austria, August 2006.

[226] United States House of Representatives. Health Insurance Portability and Accountabil-
ity Act. In Congressional Reports, number H. Rept. 104-736 in Congressional Committee
Materials. U.S. Government Printing Office, July 1996.

[227] U.S. Department of Defense. Trusted Computer System Evaluation Criteria, dod-5200.28-
std edition, December 1985. http://www.dynamoo.com/orange/fulltext.htm.

[228] Amin Vahdat and Thomas Anderson. Transparent result caching. In ATEC ’98: Pro-
ceedings of the USENIX Annual Technical Conference, pages 3–3, Berkeley, CA, USA, 1998.
USENIX.

[229] J. Vázquez-Salceda, S. Alvarez, T. Kifor, L. Z. Varga, S. Miles, L. Moreau, and S. Will-
mott. Agent Technology and E-Health, chapter EU PROVENANCE Project: An Open
Provenance Architecture for Distributed Applications. Whitestein Series in Software
Agent Technologies and Autonomic Computing. Birkhäuser Verlag AG, Switzerland,
December 2007.

[230] Willem Visser and Peter C. Mehlitz. Model Checking Programs with Java PathFinder.
In SPIN ’05: Proceedings of the 12th International SPIN Workshop on Model Checking Software,
3639 of Lecture Notes in Computer Science, page 27. Springer, August 2005.

168

http://trousers.sourceforge.net/
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_reference_manifest_rm_schema_specification_version_10
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_reference_manifest_rm_schema_specification_version_10
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_reference_manifest_rm_schema_specification_version_10
http://www.trustedcomputinggroup.org/resources/summary_of_features_under_consideration_for_the_next_generation_of_tpm
http://www.trustedcomputinggroup.org/resources/summary_of_features_under_consideration_for_the_next_generation_of_tpm
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://packages.ubuntu.com/
http://www.dynamoo.com/orange/fulltext.htm

[231] Dongbo Wang and Ai min Wang. Trust Maintenance Toward Virtual Computing Envi-
ronment in the Grid Service. In Yanchun Zhang, Ge Yu, Elisa Bertino, and Guandong

Xu, editors, APWeb ’08: Proceedings of the 10th Asia-Pacific Web Conference, 4976 of Lecture
Notes in Computer Science, pages 166–177. Springer, April 2008.

[232] Hua Wang, Yao Guo, and Xiangqun Chen. SAConf: Semantic Attestation of Software
Configurations. In Guojun Wang Juan Gonzalez Nieto, Wolfgang Reif and Jadwiga

Indulska, editors, ATC ’09: Proceedings of the 6th International Conference on Autonomic
and Trusted Computing, 5586 of Lecture Notes in Computer Science, pages 120–133, Berlin,
Heidelberg, July 2009. Springer.

[233] Willis H. Ware. Security and privacy in computer systems. In AFIPS ’67: Proceedings
of the Spring Joint Computer Conference, pages 279–282, New York, NY, USA, April 1967.
ACM.

[234] Yuji Watanabe, Sachiko Yoshihama, Takuya Mishina, Michiharu Kudo, and Hiroshi

Maruyama. Bridging the Gap Between Inter-communication Boundary and Internal
Trusted Components. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors,
ESORICS ’06: Proceedings of the 11th European Symposium on Research in Computer Security,
4189 of Lecture Notes in Computer Science, pages 65–80. Springer, September 2006.

[235] Paul A. Watters. Web Services in Finance. APRESS Academic, December 2004. http:
//www.apress.com/9781590594353.

[236] Jinpeng Wei, L. Singaravelu, and C. Pu. A Secure Information Flow Architecture for
Web Service Platforms. IEEE Transactions on Services Computing, 1(2):75–87, April-June
2008.

[237] Bart De Win, Bart Vanhaute, and Bart De Decker. Security Through Aspect-Oriented
Programming. In Bart De Decker, Frank Piessens, Jan Smits, and Els Van Her-
reweghen, editors, Proceedings of the IFIP TC11 WG11.4 First Annual Working Conference
on Network Security: Advances in Network and Distributed Systems Security, 206 of IFIP
Conference Proceedings, pages 125–138. Kluwer, 2001.

[238] Ka-Ping Yee. User Interaction Design for Secure Systems. In Robert H. Deng, Sihan

Qing, Feng Bao, and Jianying Zhou, editors, ICICS ’02: Proceedings of the 4th International
Conference on Information and Communications Security, 2513 of Lecture Notes in Computer
Science, pages 278–290. Springer, 2002.

[239] S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, and H. Maruyama. WS-
attestation: efficient and fine-grained remote attestation on Web services. In ICWS
’05: Proceedings of the IEEE International Conference on Web Services, pages 743–750. IEEE,
July 2005.

[240] M. Zabel, T.B. Preusser, P. Reichel, and R.G. Spallek. Secure, Real-Time and Multi-
Threaded General-Purpose Embedded Java Microarchitecture. In DSD ’07: Proceedings

169

http://www.apress.com/9781590594353
http://www.apress.com/9781590594353

of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools,
pages 59–62. IEEE, August 2007.

[241] A. Zakinthinos and E.S. Lee. A general theory of security properties. In S&P ’97:
Proceedings of the IEEE Symposium on Security and Privacy, pages 94 –102. IEEE, 4-7 1997.

[242] Huanguo Zhang and Fan Wang. A behavior-based remote trust attestation model.
Wuhan University Journal of Natural Sciences, 11(6):1819–1822, May 2006.

[243] Jing Zhang, Adriane Chapman, and Kristen LeFevre. Do You Know Where Your Data’s
Been? - Tamper-Evident Database Provenance. In Jonker and Petkovic [99], pages 17–32.

170

Glossary

A2M Attested Append-only Memory. A secure history or log of events,
page 43.

AIK Attestation Identity Key. An anonymised key generated by a Trusted
Platform Module and used to sign TPM Quotes, page 19.

Ant A language and tool for writing compilation scripts, page 123.

Assurance The process of building evidence to show that something is trustwor-
thy, page 6.

Attestation The process of reporting (or attesting) the configuration of a computing
platform, page 19.

Authenticated boot When the boot process of a platform follows ‘measure-before-load,’
and every component is recorded in platform configuration registers,
page 19.

Ballot box Part of an electronic voting system, designed to accept and store votes
as they are cast, page 177.

Booster A domain specific language and code generator. The Booster compiler
can take the formal definition of an information system and automat-
ically generate a complete object database implementing it, page 29.

CA Certificate Authority.

CertifyInfo The credential for a TPM-bound key, showing that the private half of
it is held in the TPM, page 26.

Chain of trust An ordered list of components on a system that are relied upon for
trustworthy behaviour, including all hardware and software. Assur-
ance of each link in the chain is dependent on the trustworthiness of
every earlier component, page 18.

Composite Services Services which themselves use other services to complete their tasks,
page 81.

171

CSP Communicating Sequential Processes, page 97.

D4V Design for Verification. Software engineering approach that requires
code to be written so that it is amenable to machine verification,
page 30.

DAA Direct Anonymous Attestation. Attestation without the use of an AIK,
page 19.

DbC Design by Contract. The software engineering approach that requires
all modules to have explicit contracts and responsibilities, page 27.

DRTM Dynamic Root of Trust for Measurement. The beginning of a new
trust-chain that is initiated after platform boot via a special CPU in-
struction, page 21.

ESC Extended Static Checking code analysis technique, page 27.

ESC/Java Extended Static Checking for Java and JML, page 27.

Event Reporting Using platform configuration registers to record application-level state
changes and events, page 50.

Glassfish The Glassfish Application Server. Web service middleware designed
to host Java web services, page 63.

HMAC Hash-based Message Authentication Code, page 25.

IMA Integrity Measurement Architecture. A Linux Security Module that
provides integrity measurement for the kernel. IMA-enabled systems
will measure kernel modules, applications, and can be configured to
measure arbitrary files, page 42.

IML Integrity Measurement Log. A record of all integrity measurements
(hashes) recorded in platform configuration registers, page 19.

Introspection On platforms supporting virtual machines, a ‘guest’ VM instance is
monitored by another, usually for intrusion detection. The monitor
may inspect memory and system state in considerable detail, page 44.

JML Java Modelling Language. Annotations for Java specifying, amongst
other constraints, pre- and post-conditions for methods, page 27.

JRE Java Runtime Environment.

JVM Java Virtual Machine.

Middleware Problem The problem that service middleware is large and complex, but placed
in the trusted computing base, making it a target for attack, page 45.

172

MLE Measured Launch Environment, page 21.

Monotonic Counter Simple integer counters within the TPM which are incremented through
TPM commands, and can never be decremented, page 22.

Nonce A freshly-made random integer, used to establish timeliness, page 25.

PBA Property-based Attestation. A layer of indirection between attestation
and security statements, so that general security properties are attested
rather than binary hashes, page 41.

PCA Privacy CA. Certificate Authority responsible for certifying that an
Attestation Identity Key comes from a real TPM, page 26.

PCC Proof-Carrying Code, page 29.

PCR Platform Configuration Registers. Registers in the Trusted Platform
Module that can only be modified through the ‘extend’ operation, and
platform reboot, page 18.

PRIMA A version of the IMA system, integrating SELinux policies to avoid
the need for measuring untrusted software, page 42.

Provenance Provenance or lineage generally refers to information that ‘helps de-
termine the derivation history of a data product, starting from its
original sources’, page 4.

RIM Reference Integrity Measurements. Hashes of the binaries that repre-
sent and uniquely identify an application, page 19.

RMDB Reference Manifest Database. A database of RIMs, page 19.

Root of Trust The first component in a trust chain, a trusted component which is
relied upon to assess the trustworthiness of the rest of the platform,
page 20.

RSA Rivest, Shamir and Adleman’s algorithm for public-key encryption,
page 18.

RTM Root of Trust for Measurement. Either static (STRM) or dynamic
(DRTM), page 20.

RTR Root of Trust for Reporting, page 21.

RTS Root of Trust for Storage, page 21.

Semantic Gap Problem with attestation referring to the difference between reporting
platform execution state and security state, page 35.

SHA-1 Secure Hashing Algorithm version 1, page 18.

173

SOA Service Oriented Architecture, page 15.

SOAP A web service messaging protocol, SOAP original stood for the ‘Sim-
ple Object Access Protocol’ [215], page 16.

SOC Service Oriented Computing, page 15.

SRA Semantic Remote Attestation, page 43.

SRTM Static Root of Trust for Measurement. The first component in the
boot-chain, typically the first sector of the BIOS, page 20.

TCB Trusted computing base, page 8.

TCG Trusted Computing Group. Industry body responsible for defining
standards on protocols and components such as the Trusted Platform
Module, Trusted Network Connect, page 18.

TGA Trusted Grid Architecture, page 46.

Tick Counter TPM counter used for time keeping, page 23.

TNC Trusted Network Connect, page 23.

TPDMenu Trusted PDMenu. PDMenu is a menu-based shell used in place of
standard Unix shells such as BASH. It limits the user to running com-
mands pre-defined in its configuration file. The trusted version uses
the TPM to measure commands as they are executed, page 108.

TPM Trusted Platform Module, page 18.

TPM Bind A TPM Command. Bind encrypts data to a specific TPM, so that only
that TPM can decrypt it, page 22.

TPM Quote The information reported in an attestation. This is generated by the
Trusted Platform Module and contains the values of the platform
configuration registers. Signed by an Attestation Identity Key (AIK),
page 19.

TPM Seal A TPM Command. Seal encrypts data to a specific TPM, so that only
that TPM can decrypt it, page 22.

TRC Trustable remote compilation, as defined in this dissertation, page 127.

Trust An overloaded term, used in this dissertation to mean ‘belief’ or ‘faith’,
page 6.

Trusted Computing Umbrella term for all technology and standards developed by the
Trusted Computing Group, page 18.

174

Trustworthy Something is trustworthy if it will behave in a reliable, expected man-
ner, page 6.

TRV Trustable remote verification, as defined in this dissertation, page 118.

TSS Trusted Software Stack. Software responsible for managing the Trusted
Platform Module and providing an API for applications to use, page 22.

UCLinux A Linux Security Module designed to implement usage-controls, page 44.

VM Virtual Machine, page 23.

vTPM Virtual TPM. A software TPM provided to virtual machines in order
to fully virtualize the real hardware platform [14] .

Whitelist A list of trustworthy software, used to validate a platform’s integrity
measurement logs. If the log contains an entry not on the list, the
platform will not be considered trustworthy, page 37.

WSDL Web Service Description Language. Used to define web service inter-
faces, page 16.

175

176

Appendix A

A Trusted Ballot Box Service

It’s not the people who vote that count, it’s
the people who count the votes

Joseph Stalin

This appendix describes the specification of a ballot box service for electronic voting, de-
signed so that ballots are extended into PCRs when cast. This example has been implemented,
and is used in the evaluation in Chapter 8.

A.1 Background

Electronic voting, for the purpose of this chapter, attempts to allow voters to cast a ballot
without needing to physically go to a polling station and fill in a form. Instead, home users
can vote using an online system. This has the advantage of making voting easier for those
with disabilities and citizens living abroad, but has many security challenges.

The literature on electronic voting is extensive, and there are many implementations and
voting models to consider. However, one of the primitive components of many systems is the
ballot box (or bulletin board [176, 44]). These are eventually public (or semi-public) records
of ballots cast. They often have few constraints, but are relied upon to maintain the integrity
of the votes so that none are lost or modified. It has been pointed out in the past that such
components are underspecified [102] and could be a target for attackers wishing to influence
elections. Some researchers have already proposed the use of a secure coprocessor [98] to
maintain confidentiality and attestation to verify that the correct software is being run on the
voting machines [157]. The general election system can be seen in Figure A.1, this appendix is
concerned with implementing stages 4, 5, 6, 7 and 9.

Requirements for confidentiality are not part of the problem for the ballot box, as in many
proposed systems an earlier component implements the necessary cryptography. Indeed, in the
Civitas system an earlier protocol involving the ‘registration teller’ performs this function [44].
Therefore in this appendix the primary concern is maintaining the integrity of ballots and

177

Election authority and other
voting system services

Ballot 1: [0x645abb2f53cdb4706f5...]
Ballot 2: [0x63f3d8a6487c21f8988...]
Ballot 3: [0xf6ad9bdafe94376c3c4...]
Ballot 4: [0xda39a3ee5e6b4b0d325...]
Ballot 5: [0x8abe15d888e7a446b2a...]
Ballot 6: [0xf0712e8b46c9f9d698e...]
Ballot 7: [0x4540d523dbaa6f2e666...]

1. Voter registration
2. Authentication, obtain
encryption keys

3. Create ballot (encrypted)

4. Cast ballot

6. Receive confirmation that
the ballot has been recorded
through attestation

7. (Optional) Check ballot
box integrity

5. Record ballot in PCR of ballot box TPM

8. Report ballot box
content to election
authorities
9. Authorities check
ballot box integrity

User

Ballot box

Figure A.1: Electronic voting system overview

making sure that any ballot cast is recorded and cannot be deleted at a later date. Any extra
functionality required of the ballot box could be integrated with the approach defined in the
rest of this appendix.

A.2 Requirements

The ballot box service will attempt to meet the following requirements:

1. Voters can confirm that their vote has been recorded.

2. Any user can request and check the content of the ballot box. This does not mean that any
user can observe the content of the ballots themselves, as most electronic voting schemes
use cryptography to maintain voter confidentiality. The ballot box must allow the cipher
text of all ballots to be available.

178

3. The reported number of ballots must equal the number of submitted ballots.

4. The content of the ballot box must be equal to the accumulated content of submitted
ballots.

5. Ballots must be reported by the ballot box in the order in which they were submitted.

6. Any ballot box that fails to record a vote cannot claim otherwise. This means that a
ballot box cannot claim to have recorded a voter’s input when it has not. Breaking this
requirement would allow a rogue ballot box to discard many votes.

7. Any attack or compromise of the ballot box should not invalidate the ballots already cast.

A.3 Description and Operations

The system consists of a Ballot Box server, a Time Stamp Service and any number of voters.
For the purpose of this specification, no consideration is given to the content of the ballots, only
their presence on the system. This is all that is generally required by existing electronic voting
systems.

The ballot box has four distinct operations, plus initialisation and shut down. These four are
ballot submission, list ballots which returns a list of all recorded ballots, timestamp, for recording
the current time in the log, and checkpoint which saves the current state of the platform. PCRs
and TPM counters are used to provide integrity guarantees on each operation, so that votes
cannot be lost after being successfully cast.

A.3.1 Ballot box initialisation

When the platform starts up, it must record its boot process in the first 8 PCRs (authenticated
boot) and then start the Ballot Box (BB) application:

1. Platform boot (authenticated boot, using PCRs 0 to 7).

2. The operating system will call extend(9, BinaryHashBB).

3. Ballot box application loaded.

4. If a previous counter Id exists, set counterId to this value. If not, TPM_CreateCounter is
called to initialize a new counter with a new label. counterId is set to this and stored in a
configuration file.

5. Add to log: ‘Ballot box started.’

6. extend(10, ‘Ballot box started’).

7. timestamp().

8. Start listening for messages.

179

Note that the counter label is effectively the label for this election. A TPM may only
increment one counter per boot, but many can be stored in the TPM. As a result, the same
platform can be restarted for use in different elections.

A.3.2 Timestamp

The purpose of the timestamp is to link the current PCR values and counter to a date and time.
This is useful for demonstrating when messages were received, and for error recovery.

It is a three-step procedure, the first of which is to use the Request Timestamp protocol.

1. TimeStampTS = RequestTimestamp().

2. Add to log: TimeStampTS.

3. extend(10, TimeStampTS).

A.3.3 Request timestamp

The message exchange between the Ballot Box (BB) and Timestamp Service (TS). The Times-
tamp service must verify the credential in step one, and check the nonce in step three. The
time stamp reply in step four asserts that, at time CurrentTime, the time stamp service had chal-
lenged and seen a correct reply from the Ballot Box, with the given PCR and counter values.
Signatures made by the AIK in this protocol are implemented as TPM Quotes and recorded
transport sessions.

BB→ TS : AIKCredentialSK(PCA){| AIK-PK(BB)1 |} [Request timestamp]
TS→ BB : noncets [Attestation challenge]
BB→ TS : SIGAIK−SK(BB)1 {| pcr0−10, counter, counterId,noncets |} [Attestation]
TS→ BB : SIGSK(TS){| Time, pcr0−10, counter, counterId,AIK-PK(BB)1 |} [Time stamp]

A.3.4 Submitting a ballot

1. Voters posts a message M.

2. increment counter(counter).

3. Add to log: M.

4. extend(10 , M).

The voter may wish to request a list of ballots after submitting their vote, to make sure it
was recorded.

180

Voter→ BB : nonceuser [Challenge]
BB→ Voter : AIKCredentialSK(PCA){| AIK-PK(BB)1 |} [AIK Credential]
BB→ Voter : Log [Measurement Log]
BB→ Voter : SIGAIK−SK(BB)1 {| pcr0−10, counter, counterId,nonceuser |} [Credential]

A.3.5 Requesting a list of ballots

Voters (or other parties) may request a list of ballots. To obtain the current log, the following
protocol is run:

This is a basic nonce-challenge protocol. The voter will need to verify the AIK credential
and make sure that the log corresponds to the PCR values given. PCRs 0 through to 7 must be
checked for a trustworthy boot process, PCR 9 needs to show a correct hash of the ballot box
software, and the Log of PCR 10 should be analysed against the model of Section 8.2.6.

If the platform has been restarted during the election, the user may wish to receive older
logs too. Logs and their credentials can be saved (see Section A.3.6) to disk, and then later
returned as part of the second message.

A.3.6 Checkpointing

At various points, such as when powering down, the ballot box will want to save the current
log of votes and store a credential asserting the correct sequence of events. Again, TPM Quotes
and transport sessions are used for creating the credential (see Section 4).

1. extend(10 ,‘Ballot box checkpoint’)

2. timestamp()

3. Save log of pcr10 to a file

4. Create credential (TPM quote and counter attestation):
SIGAIK−SK(BB)1 {| pcr0 − 7,PCR10, counter, counterId |} ,
AIKCredentialSK(PCA){| AIK − PK(BB)1 |}

After a checkpoint, the current log should continue to be used, as PCR values cannot be
reset. Any subsequent checkpoints (before platform reboot) will effectively replace this one.

Although the credential is not directly tied to the timestamp (it may happen at any time
afterwards) any future messages will not be certified by this message (due to counter values)
so its replay is not useful.

A.3.7 Ballot box shut-down

The ballot box can power down at any time, providing it performs a checkpoint first.

1. Ballot box stops accepting new messages.

2. Last messages are processed.

181

3. checkpoint().

4. Close application and power down.

A.3.8 Example

Event Counter pcr0−7 pcr10 pcr11

- 0 0x00 0x00 0x00
Boot 0 0x11 0x00 0x00
Board start 0 0x11 0x22 0x00
Board init 0 0x11 0x22 0+begin+ts1

Add M1 1 0x11 0x22 0+begin+ts1+M1
Add M2 2 0x11 0x22 0+begin+ts1+M1+M2
Checkpoint 2 0x11 0x22 0+begin+ts1+M1+M2+checkpoint +ts2

Log saved

Add M3 3 0x11 0x22 0+begin+ts1+M1+M2+checkpoint +ts2+M3
Add M4 4 0x11 0x22 0+begin+ts1+M1+M2+checkpoint +ts2+M3+M4
Shutdown 4 0x11 0x22 0+begin+ts1+M1+M2+checkpoint

+ts2+M3+M4+ts3

Log saved

Boot 4 0x11 0x00 0x00
Board start 4 0x11 0x22 0x00
Board init 4 0x11 0x22 0+begin+ts4

Add M5 5 0x11 0x22 0+begin+ts5+M5
Add M6 6 0x11 0x22 0+begin+ts5+M5+M6
Checkpoint 6 0x11 0x22 0+begin+ts5+M5+M6+checkpoint +ts6

A.3.9 Marking the beginning and end of an election

The beginning of an election period must be marked by the election authority. One way of
doing so would be to submit a ‘ballot’ to the service which contained a signed message from the
election authority. This could contain the election details, the ballot’s counter ID, the counter
start value, and a timestamp. Users could then expect to receive all ballots submitted after this
first message. The end of an election could be called in a similar way. At the given shut-down
time, the ballot-box could request a timestamp, and then stop accepting input. The election
authority could send a special ‘end-of-election’ message, containing the counter value it can
see at this time.

A.3.10 Verifying the ballot box

The ballot box produces a log every time it performs a checkpoint operation. A collection of
these will describe the complete voting process. Verification can be performed by the user or
an election authority to check that (a) only trustworthy software was used to record ballots (b)

182

every ballot recorded is also measured into the PCR and vice-versa. The following steps are
required:

1. Verifier requests a list of all logs that were used during the term of the election

2. Verifier received logs including credentials from each time a checkpoint operation was
invoked.

3. Verifier checks the credentials by:

Checking the attestation identity key and PCA certificate

Checking the signatures on the attestations against this key

Checking that the attested PCR values match the log content

Checking that there are no gaps in the reported logs of voting between checkpoints

Checking that the reported ballot total matches the counter value

Checking that each timestamp was from a trusted timestamp server

Checking that all the software reported in every log of PCRs 0-10 are trusted

If any of these credentials is invalid, it could imply that the period of voting it covers was
invalid. This might be because untrustworthy software was running, or that the logs were
tampered with to add or remove votes. However, regardless of previous invalid logs, any log
which does satisfy these checks can still be trusted. How to proceed from this stage is up to
the election authority.

183

184

Appendix B

Example Scripts

B.1 Ant Compilation Script

The following Ant scripts demonstrate an integrated compilation process which can split the
given service into both a WSDL web interface and RMI server, and wrap code compiled with
JMLC, and provide a compilation receipt. Some of the constants and file names have been
omitted for brevity, as well as some of the less exciting classpaths.

<?xml version="1.0"?>

<project name="timestamp -server" default="create-and-attest">

<!-- Some file paths and settings -->

<property name="interface.class.simplename"

value="TimeStampJmlFrontEnd" />

<property name="input.src" value="TrustworthyBB/src-ts" />

<property name="jml.input.src" value="TrustworthyBB/src-java14-ts" />

<property name="ts.output" value="ts-deploy" />

<property name="output.dir" value="${ts.output}/tc" />

<property name="log.file" value="${output.dir}/log.txt" />

<!-- TPM and boot-specific properties -->

<!-- Which PCR should i use during this compilation process? -->

<property name="compile.pcr" value="12" />

<!-- Which PCRs should i put in the build certificate? -->

<property name="quote.pcrs"

value="1,2,3,4,5,6,7,8,9,10,11,${compile.pcr}" />

<!-- Where to store the quote -->

<property name="quote.output.dir"

value="${output.dir}/attestation" />

<property name="quote.output.file"

value="${quote.output.dir}/quote.xml" />

<property name="trustablecompiler.home"

value="TrustableCompiler/bin/" />

<!-- TaskDefs -->

<!-- using the TPM -->

185

<taskdef name="extend" classname="....TpmExtendTask" .../>

<taskdef name="getkey" classname="....TpmGetBoundKeyTask" .../>

<typedef name="pcr" classname="....Pcr" .../>

<taskdef name="quote" classname="....TpmQuoteTask" .../>

<!-- generating RMI/WS wrappers -->

<taskdef name="wrap-rmi" classname="....RMIWrapTask" .../>

<taskdef name="wrap-ws2rmi" classname="....WS2RmiWrapTask" .../>

<!-- Compile the Java 6 code -->

<target name="compile-java" depends="clean">

<javac srcdir="${input.src}" ... />

</target>

<!-- Generate JML-annotated source with JMLC -->

<target name="jmlc-generate -source" depends="compile-java" >

<jmlc source="true" ... classpath="..." verbose="true">

<fileset dir="${jml.input.src}" casesensitive="yes">

<include name="**/*.java" />

</fileset>

</jmlc>

</target>

<!-- Compile the annotated source -->

<target name="compile-jml" depends="jmlc-generate -source" >

<javac srcdir="${jml.output.src}" ... source="1.4" />

</target>

<!-- Create the RMI server interface -->

<target name="create-rmi-server" depends="compile-jml" >

<!-- Wrap the interface class and generate an RMI service -->

<wrap-rmi interfaceClass="${interface.class}"

dest="${rmi.output.src}" />

<!-- Compile the generated source -->

<javac srcdir="${rmi.output.src}" ... />

</target>

<!-- JAR the server classes into two parts: main code and RMI wrapper -->

<target name="jar-rmi-server" depends="create-rmi-server" >

<jar destfile="${rmi.server.jar.file}" >

<fileset dir="${rmi.output.bin}" />

<fileset dir="${base.output.bin}" />

<fileset dir="${jml.output.bin}" />

</jar>

<jar destfile="${rmi.server.jar.wrapper.file}" >

<fileset dir="${rmi.output.bin}" />

<fileset dir="${base.output.bin}"

includes="**/TimeStamp.class" />

</jar>

<!-- Extend the resulting RMI JAR files. This is the

important part of the compilation certificate.

Record this action in a log file -->

<record name="${log.file}" append="true" action="start" />

<extend pcr="${compile.pcr}" >

<fileset file="${rmi.server.jar.file}" />

<fileset file="${rmi.server.jar.wrapper.file}" />

</extend>

<record name="${log.file}" append="true" action="stop" />

186

</target>

<!-- Create a RMI to WS wrapper -->

<target name="create-ws2rmi-wrapper" depends="jar-rmi-server" >

<!-- Generate wrapper source code -->

<wrap-ws2rmi

interfaceClass="${interface.class}"

dest="${ws2rmi.output.src}"

rmiRegistry="${rmi.server.hostname}" />

<!-- Compile -->

<javac srcdir="${ws2rmi.output.src}" ... />

</target>

<!-- Create the WSDL to go with it -->

<target name="create-ws-server-wsdl" depends="create-ws2rmi-wrapper" >

<wsgen

destdir="${wsdl.output.bin}" genwsdl="true"

sourcedestdir="${wsdl.output.src}">

<classpath> ... </classpath>

</wsgen>

</target>

<!-- Generate the final service WAR file -->

<target name="war-ws-server" depends="create-ws-server-wsdl" >

<!-- Generate a WAR file! -->

<war destfile="${ws2rmi.output.war.file}" ... >

... (all the previously created files + classpath ...

</war>

</target>

<!-- Attest to the compilation process -->

<target name="create-attestation" >

<!-- Chose an AIK -->

<property name="aik.label"

value="ddd43906-d0f6-43bb-b906-0f0e1e3b7354" />

<quote number="${quote.pcrs}"

ownerKey="..." ownerKeyMode="PLAIN"

aikSecret="..." aikSecretMode="PLAIN"

aikStore="${aik.store.dir}"

destfile="${quote.output.file}"

pcaCertificate="${pca.cert.file}"

aikLabel="${aik.label}" />

<!-- optionally , remove "aikLabel" and include the following

to go and fetch a new AIK certificate from the PCA

pcaLocation="http://privacyca:20000/aik" -->

</target>

<!-- Measure and copy the original java interface file -->

<target name = "measure-input-file" >

<record name="${log.file}" append="true" action="start" />

<extend pcr="${compile.pcr}">

<fileset file="${interface.class.file}" />

</extend>

<record name="${log.file}" append="true" action="stop" />

<copy file="${interface.class.file}" todir="${output.dir}" />

187

</target>

<!-- All put together , this will generate the RMI server, measure

the interface file and attest. After this is run, the Web Service

WAR file must be generated

-->

<target name="create-and-attest" >

<!-- Measure and record the interface file -->

<antcall target="jar-rmi-server" />

<antcall target="measure-input-file" />

<antcall target="create-attestation" />

</target>

</project>

B.2 Prolog Verification Script

The following Prolog script shows the full verification code for interpreting a Prolog system
model, as described in Section 6.4 and used in Section 8.2.6.

execute_app(A, CS, P, (ID, A, SS, P, OPEN)) :-
skolemise(ID),

programme(A, OPEN),
findall((A,S), state(A,S,_,_,_), S1),
findall((C,S), (state(C,S,_,_,_), member(C,CS)), S2),
append(S1,S2,SS).

possible_next([], []).

possible_next([(ID,A,_,_,OPEN)|APPS], [(ID,A,OPEN)|STATES]):-

possible_next(APPS,STATES).

iterate_start(A,CS, ML2, RES):-
execute_app(A,CS,’0’,APP),
append([measure(A,CS)],ML,ML2),
iterate_all([APP], ML, RES).

iterate_all(APPS, [], APPS).
iterate_all(APPS, [M|ML], RES) :-
clean_app_states(APPS,APPS2),

clean_apps(APPS2,APPS3),

member(A, APPS3),
remove_first(A,APPS3,APPS4),

next_transition(A, M, RES1),
append(RES1, APPS4, RES2),
clean_app_states(RES2,RES3),

clean_apps(RES3,RES4),

iterate_all(RES4, ML, RES).

clean_apps([],[]).

clean_apps([(_, _, _, _, [])|APPS], APPS2):- clean_apps(APPS,APPS2).

clean_apps([(ID, A, ISS, P, [X|XS])|APPS],

[(ID, A, ISS, P, [X|XS])|APPS2]):- clean_apps(APPS,APPS2).

188

clean_states([],[]).

clean_states([end|XS],YS):- clean_states(XS,YS).

clean_states([X|XS],[X|YS]):- X\= end, clean_states(XS,YS).

clean_open_states([],[]).

clean_open_states([ifopenstates(_)|XS],[]):- clean_open_states(XS,[]).

clean_open_states([X|XS], [X|XS]):- X \= ifopenstates(_).

clean_open_states([X|XS], [X|XS]):- \+ clean_open_states(XS,[]).

clean_app_states([],[]).

clean_app_states([(A,B,C,D,ST)|APPS], [(A,B,C,D,ST2)|APPS2]):-

clean_states(ST,ST2), clean_apps(APPS,APPS2).

next_transition((ID, A, ISS, P, OPEN) , M , APPS):-
clean_open_states(OPEN,OPEN2),

member(O, OPEN2),
remove_first(O, OPEN2, OPEN3),

next_transition2((ID, A, ISS, P, OPEN3), O, M, APPS).

next_transition2((ID, A, ISS, P, OPEN), newstate(X), M,

[(ID, A, ISS, P, [NTRANS|OPEN])]):-

from_ids(ISS, SS),

from_id(X, SS, state(_,_,_,M,NTRANS)).

next_transition2((ID, A, ISS, P, OPEN), parallel([X]), M, APPS):-

next_transition2((ID, A, ISS, P, OPEN), X, M, APPS).

next_transition2((ID, A, ISS,P, OPEN), parallel([X|XS]), M,

[(ID,A,NSS,P,[parallel([N|NT])|OPEN])|APPS2]):-

member(X1,[X|XS]),
remove_first(X1, [X|XS], XS2),

next_transition2((ID, A, ISS,P,OPEN), X1, M, APPS),

member((ID, A, NSS,P,NOPEN), APPS),
remove_first((ID, A, NSS,P,NOPEN),APPS,APPS2),

append(NOPEN, XS2, NOPEN2),
clean_states(NOPEN2 ,[N|NT]).

next_transition2((ID, A, ISS,P, OPEN), parallel([X|XS]), M,

[(ID,A,NSS,P,OPEN)|APPS2]):-

member(X1,[X|XS]),
remove_first(X1, [X|XS], XS2),

next_transition2((ID, A, ISS,P, OPEN), X1, M, APPS),

member((ID, A, NSS,NOPEN), APPS),
remove_first((ID, A, NSS,P,NOPEN),APPS,APPS2),

append(NOPEN, XS2, NOPEN2),
clean_states(NOPEN2 ,[]).

next_transition2((ID, A, ISS,P, OPEN), choice(XS), M, APPS):-

member(X,XS),
next_transition2((ID, A, ISS,P, OPEN), X, M, APPS).

next_transition2((ID, A, ISS, P, OPEN), app(A2,CS), measure(A2,CS),

[(ID, A, ISS,P,OPEN) , APP]):-

execute_app(A2, CS, ID, APP).

189

next_transition2(APP, dothen(end,Y), M, APPS):-

next_transition2(APP, Y, M, APPS).

next_transition2((ID, A, ISS,P,OPEN), dothen(X,Y), M,

[(ID,A,NSS,P,[dothen(OPEN3,Y)|OPEN])]):-

next_transition2((ID, A, ISS,P,[]), X, M, [(ID,A,NSS,P,OPEN2)]),

clean_states(OPEN2,[OPEN3]).

next_transition2((ID, A, ISS,P,OPEN), dothen(X,Y), M,

[(ID,A,NSS,P,[dothen(end,Y)|OPEN])]):-

next_transition2((ID, A, ISS,P,[]), X, M, [(ID,A,NSS,P,OPEN2)]),

clean_states(OPEN2 ,[]).

next_transition2((ID, A, ISS,P,OPEN), measure(M), M,

[(ID, A, ISS,P,OPEN)]).

next_transition2((ID, A, ISS,P,OPEN), loadconfig(CONF),

CONF, [(ID, A, ISS2, P, OPEN)]):-

findall((CONF,S), (state(CONF,S,_,_,_)), S2),
append(S2, ISS, ISS2).

next_transition2((ID, A, ISS, P,[O|OPEN]), ifopenstates(X), M, RES):-

next_transition2((ID,A,ISS,P,[O|OPEN]), X, M, RES).

next_transition2(ISS, repeatedly(X), M, NTRANS, APPS):-

next_transition2(ISS, X, M, [repeatedly(X)|NTRANS], APPS).

remove_dup_m_wrap(X1,Y):-

reverse(X1,X2), remove_dup_measures(X2,X3), reverse(X3,Y).

remove_dup_measures([] , []).

remove_dup_measures([measure(A,B) | XS] , [measure(cached(A),B)|YS]) :-

member(measure(A,_), XS), remove_dup_measures(XS,YS).
remove_dup_measures([measure(A,B) | XS] , [measure(A,B)|YS]) :-

(\+ member(measure(A,_), XS)), remove_dup_measures(XS,YS).
remove_dup_measures([X|XS] , [X|YS]) :-

X \= measure(_,_), remove_dup_measures(XS,YS).

from_id_inner(_, [], []).

from_id_inner(X, [state(A,X,B,C,D)|XS], [state(A,X,B,C,D)|RS]):-
from_id_inner(X,XS,RS).

from_id_inner(X, [state(_,Y,_,_,_)|XS], RS):-
Y \= X, from_id_inner(X,XS,RS).

from_id(X,Y,Z):-

from_id_inner(X,Y,RS),

get_lowest2(RS,Z).

from_id((A,X), state(A,X,Y,Q,P)):- state(A,X,Y,Q,P).

get_lowest2([state(A,X,Y,Q,P)], state(A,X,Y,Q,P)):-
state(A,X,Y,Q,P).

190

get_lowest2([state(_,_,N,_,_)|SS], (state(_,_,N,_,_))):-
get_lowest2(SS, (state(_,_,N2,_,_))), N2 > N, !.

get_lowest2([_|SS], R):- get_lowest2(SS, R).

from_ids([] , []).

from_ids([X|XS] , [Y|YS]) :- from_id(X, Y), from_ids(XS,YS).

remove_item(_,[],[]).

remove_item(X, [X|XS], Y) :- remove_item(X,XS,Y).

remove_item(X, [A|XS], [A|Y]) :- A \= X, remove_item(X, XS, Y).

remove_first(_,[],[]).

remove_first(X, [X|XS], XS).

remove_first(X, [A|XS], [A|Y]):- A \= X, remove_first(X, XS, Y).

skolemise(T) :- var(T), gensym(t,T), !.
skolemise(T).

191

192

Appendix C

Trusted Computing and
Provenance: Better Together

This appendix includes a copy of the paper ‘Trusted Computing and Provenance: Better To-
gether’ [124] with some background sections omitted. This was co-authored by Dr Andrew
Martin. My contributions to the paper include the main content of the literature review, re-
mote attestation-based provenance system, missing components and the comparison between
research fields.

The paper is included to demonstrate that trusted computing and attestation would be
useful in a real situation requiring trustworthy services. Furthermore, as discussed in Section
C.5 trusted computing and provenance research overlaps considerably. Both fields discuss the
collection of integrity information and have the same issues regarding the management and
collection of frequently-changing reference data. This appendix shows the related research
and how an attestation-based infrastructure could provide a trustworthy way to implement
secure provenance.

Abstract

It is widely realised that provenance systems can benefit from greater awareness of security
principles and the use of security technology. In this paper, we argue that Trusted Computing, a
hardware-based method for establishing platform integrity, is not only useful, but immediately
applicable. We demonstrate how existing Trusted Computing mechanisms can be used for
provenance, and identify the remarkable similarity and overlap between the two research
areas. This is accomplished through presenting architectural ideas for a trusted provenance
system, and by comparing the respective requirements and capabilities of trusted systems and
provenance systems.

193

C.1 Introduction

Provenance information is essential for maintaining the integrity of scientific results, particu-
larly those that are difficult to reconstruct independently. Through it we can verify the origins
of primary source data, how it has subsequently been processed, and create a complete set of in-
structions as to how to recreate the final results. Many systems exist to support the collection of
provenance information in e-Science [19], providing some of the following functionality [193]:

• Find ‘the sources of faulty, anomalous processing outputs.’ [19]

• Allow judgement of data quality [139]

• Support the replication of results

• Maintain the correct attribution of data

• Augment results with additional experimental context

• Enhance trust in scientific results [73]

We postulate that as such provenance information becomes more widely available, and more
reliance is placed upon it, there will be an increasing need for strong guarantees of its accuracy:
in information security terms, many will be concerned with provenance integrity and therefore
with tamper-proofing the systems which record and process such information.

Meanwhile, research in Trusted Computing is attempting to provide trustworthy platforms,
where the integrity of data storage and program execution can be assessed (and enforced)
remotely. The aim is to provide security and assurance despite the presence of malicious
software. Longstanding research and development efforts mean that implementations using a
mix of hardware and software mechanisms are available today, with the hardware components
quickly becoming ubiquitous in commonplace computing platforms. In this paper we argue
that these new security technologies provide many of the features that provenance systems
require. And because they have security as a primary design goal, can be used to implement
trustworthy provenance systems with little additional effort or modification.

The rest of this paper is structured as follows. In Section C.2 we provide a brief overview of
provenance. We then discuss the need for trusted provenance in Section C.3. Following this,
we outline a provenance architecture built on Trusted Computing technology and standards,
highlighting how existing software and specifications can be used, what modifications would
be necessary, and the advantages of doing so. In Section C.5 we show that several research
problems (and proposed solutions) are common to both Trusted Computing and provenance,
and that both areas can benefit from collaboration with each other. We then mention some
of the remaining challenges in implementing trustworthy provenance, and finally Section C.7
presents our conclusions.

194

C.2 Background

C.2.1 Provenance

‘Provenance’ or ‘lineage’ generally refers to information that ‘helps determine the derivation
history of a data product, starting from its original sources’ [193]. In other words, a record
of where data came from and how it has been processed. This is particularly applicable to
e-Science, as the quality of experimental data is important. Indeed, Moreau et al. [139] state
that:

‘In an ideal world, e-science end users would be able to reproduce their results by
replaying previous computations, understand why two seemingly identical runs
with the same inputs produce different results, and determine which data sets,
algorithms, or services were involved in their derivation.’

The assertions made in a provenance system (p-assertions) can be categorised in many ways.
Cheney et al [39] refer to ‘how,’ ‘why’ and ‘where’ statements, and Vázquez-Salceda et al. [229]
define ‘interaction,’ ‘relationship’ and ‘actor state’ categories. The latter being information
about the state of a participant in a workflow or process that manipulates or creates the
original data.

There are several existing systems defined for recording process provenance. We skip a full
review, as details can be found in survey papers [193, 19]. The First Provenance Challenge [140]
is a good starting point for comparison.

Security and data integrity are becoming increasingly relevant to provenance, as researchers
become more aware of the threats posed. Several proposed systems use kernel and file system-
level monitoring to protect the collection of provenance information [228, 185], removing it
from the user’s control. Hasan et al. [87] provide a thorough analysis of threats to provenance
systems, and have proposed a system using encryption and chained signatures to provide
integrity protection. The authors make a good point that without a ‘trusted pervasive hardware
infrastructure,’ there will always be potential attacks. We will demonstrate in this paper that
such an infrastructure can readily be provided by Trusted Computing, and therefore believe
that our paper is complementary to their work. Similarly, Zhang et al. [243] use hash chains to
provide tamper-evident provenance in databases, and tackle the issue of providing audit logs of
compound objects rather than just for a linear sequence of operations. They state that the use of
trusted hardware is ‘impractical’ due to the loosely-organised nature of provenance collection
and sharing. We believe that Trusted Computing is cheap and pervasive enough to avoid
these issues in many scenarios. Tan et al [203] have also listed several security requirements
for provenance, discussing signatures on p-assertions in order to provide integrity guarantees,
as well as accountability. Braun et al. [23] discuss the challenges of securing provenance data
when it may contain sensitive or confidential information. We are more concerned with the
integrity of provenance information in this paper.

195

C.3 The Case for Trusted Provenance

Perhaps one of the most significant reasons for keeping provenance information is to provide
assurance in the quality of scientific results [73]. This usually means protecting against uninten-
tional error, or malfunctioning equipment. However, for high-profile science, such as climate
change and pharmaceuticals, the risk of intentional, malicious intervention becomes just as
important. In these situations there are threats from outside – organisations and individuals
wishing to manufacture results supporting their interests, or discredit research that damages
their products. Separately, and perhaps more invidiously, the user/researcher may have their
own motivation for falsifying data. We believe that provenance systems should be able to
identify and record these threats. But to do so reliably, records must be robust and secure.
They must be highly tamper-resistant, making any successful attack on their integrity infeasi-
ble. If provenance records are not protected, then they cannot provide convincing evidence of
the quality of the data itself.

Clearly, the provenance of results relies upon both hardware and software—as those who
encountered the Intel Pentium floating point bug [95] learnt to their cost. In a massively
distributed system, such as that provided by a grid or cloud computing scenario, such concerns
are all the more important—but potentially also give rise to a significant overhead in metadata
management. Such systems may be located outside the user’s own department, perhaps a
different university or even on another continent. They are subject to the oversight of many
unseen administrators, hardware changes, and software upgrades and patches.

Moreover, the scope for malicious interaction is great: too many individuals are involved,
and so reliance upon informal trust relationships is infeasible. Even where all those participat-
ing are honest, there remains the possibility of viruses and trojans.

Such concerns are illustrated well by the challenges of ‘public resource computing’ projects
such as climateprediction.net [199]. By distributing computational tasks to hundreds of thou-
sands of users around the world, substantial resources can be brought to bear upon a task like
climate modelling—but the results are open to fabrication, or the introduction of systematic
bias. The duplication of tasks can help to reduce this risk, but at the cost of effectively reducing
also the amount of computational power available. Although one may hope that well-managed
grid resources will give more reliable results, as the value and impact of those results rises, the
need for supporting evidence grows also.

The situation therefore seems quite hopeless: we are in a computing scenario in which
we must place a high degree of trust in every possible processing platform, without any
meaningful guarantee of trustworthiness. This leaves us open to manipulation, and we cannot
consider reported provenance information any more reliable than the reported data. This
is made worse by the mutable nature of software and data – it is too easy for a malicious
party to alter programmes and records to create believable forgeries. We require some way to
retake control, without losing the advantages of distributed processing. The simple addition
of extra layers of software controls does not necessarily solve the problem, nor even raise the
bar significantly, if the attacker has sufficient motivation.

Here is a role for Trusted Computing and secure hardware. Designed to provide a small,

196

internal ‘trusted third party,’ the Trusted Platform Module can be used to record and report
the state of the computer in which it is embedded. This is designed to be immune to attack by
software (which should eliminate the threat of malware) and can provide exactly the evidence
we require that a computer has not been tampered with. If used for provenance, it means
that any result processed with illegitimately modified software would always be recorded as
such. The means for enhancing platform trust and for collecting provenance data are closely
aligned, and can therefore be provided by the same mechanism. The only way to create
false records would be to tamper with the hardware itself, an extremely expensive and time-
consuming task, beyond the capabilities of most. Having identified that distributed scientific
experiments face significant threats, and are performed in low-assurance situations, it seems
essential that provenance data be further protected to retain the quality and trustworthiness
of computational results.

C.4 Remote Attestation as a Provenance System

Integrity measurements seem immediately applicable to two requirements of provenance:
identifying which results have been affected by a known software or hardware error, and for
accurately reproducing results. Without knowing the exact versions of software that were
used, neither of these things will always be possible. In the language of some provenance
research [39], it can help answer questions about ‘how’ data has been modified and unambigu-
ously identify ‘where’ it originated. Information about the execution state of a processing node
can be considered ‘actor state’ information in the categories discussed by Vázquez-Salceda et
al. [229].

Remote attestation and provenance systems appear to use similar techniques to solve re-
lated problems. Because of the similarities between the two fields, in this section we present
a provenance architecture based entirely on available Trusted Computing software and hard-
ware. While this is not a complete system, and does not provide answers to many provenance
questions, we demonstrate that certain aspects of provenance can easily be implemented in
this way, with the built-in benefit of high assurance.

C.4.1 An attestation-based provenance architecture

We assume a service-oriented infrastructure, perhaps implemented as a grid or cloud, with
a number of remote platforms performing computations (see Figure C.1). Each machine
has a Trusted Platform Module and, when initially added to the network, they are issued
an Attestation Identity Key (AIK), signed by a certificate authority (Privacy CA). This key
will be used for subsequent attestations, and uniquely identifies the platform. At this time, an
administrator will record the machine’s original hardware details and software measurements.
Much of this process is defined in the Trusted Computing specifications [207]. The platform
itself uses software that supports authenticated boot, and the TPM will therefore record all
running executables, usually in the first twelve platform configuration registers. This, along

197

with the job request and result, will be the provenance data captured by each platform.

Result

Job

Job Report:
(Attestation)
PCR Boot Hash,
Boot log,
Request,
Result

Job ID (Request, Result, →
 Boot Hash, Signature)

Boot Hash [→ RIM1, RIM2, ...]

Provenance Store

Reference Manifest DB

RIM (Application, Date, →
Version, Author, …)

Remote
Service

Remote
Service

Remote
Service

User

Stored as

Links to Sends
report

Submit job

Job Table

Boot log table

Figure C.1: Diagram of an attestation-based provenance architecture. Remote services process
results and attest to the provenance store, which saves and links the measurement logs to a
TCG-defined Reference Manifest Database.

When the platform receives a job, it does the following:

1. Measure a hash of the received job (or, if it is a web service, the incoming request) into
PCR 11 of the service’s TPM.

2. Execute the job

3. Hash and measure the job result (or reply message) into PCR 11.

4. Sign PCRs 0-11 with the Attestation Identity Key and send them to the provenance store,
along with the measurement log. This log contains a list of all the values extended into
each PCR.

The provenance store will receive regular reports from the processing platforms, consisting
of attestations, measurement logs and the results of processed jobs. This information will be
connected to other sources of provenance data, such as the workflow description. The report
signatures will be verified, and the reported PCR values will be checked to make sure that they
correspond to the log. If either of these steps fail, this implies a software error (or malicious
intervention) and jobs should be rerun on a different machine. In either case, a copy of the
attestation and log should be recorded in the provenance store.

198

The contents of the measurement log for PCRs 1-10 will contain a list of every piece of
software executed on the platform. This information needs to be stored for every job. However,
if exactly the same software has been run as on a previous attestation, then the final PCR hash
will be identical. In this case it will suffice to list all the software once, and link to it from
the provenance database. This means that the majority of entries into the provenance store
just consist of the attestation itself, and will therefore be extremely small - only a few 20 byte
hash values. Of course, a full list of software and hashes (RIMs) will need to be maintained
somewhere. In the TCG model, this would be a Reference Manifest Database, and there are
well-defined schemas for each entry, as well as protocols for keeping the database up to date
and accessible [207]. Such a system is given in Figure C.1. We note that compacting provenance
information through hash chains has been discussed before by Hasan et al. [87] and Zhang et
al. [243].

Every time a new patch is loaded onto a service machine, this will result in a new hash and
therefore a new chain of trust being stored. However, the storage overhead should remain
small. Based on data from 2006 to 2009, a typical web service can expect to be updated only
around 22 times a year, with under 500 new hash values [122]. This is trivial amounts of data,
particularly as most machines will be running near-identical sets of software.

C.4.2 Software and hardware details

Almost all the software and hardware required for implementing the described system is
freely available today. TPMs are installed in many business notebooks and servers, and the
Linux kernel now supports Authenticated Boot [180]. TCG compatible software stacks exist,
including the JTSS [101] in Java and TrouSerS [219] in C++. These make writing programs
that use the TPM straight-forward. Reading and extending PCR value in Java, for example,
requires the JTSS libraries, around ten lines of initialisation code, and then just one line to
actually read or extend. Privacy CA software and an integrity-measuring Java Runtime En-
vironment is also available on the JTSS website. The OpenPTS [155] ‘Platform Trust Service’
project provides the infrastructure for creating integrity measurements, collecting RIMs and
connecting to an external software repository. Furthermore, web service protocols are already
defined to maintain compatibility with WS- standard [142]. In fact, the only custom changes
to software would involve updating the service interface (or grid middleware) to measure
incoming requests and outgoing results, and to send attestations to the provenance database.
This should be straight-forward.

C.4.3 Advantages

This infrastructure immediately provides several advantages to ad-hoc reporting of platform
information. Forging integrity reports is infeasible, thanks to the secure key storage provided
by the TPM. Because AIKs are stored in the TPM, and cannot be disclosed, it would be
extremely difficult to assert that a different machine produced the result. Because of the
platform configuration registers, authenticated boot process and software support, it also

199

should not be possible to claim that a different version of a particular piece of software was
being used. And as we are measuring the input and output, we can be sure of exactly which
software was used to process a particular job, and what output it produced. This means that
the attested information meets the requirement given by Groth et al. [82] for high integrity p-
assertions. Furthermore, attestations can potentially be created autonomously, at any point in
time, a requirement defined by Groth and Moreau [81]. Thanks to the software and hardware
developed, attestations must also produce a complete record of all software used, at every
stage of platform boot and throughout its use. This includes firmware, drivers and shared
libraries, potentially a more comprehensive (and accurate) list than other systems are capable
of producing. Jobs can be time stamped, through use of the TPM’s tick counter. In addition,
the presence of TPM hardware is an opportunity to improve the security of credentials, as keys
can remain protected from the rest of the system.

All of these benefits come merely by leveraging existing Trusted Computing techniques.
This is significant because it uses a single technological base to give advantages for both
short-term trust and long-term provenance.

C.4.4 Missing components

The system discussed can be enhanced considerably. There are some obvious missing features
and functionality. The attested information gives only the execution state of the platform, at the
level of applications run by the operating system. Nothing more fine-grained can be reported.
Current implementations will also not re-measure a program, which means that the precise
ordering of execution will not be preserved. Other missing information includes configuration
files, environment variables, generated code, and load information (free disk space, processor
utilisation, and so on). However, it would be relatively straight-forward to include all of this
information, as it should only be necessary to modify middleware or adapt an existing system
such as PASS [143] or Provenance Aware Condor [171]. ‘Semantic Attestation’ also aims to
solve this problem [85].

Perhaps more importantly, integrity reports would need to be mapped to the rest of the
information produced by a full provenance architecture. This includes records of who accessed
data, what the overriding purpose of the request was, and how each individual platform was
used in combination for a full process workflow. Such information must (in part) be provided
by the end-user, and will need to reference the generated integrity measurements.

The above system does not provide any easy mechanism for recreating results. While it
would be possible to guarantee that two results came from precisely the same software exe-
cution, if hardware or software is changed subsequently, there is no way to re-run with the
original versions. We suggest that this could be implemented through saving and restoring vir-
tual machines. Such an approach would be compatible with the Eucalyptus cloud computing
system [152].

It would also be necessary to include custom developed software in the Reference Manifest
Database (RMDB), and extend the TCG schema [220] to include information about how it was
built. The provenance store would also need to be modified suitably to work with a RMDB

200

and to support searches for all results that used certain pieces of software.

C.5 Provenance and Trusted Computing Research: Producing

the Same Solutions

Despite the lack of interaction between Trusted Computing and provenance communities,
there is a great deal of overlap in current research. The security industry is looking for better
methods for monitoring a platform’s behaviour, a task that provenance systems already focus
on: in many security contexts, prevention is infeasible or prohibitively expensive; detection
is often a viable alternative. Detection of anomalies is therefore of great interest. Moreover,
provenance research is looking to increase the trustworthiness and integrity of records [86, 203],
a well-established problem in security. In this section we identify common areas of work, and
look at the related (but perhaps unknown) literature.

C.5.1 Related research

Both provenance and Trusted Computing are concerned with monitoring and reporting the
state of a machine used for some high-value (or high risk) function. Huh and Martin [93] look
to provide more detail by intercepting and securely logging I/O requests. In the provenance
domain, PASS [143] provides logging through hooking system calls, and Clifford et al. [45]
provide runtime execution logging. Reilly and Naughton [171] have similar ideas, but use
an extension to Condor to perform transparent logging. The work by Huh and Martin will
provide a higher assurance, but the approach taken by Reilly and Naughton may result in more
useful data. A common theme in this section is that Trusted Computing research currently
focuses on creating comprehensive and high-integrity results, whereas provenance systems
are better at extracting exactly the information considered relevant, and are not constrained by
security issues.

Tracking data usage is an important functionality of a provenance system, but has also
been approached many times in Trusted Computing research, with digital rights management
in mind. Proposals by Nauman et al. [147] would enable ‘measurement, storage and reporting
of the attribute update behavior’ for a data item at a remote platform. This is part of the
functionality required for provenance [139], and we can imagine it being integrated with data
derivation graphs. Provenance, access control and usage control have been linked before,
notably by Ni et al. [150].

The construction of custom executables and their history has been approached by both
areas. In earlier work, we have used integrity measurement to measure the compilation process
in order to produce a trustworthy compilation certificate for an arbitrary programme [121]. This
is similar to the ‘Transparent Make’ functionality provided by Vahdat and Anderson’s TREC
lineage system [228] and PASS by Muniswamy-Reddy et al. [143]. Again the goals are different,
but both allow users to identify how an executable was formed and what its dependencies are.
The similarities are notable, as TREC allows dependencies to be specified through Make files,

201

and we provided the same through ANT build scripts. However, TREC is general-purpose
and has many other applications, operating constantly through a kernel module intercepting
system calls. This makes it more suitable for constant use. Our compilation certificates, on the
other hand, are verifiable and considerably more trustworthy, but must be run independently
of normal processing. Overall, there is a clear requirement for greater information about
compiled software in both fields.

For full provenance information, we need to know how data is stored. The Trusted
Compting Group have standards for ‘Trusted Storage’ [222], providing features such as disk-
encryption, authentication and logging. The logging use case specified by the TCG has foren-
sics and auditing in mind [216]. Again, this is similar to the requirements for provenance [86]
- we would like the ability to go back through records and establish whether tampering or
unauthorised access occurred. While we are not aware of any hardware-based related prove-
nance research, secure and audited storage through file system and kernel support has been
mentioned frequently [228, 143, 185].

Both Trusted Computing and provenance systems tend to involve modification of existing
middleware. Condor has been modified by researchers in both fields [171, 146] looking to add
security and lineage through monitoring and assessing individual platforms. Löhr et al. [116]
proposed new modifications to grid middleware for enhanced trustworthiness, and Frew and
Slaughter [67] have demonstrated provenance in the ES3 system. Similarly, Trusted Cloud
Computing [184] and Provenance-Aware Cloud Computing [144] have both been discussed
recently, as well as Service Oriented Architectures [15, 203]. This implies that not only are
similar problems being solved, but in the same context and using the same underlying software
and systems.

C.5.2 What provenance can gain from Trusted Computing

We have already discussed the motivation for trusted provenance, but the use of Trusted
Computing has many potential advantages. Going beyond the enhanced security and assur-
ance, Trusted Computing research typically considers a much wider range of factors that can
affect system behaviour. This includes CPU architecture, use of virtualisation, protocols and
software. By taking advantage of this thoroughness, provenance systems can be more compre-
hensive and may identify hidden factors [67] that will later be useful. Furthermore, as security
problems receive greater attention and funding, it seems sensible to take advantage of the new
hardware and processes that are being implemented and re-use them for provenance. Trusted
Computing is led by a group of companies (such as IBM, Intel, AMD, and Microsoft [214]) with
significant resources. By introducing provenance as a requirement, we believe that many of the
tools being developed and used for security can become immediately useful for provenance.

C.5.3 What Trusted Computing can gain from provenance

Provenance research can be used by Trusted Computing researchers to enhance system security
and auditing. Integrity reporting systems lack a framework for evaluation, and require a way

202

of interpreting results. The provenance community is more aware of systems involved with
semantic representation and metadata, which could be the solution to this problem. Both
fields also have the problem of reporting too much data, and deciding how best to filter it. We
suspect that the provenance community are further ahead in storing and querying this kind of
information.

Trusted Computing suffers from another problem that is better understood in provenance:
how to deal with incomplete data. Remote attestation can only give details of the current
state of a platform, not historical data. Regular attestations, such as those mentioned in our
proposals in Section C.4 can provide a better history, but what should happen when a record
is missing? How should this scenario be recorded? Provenance systems are already designed
to work with incomplete information and composite data sources.

Finally, provenance seems like an excellent use of Trusted Computing, particularly as many
of the criticisms of Trusted Computing are less relevant. The integrity reporting approach has
been criticised as being fragile when used to make access control decisions, as any missing
software in the reference database will result in the platform being denied access. However,
in provenance, runtime decisions are not as important as storing a history for later use, so this
fragility is less important.

C.6 Challenges

With all the similarities we have listed, there are still some challenges. The research directions
are different: the Trusted Computing researchers are currently focused on improving security
through advances in cryptographic algorithms, and isolation mechanisms. In comparison,
semantic consistency and querying are perhaps more important for provenance. Furthermore,
in provenance the goal is to gain extra information for later analysis, and to improve scientific
results. And while security can be considered an enabler of new functionality, many still
believe it to be just about preventing bad things from happening.

Scientific results will face different threats and attacks than many other distributed com-
puting techniques, and a significant challenge is making sure that security does not reduce
usability. In many cases, there may be a relatively low risk to the data, and this should be
reflected in the security architecture. As a result, the use of Trusted Computing should be
as transparent as possible, and require as little effort for users and developers of applications
(often the same people). An open challenge is developing a systematic methodology for cre-
ating applications that support provenance and provide high assurance. This may involve
combination of recent work on PrIMe [137] and security development lifecycles [114].

Performance is another issue that could prevent the adoption of both provenance and se-
curity technology. The TPM is a low-speed chip, and cryptographic operations (such as attes-
tation) are relatively slow. The authenticated boot process also impacts on performance [180].
However, new versions of the TPM may be faster, using symmetric cryptography [221] and
it is likely that the hardware manufacturers will be able to increase performance in the fu-
ture. For the time being, there has been research looking at improving efficiency [33], and the

203

provenance architecture we outlined would require only one attestation per submitted job and
platform.

Trusted Computing also relies upon a public key infrastructure, for certifying attestation
keys and identifying platforms. We have not explored the trust management issues in depth
in this paper, and there will undoubtedly be issues in maintenance and implementation.
Fortunately, scientific grid computing is one domain with experience in key management on a
large scale, and we are optimistic in solving such problems.

C.7 Conclusion

Many of the concerns addressed by Trusted Computing relate to immediate and short-term
policy enforcement (‘shall I share this secret with that software, on that platform?’). Many
provenance issues are of a more long-term nature (‘where did this come from; how was it
processed?’). Yet these are highly-related topics because they both rely upon the unambiguous
(and tamper-proof) identification of hardware and software.

Existing Trusted Computing systems already provide much of the required functionality,
and in a way that provides high assurance and makes forgery infeasible. Furthermore, with the
introduction of security systems using Trusted Computing, the hardware becoming available,
and software libraries and OS infrastructure, the basic capabilities for collecting highly-assured
provenance data are being built. We have identified several places in which the two research
areas overlap, such as logging, monitoring, compilation history and secure storage.

We have argued that there is a natural synergy between the two areas of research, an overlap
in both the goals and the technologies for achieving them, and a strong prospect for combining
the two to give rise to trusted provenance.

204

	1 Introduction
	1.1 Why Do We Need Trustworthy Services?
	1.2 Contributions and Dissertation Structure
	1.3 Terminology and Definitions

	2 Establishing Trust in Software Systems
	2.1 System Assurance: An Overview
	2.2 Service-Oriented Architectures
	2.3 Trusted Computing and Virtualization
	2.4 Specification and Verification Techniques
	2.5 Conclusion

	3 Attestation: Problems and Existing Solutions
	3.1 Open Problems
	3.2 Related Research, Systems and Tools
	3.3 Integrity Measurement Approaches
	3.4 Gap Analysis and Conclusion

	4 Analysing Web Service Attestation
	4.1 What Makes a System Easy to Attest?
	4.2 Quantifying the Software Update Problem
	4.3 Conclusion

	5 Reducing The TCB of an XML Web Service
	5.1 A Split Service Architecture
	5.2 Implementation Issues
	5.3 Security Analysis
	5.4 Observations and Design Choices
	5.5 Impact on Performance
	5.6 Comparison With Related Work
	5.7 Conclusion

	6 From Measurement Logs to System Models
	6.1 Attesting Execution Integrity or Behaviour?
	6.2 Modelling Programs and PCR Usage
	6.3 CSP Program Models
	6.4 Implementation in Prolog
	6.5 The TPDMenu Shell
	6.6 Discussion
	6.7 Comparison With Related Work
	6.8 Conclusion

	7 Uniting Program Definition and Platform Attestation
	7.1 Attesting Platform Behaviour, Not Execution State
	7.2 Trustable Remote Verification: Establishing Properties Without Source Code
	7.3 Prototype Implementation
	7.4 Evaluation and Observations
	7.5 Alternative Implementations and Approaches
	7.6 Comparison with Related Work
	7.7 Conclusion

	8 Evaluation
	8.1 Evaluation Approach
	8.2 The Complete Attestable Service Architecture
	8.3 To What Extent Have Attestation Problems Been Solved?
	8.4 Practicality and Security of Solutions
	8.5 Assurance Properties
	8.6 Is Attestation Feasible for Service Assurance?

	9 Conclusion and Future Work
	9.1 Contributions
	9.2 Future Work
	9.3 Summary

	Bibliography
	Glossary
	A A Trusted Ballot Box Service
	A.1 Background
	A.2 Requirements
	A.3 Description and Operations

	B Example Scripts
	B.1 Ant Compilation Script
	B.2 Prolog Verification Script

	C Trusted Computing and Provenance: Better Together
	C.1 Introduction
	C.2 Background
	C.3 The Case for Trusted Provenance
	C.4 Remote Attestation as a Provenance System
	C.5 Provenance and Trusted Computing Research: Producing the Same Solutions
	C.6 Challenges
	C.7 Conclusion

