
Safety Verification of Asynchronous Pushdown Systems
with Shaped Stacks

Jonathan Kochems C.-H. Luke Ong

University of Oxford

Abstract. In this paper, we study the program-point reachability problem of con-
current pushdown systems that communicate asynchronously via unbounded and
unordered message buffers. Our goal is to relax the common restriction that mes-
sages can only be retrieved by a pushdown process when its stack is empty. We
introduce a new class of asynchronously communicating pushdown systems with
a mild shape constraint on the stacks, and show that the program-point cover-
ability problem remains decidable: stacks that fit the shape may reach arbitrary
heights; further a process may execute any communication action (be it process
creation, message send or retrieval) whether or not its stack is empty. This class
extends previous computational models studied in the context of asynchronous
programs, and enables the safety verification of a large class of message passing
programs.

Keywords: Concurrent pushdown systems, asynchronous message passing, ver-
ification

1 Introduction

The safety verification of concurrent and distributed systems, such as client-server en-
vironments, peer-to-peer networks and the myriad web-based applications, is an impor-
tant topic of research. We consider asynchronously communicating pushdown systems
(ACPS), a model of computation for such systems suitable for the algorithmic analysis
of the reachability problem. Each process of the model is a pushdown system; processes
may be spawned dynamically and they communicate asynchronously via a number of
unbounded message buffers which may be ordered or unordered. In order to obtain a
decision procedure for reachability, some models restrict the retrieval (or, dually, the
sending) of messages or the scheduling of tasks, allowing it to take place only when the
call stack is empty.

Can these restrictions on call stacks be relaxed? Unfortunately1 some form of con-
straint on the call stacks in relation to the communication actions is unavoidable. In-
spired by the work on asynchronous procedure calls [29, 22, 17], we consider processes
that communicate asynchronously via a fixed number of unbounded and unordered mes-
sage buffers which we call channels. Because channels are unordered, processes cannot
observe the precise sequencing of such concurrency actions as message send and pro-
cess creation; however, the sequencing of other actions, notably blocking actions such

1 Any analysis that is both context-sensitive and synchronisation-sensitive is undecidable [28].

2 Jonathan Kochems C.-H. Luke Ong

as message retrieval which requires synchronisation, is observable. If the behaviour of a
process is given by its action sequences, then we may postulate that certain actions com-
mute with each other (over sequential composition) while others do not. To formalise
these assumptions, we make use of partially commutative context-free grammars (PC-
CFG) [7], introduced recently by Czerwinski et al. as a study in process algebra. A
PCCFG is just a context-free grammar equipped with an irreflexive symmetric relation,
called independence, over an alphabet Σ of terminal symbols, which precisely captures
the symbols that commute with each other. In our model, a process is described by a
PCCFG that generates the set of its action sequences; terminal symbols represent con-
currency and communication actions, while the non-terminal symbols represent proce-
dure calls; and there is an induced notion of commutative procedure calls. With a view
to deciding reachability, a key innovation of our work is to summarise the effects of the
commutative procedure calls on the call stack. Rather than keeping track of the contents
of the stack, we precompute the actions of those procedure calls that produce only com-
mutative side-effects, and store them in caches on the call stack. The non-commutative
procedure calls, which are left on the stack in situ, act as separators for the caches of
commutative actions. As soon as the top non-commutative non-terminal on the stack
is popped, which may be triggered by a concurrency action, the cache just below it is
unlocked, and all the cached concurrency actions are then despatched at once.

In order to obtain a decision procedure for (a form of reachability called) cover-
ability, we place a natural constraint on the shape of call stacks: at all times, no more
than an a priori fixed number of non-commutative non-terminals may reside in the
stack. Note that because the constraint does not apply to commutative non-terminals,
call stacks can grow to arbitrary heights. Thanks to the shape constraint, we can prove
that the coverability problem is decidable by an encoding into well-structured transition
systems. To our knowledge, this class extends previous computational models studied
in the context of asynchronous programs. Though our shape constraint is semantic, we
give a simple sufficient condition which is expressed syntactically, thus enabling the
safety verification of a large class of message-passing programs.

Example 1. In Figures 1 and 2 we give an example program written in a version of Er-
lang that employs channels (as opposed to Actor-style mailboxes), implementing a sim-
ple replicated workers pattern. It consists of a distributor process that initially spawns a
number of workers, sets up a single shared resource, and distributes one task per worker
over a one-to-many channel. Each worker runs a task-processing loop. Upon reception
of a task, the worker recursively decomposes it, which involves communicating with
the shared resource at each step. Note that the communication of each worker with the
resource is protected by a lock. For the worker, the decomposition has two possible
outcomes: (i) the task is partially solved, generating one subtask and an intermediate
result or (ii) the task is broken down into one subtask and one new distributable task. In
case (i) the worker recursively solves the subtask and combines the result with the inter-
mediate result. In case (ii) the worker recursively solves the subtask and subsequently
dispatches the newly generated distributable task before returning. When a worker has
finished processing a task, it relays the result to the server and awaits a new task to

Verifying Asynchronous Pushdown Systems with Shaped Stacks 3

1 main()→ setup network(),
2 redistribute () .
3

4 setup network()→
5 spawn(worker),
6 case (∗) of
7 true → setup network();
8 false →
9 spawn(res start(init)) ,

10 toResource ! isReady,
11 receive toDistributor :
12 ready→ ()
13 end;
14 end, toWorkers ! task.
15

16 redistribute () →
17 receive toDistributor :
18 redist (Task)→ toWorkers ! Task;
19 result (Result)→ print (Result);
20 end, redistribute () .

21 % Resource
22 res start (S) =
23 fun() → toDistributor ! ready,
24 resource(S)
25 end.
26 resource(S)→
27 receive toResource:
28 lock req →
29 toWorkers ! locked,
30 resource locked(S)
31 end.
32

33 resource locked(S)→
34 receive toResource:
35 unlock req→ resource(S);
36 getState →
37 toWorkers ! state(S),
38 resource locked(S);
39 update(X) → resource locked(X)
40 end.

Fig. 1. A resource and a task distributor.

process. We have left the implemention of the functions decompose task and combine
open; for the purpose of this example we only assume that they do not perform any
concurrency actions, but they may be recursive functions.

Note that the call stacks of both the distributor and the workers may reach arbitrary
heights, and communication actions may be performed by a process at any stage of
the computation, regardless of stack height. For example the worker sends and receives
messages at every decomposition, and each recursive call increases the height of the
call stack.

An interesting verification question for this example program is whether the locking
mechanism for the shared resource guarantees exclusive access to the shared resource
for each worker process in its critical section.

A Computational Model. To verify programs such as the above we need a computa-
tional model that allows us to model recursive procedure calls, message passing concur-
rency actions and process creation. Once the obvious abstractions are applied to make
the data and message space finite, we arrive at a network of pushdown systems (equiv-
alently context-free grammars) which can communicate asynchronously over a finite
number of channels with unbounded capacity. Since we are interested in a class of such
systems with decidable verification problems we assume that channels are unordered
(FIFO queues with finite control are already Turing powerful [5]).

Outline. The rest of the paper is organised as follows. In Section 2 we present our model
of asynchronous partially commutative pushdown systems (APCPS), its (standard) se-
mantics and a verification problem. In Section 3 we investigate an alternative semantics
for APCPS, a corresponding verification problem, and relate it to the verification prob-
lem of Section 2. In Section 4 we introduce the class of APCPS with shaped stacks and
show that the verification problems are decidable for this class. In Section 5 we discuss

4 Jonathan Kochems C.-H. Luke Ong

1 worker()→
2 receive toWorkers:
3 Task→
4 result = do task(Task),
5 toDistributor ! result ;
6 end, worker().
7

8 do task(Task)→
9 case decompose(Task) of

10 local (Task’, Int result) →
11 Result = do task(Task’),
12 Result’ =
13 combine(Result,Int result)
14 return Result’;
15 redist (Task’, Task’’) →
16 Result = do task(Task’),
17 toDistributor ! Redist(Task’’) ,
18 return Result;
19 end.
20

21 combine(res,res’) → . . .

22 decompose(Task)→
23 lock(toResource),
24 toResource ! getState,
25 ?label(”critical ”) ,
26 receive toWorkers:
27 state(State) →
28 (Result,Update) =
29 decompose task(Task, State)
30 end,
31 toResource ! update(Update),
32 unlock(toResource),
33 return Result.
34

35 lock(C)→
36 C ! lock req,
37 receive toWorkers:
38 locked→ ()
39 end.
40 unlock(C)→ C ! unlock req.
41

42 decompose task(Task,State)→. . .

Fig. 2. A worker that recursively solves tasks and shares its workload.

related work and then conclude. Owing to space constraints we have relegated proofs
to the appendix.

Notation. We write M[U] for the set of multisets over the set U , and we use [·] to
denote multisets explicitly e.g. we write [u, u, v, v] to mean the multiset containing two
occurrences each of u and v. Given multisets M1 and M2, we write M1 ⊕M2 for the
multiset union of M1 and M2. We write U∗ for the set of finite sequences over U , and
let α, β, γ, µ, ν, . . . range over U∗. We define the Parikh image of α ∈ U∗ to be the
multiset over U , MU (α) : u 7→ |{i | α(i) = u}|; we drop the subscript and write M(α)
whenever it is clear from the context. We order multisets in the usual way: M1 ≤M M2

just if for all u,M1(u) ≤M2(u). LetM ∈M[U] and U0 ⊆ U . We defineM � U0 to be
the multiset M restricted to U0 i.e. (M � U0) : u 7→M(u) if u ∈ U0, and 0 otherwise.
We write U] V for the disjoint union of sets U and V .

2 Asynchronous Communicating Pushdown Systems

In this section we introduce our model of concurrency, asynchronous partially commu-
tative pushdown systems. Processes are modelled by a variant of context-free grammars,
which distinguish commutative and non-commutative concurrency actions. Communi-
cation between processes is asynchronous, via a fixed number of unbounded and un-
ordered message buffers, which we call channels.

Preliminaries. An independence relation I over a set U is a symmetric irreflexive
relation over U . It induces a congruence relation 'I on U∗ defined as the least equiv-
alence relation R containing I and satisfying: (µ, µ′) ∈ R ⇒ ∀ν0, ν1 ∈ U∗ :
(ν0 µ ν1, ν0 µ

′ ν1) ∈ R.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 5

Let I be an independence relation over U . An element a ∈ U is non-commutative
(with respect to I) just if ∀b ∈ U : (a, b) /∈ I i.e. a does not commute with any other
element. An element b is commutative (with respect to I) just if for each c ∈ U , if c
is not non-commutative then (c, b) ∈ I; intuitively it means that b commutes with all
elements of U except those that are non-commutative. We call an independence relation
I unambiguous if just every element of U is either commutative or non-commutative.

Definition 1. Let Σ be an alphabet of terminal symbols and I ⊆ Σ × Σ an indepen-
dence relation over Σ. A partially commutative context-free grammar (PCCFG) is a
quintuple G = (Σ, I,N ,R, S) where S ∈ N is a distinguished start symbol, and R is
a set of rewrite rules of the following types:2 let A ∈ N (i) A→ a where a ∈ Σ ∪ {ε},
(ii) A→ aB where a ∈ Σ, B ∈ N , (iii) A→ BC where B,C ∈ N . We refer to each
ρ ∈ R as a G-rule.

The (leftmost) derivation relation→seq is a binary relation over (Σ ∪N)∗/'I de-
fined as X α →seq β α if X → β is a G-rule. Note the derivation relation is defined
over the quotient by 'I , so the words generated are congruence classes induced by 'I .
As usual we denote the n-step relation as→n

seq and reflexive, transitive closure as→∗seq.
We further define a k-index derivation to be a derivation in which every term con-

tains at most k occurrences of non-terminals. Recent work [14, 12] has shown that
for every commutative context-free grammar G there exists k ≥ 1 such that the entire
language of G can be generated by derivations of index k.

PCCFG was introduced by Czerwinski et al. as a study in process algebra. They
investigated [7] the decidability of bisimulation for a class of processes described by
PCCFG where the commutativity of the sequential composition is constrained by an in-
dependence relation on non-terminals. We propose to use words generated by PCCFGs
to represent the sequence of concurrency actions of processes.

2.1 Asynchronous Partially Commutative Pushdown Systems

Our model of computation, asynchronous partially commutative pushdown systems,
are in essence PCCFGs equipped with an independence relation over an alphabet Σ of
terminal symbols, which represent the concurrency actions and program point labels.
First some notation. Let Chan be a finite set of channel names ranged over by c, Msg
be a finite message alphabet ranged over by m, and L be a finite set of program point
labels ranged over by l, l′, l1, etc. Further letN be a finite set of non-terminal symbols.
We derive an alphabet Σ of terminal symbols

Σ := L ∪ {c !m, c ?m | c ∈ Chan,m ∈ Msg} ∪ {νX | X ∈ N}. (1)

An action of the form c !m denotes the sending of the message m to channel c, c ?m
denotes the retrieval of message m from channel c, and νX denotes the spawning of a
new process that begins execution from X . We will use a, a′, b, etc. to range over Σ.

2 Identifying rules of type (ii), which is a special case of type (iii), allows us to distinguish tail-
recursive and non-tail recursive calls, which will be handled differently in the sequel, beginning
with Definition ??

6 Jonathan Kochems C.-H. Luke Ong

Our computational model will emit program point labels in its computation, allowing
us to pose questions of reachability. We will now define the computational power of our
processes in terms of PCCFGs.

The words that are generated by a process qua PCCFG represent its action se-
quences. Because channels are unordered, processes will not be able to observe the
precise sequencing of concurrency actions such as message send and process creation;
however the sequencing of other actions such as message retrieval is observable. Using
the language of partially commutative context-free grammar, we can make this sensi-
tivity to sequencing precise by an independence relation on actions.

An Independence Relation for the Concurrency Actions. Let Ξ ⊆ Σ, we define the
independence relation over Σ generated by Ξ as

IndRelΣ(Ξ) := {(a, a′), (a′, a) | a, a′ ∈ Ξ, a 6= a′}

Now let Σ[:= L ∪ {c !m | c ∈ Chan,m ∈ Msg} ∪ {νX | X ∈ N} be the subset of
Σ consisting of the program point labels and the send and spawn actions. It is straight-
forward to see that IndRelΣ(Σ

[) is, by construction, an unambiguous independence
relation over Σ. Thus IndRelΣ(Σ

[) allows us to commute all concurrency actions ex-
cept receive. Further we allow program point labels to commute. This is harmless, since
our goal is to analyse (a form of) control-state reachability, i.e. the question whether a
particular label can be reached, as opposed to questions that require sequential reason-
ing such as whether label l1 will be reached before l2 is reached.

We can now lift the independence relation to the non-terminals of a PCCFG G. Let
I be the least subset of (N ∪ Σ)2 such that (i) IndRelΣ(Σ

[) ⊆ I , and (ii) for all
b ∈ Σ ∪ N and A ∈ N , if ∀a ∈ RHS(A) : (a, b) ∈ I then {(A, b), (b, A)} ⊆ I ,
where RHS(A) := {a ∈ N ∪Σ | A→ α ∈ G, a occurs in α}. We note that I , which
is well-defined, is an unambiguous independence relation over N ∪ Σ. Thus we can
partition bothΣ andN intoΣcom andN com, the commutative actions and non-terminals
respectively, and Σ¬com and N¬com their non-commutative counterparts respectively.

We can now define our model of computation.

Definition 2. Assume L,Chan,Msg and N as introduced earlier, and the derived al-
phabet Σ of terminals as defined in (1). An asynchronous partially commutative push-
down system (APCPS) is just a PCCFG G = (Σ, I,N ,R, S).
Henceforth we fix L,Chan,Msg and N , and the derived (1) alphabet Σ of terminals.

2.2 Standard Semantics

The operational semantics is given as a transition system. A configuration of the sys-
tem is a pair, consisting of a parallel composition of processes and a set of channels.
We represent the state of a single process as an element of Control := (Σ ∪N)∗/'I .
The derivation relation of PCCFGs,→seq, defines how processes make sequential tran-
sitions.

Next we define how processes interact concurrently by message passing via a fixed
set of unbounded and unordered channels.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 7

Definition 3 (Standard Concurrent Semantics). The configurations are elements of
M[Control] × (Chan → M[Msg]). For simplicity, we write a configuration (say)
([α, β] , {c1 7→ [ma,mb,mb] , c2 7→ []}) as α ‖ β C [ma,mb,mb]

c1 , []
c2 . We abbre-

viate a set of processes running in parallel as Π and a set of channels by Γ with names
in Chan . The operational semantics for APCPS, a binary relation→con over configura-
tions, is then defined by induction over the rule:

α→seq α
′

α ‖ Π C Γ →con α
′ ‖ Π C Γ

(2)

and the following axioms: let m ∈ Msg , c ∈ Chan, l ∈ L and X ∈ N

(c ?m)α ‖ Π C ([m]⊕ q)c, Γ →con α ‖ Π C qc, Γ (3)
(c !m)α ‖ Π C qc, Γ →con α ‖ Π C ([m]⊕ q)c, Γ (4)

l α ‖ Π C Γ →con α ‖ Π C Γ (5)
(νX)α ‖ Π C Γ →con α ‖ X ‖ Π C Γ. (6)

The start configuration is S C ∅. We define a partial order on configurations as
follows: Π C Γ ≤ Π ′ C Γ ′ just if Π ≤M Π ′ and for every c ∈ Chan , Γ (c) ≤M
Γ ′(c).

2.3 Program-Point Coverability

In the sequential setting of (ordinary) pushdown systems, the control-state reachability
problem is of central interest. In our notation, it asks, given a control-state A, if it is
possible to reach a process-configuration Aα where A is the control-state and α is
some call stack. It should be clear that an equivalent problem is to ask whether l α is
reachable, where l is a program-point label. We prefer a formulation that uses program-
point labels because it simplifies our argument (and is equi-expressive).

In the concurrent setting, we wish to know whether, given a APCPS and program-
point labels l1, . . . , ln, there exist call stacks α1, . . . , αn and channel contents Γ such
that the configuration l1 α1 ‖ · · · ‖ ln αn C Γ is→con-reachable, possibly in parallel
with some other processes. Note that this question allows us to express not just control-
state reachability queries but also mutual exclusion properties. We state the problem of
program-point coverability more formally as follows.

Verification Problem 1 (Program-Point Coverability). Given an APCPS G and a set of
program point labels l1, . . . , ln, a tuple (G; l1, . . . , ln) is a yes-instance of the program-
point coverability problem just if there exist a configuration Π C Γ and α1, . . . , αn ∈
(Σ ∪N)∗/'I such that Π C Γ is →con-reachable and l1 α1 ‖ · · · ‖ ln αn C ∅ ≤
Π C Γ .

The program-point coverability problem allows us to characterise “bad-configura-
tions” cbad in terms of program-point labels. We regard a configuration c that covers
cbad, in the sense that (cbad ≤ c), also as “bad”. Using program-point coverability, we
can express whether any such configuration is reachable

8 Jonathan Kochems C.-H. Luke Ong

Example 2. Consider the program in Figures 1 and 2 and call it P . The problem of
whether each worker has exclusive access to the shared resource in its critical section
is expressible as a program-point coverability problem. A bad configuration is one in
which two worker processes are executing the line marked by ?label(” critical ”). We
can thus see that (P ;?label(” critical ”),?label(” critical ”)) is an instance of the program-
point coverability problem; a no answer implies mutual exclusion, whereas a yes an-
swer would tell us that two worker processes can be simultaneously within their critical
section.

The program-point coverability problem is undecidable for unconstrained APCPS.
In fact APCPS is Turing powerful: it is straightforward to simulate a system with two
synchronising pushdown systems.

3 An Alternative Semantics for APCPS

In this section we present an alternative semantics for APCPS which captures enough
information to solve the program-point coverability problem. The key idea is to sum-
marise the effects of the commutative non-terminals on the call stack. In the alternative
semantics, rather than keeping track of the contents of the call stack, we precompute the
actions of those procedure calls that produce only commutative side-effects, i.e. sends,
spawns and program point labels, and store them in caches on the call stack. The non-
commutative procedure calls, which are left on the call stack, then act as separators
for the caches of commutative side-effects. As soon as the top non-commutative non-
terminal on the stack is popped, which may be triggered by a concurrency action, the
cache just below it is unlocked. The cached actions are made effective instantaneously.
Note that this is enough to ensure a precise correspondence between the program-point
coverability problem for APCPS and a corresponding coverability problem for our al-
ternative semantics.

An Alternative Semantics. First we introduce a representation of the states of a pro-
cess. Let k ∈ N ∪ {∞}.

TermCache :=M[Σcom] MixedCache := M[Σcom ∪N com]

NonTermCache :=M[N com] Cache := TermCache]MixedCache

CallStack≤k := (N¬com · Cache)≤k

DelayedControl :=TermCache]MixedCache]NonTermCache

NormalControl := (N · Cache)] (Σ · N · Cache)] (Σ · Cache)

ControlState :=NormalControl]DelayedControl

γ, δ ∈ Control≤k :=ControlState · CallStack≤k

Queue :=M[Msg] Queues := Chan → Queue

Config≤k :=M
[
Control≤k

]
×Queues

Verifying Asynchronous Pushdown Systems with Shaped Stacks 9

Note that we assume the equality ε = ∅ to simplify notation. We write ControlM :=
Control≤∞ and CallStackM := CallStack≤∞. 3

Definition 4 (Alternative Sequential Semantics). Let G be a PCCFG. We define a
transition relation →seq′ ⊆ ControlM × ControlM by induction over the following
rules:

If A→ BC is a G-rule, C commutative and C →∗seq w ∈ (N com ∪Σcom)∗ then

AM γ →seq′ B (M(w) ⊕ M) γ (7)

If A→ BC is a G-rule and C non-commutative then

AM γ →seq′ BCM γ (8)

If A→ aB is a G-rule and a ∈ Σ and B ∈ N then

AM γ →seq′ aBM γ (9)

If A→ a is a G-rule where a ∈ Σ ∪ {ε} then

AM γ →seq′ aM γ (10)

where γ ∈ CallStackM, M ∈ Cache , and A,B and C range over non-terminals.

From the alternative sequential semantics, we derive a corresponding alternative
concurrent semantics, using the following notation: forM ∈M[Σcom] andw ∈ (Σcom)∗

Γ ⊕ Γ ′ := {c 7→ Γ (c)⊕ Γ ′(c) | c ∈ Chan}
Γ (M) :=

{
c 7→

∑
c!m∈M M(c !m) | c ∈ Chan

}
Γ (w) := Γ (M(w))

Π(M) := {X 7→M(νX) | X ∈ N} Π(w) := Π(M(w))

Definition 5 (Alternative Concurrent Semantics). We define a binary relation→con′

over M[ControlM]× (Chan →M[Msg]) by induction over the following rules:

If γ ∈ NormalControl · CallStackM, γ →seq′ γ
′ then

γ ‖ Π C Γ →con′ γ
′ ‖ Π C Γ (11)

If (c ?m) γ ∈ NormalControl · CallStackM, m ∈ Msg then

(c ?m) γ ‖ Π C ([m]⊕ q)c, Γ →con′ γ ‖ Π C qc, Γ (12)

If X ∈ N , (νX) γ ∈ NormalControl · CallStackM then

(νX) γ ‖ Π C Γ →con′ γ ‖ X ‖ Π C Γ (13)

If (c !m) γ ∈ NormalControl · CallStackM, m ∈ Msg then

(c !m) γ ‖ Π C qc, Γ →con′ γ ‖ Π C ([m]⊕ q)c, Γ (14)

If l γ ∈ NormalControl · CallStackM, l ∈ L then

l γ ‖ Π C Γ →con′ γ ‖ Π C Γ (15)

3 Defining Cache as a distjoint union enables a definition by cases according to the type of
cache, thus rendering →con′ monotone with respect to an ordering.

10 Jonathan Kochems C.-H. Luke Ong

If M X γ ∈ DelayedControl · CallStackM, M ∈ TermCache , Γ ′ = Γ ⊕ Γ (M),
Π ′ = Π ⊕Π(M) then

M X γ ‖ Π C Γ →con′ X γ ‖ Π ′ C Γ ′ (16)

If M γ ∈ DelayedControl · CallStackM, M ∈ MixedCache, Γ ′ = Γ ⊕ Γ (M),
Π ′ = Π ⊕Π(M) and M ′ =M � (N com ∪ L) then

M γ ‖ Π C Γ →con′ M
′ γ ‖ Π ′ C Γ ′ (17)

The alternative semantics precomputes the actions of commutative non-terminals on
the call stacks. This is achieved by rule (7) in the alternative sequential semantics. The
rules (16) and (17) are the concurrent counterparts; they ensure that the precomputed ac-
tions are rendered effective at the appropriate moment. Rule (16) is applicable when the
precomputed cache M contains exclusively commutative actions; such a cache denotes
a sequence of commutative non-terminals whose computation terminates and generates
concurrency actions. Rule (17), on the other hand, handles the case where the cache
M contains non-terminals. An interpretation of such a cache is a partial computation
of a sequence of commutative non-terminals. In this case rule (17) dispatches all com-
mutative actions and then blocks. It is necessary to consider this case since not all
non-terminals have terminating computations. Thus rule (7) may non-deterministically
decide to abandon the pre-compution of actions.

We now give a variant of the program-point coverability problem tailored to the
alternative semantics and show its correspondence with the program-point coverabilily
problem of Section 2.

Verification Problem 2 (Alternative Program-Point Coverability). Given an APCPS G
and a set of program point labels l1, . . . , ln, a tuple (P ; l1, ..., ln) is a yes-instance of
the alternative program-point coverability problem just if there exist a→con′ -reachable
configuration Π C Γ such that for every i ∈ {1, . . . , n} there exists λi γi ∈ Π such
that either λi = li, or λi =Mi and li ∈Mi?

In the appendix we show that the standard semantics weakly simulates the alterna-
tive semantics for APCPS (Proposition 4). Thus for every configuration reachable in
the alternative semantics there is a corresponding configuration reachable in the stan-
dard semantics. Owing to the nature of precomputations and caches, it is more difficult
to relate runs of the standard semantics to those of the alternative semantics. How-
ever, in the appendix, we show that for every run in the standard semantics reaching a
configuration, there exists a run in the alternative semantics reaching a corresponding
configuration (Proposition 2).

Theorem 1 (Reduction of Program-Point Coverability). A tuple (P ; l1, . . . , ln) is a
yes-instance of the program-point coverabililty problem if, and only if, (P ; l1, . . . , ln)
is a yes-instance of the alternative program-point coverability problem.

4 APCPS with Shaped Stacks

In this section we present a natural restriction on the shape of the call stacks of APCPS
processes. This shape restriction says that, at all times, at most an a priori fixed number

Verifying Asynchronous Pushdown Systems with Shaped Stacks 11

of non-commutative non-terminals may reside in the call stack. Because the restriction
does not apply to commutative non-terminals, call stacks can grow to arbitrary heights.
We show that the alternative semantics for such shape-constrained APCPS gives rise
to a well-structured transition system, thus allowing us to show the decidability of the
alternative program-point coverability problem.

Definition 6. Define Reach→con′ := {Π C Γ | [S] C ∅ →∗con′ Π C Γ}. Let k ∈ N,
we say an APCPS G has k-shaped stacks just if Reach→con′ ⊆ Config≤k. An APCPS
G has shaped stacks just if G has k-shaped stacks for some k ∈ N.

It follows from the definition that, in the alternative semantics, processes of an
APCPS with k-shaped stacks have the form: γ X1M1X2M2 · · ·XjMj where γ ∈
ControlState , Xi ∈ N¬com and j ≤ k. Relating this to the standard semantics, pro-
cesses of an APCPS with k-shaped stacks are always of the formαX1 β1X2 β2 · · ·Xj βj
where α ∈ (N ∪ (Σ · N) ∪ (Σ ∪ {ε})) · N com∗ and βi ∈ N com∗. It is this shape that
lends itself to the name APCPS. Even though the shaped stacks constraint is semantic,
the following proposition gives a syntactic sufficient condition. (The simple proof is
omitted.)

Proposition 1. Let G be an APCPS. If there is a well-founded partial order≥shape such
that for every A ∈ N and B ∈ RHS(A) ∩ N : (i) A ≥shape B, and (ii) ∃C ∈ N¬com :
A→ BC is a G-rule ⇒ A >shape B, then G has shaped stacks.

Example 3. Proposition 1 tells us that the program in Figures 1 and 2 can be modelled
by an APCPS with shaped stacks. Non-tail recursive calls are potentially problematic.
In our example the recursive call to setup network() in the definition of setup network
is non-tail recursive, but only places a send action on the call stack, thus causing no

harm. The only other non-tail recursive calls occur in do task: the call to decompose task
which poses no threat since decompose task does not invoke do task again, and the two
recursive calls to do task which either place procedure calls without concurrent actions
or send actions on the stack.

4.1 APCPS with Shaped Stacks and Well-Structured Transition Systems

We will now show the decidability of the alternative program-point coverability prob-
lem for APCPS with shaped stacks. First we recall the definition of well-structured tran-
sition systems [15]. Let ≤ be an ordering over a set U ; we say ≤ is a well-quasi-order
(wqo) just if for all infinite sequences u1, u2, . . . there exists i, j such that ui ≤ uj .
A well-structured transition system (WSTS) is a quadruple (S,→,≤, s0) such that
s0 ∈ S, ≤ is a wqo over S and → ⊆ S × S is monotone with respect to ≤, i.e. if
s→ s′ and s ≤ t then there exists t′ such that t→ t′.

Well-structured transitions systems are an expressive class of infinite state systems
that enjoy good model checking properties. A decision problem for WSTS of particular
interest to verification is the coverability problem i.e. given a state s is it the case that
s0 →∗ s′ and s ≤ s′. For U ⊆ S define the sets Pred(U) := {s | s → u, u ∈ U}
and ↑ U := {u′ | u ≤ u′, u ∈ U}. For WSTS the coverability problem is decidable
[15] provided that for any given s ∈ S the set ↑ Pred(↑ {s}) is effectively computable.

12 Jonathan Kochems C.-H. Luke Ong

Well-quasi-orders can be composed in various ways which makes decision results for
WSTS applicable to a wide variety of infinite state models. In the following we recall a
few results on the composition of wqos.

(WQO-a) If (Ai,≤i) are wqo sets for i = 1, ..., k then (A1×· · ·×Ak,≤1 × · · ·× ≤k)
is a wqo set. (Dickson’s Lemma)

(WQO-b) If A is a finite set then (A,=) is a wqo set.
(WQO-c) If (A,≤) is a wqo then (M[A],≤M[A]) is a wqo set where M1 ≤M[A] M2

just if for all a ∈ A there exists an a′ ≥ a such that M1(a) ≤M2(a
′) [32].

(WQO-d) If (A,≤A) and (B,≤B) are wqo sets, then (A · B,≤A · ≤B) is a wqo set,
where γ · γ′ ≤A · ≤B δ · δ just if γ ≤A δ and γ′ ≤B δ′.

(WQO-e) If (A,≤A) and (B,≤B) are wqo set, then (A]B,≤A] ≤B) is a wqo set,
where a ≤A] ≤B b just if a, b ∈ A and a ≤A b or a, b ∈ B and a ≤B b.

4.2 A Well-Quasi-Order for the Alternative Semantics

Fix a k. Our goal is to construct a well-quasi-order for Config≤k which is the first
step to showing the alternative semantics gives rise to a WSTS for APCPS with shaped
stacks.

We can order the multi-sets TermCache , NonTermCache , MixedCache and Queue
with the multi-set inclusion ≤M which is a well-quasi-order. Since Chan is a finite set
and Queues = Chan → M[Msg] ∼= M[Msg]|Chan| we obtain a well-quasi-order
for Chan → M[Msg] using a generalisation of Dickson’s lemma. We can then com-
pose the wqo of TermCache and MixedCache to obtain a wqo ≤Cache :=≤TermCache

] ≤MixedCache for Cache . We order CallStack≤k as follows: for each j ∈ {1 . . . k}
we define

X1M1X2M2 · · ·XjMj ≤ X1M
′
1X2M

′
2 · · ·XjM

′
j iff ∀i :Mi ≤Cache M

′
i

which gives a well-quasi-order. We obtain a wqo for DelayedControl by composing
the wqos of TermCache , NonTermCache and MixedCache:

≤DelayedControl :=≤TermCache] ≤NonTermCache] ≤MixedCache .

Since Σ and N are finite sets, (Σ,=Σ) and (N ,=N) are wqo sets, and so, we can
compose a wqo for NormalControl :

≤NormalControl := (=Σ · ≤Cache)] (=Σ ·=N · ≤Cache)] (=N · ≤Cache) .

Similarly we can construct wqos for ControlState and Control≤k by composition:

≤ControlState :=≤NormalControl] ≤DelayedControl

≤Control≤k :=≤ControlState · ≤CallStack≤k .

As a last step we use (WQO-c) to construct a wqo for M
[
Control≤k

]
which then

allows us to define a wqo for Config≤k by ≤Config≤k :=≤M[Control≤k] × ≤Queues .

To prove the decidability of the coverability problem for APCPS with shaped stacks,
it remains to show that→con′ is monotonic and ↑ Pred(↑ {γ}) is computable.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 13

Lemma 1 (Monotonicity). The transition relation →con′ is monotone with respect to
the well-order ≤Config≤k .

Corollary 1. The transition system
(

Config≤k,→con′ ,≤Config≤k

)
is a well-structured

transition system.

To see that ↑ Pred(↑ {γ}) is computable is mostly trivial; only predecessors
generated by rule (7) are not immediately obvious. Given M ′ ∈ Cache we observe that
it is enough to be able to compute the set PM ′ := ↑ {(C,M) | C ∈ N com,
C →∗seq w,M

′′ =M ⊕M(w),M ′ ≤M M ′′}. Now C →∗seq w is a computation of a
commutative context-free grammar (CCFGs) for which an encoding into Petri nets has
been shown by Ganty and Majumdar [17]. Their encoding builds on work by Esparza
[11] modelling CCFG in Petri nets. Their translation leverages a recent result [14]: ev-
ery word of a CCFG has a bounded-index derivation i.e. every term of the derivation
uses no more than an a priori fixed number of occurrences of non-terminals. A budget
counter constrains the Petri net encoding of a CCFG to respect boundedness of index;
termination of a CCFG computation can be detected by a transition that is only enabled
when the full budget is available. This result allows us to compute the set PM ′ using a
backwards coverability algorithm for Petri nets.

Theorem 2. The alternative program-point coverability problem, and hence the program-
point coverability problem, for APCPS with k-shaped stacks are decidable for every
k ≥ 0.

5 Related Work and Discussion

Partially Commutative Context-Free Grammars (PCCFG). Czerwinski et al. intro-
duced PCCFG as a study in process algebra [7]. They proved that bisimulation is
NP-complete for a class of processes extending BPA and BPP [11] where the sequen-
tial composition of certain processes is commutative. Bisimulation is defined on the
traces of such processes, although there is no synchronisation between processes. In [8]
the problem of word reachability for partially commutative context-free languages was
shown to be NP-complete.

Asynchronous Procedure Calls. Petri net models for finite state machines that commu-
nicate asynchronously via unordered message buffers were first investigated by Mukund
et al. [26, 27]. In an influential paper [29] in 2006, Sen and Viswanathan showed
that safety verification is decidable for first-order programs with atomic asynchronous
methods. Building on this, Jhala and Majumdar [22] constructed a VAS that models
such asynchronous programs on-the-fly. Liveness properties, such as fair termination
and starvation, of asynchronous programs were extensively studied by Ganty et al. in
[18, 17]. In our more general APCPS framework, we may view the asynchronous pro-
grams considered by Ganty and Majumdar in [17] as APCPS running a single “sched-
uler” process. Task bags can be modelled as channels in our setting and the posting of
a task can be modelled by sending a message; the scheduling of a procedure call can
be simulated as a receive of a non-deterministically selected channel which unlocks a

14 Jonathan Kochems C.-H. Luke Ong

commutative procedure call defined by rules of types (i) and (ii) and rules of type (iii)
where C ∈ N com, in the sense of Definition 2. It is thus easy to see that APCPS with
shaped stacks subsume programs with asynchronous procedure calls. In light of the fact
that their safety verification is EXPSPACE-complete we can infer that the program-point
coverability problem for APCPS with shaped stacks is EXPSPACE-hard.

Various extensions of Sen and Viswanathan’s model [6] and applications to real-
world asynchronous task scheduling systems [19] have been investigated. From the
standpoint of message-passing concurrency, a key restriction of many of the models
considered is that messages may only be retrieved by a communicating pushdown pro-
cess when its stack is empty. The aim of this paper is to relax this restriction while
retaining decidability of safety verification.

Communicating Pushdown Systems. The literature on communicating pushdown sys-
tems is vast. Numerous classes with decidable verification problems have been discov-
ered. Heußner et al. [21] studied a restriction on pushdown processes that communicate
asynchronously via FIFO channels: a process may send a message only when its stack
is empty, while message retrieval is unconstrained. Several other communicating push-
down systems have been explored: parallel flow graph systems [13], visibly pushdown
automata that communicate over FIFO-queues [1], pushdown systems communicating
over locks [23], and recursive programs with hierarchical communication [4, 2].

Verification techniques that over-approximate correctness properties of concurrent
pushdown systems have been studied [16, 20]. Under-approximation techniques typ-
ically impose constraints, such as bounding the number of context switches [31, 24],
bounding the number of times a process can switch from a send-mode to receive-mode
[3], or allowing symbols pushed onto the stack to be popped only within a bounded
number of context switches [30]. Another line of work focuses on pushdown systems
that communicate synchronously over channels, restricting model checking to synchro-
nisation traces that fall within a restricted regular language [12]; this approach has been
developed into an effective CEGAR method [25].

Future Directions and Conclusion. We have introduced a new class of asynchronously
communicating pushdown systems, APCPS, and shown that the program-point cov-
erability problem is decidable and EXPSPACE-hard for the subclass of APCPS with
shaped stacks. We plan to investigate the precise complexity of the program-point cov-
erability problem, construct an implementation and integrate it into SOTER [9, 10], a
safety verifier for Erlang programs, to study APCPS empirically.

Acknowledgments. Financial support by EPSRC (research grant EP/F036361/1 and
OUCL DTG Account doctoral studentship for the first author) is gratefully acknowl-
edged. We would like to thank Matthew Hague, Subodh Sharma, Michael Tautschnig
and Emanuele D’Osualdo for helpful discussions and insightful comments, and the
anonymous reviewers for their detailed reports.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 15

References

[1] D. Babic and Z. Rakamaric. Asynchronously communicating visibly pushdown systems.
Technical Report UCB/EECS-2011-108, UC Berkeley, 2011. 5

[2] A. Bouajjani and M. Emmi. Analysis of recursively parallel programs. In POPL, pages
203–214, 2012. 5

[3] A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing programs. In
TACAS, pages 451–465, 2012. 5

[4] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic net-
works of pushdown systems. In CONCUR, pages 473–487, 2005. 5

[5] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, 1983. 1

[6] R. Chadha and M. Viswanathan. Decidability results for well-structured transition systems
with auxiliary storage. In CONCUR, pages 136–150, 2007. 5

[7] W. Czerwinski, S. B. Fröschle, and S. Lasota. Partially-commutative context-free processes.
In CONCUR, pages 259–273, 2009. 1, 2, 5

[8] W. Czerwinski, P. Hofman, and S. Lasota. Reachability problem for weak multi-pushdown
automata. In CONCUR, pages 53–68, 2012. 5

[9] E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Soter: an automatic safety verifier for Erlang.
In AGERE! ’12, pages 137–140, 2012. 5

[10] E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Automatic verification of Erlang-style con-
currency. In SAS, 2013. To Appear. 5

[11] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fundam. Inform., 31(1):13–25, 1997. 4.2, 5

[12] J. Esparza and P. Ganty. Complexity of pattern-based verification for multithreaded pro-
grams. In POPL, pages 499–510, 2011. 2, 5

[13] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In POPL, pages 1–11, 2000. 5

[14] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple and direct
construction. CoRR, abs/1006.3825, 2010. 2, 4.2

[15] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001. 4.1

[16] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, pages 213–224,
2003. 5

[17] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6, 2012. 1, 4.2, 5

[18] P. Ganty, R. Majumdar, and A. Rybalchenko. Verifying liveness for asynchronous programs.
In POPL, pages 102–113, 2009. 5

[19] G. Geeraerts, A. Heußner, and J.-F. Raskin. Queue-dispatch asynchronous systems. CoRR,
abs/1201.4871, 2012. 5

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refine-
ment. In CAV, pages 262–274, 2003. 5

[21] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating
pushdown systems. In FOSSACS, pages 267–281, 2010. 5

[22] R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. In POPL,
pages 339–350, 2007. 1, 5

[23] V. Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise CFL-reachability for threads communicating via locks. In LICS, pages 27–36,
2009. 5

16 Jonathan Kochems C.-H. Luke Ong

[24] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods in System Design, 35(1):73–97, 2009. 5

[25] Z. Long, G. Calin, R. Majumdar, and R. Meyer. Language-theoretic abstraction refinement.
In FASE, pages 362–376, 2012. 5

[26] M. Mukund, K. N. Kumar, J. Radhakrishnan, and M. A. Sohoni. Towards a characterisation
of finite-state message-passing systems. In ASIAN, pages 282–299, 1998. 5

[27] M. Mukund, K. N. Kumar, J. Radhakrishnan, and M. A. Sohoni. Robust asynchronous
protocols are finite-state. In ICALP, pages 188–199, 1998. 5

[28] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst., 22(2):416–430, 2000. 1

[29] K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, pages 300–314, 2006. 1, 5

[30] S. L. Torre and M. Napoli. Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR, pages 203–218, 2011. 5

[31] S. L. Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reacha-
bility to sequential reachability. In CAV, pages 477–492, 2009. 5

[32] I. Wehrman. Higman’s theorem and the multiset order, 2006. URL http://www.cs.
utexas.edu/˜iwehrman/pub/ms-wqo.pdf. c

http://www.cs.utexas.edu/~iwehrman/pub/ms-wqo.pdf
http://www.cs.utexas.edu/~iwehrman/pub/ms-wqo.pdf

Verifying Asynchronous Pushdown Systems with Shaped Stacks 17

A Proof of Theorem 1

A.1 Direction: ⇐

We lift define a function ML·M over sequences NN com∗(N¬comN com∗)∗ in the follow-
ing way:

MLC1 · · ·CnM =

{
n⊕
i=1

M(wi) | Ci →∗seq wi, wi ∈ (Σ ∪N)∗/'I

}
MLC1 · · ·CnZαM = MLC1 · · ·CnM · Z ·MLαM

MLXαM = X ·MLαM
MLaαM = a ·MLαM

Let U, V ⊆ ControlM, we define U →seq′ V just if for all γ′ ∈ V there exists a γ ∈ U
such that γ →seq′ γ

′.

Lemma 2. If α→seq β such that α ∈ N ∗ then MLαM→seq′ MLβM.

Proof. Since α →seq β we have α = Xα0 and β = α1α0 such that X → α1. And so
MLαM = XMLα0M. We will proceed by case analysis on X → α1.

– X → a, a ∈ Σ ∪ {ε}.
Take aδ ∈ a ·MLα0M = MLaα0M = MLβM. Then Xδ ∈ MLαM and Xδ →seq′ aδ.
Hence MLαM→seq′ MLβM.

– X → aA, a ∈ Σ.
Take aAδ ∈ a · A ·MLα0M = MLaAα0M = MLβM, then since Xδ ∈ MLαM and
Xδ →seq′ aAδ. Hence MLαM→seq′ MLβM.

– X → AB, B ∈ N¬com.
Suppose ABδ ∈ A · B · MLα0M = MLα1α0M = MLβM, then Xδ ∈ MLαM and
Xδ →seq′ ABδ. Hence MLαM→seq′ MLβM.

– X → AB, B ∈ N com.
SupposeAM ′δ ∈MLABα0M = MLα1α0M = MLβM. Then clearlyM ′ = M(w)⊕M
such that B →∗seq w and Mδ ∈MLα0M. Now then XMδ ∈MLαM and XMδ →seq′

A(M(w)⊕M)δ. Thus MLαM→seq′ MLβM.

For U, V ⊆M[ControlM] define

U ‖ V := {Π0 ‖ Π1 | Π0 ∈ U,Π1 ∈ V }

Further we define

MLΠ ‖ Π ′M := MLΠM ‖MLΠ ′M

We say that for U, V ⊆ M[ControlM] U C Γ →con′ V C Γ ′, just if for all Π ′ ∈
V there exists Π ∈ U such that Π C Γ →con′ Π

′ C Γ ′. Note this means that if
MLαM→seq′ MLβM then clearly MLα ‖ ΠM C Γ →con′ MLβ ‖ ΠM C Γ for all Π , Γ .

18 Jonathan Kochems C.-H. Luke Ong

Lemma 3. 1. If a ∈ Σcom and aαα′ ‖ Π C Γ →con αα
′ ‖ Π ⊕Π(a) C Γ ⊕ Γ (a)

where α ∈ (N ∪ {ε})N com∗, α′ ∈ (N¬comN com)∗, then

MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ⊕Π(a)M C Γ ⊕ Γ (a).

2. If (c ?m)αα′ ‖ Π C Γ⊕Γ (c !m)→con αα
′ ‖ Π C Γ whereα ∈ (N ∪ {ε})N com∗,

α′ ∈ (N¬comN com)∗, then

ML(c ?m)αα′ ‖ ΠM C Γ ⊕ Γ (c !m)→con′ MLαα′ ‖ ΠM C Γ.

Claim 1. We show that MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ′M C Γ ′ by case analy-
sis on a:

– a = c !m
Then Π ⊕Π(a) = Π ,
Take γ ‖ π ∈ MLαα′ ‖ ΠM then (c !m)γ ‖ π ∈ ML(c !m)αα′ ‖ ΠM. Using rule
14 we see that

(c !m)γ ‖ π C Γ →con′ γ ‖ π C Γ ⊕ Γ (c !m).

Hence we conclude ML(c !m)αα′ ‖ ΠM C Γ →con′ MLαα′ ‖ ΠM C ⊕Γ (c !m).
– a = νX

Then Π ⊕Π(νX) = Π ‖ X , Γ = Γ
Take γ ‖ X ‖ π ∈ MLαα′ ‖ X ‖ ΠM = MLαα′ ‖ Π ⊕ Π(νX)M then (νX)γ ‖
π ∈ML(νX)αα′ ‖ ΠM. Using rule 13 we see that

(νX)γ ‖ π C Γ →con′ γ ‖ X ‖ π C Γ .

Hence we conclude ML(νX)αα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ⊕Π(νX)M C Γ .
– a = l

Then Π ⊕Π(l) = Π , Γ ⊕ Γ (l) = Γ . Take γ ‖ π ∈ MLαα′ ‖ ΠM then lγ ‖ π ∈
MLlαα′ ‖ ΠM. Using rule 15 we see that

lγ ‖ π C Γ →con′ γ ‖ π C Γ .

Hence we conclude
MLlαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ ΠM C Γ .

Claim 2. Take γ ‖ π ∈ MLαα′ ‖ ΠM = MLαα′ ‖ ΠM then (c ?m)γ ‖ π ∈
ML(c ?m)αα′ ‖ ΠM

Then using rule 12 we see that

(c ?m)γ ‖ π C Γ ⊕ Γ (c !m)→con′ γ ‖ π C Γ .

Hence we conclude ML(c ?m)αα′ ‖ ΠM C Γ ⊕ Γ (c !m)→con′ MLαα′ ‖ ΠM C Γ .

Verifying Asynchronous Pushdown Systems with Shaped Stacks 19

Lemma 4.
If a1 · · · an ∈ Σcom∗, αi ∈ N com∗ and α′ ∈ (N¬comN com)∗,

α1α
′ ‖ Π(ε) C Γ (ε)→∗con a1α2α

′ ‖ Π(ε) C Γ (ε)

→con α2α
′ ‖ Π(a1) C Γ (a1)

→∗con · · · →∗con

anαn+1α
′ ‖ Π(a1 · · · an−1) C Γ (a1 · · · an−1)

→∗con αn+1α
′ ‖ Π(a1 · · · an) C Γ (a1 · · · an)

then

MLα1α
′ ‖ Π(ε)M C Γ (ε)→∗con′ MLαn+1α

′ ‖ Π(a1 · · · an)M C Γ (a1 · · · an).

Proof. We prove the claim by induction on n. For n = 0 the claim is vacuously true.
For n = k + 1, assuming the claim holds for k it is enough to show that if

αk+1α
′ ‖ Π(a1 · · · ak) C Γ (a1 · · · ak)→∗con ak+1αk+2α

′ ‖ Π(a1 · · · ak) C Γ (a1 · · · ak)
→∗con αk+2α

′ ‖ Π(a1 · · · ak+1) C Γ (a1 · · · ak+1)

then

MLαk+1α
′ ‖ Π(a1 · · · ak)M C Γ (a1 · · · ak)→∗con′ MLαk+2α

′ ‖ Π(a1 · · · ak+1)M C Γ (a1 · · · ak+1)

which we obtain by repeatedly applying Lemma 2 and then Lemma 3.

Lemma 5. If aαα′ ‖ Π C Γ →con αα′ ‖ Π ′ C Γ ′ →∗con α′ ‖ Π ′′ C Γ ′′ where
a ∈ Σ, α ∈ N com∗, α′ ∈ (N¬comN com)∗, α→∗seq w ∈ Σ

∗
/'I , Π ′′ = Π ′ ⊕ Π(w),

Γ ′′ = Γ ′ ⊕ Γ (w) then

MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ′M C Γ ′ →con′ MLα′ ‖ Π ′′M C Γ ′′.

Proof. For MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ′M C Γ ′ we appeal to Lemma 3.
Now since α→∗seq w we have αα′ ‖ Π ′ C Γ ′ →∗con α

′ ‖ Π ′ ⊕Π(w) C Γ ′ ⊕ Γ (w).
LetM = M(w) and take γ ‖ π′⊕Π(M) C Γ ′⊕Γ (M) ∈MLα′ ‖ Π ′ ⊕Π(w)M C Γ ′ ⊕ Γ (w)

Then note Mγ ‖ π′ ∈MLαα′ ‖ Π ′M and using rule 16

Mγ ‖ π′ C Γ ′ →con′ γ ‖ π′ ⊕Π(M) C Γ ′ ⊕ Γ (M).

Lemma 6. If aαα′ ‖ Π C Γ →con αα′ ‖ Π ′ C Γ ′ →∗con wα′ ‖ Π ′ C Γ ′ →∗con
w′α′ ‖ Π ′′ C Γ ′′ where a ∈ Σ, α ∈ N com∗, α′ ∈ (N¬comN com)∗, α′′ ∈ N¬com∗ and
α→∗seq w ∈ (Σ ∪N)∗/'I , w′ ∈ N ∗/'I , Π ′′ = Π ′ ⊕Π(w), Γ ′′ = Γ ′ ⊕ Γ (w) then

MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ′M C Γ ′ →con′ M(w′) ·MLα′M ‖MLΠ ′′M C Γ ′′.

20 Jonathan Kochems C.-H. Luke Ong

Proof. For MLaαα′ ‖ ΠM C Γ →con′ MLαα′ ‖ Π ′M C Γ ′ we appeal to Lemma 3.
Now since α→∗seq w we have αα′ ‖ Π ′ C Γ ′ →∗con w

′α′ ‖ Π ′⊕Π(w) C Γ ′⊕Γ (w).
Let M ′ =M(w′) then
M ′γ ‖ π′ ⊕Π(M) C Γ ′ ⊕ Γ (M) ∈ M(w′) ·MLα′M ‖ MLΠ ′ ⊕Π(w)M C Γ ′ ⊕

Γ (w) and Mγ ‖ π′ ∈MLαα′ ‖ Π ′M such that M = M(w). Using rule 17

Mγ ‖ π′ C Γ ′ →con′ M
′γ ‖ π′ ⊕Π(M) C Γ ′ ⊕ Γ (M).

Lemma 7. Let X ∈ N , α ∈ (N¬comN com∗)∗, w ∈ Σcom and β, α′ ∈ N com∗

1. IfXβα C Γ (ε)Γ (ε)→∗con α ‖ Π(w) C Γ (w) then MLXβαM C Γ (ε)→∗con′ MLα ‖ Π(w)M C Γ (w)
2. IfXβα C Γ (ε)→∗con′ α

′α ‖ Π(w) C Γ (w), then MLXβαM C Γ (ε)→∗con M(α′) ·MLαM ‖
MLΠ(w)M C Γ (w)

Claim 1. Then Xβα →∗seq aα0α where a ∈ Σcom ∪ {ε} such that aα0 →∗seq w so by
Lemma 2 MLXβαM →∗seq′ MLaα0αM. By Lemma 5 MLaα0αM C Γ (ε) →∗con′ MLα ‖
Π(w)M C Γ (w) and clearly also MLXβαM C Γ (ε)→∗con′ MLaα0αM ‖ Π(w) C Γ (w).

Claim 2. Then Xβα→∗seq aα0α where a ∈ Σcom ∪ {ε} such that aα0 →∗seq wα
′ so by

Lemma 2 MLXβαM→∗seq′ MLaα0αM. By Lemma 6 MLaα0αM C Γ (ε)→∗con′ MLα′α ‖
Π(w)M C Γ (w) and clearly also MLXαM C Γ (ε) →∗con′ MLaα0αM ‖ Π(w) C Γ (w).

Lemma 8. Let X ∈ N¬com, β, β′ ∈ N com∗ and α, α′ ∈ (N¬comN com∗)∗.

1. IfXβα C Γ (ε)→∗con α
′α ‖ Π(w) C Γ (w) then MLXβαM C Γ (ε)→∗con′ MLα′α ‖

Π(w)M C Γ (w)
2. IfXβα C Γ (ε)→∗con (c ?m)β′α′α ‖ Π(w) C Γ (w), then MLXα ‖ Π(w)M C Γ (ε)→∗con′

ML(c ?m)β′α′αM C Γ (ε).

Claim 1. Then

Xβα C Γ (ε)→∗con X
′α′α ‖ Π(w0) C Γ (w0)

such that X ′ →∗seq aα0 where a ∈ Σcom∪{ε}, α0 ∈ N com∗ such that aα0 →∗seq w1 and
w = w0w1. By Lemma 4

MLXβαM C Γ (ε)→∗con′ MLX ′α′α ‖ Π(w0)M C Γ (w0)

Then the proof of Lemma 7 Claim 1 applies to give the result.

Claim 2. Then

Xβα C Γ (ε)→∗con′ X
′X ′′β′α′α ‖ Π(w0) C Γ (w0)

such that X ′′ →∗seq c ?m, and X ′ →∗seq w1 where w = w0w1. Hence

X ′X ′′β′α′α ‖ Π(w0) C Γ (w0)→∗con′ (c ?m)β′α′α ‖ Π(w) C Γ (w).

Verifying Asynchronous Pushdown Systems with Shaped Stacks 21

so by Lemma 4 and Lemma 2.

MLXβαM C Γ (ε)→∗con′ ML(c ?m)β′α′α ‖ Π(w)M C Γ (w).

For α1, . . . , αm ∈ N com∗ and Z1, . . . , Zm−1 ∈ N¬com define

M(α1Z1 · · ·αm−1Zm−1αm) := M(α1)Z1 · · ·M(αm−1)Zm−1M(αm)

M(Π ‖ Π ′) := M(Π) ‖M(Π ′)

Proposition 2. If S C Γ (ε)→∗con Π
′ C Γ ′ then M(S) C Γ (ε)→∗con′ M(Π ′) C Γ ′

Proof. Let Πf ∈ M[Control] and define the set PΠf = {α | ∃Π.α ‖ Π = Πf}. fur-
ther define the set of configurationsP := {Π C Γ | ∀α ∈ Π,α ∈ N (N¬comN com∗)∗∪
Σ¬comN com∗(N¬comN com∗)∗ ∪N ∪ PΠf }.

Now suppose that for some Π,Π ′ and Γ, Γ ′

Π C Γ := Π0 C Γ0 →∗con Π1 C Γ1 →∗con · · · →∗con Πn C Γn =: Π ′ C Γ ′

such that Πi C Γi ∈ P for i = 0, . . . n. Without loss of generality we can assume that
for all i = 0, ..., n, Πi = Πa

i ‖ Π
f
i such that for all α ∈ Πf

i we have α ∈ PΠf and
α is not involved in any transitions in Πi C Γi →∗con Πn C Γn. Note that we are not
loosing generality, since a reduction α ‖ Π →∗con α ‖ Π ′ can either be pre-empted
or goes through a process state in Σ¬comN com∗(N¬comN com∗)∗. Note this also means
that Πf

i+1 = Πf
i ‖ Π ′

f
i . We further assume w.l.o.g that for each i it is the case that

Πa
i = α ‖ Π ′i and Πa

i+1 = α′ ‖ Π ′i ⊕ Π(w) and Γk+1 ⊕ Γ (w′) = Γk ⊕ Γ (w) for
some w ∈ Σcom∗ and w′ ∈ {ε} ∪Σcom, i.e. during each Πa

i C Γi →∗con Π
a
i+1 C Γi+1

only one process makes progress (note this can be achieved by delaying receptions and
performing sends and spawns as early as possible) and none of the intermediate steps
are configurations of P .

We will prove by induction on n:

MLΠa
0 M ‖ Π̃f

0 C Γ0 →∗con′ MLΠa
1 M ‖ Π̃f

1 C Γ1 →∗con′ · · · →∗con′ MLΠnM ‖ Π̃f
n C Γn

where for all i = 0, . . . n and α ∈ Πf
i we have either Πf

i (α) = Π̃f
i (MLαM) or

Πf
i (α) = Π̃f

i (M(α0) ·MLα1M), α = α0α1.

– n = 0.
The claim holds trivially.

– n = k + 1, assuming the claim holds for k.
To prove the inductive claim we need to show that from Πk = α ‖ Π ′k, Πk+1 =
α′ ‖ Π ′k⊕Π(w) and Γk+1⊕Γ (w′) = Γk⊕Γw whereΠk C Γk →∗con Πk+1 C Γk+1,
we can infer MLΠkM C Γk →∗con MLΠk+1M C Γk+1. We will do so by a case anal-
ysis on the shape of α and α′.
• α, α′ ∈ (N¬comN com∗)∗

Thenα = Xα0α1,X ∈ N¬com,α0 ∈ N com∗,α1 ∈ (N¬comN com∗)∗ andα′ =
α′0α1 where α′0 ∈ ε ∪ (N¬comN com∗)∗, i.e. either we increase the call-stack
or we pop one non-commutative non-terminal off the call-stack. Otherwise we
would end up either in an intermediate configuration in P or in a different case.

22 Jonathan Kochems C.-H. Luke Ong

∗ Case α′0 = ε.
ThenXα0α1 ‖ Π ′k C Γk →∗con X

′α2α0α1 ‖ Π ′k C Γk such thatX ′ ∈ N com,
α2 ∈ N com∗ and X ′α2α0α1 ‖ Π ′k C Γk →∗con wα1 ‖ Π ′k C Γk →∗con
α1 ‖ Π ′k ⊕ Π(w) C Γk ⊕ Γ (w), where w ∈ Σcom∗ such that Πk+1 =
α′ ‖ Π ′k ⊕Π(w) and Γk+1 = Γk ⊕ Γw. Lemma 3 then allows us to con-
clude that MLXα0α1 ‖ Π ′kM C Γk →∗con′ MLX ′α2α0α1 ‖ Π ′kM C Γk
and Lemma 7.1 gives us MLX ′α2α0α1 ‖ Π ′kM C Γk →∗con′ MLα1 ‖
Π ′k ⊕Π(w)M C Γk ⊕ Γ (w) = Πk+1 C Γk+1.

∗ Case α′0 6= ε.
Follows directly from Lemma 8.1

• α ∈ Σ¬comN com∗(N¬comN com∗)∗ and α′ ∈ (N¬comN com∗)∗

Follows from Lemma 5.
• α ∈ (N¬comN com∗)∗ and α′ ∈ Σ¬comN com∗(N¬comN com∗)∗

Follows from Lemma 8.2
• α ∈ N and α′ ∈ (N¬comN com∗)∗

We can assume that α ∈ N com since otherwise a case above already applies.
By the definition of N com we can thus infer that α′ = ε since otherwise α
would not be commutative. Thus Lemma 7.1 applies.

• α ∈ N and α′ ∈ Σ¬comN com∗(N¬comN com∗)∗

There is nothing to prove for this case as, similarly to the case above, ei-
ther α ∈ N¬com and so a case above applies or α ∈ N com but then α′ /∈
Σ¬comN com∗(N¬comN com∗)∗ which is impossible; so the former must be the
case.

• α ∈ (N¬comN com∗)∗ and α′ ∈ PΠf

If α′ ∈ (N¬comN com∗)∗∪Σ¬comN com∗(N¬comN com∗)∗ the above cases apply.
Otherwise it must be the case thatα′ ∈ N com∗(N¬comN com∗)∗∪ΣcomN com∗(N¬comN com∗)∗.
∗ α′ ∈ N com∗(N¬comN com∗)∗

So it must be the case that α = Xα0α1, X ∈ N¬com, α0 ∈ N com∗

α1 ∈ (N¬comN com∗)∗ and α′ = α′0α
′
1α1 where α′1 ∈ (N¬comN com∗)∗,

α′0 ∈ N com∗ Lemma 7.2 applies to give

MLXα0α1 ‖ ΠkM C Γk →∗con′ M(α′0) ·MLα′1α1M ‖MLΠkM ‖MLΠ(w)M C Γk⊕Γ (w)

∗ α′ ∈ ΣcomN com∗(N¬comN com∗)∗

Follows from Lemma 4
• α ∈ Σ¬comN com∗(N¬comN com∗)∗ and α′ ∈ PΠf

Unless α′ ∈ N com∗(N¬comN com∗)∗∪ΣcomN com∗(N¬comN com∗)∗ this case is
covered by a case above. The remaining follows from Lemma 6.
• α ∈ N and α′ ∈ PΠf

Unless α′ ∈ N com∗(N¬comN com∗)∗∪ΣcomN com∗(N¬comN com∗)∗ this case is
covered by a case above. The remaining follows from Lemma 2 and Lemma 4

This concludes the proof of the inductive step.

Now we apply the above for the case that Π0 C Γ0 = S C Γ (ε) and Πf := Π ′. We
can then see that MLSM C Γ (ε)→∗con′ Π̃

f C Γ ′.
Then since for all α ∈ N com∗(N¬comN com∗)∗ it is the case that M(α) ∈ MLαM

and further for α0 ∈ N com∗, α1(N¬comN com∗)∗ M(α0α1) ∈ M(α0) ·MLα1M we can

Verifying Asynchronous Pushdown Systems with Shaped Stacks 23

deduce from the definition of→con′on sets of configurations that

M(S)→∗con′ M(Π ′) C Γ ′

which concludes the proof.

A.2 Direction: ⇒

dMe =

Ci 7→ ∑

(Ci,w)∈M ′
M ′(Ci, w)

∣∣∣∣∣∣∣∣
M =

⊕
(Ci,w)∈M ′

M ′(Ci,w)⊕
j=1

M(w),

M ′ ∈M[{(C,w) | C →∗seq w,C ∈ N}]

JMK ={α ∈ Control |M(α) = dMe}

Jγ1 · · · γnK =Jγ1K · · · JγnK where γi ∈ N ∪ Cache ∪Σ

Define for V,W ⊆M[Control]

V ‖W = {Π ‖ Π ′ | Π ∈ V,Π ′ ∈W}

and Π,Π ′ ∈M[ControlM]

JΠ ‖ Π ′K = JΠK ‖ JΠ ′K

Definition 7 (Simulation Relation). Let R ⊆ S × S′ where (S,→S), (S
′,→S′) are

transition systems. We say R is a weak (S, S′)-simulation just if

(q, p) ∈ R and q →S q
′ ⇒ p→∗S′ p′ and (q′, p′) ∈ R.

Let4S:= {(γ, α) | α ∈ JγK} ⊆ ControlM×Control and4C:= {(Π1 C Γ,Π2 C Γ) |
Π2 ∈ JΠ1K}.

Proposition 3 (Sequential Simulation). 4S is a weak simulation relation.

Proof. Let γ ∈ ControlM and α ∈ Control such that α ∈ JγK and γ →seq′ γ
′.

Since γ →seq′ γ
′ we know that γ = XMγ0 and γ′ = γ1γ0. Hence by definition of

JγK it must be that α = Xβα0 such that β ∈ JMK and α0 ∈ Jγ0K.
We will prove that there exists a α′ <S γ

′ such that α →seq α
′ by case analysis on

the type of rule used for γ →seq′ γ
′.

Claim 1 and 2: X → a ∈ G, a ∈ Σ ∪ {ε}. (trivial)
Clearly Xβα0 →seq aβα0, and γ1 = aM . Clearly aβα0 =: α′ ∈ JaMγ0K = Jγ′K
and so α′ <S γ

′.
Claim 3: X → aA ∈ G. (trivial)

Then Xβα0 →seq aAβα0 and γ1 = aAM . Clearly aAβα0 =: α′ ∈ JaAMγ0K =
Jγ′K and so γ′ 4S α

′.

24 Jonathan Kochems C.-H. Luke Ong

Claim 4: X → AB ∈ G, B ∈ N com, B →∗seq w. (non-trivial)
ThenXβα0 →seq ABβα0. To proveAB βα0 =: α′ ∈ JA(M(w)⊕M)γ0K = Jγ′K
we need to show that B β ∈ JM(w)⊕MK. Since β ∈ JMK we know that M(β) =
dMe. It remains to prove M(B) ⊕ M(β) ∈ dM(w) ⊕Me. Since M(β) ∈ dMe
there exists M ′ ∈M[{(C,w) | C →∗seq w,C ∈ N}] such that

M(β) =

Ci 7→ ∑
(Ci,w)∈M ′

M ′(Ci, w)

and M =

⊕
(Ci,w)∈M ′

⊕M ′(Ci,w)
j=1 M(w). Then writing M ′B :=M ′ ⊕M((B,w))

it is the case that M ′B ∈M[{(C,w) | C →∗seq w,C ∈ N}] and

M ⊕M(w) =

 ⊕
(Ci,w′)∈M ′

M ′(Ci,w
′)⊕

j=1

M(w′)

⊕M(w)

=
⊕

(Ci,w′)∈M ′B

M ′B(Ci,w
′)⊕

j=1

M(w′)

Thus we can conclude that

fB :=

Ci 7→ ∑
(Ci,w)∈M ′B

M ′B(Ci, w)

 ∈ dM(w)⊕Me

and since M ′B(B,w) = M ′(B,w) + 1 and M ′B(B
′, w′) = M ′(B′, w′) if either

B 6= B′ or w 6= w′, it is the case that fB(B) = M(β)(B) + 1 and fB(C) =
M(γ)(C) ifC 6= B. Hence fB = M(B)⊕M(β) and so M(B)⊕M(β) ∈ dM(w)⊕
Me which implies α′ <S γ

′ and concludes the proof of this case.
Claim 5: X → AB ∈ G, B ∈ N¬com. (trivial)

ThenXβα0 →seq ABβα0 and γ1 = ABM . ClearlyABβα0 = α′ ∈ JABMγ0K =
Jγ′K and so α′ <S γ

′.

The claim holds for all cases which concludes the proof.

Proposition 4 (Concurrent Simulation). 4C is a weak simulation relation.

Proof. Let Π1 ∈ M[ControlM], Π2 ∈ M[Control] and Γ, Γ ′ ∈ Chan → M[Msg]
such that Π1 C Γ 4C Π

′
1 C Γ and suppose that Π1 C Γ →con′ Π

′
1 C Γ ′.

We will prove that there exists aΠ ′2 such thatΠ ′1 C Γ ′ 4C Π
′
2 C Γ ′ andΠ2 C Γ →∗con

Π ′2 C Γ ′ by case analysis on the rule used for Π1 C Γ →con′ Π
′
1 C Γ ′.

– Rule 11
Follows immediately by Proposition 3.

– Rule 12
Then Π1 = (c ?m) γ ‖ Π0

1 and Γ = Γ ′ ⊕ Γ (c !m) and Π ′1 = γ ‖ Π0
1 . Hence

Π2 = (c ?m)α ‖ Π0
2 ∈ JΠ1K with α ∈ JγK and so α ‖ Π0

2 ∈ JΠ ′1K. And using
rule 3 (c ?m)α ‖ Π0

2 C Γ ′ ⊕ Γ (c !m)→con α ‖ Π0
2 C Γ ′.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 25

– Rule 13
Then Π1 = (νX) γ ‖ Π0

1 , Π ′1 = γ ‖ X ‖ Π0
1 and Γ ′ = Γ . Hence Π2 =

(νX)α ‖ Π0
2 ∈ JΠ1K with α ∈ JγK and so α ‖ X ‖ Π0

2 ∈ JΠ ′1K. By rule 6
(νX)α ‖ Π0

2 C Γ →con α ‖ X ‖ Π0
2 C Γ .

– Rule 14
Then Π1 = (cj !m) γ ‖ Π0

1 , Π ′1 = γ ‖ Π0
1 and Γ ′ = Γ ⊕ Γ (c !m). Then

Π2 = (cj !m)α ‖ Π0
2 ∈ JΠ1K with α ∈ JγK and so α ‖ Π0

2 ∈ JΠ ′1K. By rule 14
we can see (cj !m)α ‖ Π0

2 C Γ →con α ‖ Π0
2 C Γ ⊕ Γ (c !m).

– Rule 15
Then Π1 = l γ ‖ Π0

1 , Π ′1 = γ ‖ Π0
1 and Γ ′ = Γ . Then Π2 = l α ‖ Π0

2 ∈ JΠ1K
with α ∈ JγK and α ‖ Π0

2 ∈ JΠ ′1K. By rule 5 l α ‖ Π0
2 C Γ →con α ‖ Π0

2 C Γ .
– Rule 16

Then Π1 = M X γ ‖ Π0
1 such that M ∈ TermCache , Γ ′ = Γ ⊕ Γ (M), X ∈

N¬com and Π ′1 = X γ ‖ Π0
1 ‖ Π(M). Also Π2 = β X α ‖ Π0

2 ∈ JΠ1K and
β X α ∈ JM X γK.
Hence X α ∈ JX γK and β ∈ JMK and hence M(β) = dMe. Thus β →∗seq w,
w ∈ Σcom∗ such that M(w) = M . Hence using rules 4, 6 and 2 repeatedly we can
see that β X α ‖ Π0

2 C Γ →∗con X α ‖ Π0
2 ‖ Π(w) C Γ ⊕ Γ (w) = X α ‖ Π0

2 ‖
Π(M) C Γ ⊕ Γ (M) =: Π ′2. and Π ′2 ∈ JΠ ′1K.

– Rule 17
Then Π1 = M X γ ‖ Π0

1 and Π ′1 = M ′X γ ‖ Π0
1 ‖ Π(M) such that m ∈

MixedCache, M ′ ∈ NonTermCache , Γ ′ = Γ ⊕ Γ (M) and X ∈ N¬com.
Also Π2 = β X α ‖ Π0

2 ∈ JΠ1K and β X α ∈ JM X γK. Thus β ∈ JMK and hence
β →∗seq w, w ∈ (Σcom ∪ N com)∗ such that M(w) = M . Then w 'I w0w1 such
that w0 ∈ Σcom∗ and w1 ∈ N com and M ′ = M(w1).
Hence w1X α ∈ JM ′X γK and thus w1X α ‖ Π0

2 ⊕ Π(M) C Γ ⊕ Γ (M) :=
Π ′2 ∈ JΠ ′1K.
Using rules 4, 6 and 2 repeatedly we can see that β X α ‖ Π0

2 C Γ →∗con w1X α ‖
Π0

2 ‖ Π(w0) C Γ ⊕ Γ (w0) = w1X α ‖ Π0
2 ‖ Π(w) C Γ ⊕ Γ (w) = w1X α ‖

Π0
2 ‖ Π(M) C Γ ⊕ Γ (M) = Π ′2.

Hence the claim holds in all cases and thus we can conclude that 4C is a weak simula-
tion relation.

Corollary 2. Given an ACPS P if S C Γ (ε) →∗con′ Π C Γ then S C Γ (ε) →∗con
Π ′ C Γ such that Π C Γ 4S Π

′ C Γ .

Proof. Follows trivially by induction from Proposition 4.

Theorem 1 (Reduction of Program-Point Coverability). (P ; l1, . . . , ln) is a yes-instance
of Program-Point Coverabililty problem iff (P ; l1, . . . , ln) is a yes-instance of Alterna-
tive Program-Point Coverability problem.

Proof. We will first prove the⇒-direction. Let (P ; l1, . . . , ln) be a yes-instance of the
Program-Point Coverabililty problem then a configuration l1α1 ‖ · · · ‖ lnαn ‖ Π C Γ
for some α1, . . . , αn ∈ (Σ ∪N)∗/'I is→con reachable. By Proposition 2 M(l1α1 ‖
· · · ‖ lnαn) ‖ M(Π) C Γ is reachable for →con′ and thus (P ; l1, . . . , ln) is a yes-
instance of the Alternative Program-Point Coverabililty problem.

26 Jonathan Kochems C.-H. Luke Ong

For the⇐-direction let (P ; l1, . . . , ln) be a yes-instance of the Alternative Program-
Point Coverabililty problem. Then a configuration γ1 ‖ · · · ‖ γn ‖ Π C Γ is →con′

reachable and for i = 1, . . . , n either γi = liγ
′
i or γi = Miγ

′
i such that li ∈ Mi. By

Proposition 4 we can conclude that α1 ‖ · · · ‖ αn ‖ Π ′ C Γ is→con reachable such
that γ1 ‖ · · · ‖ γn ‖ Π C Γ 4C α1 ‖ · · · ‖ αn ‖ Π ′ C Γ . That means for i = 1, . . . , n
either αi = liα

′
i or αi = βiα

′
i such that βi ∈ N com∗ and βi →∗seq w

0
iw

1
i such that

M(w1
i) = Mi and w0

i ∈ Σcom∗. It follows, by using 'I where necessary and choosing
rewrite rules to expose li, that βi →∗seq w

′0
i liβ

′
i where w′0i ∈ Σcom∗ and βi ∈ N com∗.

Hence α1 ‖ · · · ‖ αn ‖ Π ′ C Γ →∗con α
′′
1 ‖ · · · ‖ α′′n ‖ Π ′ C Γ ⊕ Γ (w′00 · · ·w′

0
n)

where either α′′i = αi = liαi and w′0i = ε or α′′i = liβ
′
i. Thus we can conclude that

(P ; l1, . . . , ln) is a yes-instance for the Program-Point Coverability problem.

B Proof of Lemma 1

Lemma 9 (Sequential Monotonicity). The transition relation→seq′ is monotone with
respect to ≤Control≤k .

Proof. Suppose γ, γ′, δ ∈ Control such that γ ≤ δ and γ →seq′ γ
′. We will show

that there ∃δ′ such that δ →seq′ δ
′ and γ ≤ δ′. We conclude from the definition of

≤Control≤k on Control≤k and the fact that γ →seq′ γ
′ that γ = X1M1X2M2 · · ·XjMj

and δ = X1M
′
1X2M

′
2 · · ·XjM

′
j with Mi ≤Cache M

′
i for 1 ≤ i ≤ j ≤ k. Our proof

will be by case analysis on γ →seq′ γ
′.

– γ →seq′ γ
′ using Rule 7.

Thus there is aX1 → BC rule andC →∗seq w and γ′ = B(M(w)⊕M1)X2M2 · · ·XjMj .
Hence δ →seq′ B(M(w)⊕M ′1)X2M

′
2 · · ·XjM

′
j =: δ′. Clearly (M(w)⊕M1) ≤Cache

(M(w)⊕M ′1) and thus γ′ ≤Control≤k δ′.
– γ →seq′ γ

′ using Rule 8.
Thus there is a X1 → BC rule, C ∈ N¬com and γ′ = BCM1X2M2 · · ·XjMj .
Further since γ′ in Control≤k it is the case that j < k. Hence δ →seq′ BCM

′
1X2M

′
2 · · ·XjM

′
j =:

δ′, δ ∈ Control≤k since j < k and obviously γ′ ≤Control≤k δ′.
– γ →seq′ γ

′ using Rule 9.
Thus there is a X1 → aB rule, a ∈ Σ ∪ {ε} and γ′ = aBM1X2M2 · · ·XjMj .
Hence δ →seq′ aBM

′
1X2M

′
2 · · ·XjM

′
j =: δ′ and obviously γ′ ≤Control≤k δ′.

– γ →seq′ γ
′ using Rule 10.

Thus there is a X1 → a rule, a ∈ Σ ∪ {ε} and γ′ = aM1X2M2 · · ·XjMj . Hence
δ →seq′ aM

′
1X2M

′
2 · · ·XjM

′
j =: δ′ and obviously γ′ ≤Control≤k δ′.

Lemma 10 (Monotonicity). The transition relation→con′ is monotone with respect to
≤Config .

Proof. Suppose Π1 C Γ1, Π
′
1 C Γ ′1, Π2 C Γ2 ∈ Config such that Π1 C Γ1 ≤Config

Π2 C Γ2 andΠ1 C Γ1 →con′ Π
′
1 C Γ ′1. We will show that there ∃Π ′2 such thatΠ2 C Γ2 →con′

Π ′2 C Γ ′2 and Π ′1 C Γ ′1 ≤Config Π ′2 C Γ ′2. Since Π1 C Γ1 ≤Config Π2 C Γ2 and

Verifying Asynchronous Pushdown Systems with Shaped Stacks 27

Π1 C Γ →con′ Π
′
1 C Γ ′, we can infer the components of the configuration involved

in the latter transition. That means Π1 = γ ‖ Π0
1 and Π2 = δ ‖ Π0

2 such that
Π0

1 ≤M[Control≤k] Π
0
2 , Γ1 ≤Queues Γ2, γ, δ ∈ Control≤k and γ ≤Control≤k δ. Our

proof will be by case analysis on Π1 C Γ →con′ Π
′
1 C Γ ′1.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 11.

This follows immediately by Lemma 9.
– Π1 C Γ1 →con′ Π

′
1 C Γ ′1 using 12.

Thus we can conclude (i) γ = c ?mγ′, (ii) Π ′1 = γ′ ‖ Π0
1 , (iii) Γ1 = Γ ′1 ⊕

Γ (c !m). Further sinceΠ1 C Γ1 ≤Config Π2 C Γ2 we infer (iv) δ = c ?mδ′ with
γ′ ≤Control≤k δ′ and (v) Γ2 = Γ ′2 ⊕ Γ (c !m).
Then we have Π2 C Γ2 →con′ δ

′ ‖ Π0
2 C Γ ′2.

Writing Π ′2 := δ′ ‖ Π0
2 it remains to show Π ′1 C Γ ′1 ≤Config Π

′
2 C Γ ′2.

Now (a) γ′ ≤M[Control≤k] δ
′, (b)Π0

1 ≤M[Control≤k] Π
0
2 by assumption and (c) since

Γ1 ≤Queue Γ2 and clearly Γ ′1 ≤Queue Γ
′
2.

Hence we conclude Π ′1 C Γ ′1 ≤Config Π
′
2 C Γ ′2.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 13.

Thus we can conclude (i) γ = (νX) γ′, (ii) Π ′1 = γ′ ‖ Π0
1 ‖ X , (iii) Γ ′1 =

Γ1. Further since Π1 C Γ1 ≤Config Π2 C Γ2 we infer (iv) δ = (νX) δ′ with
γ′ ≤Control≤k δ′.
Then we have Π2 C Γ2 →con′ δ

′ ‖ Π0
2 ‖ X C Γ2.

Writing Π ′2 := δ′ ‖ Π0
2 ‖ X it remains to show Π ′1 C Γ1 ≤Config Π

′
2 C Γ2.

Now (a) γ′ ≤M[Control≤k] δ
′, (b)Π0

1 ≤M[Control≤k] Π
0
2 by assumption and (c) clearly

X ≤M[Control≤k] X .
Hence we conclude Π ′1 C Γ ′1 ≤Config Π

′
2 C Γ ′2.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 14.

Thus we can conclude (i) γ = c !mγ′, (ii) Π ′1 = γ′ ‖ Π0
1 , (iii) Γ ′1 = Γ1 ⊕

Γ (c !m). Further since Π1 C Γ1 ≤Config Π2 C Γ2 we infer (iv) δ = c !mδ′

with γ′ ≤Control≤k δ′.
Then we have Π2 C Γ2 →con′ δ

′ ‖ Π0
2 C Γ2 ⊕ Γ (c !m).

WritingΠ ′2 := δ′ ‖ Π0
2 and Γ ′2 := Γ2⊕Γ (c !m) it remains to showΠ ′1 C Γ ′1 ≤Config

Π ′2 C Γ ′2.
Now (a) γ′ ≤M[Control≤k] δ

′, (b)Π0
1 ≤M[Control≤k] Π

0
2 by assumption and (c) since

Γ1 ≤Queues Γ2, ⊕ and Γ (·) monotonic we have Γ1 ⊕ Γ (c !m) ≤Queues Γ2 ⊕
Γ (c !m).
Hence we conclude Π ′1 C Γ ′1 ≤Config Π

′
2 C Γ ′2.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 15.

Thus we can conclude (i) γ = l γ′, (ii) Π ′1 = γ′ ‖ Π0
1 , (iii) Γ ′1 = Γ1. Further since

Π1 C Γ1 ≤Config Π2 C Γ2 we infer (iv) δ = l δ′ with γ′ ≤Control≤k δ′.
Then we have Π2 C Γ2 →con′ δ

′ ‖ Π0
2 C Γ2.

Writing Π ′2 := δ′ ‖ Π0
2 it is trivial to see Π ′1 C Γ1 ≤Config Π

′
2 C Γ2.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 16.

Thus we can conclude (i) γ = M1Xγ1, (ii) Π ′1 = γ′ ‖ Π0
1 ‖ Π(M1), (iii) γ′ =

Xγ1 and (iv) Γ ′1 = Γ1 ⊕ Γ (M1). Further since Π1 C Γ1 ≤Config Π2 C Γ2 we
infer (v) δ =M2Xδ1 with M1 ≤Cache M2 and Xγ1 ≤Control≤k Xδ1.
Let δ′ := Xδ1 then clearly γ′ ≤Control≤k δ′ and we haveΠ2 C Γ2 →con′ δ

′ ‖ Π0
2 ‖ Π(M2) C Γ2 ⊕ Γ (M2).

28 Jonathan Kochems C.-H. Luke Ong

Writing Π ′2 := δ′ ‖ Π0
2 ‖ Π(M2) and Γ ′2 := Γ2 ⊕ Γ (M2) we will now show

Π ′1 C Γ ′1 ≤Config Π
′
2 C Γ ′2.

Now (a) γ′ ≤M[Control≤k] δ
′, (b) Π0

1 ≤M[Control≤k] Π
0
2 by assumption, (c) since

M1 ≤Cache M2 and sinceΠ(·) is clearly monotonicΠ(M1) ≤M[Control≤k] Π(M2)
and (d) lastly since Γ (·) is monotonic we can conclude Π(M1) ≤Queues Π(M2).
Hence we conclude Π ′1 C Γ ′1 ≤Config Π

′
2 C Γ ′2.

– Π1 C Γ1 →con′ Π
′
1 C Γ ′1 using 17.

Thus we can conclude (i) γ = M1Xγ1 with M1 ∈ MixedCache, (ii) Π ′1 =
γ′ ‖ Π0

1 ‖ Π(M1), (iii) γ′ = M ′1Xγ1 with M ′1 ∈ NonTermCache and M ′1 =
M1 � (N ∪ L), (iv) Γ ′1 = Γ1 ⊕ Γ (M1). Further since Π1 C Γ1 ≤Config Π2 C Γ2

we infer (v) δ =M2Xδ1 with M1 ≤Cache M2 and Xγ1 ≤Control≤k Xδ1.
Let M ′2 := M2 � (N ∪ L) and δ′ := M ′2Xδ1 then we have Π2 C Γ2 →con′

δ′ ‖ Π0
2 ‖ Π(M2) C Γ2 ⊕ Γ (M2).

Writing Π ′2 := δ′ ‖ Π0
2 ‖ Π(M2) and Γ ′2 := Γ2 ⊕ Γ (M2) we will now show

Π ′1 C Γ ′1 ≤Config Π
′
2 C Γ ′2.

Now since · � · is monotonic in the first argument andM1 ≤Cache M2 we conclude
M ′1 ≤Cache M ′2 and thus (a) γ′ ≤M[Control≤k] δ

′, (b) Π0
1 ≤M[Control≤k] Π

0
2 by

assumption, (c) and since Π(·) is monotonic Π(M1) ≤M[Control≤k] Π(M2) and
(d) lastly since Γ (·) is monotonic we can conclude Π(M1) ≤Queues Π(M2).
Hence we conclude Π ′1 C Γ ′1 ≤Config Π

′
2 C Γ ′2.

Corollary 3. The transition system (M[Control≤k]× (Chan →M[Msg]),→con′ ,≤)
is a well-structured transition system.

Proof. Follows immediately from Lemma 10.

Theorem 3. The Program-Point Coverability problem for unbounded spawning k-ACPS
is decidable.

Proof. By Theorem 1 it suffices to show that the Alternative Program-Point Coverabil-
ity problem is decidable, which follows from Corollary 3 and the fact that the set

U :=↑ {l̂1X1
1 · · ·X1

j1 ‖ · · · ‖ l̂nX
1
n · · ·Xjn

n C Γ ([]) | Xj
i ∈ N

¬com, l̂i = li or [li] and 0 ≤ ji ≤ k}

is upward-closed and (P ; l1, ..., ln) is a yes-instance for the Alternative Program-
Point Coverability problem iff an element of U is→con′ -reachable.

Verifying Asynchronous Pushdown Systems with Shaped Stacks 29

C Notation

M multiset

µ, ν general sequence

m message

c channel

A,B,C,X, Y, Z non-terminal i.e. element of N
l label

a terminal i.e. element of Σ

w word over Σ

α, β word over (Σ ∪N)

γ, δ word in ControlM

i, j, n, k integer

Γ channel

Π set of processes

U, V,W set

I Independence relation

D dependence relation

R relation

u, v general element

→seq standard sequential semantics

→con standard concurrent semantics

→seq′ alternative sequential semantics

→con′ alternative concurrent semantics

	Safety Verification of Asynchronous Pushdown Systems with Shaped Stacks

