
Logics and Bisimulation Games for
Concurrency, Causality and Conflict

Julian Gutierrez

LFCS. School of Informatics. University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK

J.E.Gutierrez@ed.ac.uk

Abstract. Based on a simple axiomatization of concurrent behaviour
we define two ways of observing parallel computations and show that in
each case they are dual to conflict and causality, respectively. We give a
logical characterization to those dualities and show that natural fixpoint
modal logics can be extracted from such a characterization. We also study
the equivalences induced by such logics and prove that they are decid-
able and can be related with well-known bisimulations for interleaving
and noninterleaving concurrency. Moreover, by giving a game-theoretical
characterization to the equivalence induced by the main logic, which is
called Separation Fixpoint Logic (SFL), we show that the equivalence
SFL induces is strictly stronger than a history-preserving bisimulation
(hpb) and strictly weaker than a hereditary history-preserving bisimula-
tion (hhpb). Our study considers branching-time models of concurrency
based on transition systems and petri net structures.

Key words: Modal and temporal logics; Bisimulation games; Behavioural
equivalences; Concurrent and reactive systems; Petri nets.

1 Introduction

In [12] Milner and Hennessy studied an algebraic characterization of concur-
rent systems and defined a formal way of comparing different processes through
the equivalence induced by such an axiomatization. They called it observational
equivalence. They also gave a logical characterization to the same concepts and
showed their correspondence with the axiomatization when interpreted using a
simple modal logic with an interleaving model of concurrency. This work led to
the definition of a well-known bisimulation equivalence for interleaving concur-
rency, namely the one induced by the Hennessy-Milner Logic (HML).

However, when studying concurrency at a more fundamental semantic level,
partial order models should be considered, different axiomatizations must be
defined, and finer bisimulation equivalences have to be taken into account. A
natural question immediately arises, that is, what exactly is the new relationship
between concurrency in the models (a model independence) and concurrency in
the logical languages (a logical independence). The answer to this question is
not unique since it depends on the models and axiomatizations that are being
considered. Therefore, one would like them to be as general as possible.

In this paper an alternative answer for this question is put forward. Our
results are relative to a surprisingly simple axiomatization of concurrent be-
haviour for a category of transition systems with independence introduced by
Winskel and Nielsen (see [16] or Section 2). This axiomatization was pioneered by
Mazurkiewicz for trace languages [14] and has been used ever since to understand
the properties of several models of concurrency with partial order semantics, also
called independence models [16]. Such axioms define local properties of the be-
haviour of a concurrent system and can be used to generate what is called the
“concurrency diamonds” in some noninterleaving models of concurrency. Our
results are also extended to a class of safe Petri net structures.

In particular, we study the relationships between model independence and
logical independence purely based on observable dualities between concurrency
and conflict, on the one hand, and concurrency and causality on the other. The
logical characterization of these dualities relies on geometrical properties en-
forced by an algebraic axiomatization of concurrent events. At a semantic level,
we develop a notion of locality called support sets which allows the recognition
of independent events (Section 3). At a logical level we define both modal op-
erators sensitive to causal information and a parallel conjunction that allows
one to separate off concurrent events while avoiding those in conflict. This basic
modal logic is then extended with fixpoint operators so as to express tempo-
ral properties of concurrent systems (Section 4). The final outcome is a fixpoint
modal logic, which we call Separation Fixpoint Logic (SFL). A set of application
examples for SFL is given at the end of this section.

We also study the equivalence induced by SFL and some sublogics of it (Sec-
tion 5). These sublogics can be obtained from SFL by restricting syntactically the
interplay between the dualities we have defined. This strongly eases the analysis
of the relationships between concurrency, causality and conflict. Four SFL frag-
ments are considered. The first one is Kozen’s modal mu-calculus, Lµ. This SFL
sublogic help us show that SFL can deal equally well with both interleaving and
noninterleaving models of concurrency. Since the mu-calculus is a natural logical
language for interleaving concurrent systems (and SFL includes it), nothing is
lost with respect to the main interleaving approaches to concurrency.

However, the problem of observing concurrency and nondeterminism, as stud-
ied by Milner and Hennessy in [12] for interleaving systems, can be refined to
a problem of observing concurrency, causality and conflict in a noninterleaving
context. As a consequence, more specialized bisimulation equivalences have been
introduced so as to analyse independence models. We study some of those equiv-
alences and focus our attention on the two strongest equivalences presented in
[7, 10], namely the hereditary history-preserving bisimulation (hhpb) [13] and
the plain history-preserving bisimulation (hpb) [10].

The second sublogic we consider is a Separation modal mu-calculus, SLµ. It
extends the previous fragment by allowing the distinction between concurrency
and conflict. We show that the equivalence induced by SLµ cannot be compared
with any of the bisimulations we consider here. The third case is a Causal modal
mu-calculus, CLµ. It takes full account of causality and concurrency and induces

2

an hp bisimulation equivalence. Although hpb captures some features of concur-
rent computation, it has been argued that it is actually an equivalence of only
causality [9]. As a consequence, stronger equivalences such as hhpb have been de-
fined in order to capture aspects of true-concurrency rather than only causality.
Therefore, in fourth place we consider the full SFL and compare the equiva-
lence it induces with the stronger hhpb. Using game-theoretical arguments, we
prove that the bisimulation equivalence for SFL is strictly stronger than hpb
and strictly weaker than hhpb (Section 6). Since hhpb is undecidable, even on
finite systems, the equivalence induced by SFL ranks at the top of the decidable
equivalences for true-concurrency according to discriminating power (see [10] or
completed hierarchy in [7]). This feature makes the equivalence induced by SFL
an interesting candidate for an equivalence of true concurrency. Finally, some
concluding remarks and related work are given in Section 7.

2 An Independence Model and Axioms of Concurrency

A Transition System with Independence (TSI) [16] is a simple extension of a La-
belled Transition System (LTS), where independent transitions can be explicitly
recognised. A TSI is a structural, branching-time and noninterleaving model of
concurrency. Formally, a TSI T is a structure (S, T,Σ, I) , where S is a finite set
of states, T ⊆ S ×Σ × S is a transition relation, Σ is a set of action labels, and
I ⊆ T × T is an irreflexive and symmetric relation on independent transitions,
i.e., on concurrent transitions. The binary relation ≺ on transitions defined by

(s, a, s1) ≺ (s2, a, q) ⇔
∃b.(s, a, s1)I(s, b, s2) ∧ (s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)

expresses when two transitions represent two occurrences of the same event (the
same action in different interleavings). Such a relation can be used to generate
a “concurrency diamond”, as shown in Fig. 1.

s1• b
��>

>
s◦

a @@��

b
��>

> I q
•

s2•
a

@@��

Fig. 1. A concurrency diamond for a I b. Concurrent transitions are recognized by the
I symbol inside the square. The initial state of the TSI is marked by the circle ◦.

Moreover, ∼ is the least equivalence relation that includes ≺, i.e., the reflex-
ive, symmetric and transitive closure of ≺. The equivalence relation ∼ is used
to group all events that represent the same action in the TSI, and therefore,
considers all occurrences of events of an action in all its possible interleavings.
Additionally, the I relation is subject to the following axioms:

3

– A1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2
– A2. (s, a, s1)I(s, b, s2) ⇒ ∃q.(s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)
– A3. (s, a, s1)I(s1, b, q) ⇒ ∃s2.(s, a, s1)I(s, b, s2) ∧ (s, b, s2)I(s2, a, q)
– A4. (s, a, s1) ≺ ∪ � (s2, a, q)I(w, b, w′) ⇒ (s, a, s1)I(w, b, w′)

Intuitively, A1 states that from any state of the system, the execution of an
action leads always to a unique future state. A2 (resp. A3) says that if two
independent actions can be executed in parallel (resp. one after the other), they
can also be executed one after the other (resp. in parallel). Finally, A4 ensures
that the relation I between transitions is well defined. Roughly speaking A4
says that if actions a and b are independent, then all the transitions that are
occurrences of the action a are independent of all the transitions that are oc-
currences of the action b. Having said that, we can give an alternative, more
intuitive, definition for axiom A4. Let I(t) be the set {t′ | tIt′}. Then, axiom
A4 is equivalent to the following expression: A4. t1 ∼ t2 ⇒ I(t1) = I(t2).

Notation 2.1 Given a transition t = (s1, a, s2), also written as s1
a−→ s2, s1 is

the source, src(t) = s1; s2 the target, trg(t) = s2; and a the label of t, lbl(t) = a.

3 Local Dualities in Independence Models

We present two ways in which concurrency can be regarded as a dual concept to
conflict and causality, respectively. These two ways of observing concurrency will
be called immediate concurrency and linearized concurrency. Whereas immedi-
ate concurrency is dual to conflict, linearized concurrency is dual to causality.

The intuitions behind these two observations are the following. Consider a
concurrent system, say, a TSI, and any two different transitions ti and tj with
the same source node, i.e., src(ti) = src(tj). These two transitions are either
immediately concurrent, and therefore belong to I, or dependent, in which case
they must be in conflict. Similarly, consider any two transitions ti and tj where
trg(ti) = src(tj). Again, these two transitions can either belong to I, in which
case they are concurrent, yet have been linearized, or they do not belong to
I, and therefore are causally dependent. In both cases, the two conditions are
exclusive and there are no other possibilities.

Definition 3.1 Two transitions ti and tj , such that trg(ti) = src(tj), are lin-
early concurrent iff tiItj . We write ti 	 tj for such a relation.

Dually, causally dependent transitions can be defined.

Definition 3.2 Two transitions ti and tj , such that trg(ti) = src(tj), are
causally dependent iff ¬(tiItj). We write ti ≤ tj for such a relation.

This duality is defined locally with respect to a state s, such that trg(ti) =
s = src(tj), of the underlying independence model. The previous definitions will
be used to give the semantics of the modal operators of SFL. Now, we turn our
attention to the duality between immediate concurrency and conflict.

4

Definition 3.3 Two transitions ti and tj , such that src(ti) = src(tj), are im-
mediately concurrent iff tiItj . We write ti ⊗ tj for such a relation.

Dually, transitions in conflict can be defined as follows.

Definition 3.4 Two transitions ti and tj , such that src(ti) = src(tj), are in
conflict iff ¬(tiItj). We write ti#tj for such a relation.

3.1 Separation and Support Sets for Local Reasoning

The definitions of immediate concurrency and conflict can be used to recognize
sets where every transition is concurrent with each other and therefore can all
be executed in parallel. We call these sets as conflict-free sets of transitions.

Definition 3.5 A conflict-free set of transitions, denoted by cf(E), is a set of
transitions E such that ∀ti, tj ∈ E. src(ti) = src(tj) ∧ (ti 6= tj ⇒ ti ⊗ tj).

As we want to specify the existence of actual concurrent behaviour, we
strengthen the definition of conflict-free sets of transitions given above. Notice
that Definition 3.5 allows the existence of empty and singleton sets, which do
not show any actual concurrent behaviour (or even any behaviour at all).

Definition 3.6 An effective conflict-free set of transitions is a conflict-free set
of transitions E such that |E| ≥ 2.

So, in order to do local reasoning on concurrent processes of an independence
model, we want to recognize effective conflict-free sets given an arbitrary set of
transitions at some state s of the independence model. In particular, the set of
all transitions t such that src(t) = s, will be called the maximal set of transitions
at s. Now, we introduce a notion of locality called support sets that is used to
define the semantics of SFL formulae in the following section.

Definition 3.7 A support set is either a maximal set of transitions or a non-
empty conflict-free set of transitions.

Given an independence model, the set of all its support sets is denoted by
P. Notice that once one has non-empty conflict-free sets of transitions that
are not singleton sets, i.e. effective conflict-free sets of transitions, to do local
reasoning on sets of concurrent actions becomes easier since they can be separated
or decomposed into smaller sets, where every transition is, as well, concurrent
with each other. Finally, the following definitions are useful when defining the
semantics of some SFL operators in the next section:

E v R
def= E ⊆ R, provided that, cf(E) and ¬∃t ∈ (R \ E). ∀te ∈ E. t⊗ te

P1] P2
def= P1 ∪ P2, provided that, P1 ∩ P2 = ∅ ∧ P1 6= ∅ ∧ P2 6= ∅

The first definition, E v R, characterizes support sets E that contain only con-
current transitions and cannot be made any bigger with respect to R; the second
definition, P1] P2, formalizes the notion of separation for local reasoning used
here. Such a definition resembles the notion of separation as used in Separation
Logic [19], i.e., as disjointness of sets of independent resources.

5

4 Separation Fixpoint Logic

Definition 4.1 Separation Fixpoint Logic (SFL) has formulae φ built from a
set Var of variables Y,Z, ... and a set L of labels a, b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | φ1 ∗ φ2 | µZ.φ1

where Z ∈ Var, K ⊆ L, and µZ.φ1 has the restriction that any free occurrence
of Z in φ1 must be within the scope of an even number of negations.

Informally, the meaning of these operators is the following. “∧” and “¬” are
the usual boolean operators, “〈K〉c” (resp. “〈K〉nc”) asserts at the fact that there
is in the set of actions K a causally dependent (resp. a non-causally dependent
or linearly concurrent) transition that can be performed; as defined in Section
3, such a transition is always either causally dependent or linearly concurrent
w.r.t. the last transition that has been executed. φ1∗φ2 specifies that there exists
a partition in the support set (i.e., a partition of the actions in the set to be
considered) with which both formulae φ1 and φ2 can hold in parallel. This does
not necessarily mean that both formulae hold in parallel everywhere because the
operator “∗” has a local meaning. Finally, “µ” is simply a least fixpoint operator.

Derived operators are defined in the familiar way: φ1 ∨ φ2
def= ¬(¬φ1 ∧ ¬φ2),

φ1 1 φ2
def= ¬(¬φ1 ∗ ¬φ2), [K]c φ1

def= ¬〈K〉c¬φ1, [K]nc φ1
def= ¬〈K〉nc¬φ1 and

νZ.φ1
def= ¬µZ.¬φ1 [¬Z/Z]. The following abbreviations are also useful: ff def=

µZ.Z, tt def= ¬ff, 〈K〉φ1
def= 〈K〉cφ1 ∨ 〈K〉ncφ1, [K]φ1

def= [K]c φ1 ∧ [K]nc φ1. Also,
sometimes we write [−]φ for [L]φ and [−K]φ for [L −K]φ, and similarly for
the other box (“[]”) and diamond (“〈 〉”) operators.

4.1 Denotation of SFL Formulae

Definition 4.2 A TSI-based SFL model M is a Transition system with in-
dependence T = (S, T,Σ, I) together with a valuation V : Var → 2S, where
S = S ×P×A is the set of tuples (s, P, ta) of states s ∈ S, support sets P ∈ P
in the TSI T, and transitions ta ∈ A = T ∪ {tε}, where a is an action label in
Σ ∪ {ε}. The denotation ‖φ‖T

V of an SFL formula φ in the model M = (T,V) is
a subset of S, given by the following rules (omitting the superscript T):

‖Z‖V = V(Z)
‖¬φ‖V = S− ‖φ‖V
‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖〈K〉cφ‖V = {(s, P, ta) | ∃b ∈ K. ∃s′ ∈ S. ta ≤ s

b−→ s′ ∈ P ∧ (s′, P ′, tb) ∈ ‖φ‖V}
‖〈K〉ncφ‖V = {(s, P, ta) | ∃b ∈ K. ∃s′ ∈ S. ta 	 s

b−→ s′ ∈ P ∧ (s′, P ′, tb) ∈ ‖φ‖V}
‖φ1 ∗ φ2‖V = {(s, P, ta) | ∃P1, P2. P1] P2 v P ∧ (s, P1, ta) ∈ ‖φ1‖V ∧ (s, P2, ta) ∈ ‖φ2‖V}

where P ′ is the maximal set at s′. A tuple (s, P, ta) of a model M is called a
process. An initial process is a tuple (s, P, tε), where s is the initial state of the
TSI T, P is the maximal set at s, and tε is the empty transition, such that

6

for all t whose source node is the initial state, tε ≤ t. Notice that since the
third component of every process denotes the last action that has been made, an
initial process requires the definition of the empty transition tε. Also, since an
initial state defines a unique initial process, and vice-versa, the two terms and
notations are interchangeable.

Given the usual restriction on free occurrences of variables, imposed in order
to obtain monotone operators in the complete lattice P(S) = 2S, it is possible
to define the denotation of the fixpoint operator µZ.φ(Z) in the standard way,
according to the Knaster-Tarski fixpoint theorem:

‖µZ.φ(Z)‖V =
T
{Q ∈ P(S) | ‖φ‖V[Z:=Q] ⊆ Q}

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q.
Since positive normal form is assumed henceforth, the semantics of the dual
boolean, modal, structural and fixpoint operators can be given in the usual way.

A Petri Net Semantics. The logical characterization defined previously using
a TSI model can also be given using other independence models. As an example
of this, it is shown how to give a Petri net semantics for SFL, but analogous
procedures can be followed with other independence models.

A labelled net N is a tuple (P, T,A,F , Σ), where P is a set of places, T is
a set of transitions and A is a relation between places and transitions such that
A ⊆ (P×T)∪(T×P), and F is a labeling function, F : T → Σ, from transitions
to a finite set of action labels Σ. Places and transitions are called nodes. Given a
node n, •n = {x | (x, n) ∈ A} is the preset of n and n• = {y | (n, y) ∈ A} is the
postset of n. A marking M of N is a mapping such that M ⊆ P . A marking M
enables a transition t iff •t ⊆M . If t is enabled at M , then t can occur, and its
occurrence leads to a successor marking M ′, where M ′ = (M \ •t)∪ t•. The nets
considered here are safe Petri nets [16]. All safe nets are finite systems. Given a
1-safe labelled net with an initial marking, the set of all reachable markings is
fixed and can be constructed with the occurrence net.

We call a reachable marking M as a state s of the system N, and S as
the set of all possible reachable markings or states of the system. Since in this
model transitions represent actions rather than events (as in the TSI case), every
transition is annotated with a particular marking M to recognize which event
they refer to. Therefore we can write tMa for the event of the action or transition
t with label a at state s = M , i.e., whenever •t ⊆ M and F(t) = a. Support
sets for nets are defined as for TSIs considering that src(tMa) = M (to define
conflict-free sets of transitions) and the maximal set at a state s = M is the
set {t | •t ⊆ M}. Finally, the dualities used to give the denotation to SFL
formulae in a model M = (N,V) are defined as for TSIs provided that the I
relation on events in the net model is defined for any two events tMa and tNb of
the transitions ta and tb, respectively, whenever there is a marking such that ta
and tb are enabled at such marking and •ta ∩ •tb = ∅. With this information the
set of processes S and the valuation V can be defined, and the net model M for
SFL is straightforward.

7

4.2 Applications

A Temporal Logic. SFL can express all usual temporal properties, such as, live-
ness, safety, fairness, and so on. These properties are equally handled in both
interleaving and noninterleaving models of concurrency.

A Process Logic. SFL can differentiate concurrency from nondeterminism using
two different local dualities. Consider these concurrent systems: P = a.0 ‖ b.0
and Q = a.b.0 + b.a.0. P and Q are behaviourally equivalent in an inter-
leaving context (since they are strongly bisimilar [12]), but different from a
true-concurrency point of view (since they are not history-preserving bisimilar
[10]). Such a difference can be captured in these two ways: with the formulae
φ = 〈a〉tt ∗ 〈b〉tt or ψ = 〈a〉c〈b〉nctt, which are both true in P but not in Q.

A Petri net Logic. SFL can express properties of net systems by defining proper-
ties of the localities and synchronization mechanisms. In order to do so, it is use-
ful to define a derived operator that allows one to perform a causal step that may
require resource from separate localities so as to proceed (a strongly causal step).
Consider the derived operator: 〈a〉scφ

def= 〈a〉ctt ∧ µZ.〈a〉φ ∨ (〈a〉tt ∗ 〈−a〉Z). Ex-
pressing that a property p eventually holds in a causal line can be easily defined as
φ = µZ.p∨〈−〉scZ. The result of evaluating this formula corresponds to finding a
“line” in the net to some state where p holds, even though separate resource may
be needed. These kinds of properties can be further studied with the structural
operators of SFL. For instance, the formula φ = µZ.p ∨ 〈−〉scZ ∗ µY.q ∨ 〈−〉scY
not only states that properties p and q hold eventually in two causal lines, but
also that such causal lines have an independent source.

A resource-sensitive Logic. The parallel conjunction of SFL can also be used to
define data structures, such as, lists and trees, à la Reynolds [19], but using a
temporal specification approach. In SFL independent transitions can be treated
as resources, allowing indirectly the specification of independent localities in
the model. For instance, let φ = µZ.〈nil〉ctt ∨ (〈data〉ctt ∗ 〈−〉cZ). Formula φ
represents an abstraction of a finite list structure where all nodes in the list
causally depend on the previous one (a sequential structure), whereas its data
and pointers are spatially separated and thus can be regarded as independent.
Since our approach is not proof-theoretic, there is not a “frame rule” similar to
the one defined for Separation Logic and concurrent extensions of it [6, 11, 19].

A Logic for Multi-Agent Systems (MAS). MAS, such as those specified with log-
ics like ATL [1] can be studied using SFL. In order to express properties of MAS,
define a set Γ of agents, a labeling function B on sets of transitions, and a map-
ping A that assigns transitions to agents, subject to the restriction that if t1 ∼ t2
then A(t1) = A(t2). For simplicity, we write 〈K〉γ for 〈B(A−1(γ))〉, and simi-
larly for the other modal operators. The formula ψ = [−]β 〈−〉αncµZ.φ ∨ 〈−〉αc Z
expresses that there is an agent α (the system) that can satisfy φ regardless
the behaviour of an adversarial agent β (the environment).1 Informally, ψ says
1 I thank Bradfield for the IFML version of this example. A−1 is the inv. func. of A.

8

“whatever you (the environment) do, I (the system) can get to φ, though I may
first have to do some things that do not depend on what you did.”

5 Logical and Concurrent Equivalences

We now turn our attention to the study of the relationships between model inde-
pendence and logical independence. We do so by relating well-known equivalences
for concurrency, namely hpb [10] and hhpb [13], with the equivalences induced
by different SFL sublogics where the interplay between concurrency and conflict,
and concurrency and causality is restricted syntactically. The reader is referred
to [10, 13] or [5] for a detailed description of the history-preserving bisimulations
not proposed in this paper (hpb and hhpb), but studied in the following sections.
Due to lack of space, in most cases, proofs are omitted or simply sketched.

Definition 5.1 (SFL equivalence ∼SFL). Two processes P and Q of two
independence models T1 and T2, respectively, are SFL-equivalent, P ∼SFL Q,
iff for every SFL formula φ in FSFL, P |=T1 φ ⇔ Q |=T2 φ, where FSFL is the
set of all fixpoint-free closed formulae of SFL.

Remark 5.1. Similar definitions can be made for the equivalences of the SFL
sublogics we present here.

Remark 5.2. In order to obtain an exact match between finitary modal logic and
bisimulation, all models considered in this paper are image-finite [12].

5.1 SFL, HML and the Modal Mu-Calculus

The first SFL sublogic is obtained from SFL by disabling its sensitivity to both
dualities. On the one hand, insensitivity to the duality between concurrency
and causality can be captured by considering only modalities without subscript,
using the abbreviations for modalities given previously in Section 4. On the
other hand, insensitivity to the duality between concurrency and conflict can be
captured by considering the ∗-free SFL sublanguage. The resulting logic has the
following syntax: φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉φ1 | µZ.φ1. This SFL syntactic
fragment is the modal ∗-free fragment of SFL.

Proposition 1 The modal ∗-free fragment of SFL is Kozen’s mu-calculus, Lµ.

Proof. By computing the semantics of the derived operators of this sublogic. ut
Remark 5.3. This SFL sublogic cannot recognize elements in I and therefore
sees TSIs as plain LTSs, or what is equivalent, TSIs with an empty I relation.
As a consequence, although using an independence model, it is possible to retain
in SFL all the joys of a logic with an interleaving model, and so, nothing is lost
with respect to the main interleaving approaches to concurrency.

Regarding logical and concurrent equivalences, it is now easy to see that
Milner’s strong bisimulation [12], ∼b, the equivalence induced by modal logic is
captured by the fixpoint-free fragment of this SFL sublogic, which we can denote
by ∼Lµ. Hence, the relation ∼Lµ ≡ ∼b follows from Proposition 1 and the fact
that modal logic characterises bisimulation on finite models.

9

5.2 A Separation Modal Mu-Calculus

The second sublogic is the Separation modal mu-calculus, SLµ. This logic is
obtained from SFL by allowing only the recognition of the duality between con-
currency and conflict by using its structural operator. The syntax of SLµ is
φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉φ1 | φ1 ∗ φ2 | µZ.φ1. We write ∼SLµ for the
equivalence induced by this SFL sublogic. It is easy to see that SLµ is more
expressive than Lµ in independence models simply because SLµ includes Lµ
and can differentiate concurrency from nondeterminism. However, the following
counter-examples show that ∼SLµ and ∼hpb, in general, do not coincide.

Proposition 2 Neither ∼hpb ⊆ ∼SLµ nor ∼SLµ ⊆ ∼hpb.

Proof. The two systems on the right (in Fig. 2) are hpb and yet can be distin-
guished by the formula φ = 〈a〉〈c〉tt ∗ 〈b〉〈d〉tt. On the other hand, the systems
on the left are not hpb and cannot be differentiated by any SLµ formula. ut

• b
""DD

◦
a <<zz

b
""DD I •
• a

<<zz

• •boo b // •
I

◦
a

OO

b
// •

a

OO

•
•b

||zz
• b

""DD

c ;;xx

• I ◦
abbDD

b
||zz

a <<zz

b
""DD I •

•a

bbDD
• a

<<zz

d
##FF
•

•
•b

||zz
• b

""DD

c ;;xx

• I ◦
abbDD

b
||zz

a <<zz

b
""DD I •

•
d

{{xx
a

bbDD
• a

<<zz

•

Fig. 2. Systems used for defining the equivalence induced by Separation Lµ

There are two reasons for the mismatch between ∼hpb and ∼SLµ. The first
one (related with the two systems on the left in Fig. 2) is that ∼hpb, unlike
∼SLµ, recognizes the pattern “an action a followed by both a concurrent action
b and a causally dependent action b”. The second reason, which is related with
the systems on the right, is that ∼hpb cannot recognize some forms of conflict
that SLµ can capture. For instance, the fact that even though two actions can
be performed in parallel, it is also possible that the execution of one of them
affects (prevents) the execution of transitions that depends on the other.

5.3 A Causal Modal Mu-Calculus

The third fragment to be considered is the Causal modal mu-calculus, CLµ. This
sublogic is obtained from SFL by allowing only the recognition of the duality
between concurrency and causality throughout the modal operators of the logic.
Its syntax is φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | µZ.φ1. Clearly, CLµ
is also more expressive than Lµ in independence models because of the same
reasons given for SLµ. The naturality of CLµ for expressing causal properties
is demonstrated by the equivalence it induces in any model, written as ∼CLµ,
which coincides with a history-preserving bisimulation, ∼hpb, [10].

10

Theorem 1 ∼CLµ≡∼hpb

Proof. The proof goes by showing the two inclusions separately, ∼hpb ⊆ ∼CLµ

and ∼CLµ ⊆ ∼hpb. The first inclusion, ∼hpb ⊆ ∼CLµ, can be proved by induction
on CLµ formulae, called FCLµ. For any two processes P and Q that belong to
TSIs T1 and T0, respectively, if P ∼hpb Q then for all φ in FCLµ, P |=T1 φ ⇔
Q |=T0 φ. The induction only requires (simplified) processes P = (p, ta) and
Q = (q, ta), which are binary tuples in S × A of a TSI-model M, because CLµ
only considers maximal sets and therefore support sets can be disregarded.

The second inclusion, ∼CLµ ⊆ ∼hpb, is shown by contradiction. Suppose
that for all φ in FCLµ we have that P |=T1 φ ⇔ Q |=T0 φ and P 6∼hpb Q. The
contradiction comes from the fact that even though processes P and Q satisfy
the same CLµ formulae, there would be a transition in one of the processes that
cannot be simulated by the other process in an hpb way, i.e., concurrent actions
matched only with concurrent ones so as to keep the bisimulation synchronous,
which is impossible. More precisely, synchrony in an hp bisimulation means that
the last transition chosen in T1 (resp. in T2) is concurrent with the former
transition also chosen in T1 (resp. in T2) iff the same pattern holds in the last
two transitions chosen in T2 (resp. in T1). ut

Corollary 1 ∼CLµ is decidable.

Proof. Follows from Theorem 1 and the fact that ∼hpb is decidable. ut

5.4 The Full Separation Fixpoint Logic

Although the equivalence induced by SFL is analysed in the following section
using game-theoretical arguments, we first present a simple result that relates
∼SFL with ∼hhpb, without using any game-theoretical machinery. Consider the
counter-example presented in [8] (or the TSI representation of it), which is used
there to disprove the coincidence between hpb and hhpb in free-choice systems.
Due to lack of space such a counter-example is not reported here. Although the
systems presented in [8] (in Figure 1) are not hhp bisimilar, they cannot be
distinguished by any SFL formula. This result shows that in general ∼hhpb does
not coincide with ∼SFL. However, the precise relation between ∼hhpb and ∼SFL

is to be defined in the following section. For now, we have the following result:

Proposition 3 ∼SFL 6⊆ ∼hhpb

6 Bisimulation Games

Based on some of the results of the previous section, we give a game-theoretical
characterization of the equivalence SFL induces by defining a Bisimulation Game
for it. A knowledge on basic concepts about bisimulation games is assumed. An
introduction to Bisimulation games can be found in [21].

11

The games presented here conservatively extend the hp bisimulation game,
and therefore usual games for modal logics, i.e., classical bisimulation. We prove
that these bisimulation games, which we call independence hp bisimulation
(ihpb) games, characterize the equivalence induced by SFL. Most importantly, it
is shown that the ihp bisimulation games induce an equivalence relation for con-
current systems that is strictly stronger than hpb and strictly weaker than hhpb.
Remarkably, whereas ihpb games are decidable, hhpb games are undecidable in
finite models. These features make ihpb games, and consequently the equivalence
induced by SFL, an interesting candidate for an equivalence of true-concurrency.
A hierarchy of true concurrent equivalences can be found in [7].

Definition 6.1 A linearized concurrent run is any sequence of transitions r =
t0, ..., tn of an independence model T such that s r−→ s′ for some states s and s′

in T. The set of linearized concurrent runs of a structure T with respect to an
initial state s can be written as cRunss(T). An empty run is written as r = ε.
The last transition of the sequence r = t0, ..., tn is denoted by last(r) = tn.

Remark 6.1. Any play of an (h)hp bisimulation game corresponds exactly to a
pair of linearized concurrent runs in the structures at hand.

Before presenting the games for SFL, let us introduce a final definition that
is related with the role of support sets as locally identifiable sets of concurrent
transitions (conflict-free sets of transitions).

Definition 6.2 Two sets P1 and P2 are said to be history-preserving isomorphic
with respect to a transition t iff there exists a bijection B between them such
that for every (ti, tj) ∈ B, if t ≤ ti (resp. t	 ti) then t ≤ tj (resp. t	 tj).

Definition 6.3 (Independence history-preserving bisimulation Games). Con-
sider the standard bisimulation game for modal logics. There are two play-
ers, Spoiler and Duplicator, and a pair of structures T1 and T2 with initial
states/processes P and Q, respectively. A configuration of a play in the game is
a pair (r1, r2), where r1 ∈ cRunsP (T1) and r2 ∈ cRunsQ(T2). R is an indepen-
dence history-preserving bisimulation between T1 and T2 if:

1. The initial configuration is (ε, ε). Therefore (ε, ε) ∈ R
2. (Rule for hp bisimulation). Let (r1, r2) be the current configuration, thus

(r1, r2) ∈ R. Spoiler chooses one of the two systems, say T1 (T2), and picks
a transition t1 (t2) that is enabled at r1 (r2). Duplicator has to respond by
executing a transition t2 (t1) in the opposite structure T2 (T1) such that the
two extended linearized concurrent runs stay synchronous. Synchrony means
that whenever last(r1) ≤ t1 (resp. last(r1) 	 t1) then last(r2) ≤ t2 (resp.
last(r2) 	 t2). The new configuration of the play is (r1.t1, r2.t2), and hence
(r1.t1, r2.t2) ∈ R.

3. (Additional rule for ihp bisimulation). Before Spoiler chooses a transition
t1 (t2) from the enabled ones at r1 (r2), he can also choose a non-empty
conflict-free subset of them to be the new set of enabled transitions P1 (P2)
of size n. Duplicator must choose a history-preserving isomorphic set P2 (P1)
with respect to last(r2) (last(r1)) in the opposite structure T2 (T1).

12

If the play continues forever or Spoiler cannot make a move, then Duplicator
wins. Otherwise Spoiler wins. The two structures are ihp bisimilar iff Duplicator
has a winning strategy for every play in the game.

Lemma 1 If P ∼SFL Q, then Duplicator has a winning strategy for every play
in the independence history-preserving bisimulation game G(T1,T2, P,Q).

Proof. By constructing a winning strategy for Duplicator based on the fact that
P ∼SFL Q. Since CLµ induces an hp bisimulation and the ihpb game conserva-
tively extends the hpb game, w.l.o.g. we can consider only the case when Spoiler
plays Rule 3 of the ihpb game. ut

Lemma 2 If Duplicator has a winning strategy for every play in the indepen-
dence history-preserving bisimulation game G(T1,T2, P,Q), then P ∼SFL Q.

Proof. By contradiction suppose that Duplicator has a winning strategy and
P 6∼SFL Q. There are two cases. Suppose that Spoiler cannot make a move. This
means that both P |=T1 [−] ff and Q |=T2 [−] ff only, which is a contradiction.
The other case is when Duplicator wins in an infinite play. For the same reasons
given previously, w.l.o.g., it is possible to consider only the case when Spoiler
uses the Rule 3 of the ihpb game. But, this case also leads to a contradiction. ut

The previous two Lemmas give a full game-theoretical characterization to
the equivalence induced by SFL.

Theorem 2 P ∼SFL Q iff Duplicator has a winning strategy for every play in
the independence history-preserving bisimulation game G(T1,T2, P,Q).

Theorem 3 ∼ihpb ≡ ∼SFL is decidable on finite systems.

Proof. An independence history-preserving bisimulation game is a two-player
zero-sum perfect-information (infinite) game, thus it is determined. Moreover,
the length of the game is bounded. Duplicator wins when Spoiler cannot make
a move or when a finite set of repeated configurations is visited infinitely often.
In either case all possible winning strategies can be computed and therefore
decidability follows. ut

The previous results let us relate ∼hhpb with ∼SFL using game-theoretical
arguments. Since both bisimulation games, namely the one for hhpb one and the
one for ihpb, are conservative extensions of the hp bisimulation game, they can
be compared just by looking at their additional rules with respect to the hpb
game. So, consider the game-theoretical definition of hhpb as presented in [15].
We will describe the hhpb rule that extends the hpb game in the style used here.

Definition 6.4 (Hereditary history-preserving bisimulation Games). An hhp
bisimulation game is just as an hp bisimulation game, as presented in Definition
6.3 (only Rules one and two), adding the following rule:

13

– (Additional rule for hhp bisimulation). Alternatively to a forwards move,
having chosen one of the two systems, say T1, Spoiler can choose a transition
ti that is backwards enabled at r1 with respect to a previous configuration
(w1, w2), i.e., a transition ti that is concurrent with every transition t after
w1, where w1 is obtained from r1 by using the “diamond axioms” to push
ti to the end, and then deleting ti, and symmetrically for w2. Duplicator
must respond by choosing (deleting) the corresponding tj in w2. The new
configuration of the game is that obtained by deleting both transitions ti
and tj from the history of the game.

Now, only by showing that the additional rule for the hhpb game is at least
as powerful as the additional rule for the ihpb game, and taking into account
that ∼hhpb and ∼SFL do not coincide, by Proposition 3, we have:

Theorem 4 ∼hhpb ⊂ ∼SFL

7 Concluding Remarks and Related Work

We have given a logical characterization to the dualities that can be found when
analysing locally the relationships between concurrency and conflict as well as
concurrency and causality. This characterization aims at defining relationships
between model independence and logical independence. Our study led to several
positive results with respect to the equivalences induced by a number of modal
logics whose denotations are based on these dualities.

Related work: At a philosophical level, this study is similar to that in [3, 5], a
work primarily on mathematical logic using game logics for concurrency where
model independence is captured explicitly with the use of Henkin quantifiers.
At a more practical level, this work can be related to logics with partial order
semantics at large. These logics, in the simplest cases, are given denotations that
consider the one-step interleaving semantics of a particular independence model.
Therefore no new logical constructions have to be introduced. The problem is
that the explicit notion of independence in the models is completely lost. Thus,
the usual approach is to introduce logical operators that somehow capture the
independence in the models. In most cases that kind of logical independence is
actually a sequential interpretation of concurrency based on the introduction of
past operators sensitive to concurrent actions and a mixture of forwards and
backwards reasoning (which usually leads to several undecidable results). A sur-
vey of logics of this kind can be found in [17]. Other logics with partial order
semantics can be found in [2, 15], but the literature has many more references.

Also, the work here presented can be related to logics for local reasoning.
In particular, the use of separation properties to do local reasoning has been
investigated elsewhere and applied in other settings [4, 6, 11, 18–20]. However,
as said before, apart from [3, 5] the main motivation for this paper is different
from all the examples given above, since we actually want to distill the relation-
ships between model and logical independence so as to understand the semantic
foundations of concurrent computations.

14

Acknowledgements. I am grateful to Julian Bradfield for helpful discussions.
I thank Ian Stark and Colin Stirling for comments on a preliminary version of
this paper. I also thank the referees for their comments.

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

2. R. Alur, D. Peled, and W. Penczek. Model-Checking of Causality Properties. In
LICS, pages 90–100. IEEE Computer Society, 1995.

3. J. Bradfield. Truth and Games: Essays in Honour of Gabriel Sandu. In T. Aho
and A. Pietarinen, editors, Acta Philosophica Fennica, volume 78, chapter Inde-
pendence: Logics and Concurrency, pages 47–70. Phil. Soc. of Finland, 2006.

4. J. Bradfield, J. Esparza, and A. Mader. A Causal Fixpoint Logic. Unpub., 1997.
5. J. Bradfield and S. Fröschle. Independence-Friendly Modal Logic and True Con-

currency. Nord. J. Comput., 9(1):102–117, 2002.
6. S. Brookes. A Semantics for Concurrent Separation Logic. In P. Gardner and

N. Yoshida, editors, CONCUR, volume 3170 of LNCS, pages 16–34. Springer, 2004.
7. H. Fecher. A Completed Hierarchy of True Concurrent Equivalences. Inf. Process.

Lett., 89(5):261–265, 2004.
8. S. Fröschle. The Decidability Border of Hereditary History Preserving Bisimilarity.

Inf. Process. Lett., 93(6):289–293, 2005.
9. S. Fröschle and T. Hildebrandt. On Plain and Hereditary History-Preserving Bisim-

ulation. In MFCS, volume 1672 of LNCS, pages 354–365. Springer, 1999.
10. R. Glabbeek and U. Goltz. Refinement of Actions and Equivalence Notions for

Concurrent Systems. Acta Inf., 37(4/5):229–327, 2001.
11. J. Hayman and G. Winskel. Independence and Concurrent Separation Logic. In

LICS, pages 147–156. IEEE Computer Society, 2006.
12. M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.

J. ACM, 32(1):137–161, 1985.
13. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from Open Maps. Inf. Comput.,

127(2):164–185, 1996.
14. A. Mazurkiewicz. Trace Theory. In Brauer, Reisig, and Rozenberg, editors, Ad-

vances in Petri Nets, volume 255 of LNCS, pages 279–324. Springer, 1986.
15. M. Nielsen and C. Clausen. Games and Logics for a Noninterleaving Bisimulation.

Nord. J. Comput., 2(2):221–249, 1995.
16. M. Nielsen and G. Winskel. Models for Concurrency. In Handbook of Logic in

Computer Science, volume 4, pages 1–148. Oxford University Press, 1995.
17. W. Penczek. Branching Time and Partial Order in Temporal Logics. In Time and

Logic: A Computational Approach, pages 179–228. UCL Press, 1995.
18. D. Pym and C. Tofts. A Calculus and Logic of Resources and Processes. Formal

Asp. Comput., 18(4):495–517, 2006.
19. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

LICS, pages 55–74. IEEE Computer Society, 2002.
20. É.-J. Sims. Extending Separation Logic with Fixpoints and Postponed Substitu-

tion. Theor. Comput. Sci., 351(2):258–275, 2006.
21. C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

15

