Rational Verification:
From Model Checking to Equilibrium Checking

Michael Wooldridge, Julian Gutierrez, Paul Harrenstein,
Enrico Marchioni, Giuseppe Perelli, Alexis Toumi

Department of Computer Science
University of Oxford
United Kingdom

Abstract

Rational verification is concerned with establishing
whether a given temporal logic formula ¢ is satisfied in
some or all equilibrium computations of a multi-agent
system — that is, whether the system will exhibit the be-
haviour ¢ under the assumption that agents within the
system act rationally in pursuit of their preferences. Af-
ter motivating and introducing the framework of rational
verification, we present formal models through which
rational verification can be studied, and survey the com-
plexity of key decision problems. We give an overview
of a prototype software tool for rational verification, and
conclude with a discussion and related work.

Introduction

Verification is one of the most important and widely-
studied problems in computer science (Boyer and Moore
1981). Verification is the problem of checking program cor-
rectness: the key decision problem relating to verification is
that of establishing whether or not a given system P satisfies
a given specification ¢. The most successful contemporary
approach to formal verification is model checking, in which
an abstract, finite state model of the system of interest is
represented as a Kripke structure (a labelled transition sys-
tem), and the specification is represented as a temporal logic
formula, the models of which are intended to correspond to
“correct” behaviours of the system (Emerson 1990). The ver-
ification process then reduces to establishing whether the
specification formula is satisfied in the given Kripke struc-
ture, a process that can be efficiently automated in many set-
tings of interest (Clarke, Grumberg, and Peled 2000).

In the present paper, we will be concerned with multi-agent
systems (Shoham and Leyton-Brown 2008; Wooldridge
2009). Multi-agent systems are generally understood as sys-
tems composed of multiple interacting (semi-)autonomous
software components known as agents, which act in pursuit
of goals or preferences that are delegated to them by exter-
nal principals. Since agents are “owned” by different prin-
cipals, there is no requirement or assumption that the pref-
erences delegated to different agents are aligned in any way.
It may be that their preferences are compatible, but it may

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

equally be that preferences are in opposition. Game theory
provides a natural and widely-adopted framework through
which to understand systems with these properties, where
participants pursue their preferences rationally and strategi-
cally (Maschler, Solan, and Zamir 2013), and this observation
has prompted a huge body of research over the past decade,
attempting to apply and adapt game theoretic techniques
to the analysis of multi-agent systems (Nisan et al. 2007;
Shoham and Leyton-Brown 2008).

We are concerned with the question of how we should
think about the issues of correctness and verification in multi-
agent systems. We argue that the classical view of correct-
ness, outlined above, is not appropriate for multi-agent sys-
tems. In a multi-agent setting, it is more appropriate to ask
what behaviours the system will exhibit under the assump-
tion that agents act rationally in pursuit of their preferences.
We advance the paradigm of rational verification for multi-
agent systems, as a counterpart to classical verification. Ra-
tional verification is concerned with establishing whether a
given temporal logic formula ¢ is satisfied in some or all
game theoretic equilibria of a multi-agent system — that is,
whether the system will exhibit the behaviour ¢ under the
assumption that agents within the system act rationally in
pursuit of their preferences/goals.

We begin by motivating our approach, describing in detail
the issue of correctness and verification, and the hugely suc-
cessful model checking paradigm for verification. We then
discuss the question of what correctness means in the set-
ting of multi-agent systems, and this leads us to introduce
the paradigm of rational verification and equilibrium check-
ing. We then introduce a formal framework, and survey the
complexity of key decision problems associated with equi-
librium checking — we see that the complexity of decision
problems in equilibrium checking can be substantially worse
than for conventional model checking problems. We then
give an overview of a prototype software tool for rational ver-
ification: the EAGLE system takes as inputa REACTIVE
MODULES specification of a set of agents (Alur and Hen-
zinger 1999), a goal for each agent, specified as a formula of
the temporal logic CTL (Emerson 1990), and a collection of
strategies, one for each agent in the system; the system then
checks whether the strategies form a Nash equilibrium. We
conclude with a discussion and related work.

Setting the Scene

Our aim in this section is to explain how the concept of ra-
tional verification emerged from various research trends in
computer science and artificial intelligence, and how it differs
from the conventional conception of verification. Readers
will no doubt be familiar with some of this material — we beg
their indulgence so that we can tell the story in its entirety.

Correctness and Formal Verification: The correctness
problem has been one of the most widely studied problems
in computer science over the past fifty years, and remains a
topic of fundamental concern to the present day (Boyer and
Moore 1981). Broadly speaking, the correctness problem is
concerned with checking that computer systems behave as
their designer intends. Probably the most important problem
studied within the correctness domain is that of formal veri-
fication. Formal verification is the problem of checking that
a given computer program or system P is correct with re-
spect to a given formal (i.e., mathematical) specification ¢.
We understand ¢ as a description of system behaviours that
the designer judges to be acceptable — a program that guar-
antees to generate a behaviour as described in ¢ is deemed
to correctly implement the specification .

A key insight, due to Amir Pnueli, is that temporal logic
can be a useful language with which to express formal speci-
fications of system behaviour (Pnueli 1977). Pnueli proposed
the use of Linear Temporal Logic (LTL) for expressing desir-
able properties of computations. LTL extends classical logic
with tense operators X (“in the next state...”), F (“eventu-
ally...”), G (“always...”),and U (“...until...”) (Emerson
1990). For example, the requirement that a system never en-
ters a “crash” state can naturally be expressed in LTL by a
formula G—crash. If we let [P] denote the set of all possi-
ble computations that may be produced by the program P,
and let [¢] denote the set of state sequences that satisfy the
LTL formula ¢, then verification of LTL properties reduces
to the problem of checking whether [P] C [¢]. Another
key temporal formalism is Computation Tree Logic (CTL),
which modifies LTL by prefixing tense operators with path
quantifiers A (“on all paths...”) and E (“on some path...”).
While LTL is suited to reasoning about runs or computational
histories, CTL is suited to reasoning about transition systems
that encode all possible system behaviours.

Model Checking: The most successful approach to verifi-
cation using temporal logic specifications is model check-
ing (Clarke, Grumberg, and Peled 2000). Model checking
starts from the idea that the behaviour of a finite state pro-
gram P can be represented as a Kripke structure, or transi-
tion system K p. Now, Kripke structures can be interpreted
as models for temporal logic. So, checking whether P satis-
fies an LTL property reduces to the problem of checking
whether ¢ is satisfied on some path through K p. Checking
a CTL specification ¢ is even simpler: the Kripke struc-
ture Kp is a CTL model, so we simply need to check
whether Kp = ¢. These checks can be efficiently auto-
mated for many cases of interest. In the case of CTL, for
example, checking whether Kp |= ¢ can be solved in
time O(|Kp| - |¢|) (Clarke and Emerson 1981; Emerson
1990); for LTL, the problem is more complex (PSPACE-

TEMPORAL LOGIC PROPERTY

g

MODEL CHECKER

Y

"yes, property ¢ is true "no, property ¢ is not true
of the model" of the model: here is why"

Figure 1: Model checking. A model checker takes as input
a model, representing a finite state abstraction of a system,
together with a claim about the system behaviour, expressed
in temporal logic. It then determines whether or not the claim
is true of the model or not; most practical model checkers will
provide a counter example if not.

complete (Emerson 1990)), but using automata theoretic tech-
niques it can be solved in time O(|Kp| - 2!#!) (Vardi and
Wolper 1986), the latter result indicating that such an ap-
proach is feasible for small specifications. Since the model
checking paradigm was first proposed in 1981, huge progress
has been made on extending the range of systems amenable
to verification by model checking, and to extending the range
of properties that might be checked (Clarke, Grumberg, and
Peled 2000).

Multi-agent systems: We now turn the class of systems that
we will be concerned with in the present paper. The field of
multi-agent systems is concerned with the theory and practice
of systems containing multiple interacting semi-autonomous
software components known as agents (Wooldridge 2009;
Shoham and Leyton-Brown 2008). Multi-agent systems
are generally understood as distinct from conventional dis-
tributed or concurrent systems in several respects, but the
most important distinction for our purposes is that different
agents are assumed to be operating on behalf of different ex-
ternal principals, who delegate their preferences or goals to
their agent. Because different agents are “owned” by differ-
ent principals, there is no assumption that agents will have
preferences that are aligned with each other.

Correctness in Multi-Agent Systems: Now, consider the
following question:

How should we interpret correctness and formal verifi-
cation in the context of multi-agent systems?

In an uninteresting sense, this question is easily answered:
We can certainly think of a multi-agent system as nothing

more than a collection of interacting non-deterministic com-
puter programs, with non-determinism representing the idea
that agents have choices available to them; we can model
such a system using any number of readily available model
checking systems, which would then allow us to start rea-
soning about the possible computational behaviours that the
system might in principle exhibit. But while such an anal-
ysis is entirely legitimate, and might well yield important
insights, it is nevertheless missing a very big part of the story
that is relevant in order to understand a multi-agent system.
This is because it ignores the fact that agents are assumed to
pursue their preferences rationally and strategically. Thus,
certain system behaviours that might be possible in principle
will never arise in practice because they could not arise from
rational choices by agents within the system.

To take a specific example, consider eBay, the online auc-
tion house. When users create an auction on eBay, they must
specify a deadline for bidding in the auction. This dead-
line, coupled with the strategic concerns of bidders, leads
to behaviour known as sniping (Roth and Ockenfels 2002).
Roughly, sniping is where bidders try to wait for the last pos-
sible moment to submit bids. Sniping is strategic behaviour,
used by participants to try to get the best outcome possible.
If we do not take into account preferences and strategic be-
haviour when designing a system like eBay, then we will not
be able to predict or understand behaviours like sniping.

The classical formulation of correctness does not naturally
match the multi-agent system setting because there is no sin-
gle specification ¢ against which the correctness of a multi-
agent system is judged. Instead, the agents within such a sys-
tem each carry their own specification: an agent is judged to
be correct if it acts rationally to achieve its delegated prefer-
ences or goals. There is no single standard of correctness by
which the system as a whole can be judged, and attempting
to apply such a standard does not help to understand the be-
haviour of the system. So, what should replace the classical
notion of correctness in the context of multi-agent systems?
We will now argue for the concept of rational verification
and equilibrium checking.

Rational Verification and Equilibrium Checking: We be-
lieve, (as do many other researchers (Nisan et al. 2007;
Shoham and Leyton-Brown 2008)), that game theory pro-
vides an appropriate analytical framework for the analysis
of multi-agent systems. Originating within economics, game
theory is essentially the theory of strategic interaction be-
tween self-interested entities (Maschler, Solan, and Zamir
2013). While the mathematical framework of game theory
was not developed specifically to study computational set-
tings, it nevertheless seems that the toolkit of analytical con-
cepts it provides can be adapted and applied to multi-agent
settings. A game in the sense of game theory is usually un-
derstood as an abstract mathematical model of a situation in
which self-interested players must make decisions. A game
specifies the decision-makers in the game — the “players” and
the choices available to these players (their strategies). For
every combination of possible choices by players, the game
also specifies what outcome will result, and each player has
their own preferences over possible outcomes. A key concern

in game theory is to try to understand what the outcomes of
a game can or should be, under the assumption that the play-
ers within it act rationally. To this end, a number of solution
concepts have been proposed, of which Nash equilibrium is
the most widely used. A Nash equilibrium is a collection of
choices, one for each participant in the game, such that no
player can benefit by unilaterally deviating from this com-
bination of choices. Nash equilibria seem like reasonable
candidates for the outcome of a game because to move away
from a Nash equilibrium would result in some player being
worse off — which would clearly not be rational. In general, it
could be the case that a given game has no Nash equilibrium,
or multiple Nash equilibria. Now, it should be easy to see
how this general setup maps to the multi-agent systems set-
ting: players map to the agents within the system, and each
player’s preferences are as defined in their delegated goals;
the choices available to each player correspond to the possi-
ble courses of action that may be taken by each agent in the
system. Outcomes will correspond to the runs of the system,
and agents will have preferences over these runs; they act to
try and bring about their most preferred runs.

With this in mind, we believe it is natural to think of the
following problem as a counterpart to model checking and
classical verification. We are given a multi-agent system, and
a temporal logic formula representing a property of interest.
We then ask whether ¢ would be satisfied in some run that
would arise from a Nash equilibrium collection of choices by
agents within the system. We call this equilibrium checking,
and refer to the general paradigm as rational verification.

A Formal Model

Let us make our discussion a little more formal with some
suggestive notation (we make the model and notation more
precise in later sections). Let P, ..., P, be the agents within
a multi-agent system. For now, we do not impose any spe-
cific model for agents P;: we will simply assume that agents
are non-deterministic reactive programs. Non-determinism
captures the idea that agents have choices available to them,
while reactivity implies that agents are non-terminating. The
framework we describe below can easily be applied to any
number of computational models, including, for example,
concurrent games (Alur, Henzinger, and Kupferman 2002),
event structures (Winskel 1986), interpreted systems (Fagin
et al. 1995), or multi-agent planning systems (Brafman and
Domshlak 2013).

A strategy for an agent P; is a rule that defines how the
agent makes choices over time. Each possible strategy for
an agent P; defines one way that the agent can resolve its
non-determinism. We can think of a strategy as a function
from the history of the system to date to the choices avail-
able to the agent. We denote the possible strategies available
to agent P; by X(P;). The basic task of an agent P; is to
select an element of X(P;) — we will see later that agents se-
lect strategies in an attempt to bring about their preferences.
When each agent P; has selected a strategy, we have a profile
of strategies & = (o4, ..., 0p), one for each agent. This pro-
file of strategies will collectively define the behaviour of the
overall system. For now, we will assume that strategies are
themselves deterministic, and that a collection of strategies

therefore induces a unique run of the system, which we de-
note by p(o1,...,0,). Theset R(Py, ..., P,) of all possible
runs of Py,..., P, is:

R(Py,...,Py) = {p(&): G € D(Py) x - x (Py)}.

Where the strategies that lead to a run do not need to be
named, we will denote elements of R(Py, ..., P,) by p, o/,
etc. Returning to our earlier discussion, we use temporal
logic as a language for expressing properties of runs: we will
write p = ¢ to mean that run p satisfies temporal formula .

Before proceeding, we present a version of the conven-
tional model checking problem for our setting:

MODEL CHECKING:
Given: System Py, ..., P,; temporal formula ¢.
Question: Is it the case that 36 € X(Py) x -+ - x X(Py) :

p(G) = ¢?

This problem amounts to asking if 3p € R(Pi, ..., P,) such
that p |= ¢, thatis, whether there is any possible computation
of the system that satisfies o, that is, whether the system could
in principle exhibit the behaviour .

Preferences: So far, we have said nothing about the idea that
agents act rationally in pursuit of delegated preferences. We
assume that agents have preferences over runs of the system.
Thus, given two possible runs p;,p2 € R(Py,...,Py,), it
may be that P; prefers p; over ps, or that it prefers ps over
p1, or that it is indifferent between the two. We represent
preferences by assigning to each player P; a relation ~; C
R(Py,...,P,) x R(Py, ..., P,), requiring that this relation
is complete, reflexive, and transitive. Thus p; >; p means
that P; prefers p; at least as much as p;. We denote the
irreflexive sub-relation of >; by >;, so p; >; p2 means that
P; strictly prefers p; over po. Indifference (where we have
p1 7 p2 and po >; p1) is denoted by p; ~; pa. We refer to
M= (P,...,P,, =1,...,=y) as a multi-agent system.
Alert readers will have noted that, if runs are infinite, then
so are preference relations over such runs. This raises the
issue of finite and succinct representations of runs. Several
approaches to this issue have been suggested. The most ob-
vious is to assign each agent P; a temporal logic formula ;
representing its goal. The idea is that P; prefers all runs that
satisfy ~; over all those that do not, is indifferent between all
runs that satisfy -;, and is similarly indifferent between runs
that do not satisfy ;. Formally, the preference relation >;
corresponding to a goal ~y; is defined as follows:

P1 ti P2 iff P2 }: Yi 1mphes P1 ': Yi-

Obvious generalisations of this idea include representing
preference relations via weighted sets of temporal formu-
lae (agents prefer runs that maximise the sum of weights
of satisfied formulae), or ordered lists of temporal formulae
(agents prefer runs that satisfy formulae as far up the list as
possible) (Bouyer et al. 2015).

Nash equilibrium: With this definition, we can now define
the standard game theoretic concept of Nash equilibrium for
our setting. Let M = (Py,..., Py, >1,...,=5) be a multi-
agent system, and let & = (o4, ...,04,...,0,) be a strategy

MODEL

TEMPORAL LOGIC
PROPERTY

T ©

PREFERENCES

1
OCi)iO OJ;

(]

EQUILIBRIUM CHECKER

“yes, property ¥ is true on
some Nash equilibrium”

“no, property ¥ is not true
on any Nash equilirbrium”

Figure 2: Equilibrium checking. The key difference to model
checking is that we also take as input the preferences of each
of the system components, and the key question asked is
whether or not the temporal property ¢ holds on some/all
equilibria of the system.

profile. Then we say & is a Nash equilibrium of M if for all
players P; and for all strategies o, € X(F;), we have:

(&) =i plo1,...,00, ... 00).

Let NE(M) denote the set of all Nash equilibria of M. Of
course, many other solution concepts have been proposed
in the game theory literature (Maschler, Solan, and Zamir
2013) — to keep things simple, in this paper we will restrict
our attention to Nash equilibrium.

Equilibrium Checking: We are now in a position to intro-
duce equilibrium checking, and the associated key decision
problems. The basic idea of equilibrium checking is that,
instead of asking whether a given temporal formula ¢ is sat-
isfied on some possible run of the system, we instead ask
whether it is satisfied on some run corresponding to a Nash
equilibrium of the system. Informally, we can understand
this as asking whether ¢ could be made true as the result
of rational choices by agents within the system. This idea is
captured in the following decision problem (see Figure 2):

E-NASH:
Given: Multi-agent system M ; temporal formula .
Question: Is it the case that 35 € NE(M) : p(d) = ¢?

The obvious counterpart of this decision problem is A-
N A sH, which asks whether a temporal formula ¢ is satisfied
on all Nash equilibrium outcomes. A higher-level question
is simply whether a system has any Nash equilibria:

NON-EMPTINESS:
Given: Multi-agent system M.
Question: 1s it the case that NE(M) # (?

A system without any Nash equilibria is inherently unsta-
ble: whatever collection of choices we might consider for the
agents within it, some player would have preferred to make
an alternative choice. Notice that an efficient algorithm for
solving E-NASH would imply an efficient algorithm for
NON-EMPTINESS.

Finally, we might consider the question of verifying
whether a given profile represents a Nash equilibrium:

IS-NE:

Given: Multi-agent system M, strategy profile &

Question: Is it the case that & € NE(M)?

Recall that strategies are functions that take as input the his-
tory of the system to date, and give as output a choice for the
agent in question. This latter decision problem requires some
finite representation scheme for these strategies.

A Concrete Model - Iterated Boolean Games: A concrete
computational model that we have found useful to explore
questions surrounding rational verification is the framework
of iterated Boolean games (iBGs) (Gutierrez, Harrenstein,
and Wooldridge 2015b). In an iBG, each agent P; is defined
by associating it with a finite, non-empty set of Boolean vari-
ables ®;, and preferences for P; are specified with an LTL for-
mula ;. It is assumed that each propositional variable is as-
sociated with a single agent. The choices available to F; then
represent the set of all possible assignments of truth or falsity
to the variables under the control of P;. An iBG is “played”
over an infinite sequence of rounds; in each round every
player independently selects a valuation for their variables,
and the infinite run traced out in this way thus defines an LTL
model, which will either satisfy or fail to satisfy each player’s
goal. In iBGs, strategies are represented as finite state ma-
chines with output (Moore machines). Although this might
at first sight appear to be a limited computational model, it
is in fact rich enough for the setting in which player’s goals
are LTL formulae. We explored the complexity of the deci-
sion problems above in the iBG case: IS-NE was found to
be PSPACE-complete (and hence no easier or harder than
satisfiability for LTL); however, NON-EMPTINESS, E-
NASH, and A-NASH are all 2EXPTIME-complete; these
results hold even when goals have a very simple form. In-
tuitively, this increase in complexity is because all of these
latter decision problems imply checking for the existence
of winning strategies to achieve temporal logic formulae.
This problem is called LTL synthesis, and is known to be
2EXPTIME-complete (Pnueli and Rosner 1989). One inter-
esting aspect of work on iBGs is the application of the Nash
folk theorems (results in game theory for the analysis of it-
erated games) to obtain results relating to the complexity of
equilibrium checking in iBGs.

A Prototype Equilibrium Checking Tool

We now describe a prototype tool we have developed as
a proof of concept for equilibrium checking. The tool
is called EAGLE (Equilibrium Analyser for Game Like
Environments) (Toumi, Gutierrez, and Wooldridge 2015).
EAGLE takes as input a set of agents, defined using the
REACTIVE MODULES Language (RML) (Alur and Hen-
zinger 1999), a collection of non-deterministic strategies for

these agents, also encoded using REACTIVE MODULES,
and for each agent P;, a CTL formula representing the goal y;
of that player. It then checks whether the strategies represent
a Nash equilibrium, i.e., it solves IS-NE.

The objects used to define agents in RML are known as
modules. An RML module consists of an interface, which de-
fines the name of the module and lists the Boolean variables
under the control of the module, and a number of guarded
commands, which define the choices available to the module
at every state. Guarded commands are of two kinds: those
used for initialising the variables under the module’s control
(init guarded commands), and those for updating these vari-
ables subsequently (update guarded commands). A guarded
command has two parts: a condition part (the “guard”) and an
action part, which defines how to update the value of (some
of) the variables under the control of a module. The intuitive
reading of a guarded command ¢—>a is “if the condition ¢
is satisfied, then one of the choices available to the module is
to execute the action . We note that the truth of the guard
o does not mean that o will be executed: only that it is en-
abled for execution —it may be chosen. Formally, a guarded
command g over a set of variables ® is an expression

[](,0_>1'/1 = wlv"’vx;g = wk

where [] is a syntactic separator, (the guard) is a propo-
sitional formula, each x; is a member of ® and each ; is
a propositional formula. The intended meaning is that if the
guard is satisfied in the current state of the system, then one
of the choices available to the agent is to execute the assign-
ment statements on the right hand side, with the conditions
1; being evaluated in the current state.

Space restrictions prevent us from describing in detail
how EAGLE works internally, but the main point is that
the IS-NE problem that EAGLE solves is EXPTIME-
complete (Toumi, Gutierrez, and Wooldridge 2015), and
hence no harder than satisfiability for CTL. In fact, EAGLE
solves IS-NE by reducing it to a number of CTL model
checking and satisfiability problems.

We now present a case study based on the system pre-
sented in (Fisman, Kupferman, and Lustig 2010). Consider a
peer-to-peer network with two agents (the extension to n > 2
agents is straightforward — we restrict to two agents only due
to space and ease of presentation). At each time step, each
agent either tries to download or to upload. In order for one
agent to download successfully, the other must be upload-
ing at the same time, and both are interested in downloading
infinitely often. We will require that an agent cannot both
download and upload at the same time.

We can specify the game modelling the above communi-
cation protocol as a game with two players, 0 and 1, where
each player ¢ € {0,1} controls two variables u; (“Player ¢
tries to upload”) and d; (“Player ¢ tries to download”); Player
i downloads successfully if (d; A u;—;). Formally, we model

the system in RML as follows:

module mo controls ug,do
init
(1T ->up:=T,dy:=1
(1T —>up:=1,dy:=T
update
(1 T->up:=T,dy:=1
(1T-—>up:=1,dy:=T

module mj controls ui,d;
init
T ->uy:=T,d, =1
[(IT-—>uy:=1,d,:=T
update
T ->uy:=T,d, =1
NT->uy:=1,d =T

Agents goals can be easily specified in CTL: the informal
“infinitely often” requirement can be expressed in CTL as
“From all system states, on all paths, eventually”. Hence, for
i € {0,1}, we define the goals as follows:

This is clearly a very simple system/game: only two play-
ers and four controlled variables. Yet, checking the Nash
equilibria of the game associated with this system is a hard
problem. One can show — and formally verify using EA-
GLE - that this game has a Nash equilibrium where no
player gets its goal achieved, and another that is Pareto opti-
mal, where both players get their goal achieved. (In fact, the
game has infinitely many Nash equilibria, but they all fall
within the above two categories.) Based on the RML spec-
ifications of players’ strategies given below, which can be
seen to be consistent with modules mq and mq, we can ver-
ify that both (StPlayer(0), StPlayer(1)) ¢ NE(G) and
(OnlyDown(0), OnlyDown(1)) € NE(G).

module StPlayer(i) controls u;,d;
init
T —>u:=T,d,:=1
update
[] T—>u; =d;, d; = U,

module OnlyDown(i) controls u;,d;
init
(1T ->u;:=1,d,:=T
update
T —>u:=1,d,:=T

Discussion & Future Work

Several research groups are working on problems related
to equilibrium checking: (Fisman, Kupferman, and Lustig
2010) study the problem of synthesising systems so that
certain desirable properties hold in equilibrium; (Chatter-
jee and Henzinger 2012; Bouyer et al. 2015) give extensive
overviews of decision problems related to equilibrium check-
ing, for a range of concurrent game models.

In our own work, we have investigated many issues sur-
rounding rational verification, particularly using Boolean
games (Harrenstein et al. 2001). Boolean games are essen-
tially “one-shot” versions of iterated Boolean games, as de-
scribed above, where play consists of a single round, and

agent goals ~y; are specified as propositional formulae. A
question that we have investigated at length is possible mech-
anisms for managing games. This might be necessary, for
example, if the game contains socially undesirable equilib-
ria (Wooldridge 2012), or where a game possesses no equilib-
rium, and we wish to introduce one (which we call stabilisa-
tion). One obvious mechanism for manipulating games is the
use of taxation schemes, which provide incentives for players
to avoid undesirable equilibria, or to prefer desirable equilib-
ria (Wooldridge et al. 2013). (Related issues have recently
been studied in the context of concurrent games (Almagor,
Avni, and Kupferman 2015)). Another possibility is to try to
influence players by changing their beliefs through communi-
cation. For example, (Grant et al. 2014) considered a Boolean
games setting where players make their choices based on be-
liefs about some variables in the environment, and a central
authority is able to reveal certain information in order to
modify these beliefs. Another issue we have investigated is
the extent to which we can develop a language that supports
reasoning about strategies directly in the object language.
Strategy logic is a variation of temporal logic, closely related
to Alternating-time temporal logic (Alur, Henzinger, and
Kupferman 2002), which includes names for strategies in the
object language (Chatterjee, Henzinger, and Piterman 2010),
and using Strategy Logic, it is possible to reason about Nash
equilibria. However, Strategy logic is in general undecidable,
which raises the question of whether weaker languages might
be used. (Gutierrez, Harrenstein, and Wooldridge 2014) pro-
poses a temporal logic containing a quantifier [V E]y, mean-
ing “o holds on all Nash equilibrium computations”. (Gutier-
rez, Harrenstein, and Wooldridge 2015a) shows that Nash
equilibria can be represented, up to bisimulation, in even
weaker languages. Other researchers have investigated sim-
ilar concerns (Bulling, Jamroga, and Dix 2008). Another in-
teresting question is the extent to which the model of interac-
tion used in a particular setting affects the possible equilib-
ria that may result. In (Gutierrez and Wooldridge 2014), we
investigated Nash equilibria in games based on event struc-
tures (Winskel 1986), and were able to characterise condi-
tions required for the existence of equilibria. Another re-
search direction is the extent to which we can go beyond
the representation of preferences as simple binary formu-
lae; one possible approach, investigated in (Marchioni and
Wooldridge 2015), is to represent player’s goals as formulae
of Lukasiewicz logic, which permits a much richer class of
preferences to be directly represented.

Many issues remain for future work. Mixed (stochastic)
strategies is an obvious major topic of interest, as is the pos-
sibility of imperfect information (Fagin et al. 1995), and of
course solution concepts beyond Nash equilibria, such as sub-
game perfect equilibrium. Our EAGLE tool is a prototype,
limited in its scope, and not optimised: extensions supporting
LTL, incomplete information, etc, are all highly desirable.

Acknowledgements: We acknowledge the support of the
European Research Council under Advanced Grant 291528
(“RACE”), and the EPSRC under grant EP/M009130/1.

References

Almagor, S.; Avni, G.; and Kupferman, O. 2015. Repairing
multi-player games. In Proceedings of the Twenty-Sixth An-
nual Conference on Concurrency Theory (CONCUR-2015).

Alur, R., and Henzinger, T. A. 1999. Reactive modules.
Formal Methods in System Design 15(11):7-48.

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672-713.

Bouyer, P.; Brenguier, R.; Markey, N.; and Ummels, M. 2015.
Pure Nash equilibria in concurrent games. Logical Methods
in Computer Science.

Boyer, R. S., and Moore, J. S., eds. 1981. The Correctness
Problem in Computer Science. The Academic Press: London,
England.

Brafman, R., and Domshlak, C. 2013. On the complexity of
planning for agent teams and its implications for single agent
planning. Artificial Intelligence 198:52-71.

Bulling, N.; Jamroga, W.; and Dix, J. 2008. Reasoning about
temporal properties of rational play. Annals of Mathematics
and Artificial Intelligence 53(1-4):51-114.

Chatterjee, K., and Henzinger, T. A. 2012. A survey of
stochastic omega-regular games. Journal Of Computer And
System Sciences 78:394-413.

Chatterjee, K.; Henzinger, T.; and Piterman, N. 2010. Strat-
egy logic. Information and Computation 208(6):677-693.
Clarke, E. M., and Emerson, E. A. 1981. Design and synthe-
sis of synchronization skeletons using branching time tempo-
ral logic. In Logics of Programs — Proceedings 1981 (LNCS
Volume 131), 52-71. Springer-Verlag: Berlin, Germany.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000. Model
Checking. The MIT Press: Cambridge, MA.

Emerson, E. A. 1990. Temporal and modal logic. In
Handbook of Theoretical Computer Science Volume B: For-
mal Models and Semantics. Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands. 996-1072.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. The MIT Press: Cambridge,
MA.

Fisman, D.; Kupferman, O.; and Lustig, Y. 2010. Ratio-
nal synthesis. In TACAS, volume 6015 of LNCS, 190-204.
Springer.

Grant, J.; Kraus, S.; Wooldridge, M.; and Zuckerman, I. 2014.
Manipulating games by sharing information. Studia Logica
102:267-295.

Gutierrez, J., and Wooldridge, M. 2014. Equilibria of concur-
rent games on event structures. In Proceedings of CSL-LICS.
Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. 2014.
Reasoning about equilibria in game-like concurrent systems.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR
2014.

Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. 2015a. Ex-

Fressiveness and complexity results for strategic reasoning.
n Proceedings of the Twenty-Sixth Annual Conference on

Concurrency Theory (CONCUR-2015).

Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. 2015b. It-
erated boolean games. Information and Computation 242:53—
79.

Harrenstein, P.; van der Hoek, W.; Meyer, J.-J.; and Wit-
teveen, C. 2001. Boolean games. In van Benthem, J., ed.,

Proceeding of the Eighth Conference on Theoretical Aspects
of Rationality and Knowledge (TARK VIII), 287-298.

Marchioni, E., and Wooldridge, M. 2015. Lukasiewicz
games: A logic-based approach to quantitative strategic in-
teractions. ACM Transactions on Computational Logic.

Maschler, M.; Solan, E.; and Zamir, S. 2013. Game Theory.
Cambridge University Press: Cambridge, England.

Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.,
eds. 2007. Algorithmic Game Theory. Cambridge University
Press: Cambridge, England.

Pnueli, A., and Rosner, R. 1989. On the synthesis of an
asynchronous reactive module. In Proceedings of the Six-
teenth International Colloquium on Automata, Languages,
and Programs.

Pnueli, A. 1977. The temporal logic of programs. In Proceed-
ings of the Eighteenth IEEE Symposium on the Foundations
of Computer Science, 46-57.

Roth, A., and Ockenfels, A. 2002. Last-minute bidding and
the rules for ending second-price auctions: Evidence from
eBay and Amazon auctions on the internet. American Eco-
nomic Review 92(4):10931103.

Shoham, Y., and Leyton-Brown, K. 2008. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press: Cambridge, England.
Toumi, A.; Gutierrez, J.; and Wooldridge, M. 2015. A tool for
the automated verification of Nash equilibria in concurrent
games. In Proceedings of the Twelfth International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2015).
Vardi, M. Y., and Wolper, P. 1986. An automata-theoretic
approach to automatic program verification. In First Sympo-
sium in Logic in Computer Science (LICS).

Winskel, G. 1986. Event structures. In Advances in Petri
Nets.

Wooldridge, M.; Endriss, U.; Kraus, S.; and Lang, J. 2013.
Incentive engineering for boolean games. Artificial Intelli-
gence 195:418-439.

Wooldridge, M. 2009. An Introduction to Multiagent Systems
(Second edition). John Wiley & Sons.

Wooldridge, M. 2012. Bad equilibria (and what to do about
them). In Proceedings of the Twentieth European Conference
on Artificial Intelligence (ECAI-2012).

