
Iterated Games with LDL Goals over Finite Traces

Julian Gutierrez, Giuseppe Perelli, Michael Wooldridge
Department of Computer Science

University of Oxford

ABSTRACT
Linear Dynamic Logic on finite traces (LDLF) is a powerful logic
for reasoning about the behaviour of concurrent and multi-agent
systems. In this paper, we investigate techniques for both the char-
acterisation and verification of equilibria in multi-player games
with goals/objectives expressed using logics based on LDLF. This
study builds upon a generalisation of Boolean games, a logic-based
game model of multi-agent systems where players have goals suc-
cinctly represented in a logical way. Because LDLF goals are con-
sidered, in the setting we study—iterated Boolean games with goals
over finite traces (iBGF)—players’ goals can be defined to be reg-
ular properties while achieved in a finite, but arbitrarily large, trace.
In particular, using alternating automata, the paper investigates
automata-theoretic approaches to the characterisation and verifica-
tion of (pure strategy Nash) equilibria, shows that the set of Nash
equilibria in games with LDLF objectives is regular, and provides
complexity results for the associated automata constructions.

Keywords
Boolean Games, Nash Equilibria, Automata, Temporal Logics

1. INTRODUCTION
Boolean games (BG [12]) are a logic-based model of multi-agent

systems where each agent/player i is associated with a goal, repre-
sented as a propositional logic (PL) formula γi, and player i’s main
purpose is to ensure that γi is satisfied. The strategies and choices
for each player i are defined with respect to a set of Boolean vari-
ables Φi, drawn from an overall set of variables Φ. Player i is as-
sumed to have unique control over the variables in Φi, in that it can
assign truth values to these variables in any way it chooses. Strate-
gic concerns arise in Boolean games as the satisfaction of player i’s
goal γi can depend on the variables controlled by other players.

Iterated Boolean games (iBG [10]) generalise Boolean games by
making players interact with each other for infinitely many rounds.
As in the standard (one-shot or one-round) setting described above,
there are n players each of whom uniquely controls a subset of
Boolean variables and defines the achievement of a particular goal
formula γi satisfied. In an iBG, however, players’ goals γi are Lin-
ear Temporal Logic formulae (LTL [20]), rather than PL formulae,
which are naturally interpreted over infinite sequences of valua-
tions of the variables in Φ; thus, in iBGs, such infinite sequences of

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright © 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

valuations represent the plays of these games.
Even though both iterated and conventional Boolean games are

logic-based models of multi-agent systems, they capture players’
goals—and therefore the desired behaviour of the underlying multi-
agent systems—in two radically different ways: whereas Boolean
games have PL goals (which are naturally evaluated over one-round
games), iterated Boolean games have LTL goals (which are natu-
rally evaluated over games with infinitely many rounds), encom-
passing the two extremes of the landscape when considering re-
peated games. However, there are games, systems, or situations
where goals evaluated after an unbounded, but certainly finite, num-
ber of rounds should, or must, be considered.

In this paper we fill this gap and define and investigate iter-
ated Boolean games with goals over finite traces (iBGF), which
are games where players’ goals can be satisfied/achieved after a fi-
nite, but arbitrarily large, number of rounds. More specifically, the
goals in these games are given by Linear Dynamic Logic formulae
(LDLF) which are evaluated over finite sequences of valuations of
the variables in Φ, that is, over finite traces of valuations, instead of
PL or LTL formulae as in conventional or iterated Boolean games,
respectively. Thus, while in a iBGF a play still is an infinite trace
of valuations, the satisfaction of a player’s goal may occur after an
unbounded but finite number of rounds. This sharply contrasts with
the case of goals given by LTL formulae (e.g., as in iBG), where it
may be that a player’s objective is satisfied only after considering
the full infinite trace of valuations. This simple feature has signifi-
cant implications, since rather complex automata constructions for
the analysis of logics and games over infinite traces may become
conceptually simpler under this new semantic (logic-based) frame-
work. More importantly, this key observation allows one to define
an automata model that exactly characterises the set of Nash equi-
libria in games with goals given by regular objectives.

There are several reasons to consider LDLF goals. LDLF of-
fers great expressive power to our logic-based framework, which
is indeed equivalent to monadic second-order logic (MSO). On the
other hand, LTL interpreted on finite traces (LTLF) is as expres-
sive as first-order logic (FOL) over finite traces [4]. This, in turn,
implies that, over finite traces, while with LTLF we can only de-
scribe star-free regular languages/properties, with LDLF we can
describe all regular languages/properties—that is, the properties
and languages that can be described by regular expressions or fi-
nite state automata. Nevertheless, the automata-theoretic approach
and complexity results for solving their related decision problems
are equivalent, showing that the gain in expressiveness is achieved
for free. In this paper, we first define Boolean games with LDLF

goals and then investigate its main game-theoretic properties using
a new automata-theoretic approach to reason about Nash equilibria.
Our technique to reason about equilibria builds on automata con-

structions originally defined to reason about LDLF formulae [4, 3].
Using this automata-theoretic technique we show a number of sub-
sequent verification and characterisation results, as follows.

Firstly, we show that checking whether some strategy profile is a
Nash equilibrium of a game is a PSPACE-complete problem, thus
no harder than LDLF satisfiability [4]. Secondly, we focus on the
NE-NONEMPTINESS problem—which asks for the existence of a
Nash equilibrium in a multi-player game succinctly specified by a
set of Boolean variables and LDLF formulae—and show that de-
ciding whether an iBGF has a Nash equilibrium can be solved in
2EXPTIME, thus no harder than solving LDLF synthesis [3]. The
automata technique we use for this problem also shows that the set
of Nash equilibria in these games is ω-regular and can therefore be
characterised using alternating automata. Thirdly, we also provide
complexity results for the main decision problems related to the
equilibrium analysis of these games with respect to extensions and
restrictions of the initially studied iBGF framework. In particular,
we show that a small extension of the goal language, which we call
Quantified-Prefix Linear Dynamic Logic (QPLDLF), has the same
automata-theoretic characteristics as LDLF, and so it can be study
using the same techniques. Moreover, LDLF synthesis can be ex-
pressed in QPLDLF, ensuring 2EXPTIME-completeness.

Regarding restrictions on the general framework, we first focus
on the problem of reasoning with memoryless strategies. We show,
using an automata construction, that the set of Nash equilibria for
this games is also ω-regular. However, an alternative procedure for
this problem, not based on automata, shows that improved com-
plexity can be obtained when compared with the standard automata
techniques to reason about LDLF. Another restriction on strategies
considered in the paper is the one of myopic strategies (which can
be used to define all beneficial deviations in a game), in which play-
ers perform actions that are independent of the current state of the
game execution. We show that games with such a restriction can be
solved in EXPSPACE. We also consider the much more stable so-
lution concept of strong Nash equilibrium, where sets of players in
the game are allowed to jointly deviate, and provide an adaptation
of the automata-based approach that retains the language charac-
terisation and complexity properties of Nash equilibrium.

A key contribution of this work is that our automata-theoretic
approach features two novel properties, within the same reasoning
framework. Firstly, it shows that checking the existence of Nash
equilibria can be reduced to a number of LDLF synthesis and satis-
fiability problems—generalising ideas initially used to reason about
LTL objectives [9]. Secondly, our automata constructions provide
reductions where not only non-emptiness but also language equiv-
alence is preserved. This additionally shows that the set of Nash
equilibria in infinite games with regular goals is an ω-regular set,
to the best of our knowledge, a semantic characterisation not pre-
viously known, and which do not immediately follows from other
representations of Nash equilibria—see, e.g., [2, 7, 13, 17, 14].

Motivation and Previous Work
While studying either iterated games or LDLF is interesting in it-
self, from an AI perspective, our main motivation comes from ap-
plications to multi-agent systems. In particular, it has been shown
that in many scenarios, for instance in the context of planning AI
systems [4, 3], while logics like LTL, or even LTL over finite traces
(LTLF), can be used to reason about the behaviour of agents in
such AI systems, these logics are not powerful enough to express
in a satisfactory way the main features of agents in such a context.
In order to illustrate the use of LDLF, and motivate even further our
work, we will present an example in the next section, where some
of the goals either are not expressible in LTL or have a more intu-

itive specification in LDLF than in LTL. Together with applications
to planning AI systems (see [4, 3]), this is an example of another
instance where one can see an advantage of iBGF over iBGs.

Moreover, regarding previous work, while our model builds on
iBGs, where goals are given by LTL formulae, there are at least two
main differences with such work. Firstly, we study scenarios that
consider memoryless and myopic strategies, for which results on
iBGs have not been investigated. Secondly, and most importantly,
the tools developed in this paper to obtain most of our complex-
ity and characterisation results, are technically remarkably differ-
ent from those used for iBGs, both in [9] and in [8]. To be more
precise, for iBGs the main question is reduced to rational synthe-
sis [7], whose solution goes via a parity automaton characterising
formulae of an extension of Chatterjee et al’s Strategy Logic [2],
which leads to an automata construction that can be further opti-
mised if computing Nash equilibria is the only concern. Instead, in
our case, we reduce the problem directly to a question of automata
constructed in a different way. As a consequence, we provide a
new set of automata constructions which do not rely on nor relate
to those used in rational synthesis, i.e., those used to solve iBGs.
Our automata constructions are also different from those used by
De Giacomo and Vardi in [4, 3, 5], as described next.

In [4, 3, 5], De Giacomo and Vardi study the satisfiability and
synthesis problems for LDLF, with and without imperfect infor-
mation. Because of the (game-theoretic) nature of these two prob-
lems, their automata constructions deal with two-player zero-sum
turn-based scenarios only. Instead, in our case, we deal with multi-
player nonzero-sum concurrent scenarios. This difference leads to
a completely different technical treatment/manipulation of the au-
tomata that can be initially constructed from LDLF formulae. In
fact, their automata constructions and ours are the same only up
to the point where LDLF formulae are translated into automata—
that is, the very first step in a long chain of constructions. More-
over, since De Giacomo and Vardi study synthesis and satisfiability
problems, whereas we study Nash equilibria, we are required to
have a different technical treatment of the automata involved in the
solution of the problems investigated in this paper.

2. FORMAL FRAMEWORK
In this paper, we consider Linear Dynamic Logic (LDLF), a tem-

poral logic introduced in [4] in order to reason about systems whose
behaviour can be characterised by sets of finite traces, that is, finite
sequences of valuation for the variables of the system.

The syntax of LDLF is as follows:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈ρ〉ϕ | [ρ]ϕ
ρ := ψ | ϕ? | ρ+ ρ | ρ; ρ | ρ∗,

where p is an atomic proposition in Φ; ψ denotes a propositional
formula over the atomic propositions in Φ; ρ denotes path expres-
sions, which are regular expressions over propositional formulae
ψ, with the addition of the test construct ϕ? from propositional
dynamic logic (PDL); and ϕ stands for LDLF formulae built by ap-
plying Boolean connectives and the modal connectives. Tests are
used to insert checks for satisfaction of additional LDLF formulae.

The semantics of LDLF formulae is as follows. LDLF formulae
are interpreted over finite traces of the form π : {0, . . . , t} → 2Φ

and an integer i ∈ {0, . . . , t} as follows:

• atomic propositions and Boolean connectives as usual;

• π, i |= 〈ρ〉ϕ if there exists j ∈ {i, . . . , t} such that (i, j) ∈
R(ρ, π) and π, j |= ϕ;

• π, i |= [ρ]ϕ if for all j ∈ {i, . . . , t}, if (i, j) ∈ R(ρ, π) then
π, j |= ϕ;

whereR(ρ, π) ⊆ N× N is recursively defined by

• R(ψ, π) = {(i, i+ 1) : π(i) |= ψ};

• R(ϕ?, π) = {(i, i) : π, i |= ϕ};

• R(ρ + ρ, π) = R(ρ, π) ∪R(ρ, π);

• R(ρ; ρ, π) = {(i, j) : ∃k ∈ {i, . . . , j}.(i, k) ∈ R(ρ, π)∧
(k, j) ∈ R(ρ, π)};

• R(ρ∗, π) = {(i, i)} ∪ {(i, j) : ∃k ∈ {i, . . . , j}.(i, k) ∈
R(ρ, π) ∧ (k, j) ∈ R(ρ∗, π)}.

We now introduce iterated Boolean games with goals over finite
traces (iBGF), which build upon the framework of iBGs [10]. In an
iBGF , players’ goals are given by LDLF formulae interpreted on
infinite paths of valuations over a given set of Boolean variables.

An iBGF is a tuple G = 〈N,Φ,Φ, . . . ,Φn, γ1, . . . , γn〉, where
N = {1, . . . , n} is a set of players, Φ is a set of Boolean variables,
partitioned into n sets Φ, . . . ,Φn, and the goals γ1, . . . , γn of
the game are LDLF formulae over Φ. In an iBGF each player i
is assumed to control a set of propositional variables Φi, in the
sense that player i has the power to set the values (true “>” or false
“⊥”) of each of the variables in Φi. An action for player i is a
possible valuation vi ∈ 2Φi . An action vector ~v = 〈v, . . . vn〉 is a
collection of actions, one for each player in the game. Every action
vector determines an overall valuation for the variables in Φ =⋃n
i=1 Φi of the game. An iBGF is played for an infinite number

of rounds, as an iBG, but the goals of the game, which are LDLF

formulae, are interpreted on finite traces of such an infinite run. As
a consequence, the satisfaction of a player’s goal in the game must
occur after a finite, yet arbitrarily large, number of rounds. Due
to this, we need to define how an LDLF formula is satisfied on a
iBGF . The most natural way to do so, also implicitly followed
in [3], is to say that an infinite play π satisfies an LDLF formula ϕ
if and only if there exists k ∈ N such that the prefix up to k of π,
denoted by π<k, satisfies ϕ, i.e., π<k |= ϕ. We also write π |= ϕ
if there is k ∈ N such that π<k |= ϕ.

Observe that this definition allows a formula and its negation
to be satisfied on the same infinite play. Consider, for example,
the LDLF formula ϕ = 〈>∗〉p, which is satisfied by all and only
finite traces ending with a state labeled by p, and the infinite play
π = (p̄p)ω which toggles the value of p infinitely often. Clearly, ϕ
is satisfied on every prefix of π of even length, while ¬ϕ is satisfied
on every prefix of π of odd length. Thus, we obtain that π |= ϕ
and π |= ¬ϕ. This means that the notion of satisfaction given
by π |= ¬ϕ cannot be used in place of π 6|= ϕ, as they are not
equivalent. We discuss this later in the paper, and show that a small
extension of LDLF, which allows one to quantify over finite plays
in a game, can be used to write formulae ψ that equals to the non-
satisfaction of ϕ, i.e., where π |= ψ if and only if π 6|= ϕ.

Observe that the set of models of an LDLF formula ϕ is of the
form α · (2Φ)ω , with α representing the set of finite traces satis-
fying ϕ. In [4] it has been proven that α can be represented by a
regular expression. This implies, as shown later, that the set of in-
finite plays satisfying an LDLF formula can be described in terms
of an nondeterministic Büchi word automaton (NBW) built upon
the nondeterministic finite word automaton (NFW) accepting α, in
which accepting states are constructed so that they are sinks with a
self-loop. This makes the expressive power of LDLF be incompara-
ble with that of LTL when considering infinite words—i.e., infinite

plays. Indeed, on the one hand, it is known that LTL cannot ex-
press the ω-regular expression (p · 2Φ)∗ · (2Φ)ω [16], and, on the
other hand, LDLF cannot express the LTL formula GFp (“always
eventually” p), for which every NBW accepting the set of models
cannot be of the form described above.

Now, in order to illustrate the concepts introduced so far, and fur-
ther motivate the iBGF framework, we present an example where
the need for LDLF goals plays an essential role.

EXAMPLE 1. Consider a file-sharing network composed by a
protocol manager and 2 clients who want to share file1 of size n1

packets and file2 of size n2 packets, respectively. The clients want
to eventually download the other client’s file, while the protocol
manager wants this transfer of information to happen in a fair way.
For instance, the manager wants client 1 to always upload in odd
time-steps of the communication, while client 2 to always upload in
the even time-steps of the communication protocol. Moreover, the
download of a given file can be marked as completed only after the
whole number of its packets has been uploaded by the other party.

We can represent this protocol by means of a three agent game
with N = {0, 1, 2} in which Φ0 = {d, d}, Φ1 = {u}, and
Φ2 = {u}. Variable ui being true means that a single packet
of filei has been uploaded by agent i, while variable di being true
means that the download of filei has been completed. Regarding the
goals of the agents, we have the following (LDLF) formulae. The
two clients 1 and 2 want to eventually download file2 and file1,
respectively. Thus, we have γ1 = 〈>∗〉d and γ2 = 〈>∗〉d.
Regarding the goal γ0 of the protocol manager, this has to in-
clude several requirements. First of all, it requires that client 1
always uploads in odd time-steps until the download of file1 has
been completed, while client 2 does the same on even time-steps.
We can represent these properties with the following LDLF for-
mulae: γupl1 = 〈(u;>)∗〉d and γupl2 = 〈(>; u)

∗〉d. Note
that client 1 has no requirement on the even time-steps, as nei-
ther client 2 on odd time-steps. The reader might notice that the
properties γupl1 and γupl2 can be represented neither in LTL nor
in LTLF, which is the finite trace version of LTL [16]. In ad-
dition to this, the protocol manager is in charge of marking the
files as completely downloaded at the right time of the execution.
This means that variable di has to be set to true once the whole
amount of packets of filei has been uploaded and not before. We
can specify this requirement with the following LDLF formulae:
γcom1 = [((¬u)∗; u)n1]d and γcom2 = [((¬u)∗; u)n2]d.
In order to avoid that the protocol manager wrongly marks the
download of a file as completed, we also have the following re-
quirements: γincom1 =

∧
n<n1

¬〈((¬u)?; u; (¬u)?)n〉d and
γincom2 =

∧
n<n2

¬〈((¬u)?; u; (¬u)?)n〉d. The goal of the
protocol manager is therefore given by the conjunction of all these
conditions: γ0 = γupl1 ∧ γupl2 ∧ γcom1 ∧ γcom2 ∧ γincom1 ∧
γincom2 . To see that the system we have just described/designed
has a stable behaviour, from a game-theoretic point of view, we
need the concepts of strategies and Nash equilibria, which are in-
troduced next. Then, we will review this example again later on.

Strategies in iBG and iBGF are modelled as deterministic finite
state machines. Formally a deterministic finite state machine for
player i is a tuple σi = (Si, s


i , δi, τi) where, Si is a finite set

of internal states, si is the initial state, δi : Si × 2Φ → Si is a
transition function, and τi : Si → 2Φi is the action function. By
Stri we denote the set of possible strategies for player i. A (total)
strategy profile is a tuple ~σ = (σ, . . . , σn) of strategies, one for
each player. We also consider partial strategy profiles. For a given
set of players A ⊆ N, we use the notation σA to denote a tuple of
strategies, one for each player in A. Moreover, we use the notation

σ−A to denote a tuple of strategies, one for each player in N\A. We
also use σi in place of σ{i} and ~σ−i in place of ~σN\{i}. Finally, for
two strategy profiles ~σ and ~σ′, by (~σA, ~σ

′
−A) we denote the strategy

profile given by associating the strategies in ~σ to players in A and
strategies in ~σ′ to players in N \A.

Since strategies are deterministic, each profile ~σ determines a
unique play, denoted by π(~σ), which consists of an infinite se-
quence of valuations, one for each round of the game. Each player
i has a preference relation over plays π ∈ (2Φ)ω , which is deter-
mined by its goal γi. We say that π is preferred over π′ by agent
i, and write π �i π′, if and only if π′ |= γi implies that π |= γi.
Using this notion of preference, one can introduce the concept of
Nash Equilibrium. We say that ~σ is a Nash Equilibrium strategy
profile if, for each agent i and a strategy σi′ ∈ Stri, it holds that
π(~σ) �i π(~σ−i, σi

′). In addition, by NE(G) ⊆ Str× . . .×Strn
we denote the set of Nash Equilibria of the game G.

EXAMPLE 2. Consider again the system in Example 1. A pos-
sible strategy σ for player 1 is a finite-state machine that sets vari-
able u to true on odd rounds of the execution, while a strategy σ
for player 2 might set u to true on even rounds of the execution. In
addition, a possible strategy for player 0, say σ, might be a finite-
state machine that sets variable di to true only after ui has been set
to true exactly ni times in the execution. Then, the strategy profile
~σ = (σ, σ, σ) will be such that the execution π = π(~σ) satis-
fies γ0, γ1, and γ2, and therefore is a Nash equilibrium. Indeed,
checking that a strategy profile is a Nash equilibrium of a game is
one of the main concerns of this paper, as formalised next.

Equilibrium Checking. We are interested in a number of ques-
tions related to the equilibrium analysis of iterated games [10, 25].

NE MEMBERSHIP. Given a game G and a strategy profile ~σ:

Is it the case that ~σ ∈ NE(G)?

which asks if a strategy profile is a Nash equilibrium of a game.
The second decision problem we are interested in is the following:

NE NON-EMPTINESS. Given a game G:

Is it the case that NE(G) 6= ∅?

which asks if a given game has at least one Nash equilibrium.
Finally, we also consider two decision problems (which are the

analogous of model checking in a game-theoretic multi-agent set-
ting) that are formally stated as follows:

E/A-NASH. Given a game G and LDLF formula ϕ:

Does π(~σ) |= ϕ hold, for some/all ~σ ∈ NE(G)?

which asks if ϕ is satisfied by some/every Nash equilibrium of G.
In the following sections, we study the above questions, in par-

ticular using an automata-theoretic approach.

3. AUTOMATA CHARACTERISATIONS
In order to address the NE MEMBERSHIP problem, we first pro-

vide some preliminary results on automata. An interested reader
can find definitions and more details in [24].

Consider a NFWA =〈Σ, S, s, %,F〉, recognizing a regular lan-
guage L(A). Then consider the NBW A∞ = 〈Σ, S, s, %′,F〉,
where, for all σ and s, we have that %′(σ, s) = %(σ, s), if s /∈ F,
and %′(σ, s) = {s}, otherwise.

Intuitively, the automaton A∞ accepts all and only the infinite
words π∞ having a prefix π accepted byA. This fact can be shown
with the following theorem.

THEOREM 1. Let A be a NFW. Then, for all π∞ ∈ Σω , we
have that π∞ ∈ L(A∞) iff there exists k ∈ N such that π =
(π∞)≤k ∈ L(A).

As a corollary, we obtain the following result.

COROLLARY 1. L(A∞ϕ) = {π∞ ∈ (2Φ)ω : π∞ |= ϕ}

We can now address NE MEMBERSHIP. We show that this prob-
lem is PSPACE-complete; for the membership argument, we em-
ploy an automata-based algorithm for checking membership. We
first introduce, for a given (machine) strategy σi = 〈Si, si , δi, τi〉
for a player i, a corresponding DFW A(σi) = 〈Σ,Qi, q


i , ρi,Fi〉

where: Σ = 2Φ is the alphabet set, Qi = (Si× 2Φ)∪{sink} is the
state set, where sink /∈ Si is a fresh state, qi = (si , ∅) is the initial
state, Fi = Si × 2Φ is the final state set, and ρi is the transition
relation such that, for all (s, v) ∈ Si × 2Φ and v′ ∈ Σ,

• ρi((s, v), v′) =

{
δi(s, v), if τi(s) = v′|Φi

sink, otherwise , and

• ρi(sink, v′) = sink

Let L(A(σi)) denote the set of infinite words in (2Φ)ω accepted
by A(σi). It is easy to see that such a set is exactly the same set
of plays that are possible outcomes in a game where player i uses
strategy σi. Similarly, for a given set of players A ⊆ N and a par-
tial strategy profile ~σA, we have that, for A(~σA) ,

⊗
i∈AA(σi),

the product of these automata, the language L(A(~σA)) contains
exactly those infinite plays in a game where players in A play ac-
cording to the strategies given in ~σA. Moreover, in [3] it is shown,
for every LDLF formula ϕ, how to build and check on-the-fly a
NFW Aϕ = 〈S, 2Φ, {s}, δ, {sf}〉, such that, for every finite trace
π ∈ (2Φ)∗, we have π |= ϕ if and only if π ∈ L(Aϕ), where
by L(Aϕ) we denote the language of finite words (that is, the lan-
guage of finite traces over 2Φ) accepted by the automaton Aϕ.

Algorithm 1: Intersection contruction.

1 Input: an LDLF formula ϕ and an NBW
A =〈2Φ,Q, q, %,F〉.

2 Output: NFW A∞ϕ ×A =〈2Φ, S′, {s′},F′, %′〉.
3 s

′ ← {(ϕ, q, 1)} ;
4 F′ ← {∅} ×Q× {1} ;
5 S← {s} ∪ F′ ;
6 %← {((∅, q, 1),Π, (∅, q′, 2)) : Π ∈ 2Φ ∧ q′ ∈ %(q,Π)}
∪ {((∅, q, 2),Π, (∅, q′, 2)) :
Π ∈ 2Φ ∧ q′ ∈ %(q,Π) ∧ q ∈ Q \ F′}
∪ {((∅, q, 2),Π, (∅, q′, 1)) : Π ∈ 2Φ ∧ q′ ∈ %(q,Π)∧ q ∈ F′}
;

7 while (S′ or %′ change) do
8 for s ∈ S′, q ∈ Q and Π ∈ 2Φ do
9 for q′ ⊆ CL(ϕ) and q′ ∈ %(q,Π) do

10 if s′ |=
∧
ψ∈q δ(ψ,Π) then

11 if q ∈ F′ then
12 S′ ← S′ ∪ {(s, q, 2), (s′, q′, 1)} ;
13 %′ ← %′ ∪ {((s, q, 2),Π, (s′, q′, 1))};
14 else
15 S′ ← S′∪{(s′, q′, 1), (s′, q′, 2), (s, q, 2)}

;
16 %′ ← %′ ∪ {((s, q, 2),Π, (s′, q′, 1))};

Such a construction makes use of a function δ simulating the
transition relation of the corresponding alternating finite word au-
tomaton (AFW), which takes a subformula ψ of ϕ and a valuation
of variables Π ⊆ Φ, and recursively returns a combination of sub-
formulas. A suitable modification of such an algorithm allows one
to construct the NBW A∞ϕ . As a matter of fact, observe that the
only final state sf of the automaton Aϕ built in [3] does not have
any outgoing transition. Then, given the construction of A∞ϕ , we
only need to add a loop to it, for every possible valuation.

However, it cannot be used as it is to obtain the PSPACE com-
plexity for the NE MEMBERSHIP problem. Indeed, we need to
combine the NBW A∞ϕ with the automata A~σ and A~σ−i provided
by the NE-MEMBERSHIP problem instance. To do this, we need to
adapt the construction in order to handle these products. Note that
both A~σ and A~σ−i can be considered as NBW. Thus, it is enough
to deliver an algorithm building an automaton intersection between
A∞ϕ and a generic NBW A. From the algorithm described above,
and reported in Algorithm 1, we derive the following result.

THEOREM 2. The construction and emptiness check of the au-
tomaton A∞ϕ ⊗ A, where A is a generic NBW, can be solved in
polynomial space with respect to the size of the formula ϕ.

With this theorem in place, one can show that Algorithm 2 runs
in PSPACE and solves NE MEMBERSHIP for iBGF .

Algorithm 2: Algorithm for NE Membership.

1 Input: a game G and a strategy profile ~σ.
2 Output: “Yes” if ~σ ∈ NE(G); “No” otherwise.
3 for i ∈ N do
4 if L(A(~σ)⊗A∞γi) = ∅ then
5 if L(A(~σ−i)⊗A∞γi) 6= ∅ then
6 return “No”

7 return “Yes”

THEOREM 3. NE MEMBERSHIP is PSPACE-complete.

PROOF. To show that Algorithm 2 is correct, assume that the
algorithm returns “Yes” on a given instance (G, ~σ). This means
that it never executes line 6 in the for-cycle starting from line 3.
This means that, for every agent i, either the check on line 4 or
the check on line 5 is false. In case line 4 is false, then we have
that L(A(~σ)) ∩ L(Aγi) 6= ∅, meaning that the play π(~σ) is such
that π(~σ) |= γi. Thus, player i is satisfied in the context ~σ and
so it does not have any incentive to deviate from it. On the other
hand, if line 4 returns true but line 5 returns false, then we have that
L(A(~σ−i))∩L(Aγi) = ∅, which means that the satisfaction of γi
is incompatible with the partial strategy profile ~σ−i, no matter how
player i behaves. This, in terms of strategies, implies that there is
no beneficial deviation for player i to get its goal achieved. Hence,
the strategy profile ~σ is a Nash equilibrium of the game.

On the other hand, assume ~σ is a Nash equilibrium. Then, no
player i has an incentive to deviate. This can be the case for two
reasons: either π(~σ) |= γi, or there is no strategy σ

′
i such that

π(~σ−i, σ
′
i) |= γi. If the former, then we have that L(A(~σ)) ∩

L(Aγi) 6= ∅ and so the check on line 4 is false. If the latter, then it
follows that L(A(~σ−i)) ∩ L(Aγi) = ∅, making the condition on
line 5 false. Since this reasoning holds for every player i, it can be
concluded that Algorithm 2 ends without hitting line 6 and there-
fore returning “Yes”, which concludes the proof of correctness.

Regarding the complexity of the algorithm, note that the checks
in lines 4 and 5 involve a nonemptiness test of NFW built by means
of Algoritm 1. This procedure is called n times, where n is the

number of agents, to obtain a PSPACE upper bound. For hardness,
we reduce from the satisfiability problem of LDLF formulae, which
is known to be PSPACE-complete [4].

Now, let us study NE NON-EMPTINESS. Again, we use an
automata-theoretic approach. We show how, given a game G, it
is possible to construct an alternating automatonANE(G) such that
ANE(G) accepts precisely the set of plays that are generated by the
Nash equilibria of G. A distinguishing feature of our automata tech-
nique is that it is language preserving, that is, ANE(G) recognizes
exactly the set of plays that are obtained by some Nash equilibrium
in the game. Hereafter, we call Nash runs the elements in such a set
of runs. This property of our construction is the key to show that
the set of Nash runs is, in fact, ω-regular. Also, note that as we now
have to find (and not simply check) a strategy profile, we cannot
use the automata of the form A(σi) provided above, as there is no
known strategy σi, for each player i, that can be used here.

Now, we proceed by recalling the characterisation of Nash equi-
libria provided in [9]. For a given game G = 〈N,Φ, . . . ,Φn, γ1,
. . . , γn〉 and a designated player j ∈ N, we say that ~σ−j is a
punishment profile against j if, for every strategy σ

′
j , it holds that

(~σ−j , σ
′
j) 6|= γj . In [9], it has been proven that ~σ ∈ NE(G) if and

only if there exists W ⊆ N such that σ |= γi for every i ∈ W
and, for every j ∈ L = N \W, the profile ~σ−j is a punishment
strategy against j, that is, a winning strategy profile of the coalition
of players N−j for the negation of the goal of player j.

Thus, we can think of finding punishment strategies in terms of
synthesizing a finite state machine controlling Φ−j . To do this, we
apply an automata-theoretic approach. First of all, we build the
Rabin automaton (ARW) Aγj used to recognize the models of γj .
Then, we dualize the automaton to obtain the ARW Aγj recogniz-
ing the complement language, i.e., the set of infinite words that do
not satisfy γj . At this point, by means of Theorem 2 in [21], we
build a nondeterministic Rabin automaton on trees (NRT)A′γj that
recognizes exactly those trees T that are obtained from an execu-
tion of a winning strategy of the coalition N−j when the goal is to
avoid the satisfaction of γj . Now, following Corollary 17 in [18],
we can build a NRW A′′γj such that L(A′′γj) = {π ∈ (2Φ)ω :

∃T ∈ L(A′γj). π ⊆ T}, where by π ⊆ T we denote the following
property: π is a branch of the tree T starting at its root.

Now, let us fix W ⊆ N for a moment, and consider the product
automaton AL =

⊗
j∈LA

′′
γj . By the semantics of the product op-

eration we obtain thatAL accepts those paths that are generated by
some punishment profile, for each j ∈ L. Moreover, consider the
automaton AW =

⊗
i∈WAγi , recognizing the paths that satisfy

every γi, for i ∈ W. Thus, we have that the product automaton
AW ⊗ AL accepts exactly those paths for which every γi, with
i ∈ W, is satisfied while, for each j ∈ L the coalition N−j is
using a punishment strategy against j. Now, in order to exploit
the characterisation given in [9], we only need to quantify over
W ⊆ N. This, in terms of automata, corresponds to the union
operation. Then, we get the following automata characterisation:

ANE(G) =
⊕

W⊆N(AW ⊗AL).

THEOREM 4 (EXPRESSIVENESS). For a game G with LDLF

goals, the automaton ANE(G) recognizes the set of Nash runs of
G. Moreover, the set of Nash runs of G is ω-regular.

PROOF. We prove both implications. From left to right, assume
that π ∈ L(ANE(G)). Then, there is W ⊆ N such that π ∈
L(AW ⊗ AL). Observe that, w.l.o.g. we can assume that π is an
ultimately periodic play [23] and so that there exists a finite-state

machine ∆π = (Qπ, q

π, δπ, τπ), controlling all the variables in Φ,

i.e., τπ : Qπ → 2Φ, that generates π. Moreover, observe that, for
each j ∈ L, π ∈ L(A′′γj) implies that there exists Tj ∈ L(A′γj)
such that π ⊆ Tj . This implies that, for each j ∈ L, there is
a finite-state machine ∆j = (Qj , q


j , δj , τj), controlling all the

variables but Φj , i.e., τj : Qj → 2Φ−j , that generates the branches
of Tj , according to the output of variables in Φj , including π. Now,
for each i ∈ N, define the strategy σi = (Si, s


i , δi, τi) as follows:

• Si = Qπ ××j∈L
Qj × (L ∪ {>}) is the product of the

state-space of ∆π together with the state-space of each ∆j ,
for each j ∈ L, plus a flag component given by L ∪ {>};

• si = (qπ, q

j , . . . , q


j|L| ,>), collecting all the initial states

of the finite state machines, ∆π and ∆j , for each j ∈ L,
flagged with the symbol >;

• δi is defined as follows: for each (q, qj , . . . , q|L|,>) and
v ∈ 2Φ, δi((q, qj , . . . , q|L|,>), v) = (δπ(q, v), δj1(qj , v),
. . . , δj|L|(q|L|, v), flag), where flat = > if v = τπ(q) and
flat = j if v−j = (τπ(q))−j and vj 6= (τπ(q))j .

• τi((q, qj , . . . , q|L|,>)) = (τπ(q))i and τi((q, qj , . . . , q|L|,
j)) = (τj(q))i, for each j ∈ L.

Intuitively, a strategy σi for player i runs in parallel the i-th com-
ponent of the finite-state machine ∆π together with the i-th compo-
nents of the finite-state machines ∆j that win against the deviating
players in L. Note that, by construction, as long as nobody de-
viates, the outcome of every single ∆j corresponds to the one of
∆π . We have that the strategy profile ~σ, given by the union of the
strategies defined above, generates π, and, as soon as a unilateral
deviation occurs from player j ∈ L, the partial strategy profile ~σ−j
starts following the finite-state machine ∆j , which is by definition
winning against j. Thus, ~σ is a Nash equilibrium.

From right to left, assume that π is a Nash run and let ~σ be a
Nash equilibrium such that π(~σ) = π. Moreover, let W = {i ∈ N
: π |= γi}. We show that π ∈ L(AW ⊗ AL). Since π |= γi, for
each i ∈ W, we have that π ∈ L(AW). Moreover, let j ∈ L. It
holds that j does not have a beneficial deviation from ~σ and so we
have that ~σ−j is a winning strategy against j. From the definition
of A′γj we have that the tree-execution Tj generated by ~σ−j is

in L(A′γj). Now, since π ⊆ T−j , we have that π ∈ L(A′′γj),
for each j ∈ L, implying that π ∈ L(AL). Hence, we have that
π ∈ L(AW) ∩ L(AL) = L(AW ⊗AL), as required.

Using Theorem 4 we can address the problem of deciding if a
game admits a Nash equilibrium by checking ANE(G) for empti-
ness. Regarding the complexity of building ANE(G), observe that
the construction of each automatonA′γj , provided in [21], is of size
doubly exponential with respect to |γj |. Moreover, all the other op-
erations used to build ANE(G) involve union and intersection of
Rabin automata, which can be performed in time polynomial in the
size of the constituting components. This shows that ANE(G) is a
nondeterministic Rabin automaton on words of size doubly expo-
nential with respect to the game G. Since checking emptiness of a
NRW can be done in NLogSpace, we obtain the following result.

THEOREM 5. NE-NONEMPTINESS with LDLF goals can be
solved in 2EXPTIME.

Now, to show that E-NASH and A-NASH are in 2EXPTIME, we
can also apply an automata-theoretic approach. Indeed, for the E-
NASH case, consider a game G and an LDLF formula ϕ. Then,

the automaton Aϕ ⊗ ANE(G) recognizes all the plays that both
satisfy ϕ and are a Nash run. Thus, checking the E-NASH problem
corresponds to checking the nonemptiness of such automaton. On
the other hand, for the A-NASH problem, consider the automaton
Aϕ⊗ANE(G). This product automaton recognizes all plays that do
not satisfy the formula ϕ and are a Nash run. Thus, checking the A-
NASH problem corresponds to checking the emptiness of such an
automaton. The two constructions above show that both E-NASH
and A-NASH can be solved in 2EXPTIME. Formally, combining
the results above, we also obtain the following theorem:

THEOREM 6. E-NASH and A-NASH with LDLF goals can be
solved in 2EXPTIME.

4. EXTENSIONS AND RESTRICTIONS
We now study some extensions and restrictions on the problems

studied in the previous section. As a first result, we show that an ex-
tension of the LDLF language used to represent players’ goals can
be used to encode LDLF synthesis, studied in [3], as a NE NON-
EMPTINESS problem. Subsequently, we restrict to two classes of
strategies, namely memoryless and myopic strategies. With respect
to memoryless strategies, we show that our automata-based tech-
niques can be used to show that the set of Nash runs for games
of this kind is also ω-regular, as in the original problem. An EX-
PSPACE brute-force approach can be used to show that the induced
automata are suboptimal from a complexity point of view.1 How-
ever, the construction is still based on a simple extension of au-
tomata on finite words, making it potentially useful in practice. The
case of myopic strategies, instead, is studied using a reduction to
the satisfiability problem for the 1-alternation fragment of QPTL,
known to be solvable in EXPSPACE [22].

Games with Quantified prefix LDLF Goals.
The results obtained so far show that checking whether a game

has a Nash equilibrium can be solved in 2EXPTIME. We now
show that a small extension of the logic LDLF, which we call
quantified prefix LDLF (QPLDLF) can also be solved using the
same automata-theoretic technique, with the same complexity, and
can be used to represent the LDLF synthesis problem, which is
2EXPTIME-complete. Then, NE NON-EMPTINESS with respect
to such an extension is 2EXPTIME-complete.

Syntactically, a QPLDLF formula ϕ is obtained from an LDLF

formula ψ by simply adding either an existential ∃ or a universal
∀ quantifier in front of it, i.e., ϕ = ∃ψ or ϕ = ∀ψ. Such a quan-
tification ranges over the set of prefixes of a given infinite path of
valuations. Formally, we have that, for a given QPLDLF formula
of the form ∃ψ and an infinite path π, we have that π |= ∃ψ if there
is k ∈ N such that π<k |= ψ. Analogously, for a QPLDLF formula
of the form ∀ψ, we have π |= ∀ψ if π<k |= ψ, for all k ∈ N.

The reader might note that ∃ψ is equivalent toψ on infinite plays.
This means that the set of models for ∃ψ corresponds to the set of
infinite models of ψ and so the automaton A∃ψ = Aψ recognizes
the models of ∃ψ. Moreover, observe that, for every LDLF formula
ψ and an infinite play π, we have that π |= ∀ψ iff π 6|= ∃¬ψ.
This means that, in order to build the automatonA∀ψ for a formula
of the form ∀ψ, one can first consider the formula ¬ψ and build
the corresponding automaton A∃¬ψ . It follows that L(A∃¬ψ) is
the set of infinite plays that satisfy ∃¬ψ, which is the complement
of the set of plays satisfying ∀ψ. Thus, A∀ψ = A∃¬ψ . Using
these constructions one can solve NE NON-EMPTINESS, E-NASH,

1Of course, with respect to EXPRESSIVENESS this is an irrelevant
feature of the automata construction.

and A-NASH with QPLDLF goals by applying the same automata-
theoretic technique used for LDLF. Then, we have the next result.

THEOREM 7. NE NON-EMPTINESS, E-NASH, and A-NASH
with QPLDLF goals can be solved in 2EXPTIME. Moreover, the
sets of Nash equilibria for this class of games is ω-regular.

To obtain a matching lower bound, observe that, given the inter-
pretation of QPLDLF formulae, it is possible to encode the syn-
thesis problem for LDLF formulae as presented in [3]. Indeed, in
such a case we only have to set a two-player game G in which, say
Player 1, controls the same variable as the system for the synthe-
sis problem, and Player 2 controls the environment variables. At
this point, by setting γ1 = ∃ψ and γ2 = ∀¬ψ, one ensures that
Player 1 and Player 2 have exactly the same behaviours of system
and environment in the synthesis problem, respectively. In addi-
tion to Player 1 and Player 2, to ensure a reduction to NE NON-
EMPTINESS one can add two players that trigger a “matching pen-
nies” game in case ψ is not synthesised. With this reduction it
follows that NE NON-EMPTINESS is 2EXPTIME-complete.

Formally, consider an LDLF formula ϕ and the synthesis prob-
lem for it, in which the system controls a set of (output) variables X
while the environment controls a set of (input) variables Y. Then,
consider the four-player iBGF Gϕ with QPLDLF goals such that:

• Player 1 controls X and has γ1 = ∃ϕ as goal;

• Player 2 controls Y and has γ2 = ∀¬ϕ as goal;

• Player 3 controls a fresh Boolean variable p and has γ3 =
∃ϕ ∨ (p↔ q) as goal; and

• Player 4 controls a fresh Boolean variable q and has γ4 =
∃ϕ ∨ ¬(p↔ q) as goal.

Using the above construction, we can show that the synthesis
problem for an LDLF formula ϕ can be solved by addressing the
NE NON-EMPTINESS problem for Gϕ, from which we derive the
following theorem.

THEOREM 8. NE NON-EMPTINESS, E-NASH, and A-NASH
are 2EXPTIME-complete in games with QPLDLF goals.

In fact, Theorem 8 is proved using the lemma given below.

LEMMA 1. The synthesis problem for an LDLF formula ϕ over
a set of Boolean variables X ∪ Y, where the system controls the
variables in X and the environment the variables in Y has a posi-
tive answer if and only if the game Gϕ has a Nash equilibrium.

Games with Memoryless Strategies.
In this subsection, we study games with memoryless strategies.

We say that a strategy σi = (Si, s

i , δi, τi) for Player i is memo-

ryless if Si = 2Φ and δi is deterministic. Intuitively, a strategy is
memoryless if, for each state of the game, it always chooses the
same action at such state. Moreover, a play π ∈ (2Φ)ω is said to
be memoryless if, for all v, w ∈ 2Φ, if πk = v and πk+1 = w, for
some k ∈ N, then, for all h ∈ N, if πh = v then πh+1 = w. A
profile ~σ made by memoryless strategies can only generate memo-
ryless plays and vice-versa.

Moreover, it is not hard to build a polynomial size NBWAmless
accepting all and only the memoryless plays. This turns out to be
useful in addressing the case of memoryless strategies. Indeed, to
solve the NE NON-EMPTINESS problem with memoryless strate-
gies, we only need to adjust the general procedure by pairing the

automaton Amless to every single component of the automaton
ANE(G) This operation then adds the memoryless requirement to
the goal of a player and to the punishment strategies.

Now, although this solution technique allows one to prove that
the set of Nash Equilibria in memoryless games is ω-regular, this is
not optimal from a computational complexity point of view, which
is still 2EXPTIME. For instance, a brute-force procedure can solve
the problem in EXPSPACE. Indeed, given the definition of strate-
gies, we know that a memoryless strategy for a player in the game
has (at most) 2Φ states. Then, a memoryless strategy, as well as a
strategy profile, can be guessed in time exponential in the size of Φ
and saved using exponential space. In addition, using NE MEM-
BERSHIP we can check in PSPACE whether such a strategy profile
is a Nash equilibrium of the game. Formally, we have:

THEOREM 9. NE NON-EMPTINESS with memoryless strate-
gies is in EXPSPACE. Moreover, the sets of Nash equilibria for
this class of games is ω-regular.

Games with Myopic Strategies.
Another important game-theoretic setting is the one given by my-

opic strategies as they can be used to define all beneficial devia-
tions. A game with myopic strategies is called a myopic iBGF . We
say that a strategy σi = (Si, s


i , δi, τi) for Player i is myopic if its

transition function does not depend on the input variables, i.e., such
that for each s ∈ Si and v, v′ ∈ 2Φ, we have δi(s, v) = δi(s, v

′).
In a myopic iBGF , players are only allowed to use myopic strate-
gies. In [11] it is shown how to reduce NE NON-EMPTINESS for
myopic iBG to the satisfiability of the QPTL formula

ϕ =
∨

W⊆N

(∃Φ1, . . . ,Φn.(
∧
i∈W

γi ∧
∧

j∈N\W

(∀Φj .¬γj)))

where the formulae γi are the LTL goals of the players in the my-
opic iBG instance and the quantifier alternation is 1 (an alternation
fragment for which the complexity is known to be EXPSPACE [22]).

To apply the solution provided in [22] to check the satisfiability
of ϕ, one first has to transform each γi into the NBW automata rec-
ognizing their models. In the case of iBGF , these LTL formulae
are replaced by LDLF formulae. However, as shown in the previous
section, the infinite models of an LDLF formula γi can also be rec-
ognized by NBW automata that are equivalent to some ω-regular
expression of the form α · (2Φ)ω . Thus, in order to solve NE NON-
EMPTINESS for myopic iBGF , we can first transform every LDLF

goal γi into the corresponding NBWAγi and then follow the tech-
nique used in [22]. Note that the same reasoning applies also for
the case of QPLDLF goals. We then obtain the following result for
games with myopic strategies:

THEOREM 10. The NE NON-EMPTINESS problem for myopic
iBGF with LDLF or QPLDLF goals can be solved in EXPSPACE.

At this point it is important to note that a key observation behind
this result is the fact that when playing with myopic strategies the
strategies that are used to construct a run that is sustained by a Nash
equilibrium (a Nash run) must be oblivious to players’ deviations.

Games with Strong Nash equilibria.
Despite being the most used solution concept in non-cooperative

game theory [19], Nash equilibrium still has some limitations, for
instance, it is not always stable and also it includes non desirable
equilibria. As an example, consider a two-player game in which
Player 1 controls a variable p and has the LDLF goal γ1 = q, while

Player 2 controls a variable q and has the LDLF goal γ2 = p 2. It
is clear that every strategy profile ~σ is a Nash equilibrium. Indeed,
even in case a goal γi is not satisfied, the corresponding player
cannot deviate from it, as the satisfaction of each player’s goal is
fully controlled by the other one. However, the desired outcome
for both players is to satisfy both goals. Then, if we allow the two
players to collaboratively deviate, the only stable outcomes are the
ones making true both p and q at the first round of the computation.

A strong Nash equilibrium considers not only a single player’s
deviation, but also every possible coalition of players having a col-
lective deviation incentive. Formally, for a given strategy profile
~σ, we say that it is a strong Nash equilibrium if there is no subset
C ⊆ N and partial strategy profile ~σ

′
C such that, for all i ∈ C,

π(~σ−C, ~σ
′
C) �i π(~σ). Then, in a strong Nash equilibrium a coali-

tion of players C has an incentive to deviate if and only if every
player i in such a coalition has an incentive to deviate. By sNE(G)
we denote the set of strong Nash equilibria in G. To check whether
there exists a strong Nash equilibrium in a game using an automata-
theoretic approach, we need to be able to express this notion of
beneficial collective deviation with an appropriate automaton.

To do this, we just need to adjust the automaton A′′γj given in
the previous section, used to recognize all the plays that can be
generated by a punishment strategy of the coalition N−j against j,
having goal γj . Indeed, the concept of punishment can be easily
lifted to punishing a group of players. To do this, for a set C ⊆
N, consider the automaton AC =

⊗
j∈CAγj recognizing all the

models that satisfy every γj , for j ∈ C. Then, as in the previous
section, we can build the automaton A′′C that recognizes the plays
generated by a punishment strategy for the coalition N \ C against
the goal being the conjunction of goals of coalition C. At this point,
as in the case of Nash equilibrium, let us fix a set of “winners” W ⊆
N in the game and then consider the product automaton A

L
=⊗

C∈2L A′′C. By the semantics of the product operation we obtain
that the automaton A

L
accepts those paths that are generated by

some punishment profile, for each coalition of players C ∈ 2L.
Thus, we have that the product automaton AW ⊗ AL accepts

exactly those paths for which every γi, with i ∈ W, is satisfied
while, for each coalition C ∈ 2L the coalition N−C is using a pun-
ishment strategy against C. Now, as for Nash equilibria, we need
to quantify over W ⊆ N to obtain an automata characterisation:

AsNE(G) =
⊕

W⊆N

AW ⊗AL .

The proof of correctness of this construction and its complexity
is as for Theorem 5. Moreover, the same result can be obtained also
with QPLDLF objectives. Also, observe that the reduction from
LDLF synthesis provided for NE NON-EMPTINESS with QPLDLF

goals can be reused with the same construction for the case of SNE
NON-EMPTINESS. Formally, we have the following result.

THEOREM 11. SNE NON-EMPTINESS is in 2EXPTIME for both
LDLF and QPLDLF. In particular, for games with QPLDLF goals,
the problem is 2EXPTIME-complete. In addition, the set of strong
Nash equilibria for games with either kind of goals is ω-regular.

5. CONCLUDING REMARKS

Iterated Boolean Games Revisited. In the introduction sec-
tion it was pointed out that the iBG and iBGF frameworks rely on
2Observe that γ1 and γ2 are propositional logic formulae, i.e., spe-
cial cases of LDLF.

different automata techniques, and that iBGF is better suited in cer-
tain scenarios. However, it is not the case that the iBGF framework
generalises iBGs. Indeed, it should be noted that they are incom-
parable models: while iBG cannot be used to reason about games
with goals over finite traces, iBGF cannot be used to reason about
games with goals over infinite traces only, that is, regardless of the
satisfaction of players’ goals in the associated finite traces; from a
logical point of view, while iBG considers LTL, iBGF can handle
goals in LDLF, which on finite traces is strictly more expressive
than LTL [4], and also than LTL over finite traces. However, as
shown here using new automata techniques, the complexities of
some problems in each game model coincide in the worst case for
many variants of these different kinds of iterated games.

Automata for Linear Dynamic Logic. Logic, games, and
automata are intimately related; see, e.g., [1, 6] and references
therein for examples. We build upon the automata constructions
for Linear Dynamic Logic (LDLF [4, 3]), which were introduced
to solve the satisfiability and synthesis problems for LDLF over fi-
nite traces. Specifically, we have initially used such constructions
to translate LDLF formulae to alternating automata on finite words
(AFW) and, based on them, we have defined new and optimal
automata constructions that characterise the existence of (strong)
Nash equilibria on top of the standard Boolean games framework.

However, even though most, but not all, of the automata con-
structions we have presented in this paper are optimal, they still
enjoy two useful properties. Firstly, that they are strongly based
on automata on finite words, with only an extension to deal with
infinite runs, a feature that could be used a lot further. Secondly,
that such automata constructions recognise the sets of Nash runs,
which, as shown in this paper, makes them extremely useful from a
semantic point of view. Indeed, using other automata approaches,
e.g., for iBGs, our expressiveness results do not easily follow.

In addition, the automata constructions defined in this paper can
be modified to reason about other game settings, making it a rather
widely adaptable reasoning technique. For instance, we believe it is
also possible to extend some of the results we have obtained to two-
player games with imperfect information. This should be possible,
in some cases, using recent automata constructions to reason about
LDLF formulae under partial observation [5].

Imperfect Information. Following the research line delineated
by the papers [4, 3, 5], one might wonder about the complexity of
solving iBGF in the context of imperfect information. It is im-
portant to notice that the synthesis problems for LTL for both per-
fect and imperfect information is decidable [21, 15]. On the other
hand, the NE-NONEMPTINESS problems for games having LTL
goals is decidable for the perfect information case [10], but un-
decidable for the imperfect information case [11]. Similarly, re-
garding LDLF goals, the synthesis problem is decidable for both
perfect [3] and imperfect [5] information, while we here prove that
the NE-NONEMPTINESS problem is decidable. This suggests that
the same problem might be undecidable under the imperfect infor-
mation assumption, as it is for conventional iBGs. However, as the
expressive power of LDLF is incomparable with the one of LTL, it
is not clear whether the undecidability proof (which strongly relies
on the expressiveness of LTL) can be retained in this case. For this
reason, we plan to address this question in future work.

Acknowledgements
We acknowledge with gratitude the financial support of the ERC
Advanced Investigator grant 291528 (“RACE”) at Oxford.

REFERENCES
[1] L. Bozzelli, B. Maubert, and S. Pinchinat. Uniform

strategies, rational relations and jumping automata.
Information and Computation, 242:80–107, 2015.

[2] K. Chatterjee, T. Henzinger, and N. Piterman. Strategy logic.
Information and Computation, 208(6):677–693, 2010.

[3] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL
on finite traces. In IJCAI, pages 1558–1564, 2015.

[4] G. De Giacomo and M. Y. Vardi. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI, pages
854–860. IJCAI/AAAI, 2013.

[5] G. De Giacomo and M. Y. Vardi. Ltlf and ldlf synthesis
under partial observability. In IJCAI, pages 1044–1050.
IJCAI/AAAI Press, 2016.

[6] N. Fijalkow, S. Pinchinat, and O. Serre. Emptiness of
alternating tree automata using games with imperfect
information. In FSTTCS, volume 24 of LIPIcs, pages
299–311. Dagstuhl, 2013.

[7] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis.
In TACAS, volume 6015 of LNCS, pages 190–204. Springer,
2010.

[8] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated
boolean games. In F. Rossi, editor, IJCAI, pages 932–938.
IJCAI/AAAI, 2013.

[9] J. Gutierrez, P. Harrenstein, and M. Wooldridge.
Expresiveness and complexity results for strategic reasoning.
In CONCUR, volume 42 of LIPIcs, pages 268–282. Schloss
Dagstuhl, 2015.

[10] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated
Boolean games. Information and Computation, 242:53–79,
2015.

[11] J. Gutierrez, G. Perelli, and M. Wooldridge. Imperfect
information in reactive modules games. In KR, pages
390–400. AAAI Press, 2016.

[12] P. Harrenstein, W. van der Hoek, J. Meyer, and C. Witteveen.
Boolean Games. In TARK, pages 287–298, 2001.

[13] O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with
rational environments. In EUMAS, volume 8953 of LNCS,
pages 219–235. Springer, 2014.

[14] O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with
rational environments. Annals of Mathematics and Artificial
Intelligence, 78(1):3–20, 2016.

[15] O. Kupferman and M. Y. Vardi. Synthesis with Incomplete
Information, pages 109–127. Springer, 2000.

[16] A. Kučera and J. Strejček. The Stuttering Principle Revisited.
Acta Informatica, 41(7–8):415–434, 2005.

[17] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi.
Reasoning about strategies: On the model-checking problem.
ACM Transaction on Computational Logic,
15(4):34:1–34:47, 2014.

[18] D. Niwinski and I. Walukiewicz. Relating hierarchies of
word and tree automata. In STACS, volume 1373 of LNCS,
pages 320–331. Springer, 1998.

[19] M. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, 1994.

[20] A. Pnueli. The temporal logic of programs. In FOCS, pages
46–57. IEEE Computer Society, 1977.

[21] A. Pnueli and R. Rosner. On the Synthesis of a Reactive
Module. In POPL, pages 179–190. ACM, 1989.

[22] A. Sistla, M. Vardi, and P. Wolper. The Complementation
Problem for Büchi Automata with Applications to Temporal
Logic. Theoretical Computer Science, 49:217–237, 1987.

[23] A. P. Sistla and E. M. Clarke. The Complexity of
Propositional Linear Temporal Logics. Journal of the ACM,
32(3):733–749, 1985.

[24] M. Vardi. An Automata-Theoretic Approach to Linear
Temporal Logic. In Logics for Concurrency - Structure
versus Automata, pages 238–266, 1995.

[25] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni,
G. Perelli, and A. Toumi. Rational verification: From model
checking to equilibrium checking. In AAAI. AAAI Press,
2016.

