
A Generic Framework to Model, Simulate and Verify

Genetic Regulatory Networks

Alejandro Arbeláez, Julian Gutiérrez, Carlos Olarte and Camilo Rueda

Pontificia Universidad Javeriana

Calle 18 No. 118 - 250 , Cali-Colombia

aarbelaez@puj.edu.co, {jg,caolarte,crueda}@cic.puj.edu.co

Abstract

Process calculi are formalisms to model concurrent systems. Their mathematical basis and compositional
style make possible to decompose a system into simple and well defined processes. Interaction among them
is formally defined by the semantic of the calculi. These characteristics allow to study systems coming from
different areas such as arts, engineering and sciences. In this paper we propose a generic framework to model,
simulate and verify genetic regulatory networks based on a non-deterministic timed concurrent constraint
calculus. This framework provides a set of process definitions to model generic/parametric components in a
biological context, a simulator to observe the system evolution in time and some insights to perform formal
proofs to verify and make inferences over the systems. An instantiation of the framework is presented by
modeling the lactose operon.

Keywords: Process calculi, Concurrent Constraint Programming, ntcc, Genetic Regulatory Networks, Lac
Operon

Resumen

Los cálculos de procesos son formalismos para modelar sistemas concurrentes. Sus fundamentos matemáticos
y estilo de diseño composicional hacen posible descomponer un sistema en procesos simples y bien definidos.
La interacción entre los procesos es formalmente definida por la semántica de los cálculos. Estas carac-
teŕısticas permiten estudiar sistemas provenientes de diferentes áreas tales como las artes, la ingenieŕıa y las
ciencias. En este art́ıculo se propone un marco genérico para modelar, simular y verificar redes de regulación
genética con el uso de un cálculo de procesos temporal y no determińıstico basado en restricciones. Este
marco provee un conjunto de definiciones de procesos para modelar componentes genéricos/paramétricos en
un contexto biológico, un simulador para observar la evolución del sistema en el tiempo y algunas directrices
para desarrollar pruebas formales para verificar y hacer inferencia sobre el sistema. Un caso de estudio es
presentado con el modelado del operón de la lactosa, una red de regulación genética compleja.

Palabras claves: Cálculos de Procesos, Programación Concurrente por Restricciones, ntcc, Redes de
Regulación Genética, Operón de la Lactosa

1 Introduction

The study of concurrent systems is often carried out with the aid of process calculi. These are very ex-
pressive formalisms centered on the notion of interaction. Systems are understood as interacting complex
processes composed of smaller ones following a compositional approach. Such an approach is encouraged
by the (usually) few mathematical constructs provided by the calculus that defines how processes interact
among them and with their environment. The mathematical foundations underlying process calculi allow
to both model and verify properties of a system, thus providing a concrete design methodology for complex
systems. These appealing properties of process calculi have been a strong motivation for its use in a wide
spectrum of fields including, distributed systems [10], systems biology [15], visual/object-oriented languages
[16] and reactive systems [18] among others. The interest of the scientific community on process calculi is
also reflected by the extensions proposed in order to cope with a number of widely occurring concepts such
as time ([10, 18]), mobility [8], probabilistic/stochastic behavior [13, 11], and partial information [17].

Process calculi have been previously used to model biological functions (see [5, 12]). Most of this work
has been conducted using (extensions of) the π calculus ([13, 2]) and the Ambient calculus ([14]). By the
other side, calculi devised for specific biological systems have also been proposed. For instance, calculi to
model membranes ([1]), protein interaction ([3]) and reversibility in bio-molecular processes ([6]).

We are interested in the study of biological/molecular systems using process calculi following the con-
current constraint programming model (ccp) [17]. ccp is based on the concept of constraint as an entity
carrying partial information, i.e., conditions for the values that variables can take. Constraints are accumu-
lated monotonically over a so-called store, an entity that contains all information produced by the system
during its execution. In this way, the problem of finding higher-order biological function of systems can be
taken up by relying in the fundamental mathematical approach those process calculi provide. This approach
is justified by the following facts: (i) A clear separation among processes can be achieved by considering
concurrent agents as basic components of programs making possible a straightforward model refinement in
context-dependent models. (ii) Because of the declarative nature of ccp, only the constraints of the prob-
lems have to be stated, whereas system control (i.e., evolution) is formally defined by the semantic of the
calculus. (iii) Constraints can be seen as a representation of incomplete knowledge. This is an important
consideration in biological domains where the exact function of several systems and mechanisms is still a
matter of research. Finally, (iv) the construction of simulation tools and model verifiers can be formally done.

Models presented in this paper are built using a non-deterministic timed extension of ccp called ntcc

[10] and a stochastic extension of it [11]. These models allow to express non-determinism, asynchronous
and stochastic behavior. We aim to establish how such constraint-based process calculi can help to design a
formal language suitable to model molecular processes. The objective is then using this language to develop
highly accurate models, discover from these models behavioral properties of biological systems and develop
semi-automated tools to verify and simulate large (complex) systems in molecular biology. We believe that
languages and tools based on the ccp paradigm can thus constitute a valuable methodology to design and
test coherent bio-molecular models.

The main contribution of this paper is to provide a generic framework to: (i) Model genetic regulatory
networks by using a set of process definitions to model biological components. (ii) Observe the evolution
of the system during the time by means of a simulation tool executing ntcc programs. And (iii) make
quantitative inferences when a complete mathematical model of the system is not available by means of
formal proofs in the linear temporal logic associated with ntcc. In addition, we provide a complete model
of the lactose operon (i.e., lac operon), a non-trivial biological system not previously modeled using process
calculi. The rest of the paper is structured as follow: Section 2 gives some preliminars about ntcc calculus.
Additionally, a structural and functional description of the lac operon is given. Section 3 shows the generic
and parametric process definitions provided by the framework and how they can be used to model the
lac operon. Some graphics showing the quantitative measures taken from the simulator of the calculus are
presented in section 3.7. Section 4 is devoted to present how formal proofs can be performed in the framework
and how they can be used to infer future behavior in the system. Finally, section 5 concludes the paper and
gives some research direction.

2

2 Computational and Biological Foundations

Here we present some of the theoretical background of our work. First, the main features of the ntcc process
calculus are discussed. Later, an intuitive description of the Lac Operon is given. This system will be used
as a case study in forthcoming sections.

2.1 ntcc: A timed, process calculus

ntcc is a temporal concurrent constraint calculus suitable to model non-deterministic and asynchronous
behavior. As such, it is particularly appropriate to model reactive and concurrent systems. One of the main
features of this calculus is that it is equipped with a proof system for linear-temporal properties of ntcc
processes. In this section we briefly describe the syntax and proof system of the ntcc calculus, referring the
reader to [10, 21] for further details.

First we recall the notion of constraint system. Basically, a constraint system provides a signature from
which syntactically denotable objects in the language called constraints can be constructed, and an entail-
ment relation (|=) specifying interdependencies among such constraints. The underlying language L of the
constraint system contains the symbols ¬,∧,⇒, ∃, true and false which denote logical negation, conjunc-
tion, implication, existential quantification, and the always true and always false predicates, respectively.
Constraints, denoted by c, d, . . . are first-order formulae over L. We say that c entails d in ∆, written c |=∆ d

(or just c |= d when no confusion arises), if c ⇒ d is true in all models of ∆. For operational reasons we shall
require |= to be decidable.

In ntcc time is divided into discrete intervals (or time units), each one of them having its own constraint
store (or simply store). Intuitively, a store accumulates all the information available in the system at a given
time. The basic actions for communication with the store are tell and ask operations. While the former
adds new pieces of information to the store, the latter enquires the store to check if some information can
be inferred from its current content. Moreover, synchronisation among processes is only based on these two
actions. In this way, each time unit can be understood as a reactive entity, where a process Pi receives
an input from the environment (i.e., a constraint). The process Pi is then executed considering this input,
responding with some output (that is, new constraints) once no further processing over the store is possible.
Computation in the next time unit is then based on a residual process resulting from Pi and on new inputs
provided by the environment.

Process Syntax

ntcc processes P, Q, . . . ∈ Proc are built from constraints c ∈ C and variables x ∈ V in the underlying
constraint system by the following syntax.

P, Q . . . ::= tell(c) |
∑

i∈I when ci do Pi | P ‖ Q | local x in P

| next (P) | unless c next (P) | !P | ⋆ P

The only move or action of process tell(c) is to add the constraint c to the current store, thus making c

available to other processes in the current time interval. The guarded-choice
∑

i∈I when ci do Pi, where I

is a finite set of indexes, represents a process that, in the current time interval, non-deterministically chooses
one of the Pj (j ∈ I) whose corresponding constraint cj is entailed by the store. The chosen alternative, if
any, precludes the others. If no choice is possible then the summation is precluded. We shall use “+” for
binary summations.

Process P ‖ Q represents the parallel composition of P and Q. In one time unit (or interval) P and Q

operate concurrently, “communicating” via the common store. We use
∏

i∈I Pi, where I is a finite set, to
denote the parallel composition of all Pi . Process local x in P behaves like P , except that all the information
on x produced by P can only be seen by P and the information on x produced by other processes cannot be
seen by P . We abbreviate local x1 in (local x2 in (. . . (local xn in P) . . .)) as local x1, x2, ..., xn in P .

The process next (P) represents the activation of P in the next time interval. Hence, a move of next (P)
is a unit-delay of P . The process unless c next (P) is similar, but P will be activated only if c cannot be
inferred from the current store. The “unless” processes add (weak) time-outs to the calculus, i.e., they wait
one time unit for a piece of information c to be present and if it is not, they trigger activity in the next
time interval. We shall use nextn (P) as an abbreviation for next (next (. . .next (P)) . . .)), where next
is repeated n times.

3

LTELL tell(c) ⊢ c LSUM
∀i ∈ I Pi ⊢ Ai

P

i∈I
when ci do Pi ⊢

˙_

i∈I
(ci ∧̇Ai) ∨̇

˙^

i∈I
¬̇ ci

LPAR
P ⊢ A Q ⊢ B

P ‖ Q ⊢ A ∧̇B
LUNL

P ⊢ A

unless c next P ⊢ c ∨̇ ◦A

LREP
P ⊢ A

!P ⊢ �A
LLOC

P ⊢ A

(local x)P ⊢ ∃̇x A

LSTAR
P ⊢ A

⋆P ⊢ ♦A
LNEXT

P ⊢ A

(next)P ⊢ ◦A
LCONS

P ⊢ A

P ⊢ B
if A ⇒̇B

Table 1: A proof system for (linear-temporal) properties of ntcc processes

The operator ! is a delayed version of the replication operator for the π-calculus ([8]): !P represents
P ‖ next (P) ‖ next2P ‖ . . ., i.e., unboundedly many copies of P but one at a time. The replication
operator is a way of defining infinite behavior through the time intervals.

The operator star (i.e., ⋆) allows us to express asynchronous behavior. The process ⋆P represents an
arbitrary long but finite delay for the activation of P . For example, ⋆tell(c) can be viewed as a message
c that is eventually delivered but there is no upper bound on the delivery time. We shall use ⋆nP as an
abbreviation of nextn (⋆P) to represent a delayed version of the operator star.

Using ntcc it is also possible to encode process definitions as procedures and recursion. We shall use

a definition of the form A(x)
def
= Px where Px is a process using a variable x. A “call” of the form A(c)

would then launch a process Px once the variable x is substituted by c. We can rely on the usual intuitions
concerning procedure calls in a programming language. We shall use recursive process definitions of the

form q(x)
def
= Pq, where q is the process name and Pq calls q only once and such a call must be within the

scope of a “next” . As in [21] we consider call-by-value for variables in recursive process calls. Moreover,
the encodings generalize easily to the case of definitions with an arbitrary number of parameters. These
kinds of definition do not add functionality to ntcc since they can be defined in terms of the standard ntcc

constructs.

Linear-temporal Logic in ntcc

The linear-temporal logic associated with ntcc is defined as follows. Formulae A, B, . . . ∈ A are defined by
the grammar:

A, B, . . . := c | A ⇒̇A | ¬̇A | ∃̇x A | ◦A | �A | ♦A.

Here c denotes an arbitrary constraint which acts as an atomic proposition. Symbols ⇒̇, ¬̇ and ∃̇x

represent linear-temporal logic implication, negation and existential quantification. These symbols are not
to be confused with the logic symbols ⇒, ¬ and ∃x of the constraint system. Symbols ◦, � and ♦ denote
the linear-temporal operators next, always and eventually. We use A ∨̇B as an abbreviation of ¬̇A ⇒̇B

and A ∧̇B as an abbreviation of ¬̇(¬̇A ∨̇ ¬̇B). The standard interpretation structures of linear temporal
logic are infinite sequences of states. In ntcc, states are represented with constraints, thus we consider as
interpretations the elements of Cω. When α ∈ Cω is a model of A, we write α |= A.

We shall say that P satisfies A if every infinite sequence that P can possibly output satisfies the property
expressed by A. A relatively complete proof system for assertions P ⊢ A, whose intended meaning is that P
satisfies A, is given in Table 1. We shall write P ⊢ A if there is a derivation of P ⊢ A in this system. Finally,
the following lemma will be useful in derivations:

Lemma 1 (Nielsen et al. [10]) For every process P ,

1. P ⊢ ˙true, 2. P 6⊢ ˙false, 3.
P ⊢ A

P ‖ Q ⊢ A
and 4.

P ⊢ A P ⊢ B

P ⊢ A ∧̇B
.

2.2 The Lac Operon: structure and behavior

The lac operon [7] is one of the most important genetic regulatory networks [7] present in living cells. This
regulatory system deals with the sources of energy needed to accomplish the functions of the cell. The

4

genetic regulatory network related with the lac operon has been extensively studied by biologist due to its
biological importance. Next, we will present a general description of the main features in the structure and
behavior of the lac operon.

An operon is a genetic cluster comprising a control region and some structural genes. The control region
determines the operon status. In particular, the lac operon has three genes in the structural region: LacZ,
LacY and LacA (see Figure 1). Gene LacZ codifies for β-galactosidase protein which hydrolyses (a term
used for some bio-molecular divisions) lactose into glucose and galactose. Gene LacY codifies for permease
protein. This molecule allows to lactose outside the cell to move across the cell membrane to increase the
concentration levels of lactose inside the cell. Finally, gene LacA codifies for β-galatoside transacetylase
protein. The function of this protein is still undetermined but biologists believe that it has no influence on
the lac operon regulatory system. Another important gene related to the lac operon regulatory system is
LacI. This gene codifies a protein that precludes activation of the operon (i.e., it is a so-called repressor
protein).

In this genetic regulatory network we can identify two important regulatory processes: repression and
induction. The former favors turning the genes off while the latter favors the opposite behavior. The
regulating mechanism enforced by the lac operon system is as follows: there is repression when a cell is in an
environment plenty in glucose. In this case, the repressor protein produced by LacI can bind to the control
region thus preventing RNA polymerase (an enzyme) to transcribe the operon. But when there is lack of
glucose in the environment an induction process is triggered. In induction a protein called CAP-cAMP is
produced in the cell, helping RNA polymerase to transcribe the operon. In this situation, β-galactosidase,
permease and β-galatoside transacetylase proteins increment their concentration inside the cell. In addition,
the concentration of internal lactose induces the formation of a molecule called allolactose. This sugar
cooperates in the induction process blocking the repressor proteins.

LacI LacZ LacY LacA

β-galatisidaseRepressor Permeasa β-galatoside transacetylase

{{
Cs-Op-P...

Control Region Structural Genes

Figure 1: Lac Operon

3 Genetic Regulatory Networks in ntcc

In this section we will present a set of ntcc processes to model the behavior of genetic regulatory networks.
The lac operon regulatory system is used as a case study. First we explain how we model continuous
systems with the discrete-temporal features of ntcc. Then, in sections 3.2 and 3.3, formal ntcc definitions
of molecular events and of regulation and status values in biological entities are given. The ntcc processes
shown in these sections are the basis for the model of the lac operon regulatory system given in subsequent
sections. Finally, in section 3.7 the whole model and some results of its simulation are presented.

3.1 Continuous systems in ntcc

Continuity is required to model this kind of systems because their regulation is determined by the con-
centration levels of different biological entities along time. We consider two different kinds of continuity:
persistence in the values of the variables and continuous time.

To model the former we define a process that explicitly transfers the current value of a variable of the
system from one ntcc time unit to the next. We shall use mi and m′

i for the value of a variable in the
current and the last time unit, respectively:

Statei(vi)
def
= tell(m′

i = vi) ‖ next (Statei(mi))

This process is used to define the state of the system in every ntcc time unit:

State(ρ1, ..., ρn)
def
=

∏
i∈I (tell(mi = ρi) ‖ next (Statei(ρi)))

5

where I is the set of indexes of variables in the biological system and ρi the initial value of mi. The
above process is also used to configure the system for real system simulations with parameters coming from
actual biological measurements.

The temporal kind of continuity is achieved by considering many ntcc time units as “samples” of one
system unit:

T ime(t)
def
= tell(Ts = t) ‖ next (T ime(t + Dt))

where Ts is the “continuous” time value of the system in the current ntcc time unit and Dt a constant
value representing the resolution of the system. Lower values of Dt give better approximations of real
continuous systems. Obviously, the value of Dt has strong practical consequences in system simulations.

The following process represents the continuous behavior of whole system:

Dynamic
def
= State(ρ1, ..., ρn) ‖ T ime(0.0)

A very important feature of Dynamic is its generality. This process is not restricted to any particular
system, not even biological ones, so it can be used to model the dynamic behavior of many continuous
systems.

3.2 Modeling molecular events

In molecular systems several events have to be considered, such as pointing out when a group of molecules
interacts with others, performs a specific task or produces a biological control signal. We shall use several
discrete variables to indicate either presence or absence of some molecular actions or events in models. The
variables representing the events or actions described in this section will be called signaling variables in the
rest of the paper. A generic ntcc process to model this kind of molecular behavior can be defined as follows:

Signal
def
= !

∏
e∈E,svar∈S (when e do next (tell(svar = 1)) ‖ unless e next tell(svar = 0))

where E is the set of constraints expressing molecular events and S the set of signaling variables in the
system. This specification is not the same as an if, then, else kind of thing. Notice that unlike an if-then-else
structure, process Signal can reason over the lack of information. So, it is always possible to determine svar

despite constraint e holds or not in the store.
More complex signaling processes and variables can be constructed with the process presented above,

e.g., a molecular event with delay conditions using temporal ntcc operators. In some cases, to achieve more
accurate descriptions of these kinds of molecular behavior, stochastic processes are needed. A stochastic
extension of ntcc recently proposed in [11] is effectively applied in our case study to model a particular
binding process of molecules.

3.3 Modeling regulation and status value in biological entities

Most of the processes used to represent dynamic behavior of a biological entity have a similar structure.
They can be modeled as a regulated process controlled by a signaling variable. We define a parametric
process Regulatei to model the behavior of biological entity i under the control of a signaling variable. This
parametric process can be constructed as follows:

Regulatei(svar, Pi, Ni)
def
= when svar = 1 do Pi + when svar = 0 do Ni

In the above, process Pi is executed when the biological event marked by signaling variable svar occurs.
Otherwise process Ni is executed. Notice that operator “+” chooses between the two kinds of regulation
for the biological entity i. So, only one type of regulation is perfomed over i since the chosen alternative
precludes the other one.

To model status values (e.g., level of gene expression, location, etc.), we use template Statusi to define
a wide variety of biological situations in which we want to determine particular conditions in/of a biological
entity:

6

Statusi
def
= ! ((

∑
c∈C when conditionc do next (tell(mi = fci(m

′
i)))) ‖

unless knownConditions next tell(mi = m′
i))

where C is the set of indexes of conditions for changes in the status of a biological entity i. The new
value is defined by a control function fci. When no conditions for change holds, the state of the system
remains the same in the next time unit.

3.4 Control Region and Structural Genes

In this section the control region and structural genes of a regulatory network are modeled. We use the
Statusi process as a template to model the sites or places in which a control event may happen. We also
propose a parametric process to model the behavior of the most important biological entity present in a
genetic regulatory network: a single gene.

In the particular case of the lac operon three places have relevance in the control process: CAPsite,
Operator and Promoter regions. We use discrete variables m1,m2 and m3 to represent the operon status:
CAPsite process to indicate induction, Operator process to indicate repression and Promoter process to
indicate the level of transcription. We also use some signaling variables to determine when these biological
processes occur. Processes CAPsite, Operator and Promoter are formally integrated in ControlRegion by
the parallel composition operator:

ControlRegion
def
= CAPsite1 ‖ Operator2 ‖ Promoter3

Process Genx below is a parametric ntcc specification to model the structure and behavior of a single
gene. This specification is parameterized by constants representing the degradation and production rates of
mRNAs and proteins produced in the transcription and translation of a gene. We consider three important
entities: level (i.e., status) of transcription and concentrations of mRNAs and proteins produced by the gene.
Process Genx is defined using parametric/generic processes Regulatei and Statusi:

GenStatusi
def
= ! ((when tbegin = 1 ∧ tend = 0 do next (tell(mi = m′

i + 1)) +
when tbegin = 0 ∧ tend = 1 do next (tell(mi = m′

i − 1))) ‖
unless tbegin 6= tend next tell(mi = m′

i))

MRNAj(pj , dj)
def
= Regulatej(tbegin,next (tell(mj = m′

j + pj − Dt × (dj × m′
j))),

next (tell(mj = m′
j − Dt × (dj × m′

j))))

PROTEINk(pk, dk)
def
= Regulatek(mrnah,next (tell(mk = m′

k + Dt × (pk × m′
j − dk × m′

k))),
next (tell(mk = m′

k − Dt × (dk × m′
k))))

Genx(pj , dj , pk, dk)
def
= GenStatusi ‖ ! MRNAj(pj , dj) ‖ ! PROTEINk(pk, dk)

where mi, mj and mk are variables representing the status of the gene (i.e., level of expression), mRNA
concentration and protein concentration, respectively. Moreover, dj and dk represent the rate of natural
molecular degradation of mRNAs and proteins, respectively. The production rate of these biological entities
is determined by the constants pj and pk and two signaling variables tbegin and tend. These denote starting
and ending time of RNA polymerase gene transcription. Signaling variable mrnah is used to indicate when
the mRNA concentration is “high enough” to begin the translation of the protein.

In the particular case of the lac operon two processes are needed to model when RNA polymerase is
placed between GenZ and GenY, and when it is placed between GenY and GenA (see Figure 1). This
biological situation is modeled as a Statusi process:

DelayGGi
def
= ! ((when tend1 = 1 ∧ tbegin2 = 0 do next (tell(mi = m′

i + 1)) +
when tend1 = 0 ∧ tbegin2 = 1 do next (tell(mi = m′

i − 1))) ‖
unless tend1 6= tbegin2 next tell(mi = m′

i))

where tend1 indicates the time when RNA polymerase finishes the transcription of the first gene and
tbegin2 the time when it begins the transcription of the second gene. Thus mi is the number of molecules
of RNA polymerase moving between the two consecutive genes.

7

To present a complete model of the structural genes in the lac operon, we define GenZ, GenY , GenA,
DelayZY and DelayY A in a similar way as the parametric and generic specifications proposed for Genx

and DelayGGi.

StructuralGenes
def
= GenZ(κ1, ..., κ4) ‖ DelayZY ‖ GenY (σ1, ..., κ4) ‖ DelayY A ‖ GenA(ρ1, . . . , ρ4)

The above processes could be used to model the structure and behavior of different genes by changing
biological parameters and signaling variables in the model. In subsequent sections we present formal models
of particular biological processes in the lac operon (i.e., induction, repression and hydrolysis).

3.5 Induction and Repression

Induction and repression are biological conditions inside the cell determining whether the lac operon turns
on or off. In induction, glucose concentration is low (i.e., signaling variable glucl = 1). This allows to
increase the concentration of a protein called cAMP, thus increasing also that of CAP-cAMP protein. This
protein is the biological entity that enhances transcription in the lac operon. Levels of CAP-cAMP protein
are indirectly modeled from the explicit concentrations of CAP and cAMP. The concentrations of AMP and
ADP are also modeled to calculate the value of cAMP inside the cell. To model induction the ntcc processes
CAMP , AMP , ADP and CAP are defined. Biological details about the parameters in these processes are
omitted due to space restrictions (see [9] for a more complete account).

CAMP
def
= Regulate5(glucl,next (tell(m5 = m′

5 + Dt × (0.1m′
11 − 0.1001m′

5))),
next (tell(m5 = m′

5 − Dt × 0.1001m′
5)))

AMP
def
= Regulate11(glucl,next (tell(m11 = m′

11 + Dt × (0.1m′
5 + 0.1m′

12 − 0.2001m′
11))),

next (tell(m11 = m′
11 + Dt × (0.1m′

5 + 0.1m′
12 − 0.1001m′

11))))

ADP
def
= ! next (tell(m12 = m′

12 + Dt × (0.1m′
11 − 0.2m′

12)))

CAP
def
= ! next (tell(m4 = m′

4 + Dt × (1.0 − 0.1m′
4)))

Induction
def
= ! CAMP ‖ ! AMP ‖ ADP ‖ CAP

Process Repression below models the repressor gene, the repressor protein and the way in which repressor
protein binds to the lac operon. The repressor gene GenI is defined with the same ntcc specification used
for the other genes in the lac operon. The behavior of the repressor protein modeled in Repressor and
its binding to the DNA of the lac operon is controlled by allolach, a signaling variable indicating when
allolactose concentration inside the cell reaches a threshold. When this happens, repressor and allolactose
react forming a biological complex that prevents the repressor binding to the lac operon. Signaling variable
allolach is defined with a stochastic process ρP (see [11]) to model probabilistic binding to the allolactose
once the threshold is reached.

The binding process Binding includes three processes (i.e., OperatorBinding, DNABinding and NotBinding)
to model the fact that the repressor could interact directly with the operator region or, with less probability,
bind to the structural genes. It may also happens that the repressor does not bind to the lac operon. We
formally express this kind of behavior in process Repression:

Repressor
def
= Regulate16(allolach,next (tell(m16 = m′

16 + Dt × (0.2m′
15 − m′

8 × m′
16))),

next (tell(m16 = m′
16 + Dt × (0.2m′

15 − m′
16)))

DNABinding
def
= Regulate17(allolach,next (tell(m17 = m′

17 − Dt × 0.1m′
17)),

next (tell(m17 = m′
17 + Dt × (0.0399m′

16 − 0.1m′
17)))

NotBinding
def
= Regulate18(allolach,next (tell(m18 = m′

18 − Dt × 0.1m′
18)),

next (tell(m18 = m′
18 + Dt × (0.001m′

16 − 0.1m′
18)))

OperatorBinding
def
= Regulate7(allolach,next (tell(m7 = m′

7 − Dt × 0.1m′
7)),

next (tell(m7 = m′
7 + Dt × (0.96m′

16 − 0.1m′
7)))

Binding
def
= DNABinding ‖ NotBinding ‖ OperatorBinding

Repression
def
= GenI(κ1, ..., κ4) ‖ ! Repressor ‖ ! Binding

8

3.6 Lactose Hydrolysis

In the hydrolysis of lactose into glucose and galactose we observe the real purpose of this genetic regulatory
network. In this section we model in ntcc three biological processes present in the lac operon: the entrance
of lactose into the cell, the division of internal lactose into glucose and galactose and the production of
allolactose enhanced by lactose concentration. To determine the behavior of these processes we use four
signaling variables: permh, bgalh, allolach and lacinh. We also use two functions, vp and vg, to calculate
the degree of regulation produced by permease and β-galactosidase, respectively.

Signaling variables permh and bgalh indicate when the concentration of permease and β-galactosidase is
high enough to enable the biological processes they regulate. When permh = 1, the concentration of lactose
inside the cell increases and reciprocally the lactose outside the cell decreases. When bgalh = 1, lactose is
converted into glucose and galactose. Finally, signaling variables allolach and lacinh are used to determine
the behavior of allolactose. While allolach has the same meaning as in Repression, signaling variable
lacinh indicates the time when lactose inside the cell reaches a threshold thus improving the production of
allolactose. This system is modelled as follows:

LacOut
def
= Regulate29(permh,next (tell(m29 = m′

29 − Dt × (vp + 0.0001m′
29))),

next (tell(m29 = m′
29 − Dt × (0.0001m′

29))))

LacIn
def
= Regulate19(bgalh,

Regulate19(permh,next (tell(m19 = m′
19 + Dt × (vp − vg − 0.0001m′

19))),
next (tell(m19 = m′

19 − Dt × (vg + 0.0001m′
19)))),

Regulate19(permh,next (tell(m19 = m′
19 + Dt × (vp − 0.0001m′

19))),
next (tell(m19 = m′

19 − Dt × (0.0001m′
19)))))

Glucose
def
= Regulate6(bgalh,next (tell(m6 = m′

6 + Dt × (vg − 0.0001m′
6))),

next (tell(m6 = m′
6 − Dt × (0.0001m′

6))))

Galactose
def
= Regulate30(bgalh,next (tell(m30 = m′

30 + Dt × (vg − 0.0001m′
30))),

next (tell(m30 = m′
30 − Dt × (0.0001m′

30))))

Allolactose
def
= Regulate8(allolach,

Regulate8(lacinh,

next (tell(m8 = m′
8 + Dt × ((0.1m′

29 + 0.2m′
9) − (0.5m′

8 + m8 × m′
16)))),

next (tell(m8 = m′
8 + Dt × (0.1m′

29 − (0.5m′
8 + m′

8 × m′
16))))),

Regulate8(lacinh,

next (tell(m8 = m′
8 + Dt × ((0.1m′

29 + 0.2m′
9) − 0.5m′

8))),
next (tell(m8 = m′

8 + Dt × (0.1m′
29 − 0.5m′

8)))))

Hydrolysis
def
= ! LacOut ‖ ! LacIn ‖ ! Glucose ‖ ! Galactose ‖ ! Allolactose

3.7 An integrated model with system simulations

Processes defined in previous sections are integrated in process GRN :

GRN
def
= local Ts, svar1, ..., svark, m1, ..., mn, m′

1, ..., m
′
n in

Dynamic ‖ Signal ‖ ControlRegion ‖ StructuralGenes ‖ Induction ‖ Repression ‖ Hydrolysis

This concurrent model is implemented in sntccSim, a simulation tool we developed in the concurrent
constraints language Mozart [20]. sntccSim runs both sntcc and ntcc specifications. sntccSim allows to
define procedures and recursive processes. A very important feature of sntccSim is that several constraint
systems can be included in the same model. Indeed, in our case study, we use constraints over finite domains
[19] and real intervals [4] to implement the constraint-based model of the lac operon described in this paper.

Reading the resulting store of each time unit it is possible to visualize the evolution of concentrations of
lactose (i.e., inside and outside the cell), glucose and LacZ (i.e., mRNA and β-galatosidase protein). They
are plotted in figure 2.

9

(a) Lactose (b) Glucose (c) LacZ

Figure 2: Simulation Results

4 A logic-based approach to verity system properties

In this section we describe a logic-based approach to verify system properties using the inference system
associated with ntcc. We focus in a proof of stability in the system. As case of study, we verify that if CAP
protein reaches a stable state, variable m4 has value V s.

Rewriting the definition of CAP we have:

CAP
def
= ! next (tell(m4 = m′

4 + Dt × (1.0 − 0.1m′
4))) ≡ ! next (tell(m4 = m′

4 + ∆m4))

The formula for process CAP is: CAP ⊢ � ◦ (m4 = m′
4 +∆m4) . From the definition of CAP it follows

that when CAP protein is stable, the statement ∆m4 = 0.0 must be true. So, the condition for stability in
CAP could be represented in the following ntcc process definition:

StableProperty
def
= ⋆ntell(∆m4 = 0.0)

where n is a time delay long enough to reach stability in CAP.
The formula for StableProperty is: StableProperty ⊢ ♦∆m4 = 0.0.
The following assertion represents a stable state of CAP protein:

CAP ‖ StableProperty ⊢ ♦�m4 = V s

The proof is formally expressed using the inference system associated with ntcc:

CAP ⊢ � ◦ (m4 = m′

4 + ∆m4)

StableProperty ⊢ ♦∆m4 = 0.0

StableProperty ⊢ ♦ (∆m4 = 0.0 ∧̇Dt × (1.0 − 0.1m′

4) = 0.0)
LCONS

StableProperty ⊢ ♦ (∆m4 = 0.0 ∧̇m′

4 = 10.0)
LCONS

CAP ‖ StableProperty ⊢ (� ◦ (m4 = m′

4 + ∆m4)) ∧̇ (♦ (∆m4 = 0.0 ∧̇m′

4 = 10.0))
LPAR

CAP ‖ StableProperty ⊢ (� ◦ (m4 = m′

4 + ∆m4)) ∧̇ (♦m4 = 10.0))
LCONS

CAP ‖ StableProperty ⊢ ♦ (� ◦ (m4 = m′

4 + ∆m4) ∧̇ (m4 = 10.0))
LCONS

Since the value of m4 at time t is equal to that of m′
4 at the next time unit, we can perform the following

deduction:

CAP ‖ StableProperty ⊢ ♦ (� ◦ (m4 = m′

4 + ∆m4) ∧̇ (m4 = 10.0))

CAP ‖ StableProperty ⊢ ♦ ((� ◦ (m4 = m′

4 + ∆m4)) ∧̇ (m4 = 10.0) ∧̇ (◦ (m′

4 = 10.0)))
LCONS

CAP ‖ StableProperty ⊢ ♦�m4 = 10.0
LCONS

The above logical expression proves stability in CAP protein when m4 = V s = 10.0 in an undetermined
time in the future. This value continues for the future. Finally, due to Lemma 1.3 we can be sure that

10

the proof is also valid taking into account the rest of the system. So, the stability value of CAP can be
obtained by two different approaches: following the steps in the operational semantics of ntcc simulated with
sntccSim (see figure 3) or by means of a logical-temporal proof done with the inference system associated
with ntcc.

Figure 3: CAP protein

5 Concluding Remarks

In this paper we have proposed a framework to model, simulate and verify genetic regulatory networks and
illustrate its use in a model of the lac operon. This framework is formally based on ntcc, a constraint-based
process calculus. A simulation tool to execute ntcc processes following the operational semantics of the cal-
culus is presented. An important feature is that ntcc allows to reason about the models specified using the
calculus. In this way, we have shown how we can predict future behavior using the proof system associated
with the ntcc temporal logic. We will present some concluding ideas about the most important features
related with the framework proposed in this paper.

A Suitable Methodology to Model, Simulate and Verify Biological Systems. Although finding an appro-
priate language for modeling biological systems is an important task, devising a complete methodology to
model, simulate and verify such systems is perhaps more crucial. We believe that a methodology based on
the timed ccp model has considerable advantages for modeling and verifying biological systems. Reasons
supporting this claim include: the natural use of concurrent processes to model biological entities, the no-
tion of time to express the evolution of dynamic biological systems, the notion of constraint as a way of
modeling incomplete information, and the inclusion of quantitative parameters in the models by choosing
an appropriate constraint system. Moreover, this conceptual framework can be directly supported both by
programming languages and tools based on the ccp model to perform system simulations.

Time and Non-deterministic/Asynchronous Behavior. In some biological scenarios the most important
things to observe are the initial and final states of the system. In other situations, however, having a strict
control of the evolution of the system might be required. That is the case when a dynamic biological system
is modeled and simulated. We believe that having an explicit notion of time is fundamental to achieve such a
control. The discrete-time features of ntcc allow very expressive system specifications in which the evolution
of the system can be observed step-by-step. Moreover, these discrete time features can be used to model
continuous time systems. Our case study is a good example of this. Although the issue of modeling the
function of biological systems using process calculi has been previously studied [5, 12], to the best of our
knowledge none of these calculi allow to represent time, non-deterministic and asynchronous behavior within
the same model. ntcc provides explicit constructions to express these kinds of behavior, which may be very
useful to represent several biological situations.

As future work, we plan to proposed components in ntcc to model malfunctions in biological models.
We believe that with the use of some ntcc operators, in particular ⋆, we could model in a very realistic
way the unpredictable behavior of several diseases. Moreover, based on the results achieved so far, we plan
to extend our work to admit the inclusion of ordinary differential equations in models. This allows us to
formally model very complex biological systems which already have a mathematical formulation.

11

References

[1] L. Cardelli. Brane calculi. In V. Danos and V. Schachter, editors, CMSB, volume 3082 of Lecture Notes
in Computer Science, pages 257–278. Springer, 2004.

[2] G. Ciobanu, V. Ciubotariu, and B.Tanasa. A pi-calculus model of the na pump. Genome Informatics,
pages 469–472, 2002.

[3] V. Danos and C. Laneve. Formal molecular biology. Theor. Comput. Sci., 325(1):69–110, 2004.

[4] AVISPA Research Group. XRI: Extended Real Interval., 2004. Available at
http://home.gna.org/xrilpoz.

[5] J. Gutiérrez, J. A. Pérez, and C. Rueda. Modelamiento de sistemas biológicos usando cálculos de
procesos concurrentes. Epiciclos, 4, 2005.

[6] J. Krivine and V. Danos. Formal molecular biology done in CCS-R. In BioConcur 2003, Workshop on
Concurrent Models in Molecular Biology, 2003.

[7] B. Lewin. Genes VII. Oxford University Press, 2000.

[8] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, 1999.

[9] S. Miyano and H. Matsuno. How to model and simulate biological pathways with petri nets - a new
challenge for systems biology -. 25th International Conference on Application and Theory of Petri Nets,
June 2004.

[10] M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal concurrent constraint programming: Deno-
tation, logic and applications. Nord. J. Comput., 9(1):145–188, 2002.

[11] C. Olarte and C. Rueda. A stochastic non-deterministic temporal concurrent constraint calculus. In
IEEE Computer Society, editor, Proceedings of XXV International conference of the chilean computer
science society, 2005.

[12] D. Prandi, C. Priami, and P. Quaglia. Process calculi in a biological context. Concurrency Column,
February 2005.

[13] C. Priami. Stochastic pi-calculus with general distributions. In CLUP, editor, Proceedings of PAPM
’96, 1996.

[14] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Y. Shapiro. Bioambients: an abstraction
for biological compartments. Theor. Comput. Sci., 325(1):141–167, 2004.

[15] A. Regev and E. Shapiro. Modelling in Molecular Biology, chapter The π-calculus as an abstraction for
biomolecular systems, pages 219–266. Springer, 2004.

[16] C. Rueda, G. Alvarez, L. O. Quesada, G. Tamura, F. D. Valencia, J. F. Diaz, and G. Assayag. Inte-
grating constraints and concurrent objects in musical applications: A calculus and its visual language.
Constraints, 6(1):21–52, 2001.

[17] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint pro-
gramming. In POPL ’91, pages 333–352, Jan 1991.

[18] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint programming.
Journal of Symbolic Computation, 22(5/6):475–520, 1996.

[19] C. Schulte and G. Smolka. Finite Domain Constraint Programming in Oz. A Tutorial., 2004. Available
at www.mozart-oz.org.

[20] G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science Today, volume
1000 of LNCS, pages 324–343. Springer - Verlag, 1995.

[21] F.D. Valencia. Temporal Concurrent Constraint Programming. PhD thesis, University of Aarhus,
November 2002.

12

