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Abstract
This paper presents a range of expressiveness and complexity results for the specification, com-
putation, and verification of Nash equilibria in multi-player non-zero-sum concurrent games in
which players have goals expressed as temporal logic formulae. Our results are based on a novel
approach to the characterisation of equilibria in such games: a semantic characterisation based on
winning strategies and memoryful reasoning. This characterisation allows us to obtain a number
of other results relating to the analysis of equilibrium properties in temporal logic.

We show that, up to bisimilarity, reasoning about Nash equilibria in multi-player non-zero-
sum concurrent games can be done in ATL∗ and that constructing equilibrium strategy profiles in
such games can be done in 2EXPTIME using finite-memory strategies. We also study two simpler
cases, two-player games and sequential games, and show that the specification of equilibria in
the latter setting can be obtained in a temporal logic that is weaker than ATL∗. Based on these
results, we settle a few open problems, put forward new logical characterisations of equilibria,
and provide improved answers and alternative solutions to a number of questions.
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1 Introduction

In the last decade, there has been an increasing interest in game-theoretic models of concurrent
and distributed systems as well as in temporal logic formalisms to reason about the complex
behaviour of such systems. These logical formalisms are used to reason about linear-time or
branching-time properties of the systems, and usually extend logics such as LTL or CTL. The
alternating-time temporal logic ATL∗ of Alur, Henzinger, and Kupferman [1] is an extension
of CTL∗ that is intended to support, in addition, reasoning about strategic behaviour. ATL∗
replaces the path quantifiers of CTL∗ with agent/strategy modalities that can be used to
express properties of coalitions of agents in game-like concurrent and multi-agent systems.
ATL∗ is probably the most popular and widely used temporal logic for strategic reasoning in
computer science, artificial intelligence, and multi-agent systems research [8, 16].

The theory of ATL∗ is well understood. In particular, it is known that satisfiability and
model checking for ATL∗ are 2EXPTIME-complete [1, 15] – theoretically better than for many
of its extensions, where these problems are non-elementary, or even undecidable [3, 10, 11].
ATL∗ is a natural logic to reason about winning strategies in game-like systems, which makes
it sufficiently powerful for many computational purposes. For instance, several design and
verification problems can be reduced to questions about the existence and computation of
winning strategies [1]. In fact, from a game-theoretic point of view, these problems are
usually reduced to a rather simple setting: two-player zero-sum sequential games [17].
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However, when considering multi-player non-zero-sum concurrent games, the notion of a
winning strategy does not seem to be the most appropriate analytical concept [2]. In such
settings, we need richer game-theoretic solution concepts, such as Nash equilibrium [14].
However, at first sight, ATL∗ may not seem to be appropriate to reason about solution
concepts such as Nash equilibrium, and in fact, it seems to be widely assumed that winning
strategies cannot be used to study equilibria in multi-player non-zero-sum games.

Indeed, in the quest for a formalism expressive enough to capture game-theoretic equilibria,
many temporal logics have been developed, including: Strategy Logic (SL [3, 11]); an extension
of ATL with strategy contexts (ATLsc [10]); Quantified CTL∗ (QCTL∗ [9]); and Coordination
Logic (CL [4]). All these logical formalisms, however, have undecidable satisfiability and
non-elementary model checking problems in the general case. These undesirable properties
present substantial challenges from a computational point of view when applying these
temporal logics for synthesis or verification purposes. In fact, only very few practical model
checking tools support logical specifications with formalisms more powerful than ATL∗.

For some of the reasons given above, a number of studies have been conducted, partly
because better results can be obtained in restricted scenarios, for instance, when considering
sequential (also called turn-based) games or two-player games. For example, it is known
that with respect to two-player sequential games, Nash equilibria can be expressed in a
fragment of SL that is as expressive as ATL∗; see [3] for further details. As a consequence,
reasoning about Nash equilibria in this class of games can be done in 2EXPTIME. With
respect to multi-player sequential games, Nash equilibria can be expressed in both ATL∗sc and
Quantified CTL∗ while keeping the logics decidable [9]. Model checking is still non-elementary.
In addition, until recently, the simplest fragment of SL known to be powerful enough to
express Nash equilibria was the Boolean goal fragment [12], which may require, so-called,
non-behavioural strategies [12] to realise a profile of strategies.1 Such a fragment is not
known to have a decidable satisfiability problem [11], but can be used to model check Nash
equilibrium properties in 2EXPTIME given the characterisation of Nash equilibria in SL.
These are all very interesting results, which suggest that further work should be done.

In this paper, we will show that under a suitable set of necessary and sufficient conditions,
ATL∗ can be used to reason about the existence of various kinds of equilibria in multi-player
non-zero-sum concurrent games. In particular, we will be interested in how to:
1. verify if a given game has a Nash equilibrium (NE model checking);
2. check if there is a game where a desired Nash equilibrium exists (NE satisfiability);
3. synthesise a profile of strategies that realises a particular Nash equilibrium;
4. express Nash equilibria in a number of types of games.

Let us now explain how ATL∗ can be used to address the above questions. We say that
a property can be expressed in a given logic L if there is a formula φ of L such that φ is
satisfied in all and only the models having such a property. Moreover, we say that a problem
can be characterised in a given logic L if every instance of the problem can be specified in L.
Letting P be the property of having a Nash equilibrium (formally defined later on), we show
that using ATL∗ one can both express P in multi-player sequential games and characterise
the NE model checking and NE satisfiability problems for these games. In fact, we can do so
using a logic that is strictly weaker than ATL∗. Moreover, we show that using ATL∗ one
can characterise the NE satisfiability problem for multi-player concurrent games and the NE
model checking problem for a subclass of games that we call Moore with deterministic past.

1 It was recently discovered how to express Nash equilibria in a fragment of SL that is simpler than the
Boolean goal fragment and which can be given an interpretation in terms of behavioural strategies.
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An interesting aspect of our results with respect to ATL∗ is that the class of Moore games
with deterministic past is complete for the whole family of multi-player concurrent games
in the following sense: every formula φ of ATL∗ is satisfiable if and only if it is satisfied
by some model representing a game that is Moore with deterministic past. Then, Moore
games with deterministic past can be seen as canonical within the class of multi-player
concurrent games and therefore be used as an underlying model with respect to which define
games and synthesise profiles of strategies. Using these results we can, in the end, perform a
computational analysis of Nash equilibrium properties for various types of games.

Our results build on a novel semantic characterisation of Nash equilibria which combines
the concepts of winning strategies and memoryful reasoning. Informally, in this paper we use
techniques from repeated game theory (more specifically, punishment strategies as used in
the literature about the Folk Nash theorems for repeated games [5, 14]) and combine them
with recent developments in the study of strategic reasoning in logic and computer science:
a memoryful extension of ATL∗ called mATL∗ [13]. Our results also indicate why an ATL∗
specification that allows one to reason about the existence of Nash equilibrium may be so
hard to find: it can be obtained via a non-elementary reduction from mATL∗, which was
recently shown to be as expressive as ATL∗, a result that partly builds on quite sophisticated
automata-theoretic techniques developed for a memoryful extension of CTL∗ [7].

Based on what is currently known about some of the computational properties of mATL∗,
(for instance, 2EXPTIME satisfiability, synthesis, and model checking problems as well as a
non-elementary reduction to ATL∗), we are able to obtain a number of subsequent results.
We also studied the two important special cases of two-player games and sequential games.
In the latter setting, we show that the existence of Nash equilibria can be expressed in
m−ATL∗ [13], a (memoryful) temporal logic that is known to be strictly weaker than ATL∗,
which improves previous results in the literature [3, 9] and shows that concurrent behaviour,
even in the two-player case, appears to complicate matters considerably.

Moreover, given the translation from mATL∗ to ATL∗, we show that Nash equilibrium
can be realised with respect to finite-memory strategies [15], which in turn also answers a
question about the nature of Nash equilibrium strategy profiles and improves other results in
the literature [12]. Finally, we extend all of our main findings to strong Nash equilibrium, a
game-theoretic solution concept designed to deal with coalitions of players in a game—a very
natural situation in concurrent and multi-agent scenarios. Interestingly, the results for this
more complex game-theoretic setting are obtained using virtually the same techniques as in
the case for Nash equilibria, where only single-player deviations are considered.

Finally, the table below summarises some of the results mentioned before, i.e., the logics
that can be used to study NE satisfiability and NE model checking for each type of games.

2P-SG 2P-CG MP-SG MP-CG
NE satisfiability m−ATL∗ ATL∗ m−ATL∗ ATL∗

NE model checking m−ATL∗ SL m−ATL∗ SL

Notation: 2P (2-player), MP (multi-player), SG (sequential game), CG (concurrent game).

Structure of the paper Section 2 introduces the models, logics, and games that we will
consider throughout the paper. Section 3 presents the semantic characterisation of equilibria
in terms of punishment strategies, and Section 4 defines Moore games with deterministic past.
Section 5 shows how to construct an mATL∗ specification of the semantic characterisation of
equilibria given before in order to solve NE satisfiability, and Section 6 studies the special
cases of sequential games and two-player games. Section 8 concludes the paper.
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2 Preliminaries

Sets Given any set S = {s, q, r, . . .}, we use S∗, Sω, and S+ for, respectively, the sets of
finite, infinite, and non-empty finite sequences of elements in S. If w1 = s′s′′ . . . sk ∈ S∗ and
w2 is any other (finite or infinite) sequence, we write w1w2 for their concatenation s′s′′ . . . skw2.
For Q ⊆ S, we write S−Q for S \Q and S−i if Q = {i}. We extend this notation to tuples
u = (s1, . . . , sk, . . . , sn) in S1 × . . .× Sn, and write u−k for (s1, . . . , sk−1, sk+1, . . . , sn), and
similarly for sets of elements, that is, by u−Q we mean u without each sk, for k ∈ Q. Given
a sequence w, we write w[t] for the element in position t+ 1 in the sequence; for instance,
w[0] is the first element of w. We also write w[l . . .m] for the sequence w[l] . . . w[m], and
w[l . . .m) for w[l] . . . w[m− 1]; if m = 0, we let w[l . . .m) be the empty sequence, denoted ε.

Games Let Ag = {1, . . . , n} be a set of players and St a set of states. For each player i ∈ Ag
we have a set of actions Aci and with every state s and player i we associate a set Aci(s) ⊆ Aci
of actions that i can perform at s. We write Ac for

⋃
i∈Ag Aci and assume that

⋃
i∈Ag Aci

is a partition of Ac. We call a profile of actions (a1, . . . , an) ∈ Ac1 × · · · × Acn a direction,
and denote it by d. We let D be the set of directions—also called decisions—with respect
to Ac, and write di for the ai of d that is in Aci. Furthermore, we have a (deterministic)
transition function δ : St × Ac1 × · · · × Acn → St, which indicates the system transitions
when d = (a1, . . . , an) is performed at a state s. A state s′ is accessible from another
state s whenever there is some d = (a1, . . . , an) such that δ(s, a1, . . . , an) = s′. A run
is an infinite sequence ρ = s0s1s2 . . . such that for every t ≥ 0 we have that st+1 is
accessible from st. The set of runs is denoted by R. By a (finite) history we mean a finite
sequence π = s0s1s2 . . . sk of accessible states. By prefix(ρ) we denote the set of finite prefixes
of ρ, i.e., prefix(ρ) = {π ∈ St∗ : ρ = πρ′ for some ρ′ ∈ Stω}. Given π ∈ St+, by last(π) we
denote the last state in π, i.e., if π = π′s, then last(π) = s. By s0 we denote the initial state.

A strategy for a player i is a function fi : St+ → Aci such that fi(πs) ∈ Aci(s) for every
π ∈ St∗ and s ∈ St. That is, a strategy for a player i specifies for every finite history π
an action available to i in last(π). The set of strategies for player i is denoted by Fi. A
strategy profile is a tuple ~f = (f1, . . . , fn) in F1 × · · · × Fn. Observe that given a state s
and a transition function δ : St × Ac1 × · · · × Acn → St, each strategy profile ~f defines a
unique run ρ where ρ[0] = s and ρ[t+ 1] = δ(ρ[t], f1(ρ[0 . . . t]), . . . , fn(ρ[0 . . . t])), for all t ≥ 0.
We write ρ(~f(s)) for such a run, and simply ρ(~f) if s = s0. Furthermore, each player i is
assumed to have an associated dichotomous preference relation over runs, which is modelled
as a subset Γi of the set of runs R. Intuitively, a player i strictly prefers all runs in Γi to
those that are not in Γi and is indifferent otherwise. Thus, Γi represents the goal or objective
of player i. We also write ρ %i ρ′ to indicate that player i weakly prefers run ρ to ρ′ and
ρ �i ρ′ for player i strictly preferring ρ to ρ′, i.e., if ρ %i ρ′ but not ρ′ %i ρ.

Now we are in a position to define the concept of a Nash equilibrium strategy profile as a
strategy profile ~f = (f1, . . . , fn) such that for all players i and all strategies gi in Fi,

ρ(~f) %i ρ(~f−i, gi).

We say that a run ρ is sustained by a Nash equilibrium strategy profile if there is some Nash
equilibrium strategy profile ~f with ρ = ρ(~f). Then, we know that

ρ(~f−i, gi) ∈ Γi implies ρ(~f) ∈ Γi.

A game is played by each player i selecting a strategy fi with the aim that the induced
run ρ(~f) belongs to its goal/objective set Γi. If ρ(~f) ∈ Γi we say that i has its goal satisfied
or achieves its objective. Otherwise, we say that i does not have its goal satisfied.
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Memoryful Alternating Temporal Logics

Memoryful ATL∗ (mATL∗ [13]) is an extension of ATL∗ that allows for memoryful reasoning.
At the syntactic level, mATL∗ simply adds a propositional variable present to the standard
ATL∗ language. More specifically, given a set of atomic propositions AP and a set of
agents Ag, the language of mATL∗ formulae is given by the following grammar:

φ ::= present | p | ¬φ | φ ∨ φ | Xφ | φUφ | 〈〈C〉〉φ
such that p ∈ AP and C ⊆ Ag, and the formulae present, X, and U are in the scope of 〈〈C〉〉.
We use the following abbreviations: we write > for p ∨ ¬p, ⊥ for ¬>, Fφ for >Uφ, Gφ for
¬F¬φ, Eφ for 〈〈Ag〉〉φ, Aφ for 〈〈∅〉〉φ, and [[C]]φ for ¬ 〈〈C〉〉 ¬φ; we also use the conventional
abbreviations for the other propositional logic operators. We write φ ∈ L(AP,Ag) if φ is an
mATL∗ formula in this language. When either AP or Ag, or both, are known, we may omit
them. With AP′ ⊆ AP, we may write φ|AP′ if φ ∈ L(AP′,Ag) for some set of agents Ag.

The denotation of mATL∗ formulae is given by concurrent game structures. We let a tuple
M = (AP,Ag,Ac,St, s0, λ, δ) be a concurrent game structure (CGS), where λ : St → 2AP

is a labelling function, and all other components of M are as defined before. The size
of M is defined to be |St| × |Ac||Ag|. Moreover, in particular, we write R∗s and Rωs for,
respectively, the finite and infinite runs of M that start at state s. We simply write R∗ and
Rω if s = s0. Moreover, we will write ~fC for (fi, . . . , fk), with C = {i, . . . , k} ⊆ Ag, that is,
a joint strategy for the players in C. Similarly, we will write ~g−C for a joint strategy for
the players in Ag−C . For simplicity, we will assume that all strategies are defined on all
finite runs of M , and hence at all states. We define the set of ~fC-runs from state s to be
{ρ′ ∈ Rωs : ρ′ = ρ(~fC(s), ~g−C(s)) for some joint strategy ~g−C for Ag−C}.

We can now define the semantics of mATL∗ formulae based on the rules given below. Let
M be a concurrent game structure, ρ ∈ Rω be an infinite run, π ∈ R∗ be a finite run, and
t ∈ N be a temporal index. The semantics of mATL∗ is defined by the following rules:
ρ, t, π |=M present iff ρ[0 . . . t] = π.
ρ, t, π |=M p iff p ∈ λ(ρ[t]).
ρ, t, π |=M ¬φ iff ρ, t, π |=M φ does not hold.
ρ, t, π |=M φ ∨ φ′ iff ρ, t, π |=M φ or ρ, t, π |=M φ′.
ρ, t, π |=M Xφ iff ρ, t+ 1, π |=M φ.
ρ, t, π |=M φUφ′ iff ρ, t′, π |=M φ′ , for some t′ ≥ t, and

ρ, k, π |=M φ , for all t ≤ k < t′.
ρ, t, π |=M 〈〈C〉〉φ iff there is some ~fC such that for all ~fC-runs ρ′ from state ρ[t],

it is the case that ρ[0 . . . t)ρ′, 0, ρ[0 . . . t] |=M φ holds.
We say that M is a model of φ (denoted M |= φ) if ρ, 0, s0 |=M φ for some ρ ∈ Rω. We

also say that φ is satisfiable if M |= φ for some CGS M . Moreover, we say that φ is equivalent
to φ′ if M |= φ⇐⇒M |= φ′ for all M . Finally, the size of φ is its number of subformulae.

The interpretation of the tense and boolean operators is, essentially, as for LTL. The
difference is with respect to the present proposition and the agent/strategy quantifier 〈〈C〉〉.
On the one hand, the atomic proposition present holds whenever the history of the current
run under consideration (i.e., the finite run ρ[0 . . . t]) is the same as the history of the run
leading to the state where present last was true—that is, π. On the other hand, the agent
quantifier does three important things: firstly, it considers the runs ρ′ that are consistent
with ~fC , but adds to them the history of play seen so far—thus, obtaining the run ρ[0 . . . t)ρ′;
secondly, it resets the evaluation of temporal formulae by letting the temporal index t be 0;
and, thirdly, it resets the history with respect to which the atomic proposition present will
now hold—then, letting π be ρ[0 . . . t]. A few examples are in order (also see, e.g., [13]).
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Examples Because the quantifiers of mATL∗ reset the temporal index t, CTL∗ formulae, such
as E F(p =⇒ A G q), cannot be interpreted in the same way in mATL∗: the subformula G q

will be evaluated from t = 0 regardless of the value of t when p holds. There is a standard
way to remedy this problem. Any subformula starting with a path quantifier can be
evaluated “in the usual CTL∗ sense” in the following way: M |=CTL∗ Aφ if and only if
M |= A F(present ∧ φ); and similarly for E. Therefore, in order to be interpreted as a CTL∗
expression, the formula above can be rewritten as E F(p =⇒ A F(present ∧G q)).

But, of course, mATL∗ is interesting because it can express, in a relatively simple way,
properties that refer both to the past and to the future within a strategic environment. For
instance, suppose an agent i has two objectives: satisfy LTL goal formula γ1 and if i sees
proposition p satisfied, then try to satisfy LTL goal formula γ2 too. What is important is
that both γ1 and γ2 are “goals” that were set from the beginning of the computation, not
from the point where, potentially, proposition p is encountered. Expressing that i can ensure
that its goals are satisfied can be done in the following way: 〈〈i〉〉(γ1 ∧G(p =⇒ 〈〈i〉〉 γ2)).
Then, player i must be more careful when playing the game. It has to play in such a way
that if p is seen while trying to satisfy γ1, then it is in a position to satisfy γ2 too. Seen as
a formula in ATL∗ instead, the situation is rather different: while γ1 has to hold from the
beginning of the computation, γ2 has to hold from the moment proposition p is seen.

Logical and Computational Properties Using the abbreviations E and A and the atomic
proposition present as explained in the first example, it can be shown that CTL∗ is a sublogic
of mATL∗. Thus, CTL and LTL are also sublogics of mATL∗. Moreover, none of these
logics is as powerful as mATL∗, as might be expected. What is surprising is that, in fact,
ATL∗ is as expressive as mATL∗. However, the translation from mATL∗ to ATL∗ formulae
is non-elementary [13]. An interesting case is the fragment of mATL∗ without the present
proposition. Such a fragment, called m−ATL∗ is not as expressive as ATL∗, and incomparable
with CTL/CTL∗. The proof is simple and has to do with the fact that present is needed for
mATL∗ to be able to capture “memoryless” properties such as those given by CTL∗ (cf. the
first example above and [13]). Letting L1 < L2 mean that logic L1 is strictly less expressive
than logic L2, and L1 ≡ L2 that L1 is as expressive as L2, we have the following:

m−ATL < mATL∗ ≡ ATL∗ < {SL, CL, ATLsc, QCTL∗}.

With respect to the complexity of mATL∗, it is known that it has model checking,
satisfiability and synthesis problems in 2EXPTIME, thus no harder than ATL∗. These
results sharply contrast with those for other logics such as Strategy Logic, ATL with
strategy contexts, or Coordination Logic, in which satisfiability and synthesis are undecidable
and model checking is non-elementary [4, 9, 11]. The complexity properties of logics for
strategic reasoning present a substantial challenge for practical purposes. In fact, a very
simple fragment of Strategy Logic—where Nash equilibrium can be specified—may require
non-behavioural strategies as models [12], which is not the case in ATL∗ and mATL∗.

Games with Temporal Logic Goals

Finally, we are in a position to define a game with temporal logic goals. Given a concurrent
game structure M = (AP,Ag,Ac,St, s0, λ, δ) and a set of temporal logic formulae (γi)i∈Ag,
a tuple G = (M, (γi)i∈Ag) is a game with temporal logic goals. We say that G is a game with
LTL goals if each γi ∈ L(AP) is an LTL formula, and simply call G a game. The idea is that
each γi ∈ L(AP) is a formula that succinctly represents the goal of player i, that is, γi is a
logical representation of Γi. Then, we have that a run ρ satisfies goal γi if and only if ρ ∈ Γi.
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3 From Winning Strategies to Nash Equilibria

In order to characterise the existence of Nash equilibrium in terms of winning strategies, we
will introduce the concept of punishment strategies. These are a type of winning strategies
that a group of players may want to use against a player j who wants to refrain from following
a given sequence of actions—a situation that is commonly known as a deviation by j.

A finite history π is a deviation from a run ρ if π = π′s for some state s ∈ St such that
π′ ∈ prefix(ρ) and π /∈ prefix(ρ). We also use dev(ρ) to refer to the set of deviations from ρ.
A finite history π is a deviation from a set R if π ∈ dev(ρ) for some ρ ∈ R and π ∈ prefix(ρ′)
for no ρ′ ∈ R. The set of deviations from R is denoted by dev(R).

If a run ρ is intended to be sustained by a Nash equilibrium strategy profile ~f , punishment
may be successful deterring agents from adopting deviating strategies—strategies that do not
comply with ρ. However, if a deviation is observed, it is generally not necessary to punish all
players but rather only those that the deviation can be attributed to in order to prevent such
undesirable behaviour. We thus introduce the following formal concept of attributability.

I Definition 1 (Attributability). Let ρ be a run and π ∈ dev(ρ) a deviation from ρ. Then,
the deviation π is attributable to a set C of players if there are profiles ~f = (f1, . . . , fn)
and ~g = (g1, . . . , gn) such that ρ(~f) = ρ and π ∈ prefix(ρ(~f−C , ~gC)). We also say that π is
attributable to j for π being attributable to C = {j}. A deviation π is said to be individual
if π is attributable to some player j. Moreover, a deviation π from ρ is said to be uniquely
attributable to C if C is the only set that the deviation π can be attributed to. A deviation
that is uniquely attributable to a player j (a set C) is called a j-deviation (a C-deviation).

The necessity of the concept of attributability is rather clear: in order to define punishable
players and punishment strategies the least that one needs to know is who should be punished
once a deviation arises. Some equally important information in order to define punishment
strategies is the history of play so far, since players’ goals are defined with respect to the
beginning of the game. Then, at every stage of the game one must be able to “remember”
the history of play so far—that is, we need some memoryful power within the game. In order
to formalise the above notions and, in particular, to make precise how we will deal with
memoryful reasoning later on, let us introduce some notations first.

Given a finite history π, each strategy profile ~f induces a unique run ρ(~f, π) = s0s1s2 . . .

defined inductively as follows, with t ≥ 0,

st =


s0 if t = 0 and π = ε,

δ(last(π), f1(π), . . . , fn(π)) if t = 0 and π 6= ε,
δ(st−1, f1(s0 . . . st−1), . . . , fn(s0 . . . st−1)) otherwise.

We omit ε in ρ(~f, ε) and simply write ρ(~f). Then, π can be seen as the history of play with
which a strategy or a profile of strategies can be made to agree, so that it is taken into
account when playing beyond π. We are now in a position to formulate the central concept
of this section, namely that of a player, or a set of players, being punishable.

I Definition 2 (Punishable players, punishment strategies). A set C of players is punishable at
run ρ if there is a profile ~fC = (fC1 , . . . , fCn )—also called a profile of punishment strategies
against C—such that for every profile of strategies ~gC of C and every deviation π from ρ

that is uniquely attributable to C we have, for some j ∈ C,

πρ((~fC−C , ~gC), π) /∈ Γj .
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One thing to observe in this definition is that a profile of punishment strategies may punish
different players at different C-deviations. Moreover, as we will see, for a set C of players
to be punishable, it is sufficient to punish only one player in C at each C-deviation. More
importantly, Definition 2 shows the strong link between two important components: firstly,
the need to consider/remember π and, secondly, the existence of a winning strategy ~fC−C for
the set of players not in C against the goal of at least one of the players in C.

Thus, a careful analysis of the definition of punishability we proposed shows the following
facts. That if one is interested in that every player j whose goal is not satisfied by ρ must be
punishable, then one has to guarantee, in particular, that at every stage of the game those in
the set of players in Ag−j (i) must have a winning strategy against the goal of player j, and
such a winning strategy (ii) must agree with ρ up to the time point when j deviates. These
two conditions for a player j to be punishable are key to answering the next question:

When can a player j be guaranteed to be punishable
so that a desired Nash equilibrium can be rationally sustained?

Formally, punishability with respect to a desired run ρ can be fully characterised in terms
of a number of winning strategies against the goal of j, as shown by the following lemma.

I Lemma 3 (Punishability - semantic characterisation). Player j is punishable at run ρ

if and only if for every deviation π from ρ that is uniquely attributable to j there is a
profile ~fπ = (fπ1 , . . . , fπn ) such that for every strategy gj of j we have that

π ρ((~fπ−j , gj), π) /∈ Γj.

The above lemma supports the claim that punishability can be understood as a simple
combination of winning strategies (given by ~fπ−j to achieve ¬γj) with memory (given by π).
Because the concept of punishability will be central to the characterisation of the existence of
Nash equilibrium strategy profiles, the above claim about winning strategies and memoryful
reasoning can be naturally extended to the more complex concept of Nash equilibria.

Indeed, the manipulation of the three main concepts introduced in this section, namely
deviations, attributability, and punishment, can be used to provide a semantic characterisation
of the fundamental concept of Nash equilibrium. More importantly, they can be used to show
that Nash equilibria can be characterised by the existence of punishment strategies, which,
by definition, are winning strategies against players to which deviations can be attributed.
Formally, the following result can be shown.

I Lemma 4 (Nash equilibrium - semantic characterisation). Let ρ be a run and assume that
all individual deviations from ρ are uniquely attributable. Then, ρ is sustained by a Nash
equilibrium strategy profile if and only if all players j with ρ 6∈ Γj are punishable at ρ.

Lemma 4 shows that, provided that every j-deviation can be uniquely attributable to
player j, the following condition is both necessary and sufficient for the existence of a Nash
equilibrium ρ: that every player j whose goal is not satisfied by ρ must be punishable.

The necessary and sufficient conditions for the existence of Nash equilibria are both
formulated in terms of our notion of punishability (Lemma 4). To be able to punish a
deviating player, however, a coalition also has to keep track of the run that leads to the
deviation. This idea could informally be summarised as follows:

Nash equilibrium = Punishability + Memory

The concept of punishability is closely related to that of a winning strategy. Thus, the above
results prepare the ground for the characterisation of Nash equilibrium in temporal logics
like mATL∗ that can reason about both winning strategies and memoryfulness.
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4 Model Transformations

In order to logically describe the semantic characterisation of Nash equilibria presented in
Section 3, we first define two structure-preserving transformations on CGSs, which can be
used to map any CGS into another CGS in a desired canonical form. The first map is used to
transform a CGS into a CGS with deterministic past. The second map is used to transform a
CGS M into a CGS M ′ where all information about players’ choices in M is explicitly given
via labels in the states of M ′. This transformation is similar to the well known translation
used to obtain Moore from Mealy machines. For this reason, we call such a translation a
Moore transformation, and the resulting CGS M ′ a Moore CGS.

Let us now formally define the class of CGS with deterministic past. A CGS M is said to
be a CGS with deterministic past if whenever δ(s′, d′) = s and δ(s′′, d′′) = s then d′ = d′′.
The first map above mentioned, namely detp :M→M, called a deterministic-past map,
transforms a CGSM into a CGSM ′ which can be shown to be a CGS with deterministic past.
The map detp is defined as follows. Given M ∈ M, where M = (AP,Ag,Ac,St, s0, λ, δ),
the structure detp(M) is defined to be the tuple (AP,Ag,Ac,St′, q0, λ′, δ′) such that

St′ = {sd : s ∈ St & d ∈ D}, and q0 = s0
d for any d ∈ D;

λ′(sd) = λ(s), for all d ∈ D; and δ′(sd, d′) = s′d′ if and only if δ(s, d′) = s′, for all d ∈ D;
where sd is an abbreviation for the pair (s, d) and D is the set of directions/decisions.

I Lemma 5 (Deterministic past). Let M be a CGS and detp be a deterministic-past map.
Then detp(M) is a CGS with deterministic past of size O(|D| × |M |).

The second map, namely moore :M→M, for consistency called aMooremap, is defined
as follows. Given M ∈ M, with M = (AP,Ag,Ac,St, s0, λ, δ), the structure moore(M),
called a Moore CGS, is defined to be the tuple (AP′,Ag,Ac,St, s0, λ′, δ) such that

AP′ = AP ]APi ]APo, where
APi = {ǎxi : i ∈ Ag & x ∈ Aci} and APo = {âxi : i ∈ Ag & x ∈ Aci};
if δ(s, d) = s′, with d = (x1, . . . , yn), then there are propositions ǎx1 , . . . , ǎyn ∈ APi and
âx1 , . . . , â

y
n ∈ APo, such that {ǎx1 , . . . , ǎyn} ⊆ λ′(s′) ∩APi and {âx1 , . . . , âyn} ⊆ λ′(s) ∩APo.

I Lemma 6 (Moore CGS). Let M be a CGS and moore be a Moore map. Then moore(M)
is a Moore CGS of size O(|M |).

Composing these two maps one can obtain, from a CGS M = (AP,Ag,Ac,St, s0, λ, δ),
a CGS M ′′ = (AP ] APi ] APo,Ag,Ac,St′, q0, λ′′, δ′) of size polynomial in |M | which
preserves all mATL∗ properties that can be defined by formulae in L(AP), provided that
both AP ∩APi = ∅ and AP ∩APo = ∅—which is, by definition, ensured by both maps.

I Lemma 7. Let M = (AP,Ag,Ac,St, s0, λ, δ) be a CGS and M ′ = moore(detp(M)).
Then, M ′ is a Moore CGS with deterministic past of size O(|D| × |M |) which is such that
M |= φ if and only if M ′|AP |= φ, for all formulae φ ∈ L(AP).

Informally, Lemma 7 relies on the fact that, because of the definition of δ′ in detp, the
branching structure of every s of M is preserved in each sd ∈ {sd : d ∈ D} of M ′|AP. In
particular, note that, for any given M ∈ M, the map detp(M) simply makes up to |D|
(bisimilar) copies of each state of M where all players’ choices are preserved in each sd.
Moreover, for any given M ∈M, the structures M and moore(M)|AP are isomorphic. Also,
since both detp and moore are total maps on CGSs, it can easily be shown from the above
lemmas the following result with respect to the properties that can be expressed in mATL∗.

I Corollary 8 (Model completeness). For every φ ∈ L(AP), it is the case that φ is satisfiable
if and only if there is a Moore CGS with deterministic past model M such that M |= φ.
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5 Nash Equilibria in Memoryful Logical Form

We now show that, up to bisimilarity, the concepts introduced in Section 3 can be given a
logical characterisation in mATL∗. Without much further introduction, we first present an
mATL∗ formula that can be used to reason about Nash equilibria, and then describe how
each part of the specification relates to the conditions given in Section 3. Some notation first.

Given a set of players W ⊆ Ag, a set of actions Ac =
⋃
i∈Ag Aci for such players,

and a set of atomic propositions AP, we write L for Ag \W , and APi =
⋃
i∈Ag APii and

APo =
⋃
i∈Ag APoi for two sets of atomic propositions constructed based on Ac as follows:

x ∈ Aci ⇐⇒ ǎxi ∈ APii ⇐⇒ âxi ∈ APoi,

such that AP ]APi ]APo is a set we denote by AP′. Then, the formula NormForm, defined
below, logically describes the labelling pattern found in the class of CGSs that satisfy the
conditions to be a Moore CGS with deterministic past, just as we studied them in Section 4:

NormForm = A G
∧
i∈Ag

((∨
ǎx

i
∈APi ǎ

x
i

)
∧
∧
ǎx

i
∈APii

(
ǎxi =⇒ (

∧
ǎy

i
∈APii\{ǎx

i
} ¬ǎ

y
i )
)
∧∧

âx
i
∈APoi

(
âxi ⇐⇒ E F(present ∧X ǎxi )

))
.

Then, the mATL∗ formula φNE below is satisfiable iff there is a Moore with deterministic
past CGS M = (AP,Ag,Ac,St, s0, λ, δ) such that G = (M, (γi)i∈Ag) has a Nash equilibrium:

φNE =
(

E
∨

W⊆Ag

(
NEGoal(W ) ∧ AllPunishable(L)

))
∧ NormForm

such that
NEGoal(W ) =

∧
i∈W

γi ∧
∧
j∈L
¬γj

and

AllPunishable(L) = G
∧

d∈Ac1×...×Acn

(
InRun(d) =⇒

∧
j∈L

A Punishable(j, d)
)

where
InRun(d) =

∧
i∈Ag

X ǎdi
i

and

Punishable(j, d) = F
(

present ∧X
(
AttDev(j, d) =⇒ Punish(j)

))
with

AttDev(j, d) =
( ∧
i∈Ag−j

ǎdi
i

)
∧ ¬ǎdj

j and Punish(j) = 〈〈Ag−j〉〉 ¬γj

Formula φNE simply describes the conditions given by Lemmas 3 and 4 to characterise
the existence of Nash equilibria within the canonical class of game models given by the family
of Moore CGSs with deterministic past. Let us now describe each formula in more detail.

The first line of NormForm indicates that every state must be labelled by one, and only
one, profile of players’ choices in APi (deterministic past); the second line, indicates that
every player’s choice available at some state is recorded in such a state (Moore). Note that
because in mATL∗ path quantifiers reset the present, the CTL formula E X ǎxi must be
written as E F(present ∧X ǎxi )—a standard mechanism to interpret formulae in the present.
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The rest of the specification deals with Lemmas 3 and 4. It first indicates that for some
set of players W (the “winners”) there is a run that satisfies their goals, while the players not
in W (the “losers”) do not. That the goals are satisfied or not is checked by NEGoal. The
formula also indicates that all “losers” must be punishable, which is specified by AllPunishable.
This captures Lemma 4 provided that all individual deviations are uniquely attributable.

To check that all players in L are punishable in the same run and at every time point, we
first check the profile of players’ choices currently used (“d”). Because NormForm guarantees
deterministic past, formula InRun will be necessarily satisfied by exactly one d, which is used
to check, for every player in L, if it can be punished should it deviate. Since to consider a
potential deviation one has to use a universal path quantifier, then the semantics of the logic
dictates that the present is reset. This is the reason why the present formula must be used
in Punishable. Finally, we need to check two conditions. On the one hand, that an individual
deviation is uniquely attributable to j: formula AttDev does precisely that. On the other
hand, that if this was the case, then player j can be effectively punished: formula Punish does
exactly that. Note that memory is used in a different way for the first time; formula 〈〈Ag−j〉〉
resets the present again, but this time we do not use the present proposition. Instead, we
consider (the negation of) player j’s goal from the beginning—i.e., it is evaluated from the
first time point, not from the present. Then, with respect to Lemma 3, formula 〈〈Ag−j〉〉
represents ~fπ−j , while π is being naturally captured by the semantics of the logic.

Formally, appealing to Lemmas 3 and 4, the following result can be shown:

I Theorem 9. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag with
action set Ac =

⊎
i∈Ag Aci. Then, the formula φNE constructed from (AP,Ag,Ac, (γi)i∈Ag)

is satisfiable iff there is a Moore CGS with deterministic past M = (AP,Ag,Ac,St, s0, λ, δ)
such that the game G = (M, (γi)i∈Ag) has a Nash equilibrium.

Because ATL∗ is as expressive as mATL∗—there is a non-elementary translation from
mATL∗ to ATL∗—the following result easily follows from Theorem 9.

I Corollary 10. NE satisfiability in multi-player non-zero-sum perfect-information concurrent
games can be characterised in ATL∗.

Some complexity results follow from Theorem 9. Since satisfiability and model checking
for mATL∗ are 2EXPTIME, it follows that, given a tuple (AP,Ag,Ac, (γi)i∈Ag), deciding
whether there is a CGS M = (AP,Ag,Ac,St, s0, λ, δ) such that the game G = (M, (γi)i∈Ag)
has a Nash equilibrium—the problem we call NE satisfiability—is a 2EXPTIME problem.
The other important decision problem, namely checking the existence of a Nash equilibrium
over a given CGS M—the problem we call NE model checking—is already known to be
2EXPTIME and solved, for instance, using the Boolean goal fragment of SL. Then, we focus
on NE satisfiability instead. Formally, the following complexity result can be shown.

I Corollary 11. NE satisfiability is 2EXPTIME-complete.

Regarding NE model checking, we would like to note that because φNE is an ATL∗
formula, it cannot distinguish between bisimilar models. Then, in order to do NE model
checking with φNE, one has to necessarily ensure that the game being analysed already has
deterministic past—for instance, such as the games studied in [5]—so that the map detp,
which introduces bisimilar states to the model to be checked, need not be used.

In order to improve, or simplify, the results obtained in this section, in the next section
we will study special cases where the problems under consideration may be less complex. In
particular, we will consider two interesting, and frequently found, scenarios in the games
literature: sequential games (sometimes also called turn-based games) and two-player games.
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6 Special Cases

Sequential Games

The fact that in a sequential (turn-based) game only one player makes a non-trivial move
greatly simplifies the way to reason about Nash equilibria using mATL∗. In fact, we can
express the existence of a Nash equilibrium in the logic m−ATL∗ (mATL∗ without present),
which is strictly weaker than mATL∗. The formula to express Nash equilibria in m−ATL∗ is:

φSG
NE = E

∧
j∈Ag

(
¬γj =⇒ G 〈〈Ag−j〉〉 ¬γj

)
from which, again using Lemmas 3 and 4, the next expressivity result can be shown.

I Theorem 12. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag. Then,
the m−ATL∗ formula φSG

NE constructed from (AP,Ag, (γi)i∈Ag) is satisfiable in a sequential
game if and only if there is some CGSM = (AP,Ag,Ac,St, s0, λ, δ) such that the multi-player
non-zero-sum sequential game G = (M, (γi)i∈Ag) has a Nash equilibrium.

In this case, one can see that the formula G 〈〈Ag−j〉〉 ¬γj is almost an explicit logical
description of π ρ((~fπ−j , gj), π) /∈ Γj , from Lemma 3, as the expression must hold for every π.
There are two reasons why the expression for sequential games is so much simpler than the
general case: firstly, only one player can deviate at each state—thus any deviation is uniquely
attributable—and, secondly, winning (punishment) strategies can be defined directly on the
Nash equilibrium run being followed, rather than on paths taken by deviations.

Two-player Games
The complexity of both checking the existence (NE satisfiability) and verifying the satisfaction
(NE model checking) of Nash equilibria cannot be improved in the two-player case. However,
an explicit and conceptually simple algorithm for NE satisfiability can be defined in the
two-player case, which can be solved using CTL∗ synthesis, as usual, by associating the
action set Ac = Ac1 ] Ac2 with the set of atomic propositions AP. We write SAT(ψ) for
LTL satisfiability and SYN(ψ, In, Out) for CTL∗ synthesis, where player 1 plays first trying
to realise ψ, controls In, and with In and Out the sets of input and output variables; cf. [5].

TWO-NE-SATISFIABILITY(AP1,AP2, γ1, γ2)
1. if SAT(γ1 ∧ γ2) return “yes”
2. if SYN(γ1, AP1, AP2) or SYN(γ2, AP2, AP1) return “yes”
3. if SYN(¬γ2, AP1, AP2) and SYN(¬γ1, AP2, AP1) return “yes”
4. if SYN(E γ1 ∧ A ¬γ2, AP1, AP2) or SYN(E γ2 ∧ A ¬γ1, AP2, AP1) return “yes”
5. return “no”

The above algorithm, inspired by the results obtained in [6], suggests a simple and intuitive
mATL∗ characterisation of the NE satisfiability problem in two-player games:

φ2G
NE =

(
E(γ1 ∧ γ2)

)
∨
(
〈〈1〉〉 γ1 ∨ 〈〈2〉〉 γ2

)
∨
(
〈〈1〉〉 ¬γ2 ∧ 〈〈2〉〉 ¬γ1

)
∨
(

NormForm ∧
(

E
(
γ1 ∧ ¬γ2 ∧G

∧
p∈AP1

(X ǎp1 =⇒ [[2]] F(present ∧X(ǎp1 =⇒ 〈〈1〉〉 ¬γ2)))
)
∨

E
(
γ2 ∧ ¬γ1 ∧G

∧
p∈AP2

(X ǎp2 =⇒ [[1]] F(present ∧X(ǎp2 =⇒ 〈〈2〉〉 ¬γ1)))
) ))

.

That NE satisfiability for two-player turn-based games can be characterised in ATL∗ was
known [3]. Our result is instead in the concurrent setting. The specification requires present
and we do not see how to avoid it, which suggests that concurrency makes things harder.

I Theorem 13. NE satisfiability for two-player non-zero-sum concurrent games can be solved
using CTL∗ synthesis and characterised in ATL∗ using a translation from formula φ2G

NE.
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7 Further Implications

Strong Nash Equilibrium

The solution concept we have focused so far, namely Nash equilibrium, assumes that deviations
are only possible by single players. In the concurrent and multi-agent world, however, it is
natural to assume that players may deviate in groups in order to achieve a common goal.
Such kind of behaviour is captured by the notion of strong Nash equilibrium where, informally,
a strategy profile is a strong Nash equilibrium whenever no coalition/group of players who do
not get their goals achieved can deviate in a beneficial way for all deviating players. Formally,
a strong Nash equilibrium strategy profile is a strategy profile ~f = (f1, . . . , fn) such that for
all groups C of players and all strategies gC in FC , for all j ∈ C we have ρ(~f) %j ρ(~f−C , gC).
We say that a run ρ can be sustained by a strong Nash equilibrium strategy profile if there is
some strong Nash equilibrium strategy profile ~f such that ρ = ρ(~f).

Our study of punishability in Section 3 can be extended to deviations by groups of
players, and therefore to strong Nash equilibrium. Similarly, the logical specification given in
Section 5 can also be easily modified to capture the new setting, in particular, by letting∧
C⊆L A Punishable(C, d) in AllPunishable, and re-defining AttDev and Punish as follows:

AttDev(C, d) =
( ∧
i∈Ag−C

ǎdi
i

)
∧
( ∧
j∈C
¬ǎdj

j

)
and Punish(C) = 〈〈Ag−C〉〉

∨
j∈C
¬γj .

We write φSNE for the characterisation in mATL∗ of satisfiability for strong Nash equilibrium.

I Theorem 14. Let (γi)i∈Ag, with each γi ∈ L(AP), be the goals of a set of players Ag with
action set Ac =

⊎
i∈Ag Aci. Then, the formula φSNE constructed from (AP,Ag,Ac, (γi)i∈Ag)

is satisfiable iff there is a Moore CGS with deterministic past M = (AP,Ag,Ac,St, s0, λ, δ)
such that the game G = (M, (γi)i∈Ag) has a strong Nash equilibrium.

We would like to note that even though φSNE is more complex than φNE, the latter
formula can still characterise the satisfiability problem for strong Nash equilibrium in the two
simpler settings we studied in the previous section. Firstly, note that in the sequential case,
trivially, the same specification works for both Nash equilibrium and strong Nash equilibrium
since only one player can deviate at a time. Likewise, with respect to two-player games the
same specification also works for both solution concepts since the only deviation for a group
of players greater than one, is to a run that satisfies all players’ goals, which, by definition, is
a Nash equilibrium. Formally, we have the following expressivity result.

I Theorem 15. Formula φNE characterises the satisfiability problems for both Nash and
strong Nash equilibria in two-player concurrent games and multi-player sequential games.

Synthesis

Finally, we study the nature—memoryless, finite-memory, etc.—of the strategies in the
equilibrium strategy profiles discussed so far, should one intend to synthesise them. This has
been an open question for some time: because the logics known to be able to express equilibria
in multi-player games have an undecidable synthesis problem (and a non-elementary model
checking problem), strategy synthesis is not fully understood in the most general case. On
the contrary, in our setting the problem can be reduced to ATL∗ synthesis, which is known
to be solvable using (one-bit) finite-memory strategies [15]. Formally, we have:

I Corollary 16. Every (strong) Nash equilibrium can be realised using a (strong) Nash
equilibrium profile ~f = (f1, . . . , fn), where each fi is a finite-memory strategy.
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8 Analysis

We have presented various expressivity and complexity results for the specification, com-
putation, and verification of (strong) Nash equilibria, as well as particular results for two
special scenarios, namely two-player games and sequential games. Our results build on a
novel approach: a semantic characterisation of equilibria based on winning strategies and
memoryful reasoning, which is amenable to a further temporal logic characterisation.

Our results suggest that a logic for strategic reasoning where memoryful reasoning and
attributability can be explicitly captured may ease the logical description of the existence of
Nash equilibria. Otherwise, having a model of games where deviations can be more easily
recognised should help when reasoning about Nash equilibria within a logical framework.
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