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Abstract14

In game theory, mechanism design is concerned with the design of incentives so that a desired15

outcome of the game can be achieved. In this paper, we study the design of incentives so that16

a desirable equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic17

property—a problem that we call equilibrium design. We base our study on a framework where18

system specifications are represented as temporal logic formulae, games as quantitative concurrent19

game structures, and players’ goals as mean-payoff objectives. In particular, we consider system20

specifications given by LTL and GR(1) formulae, and show that implementing a mechanism to21

ensure that a given temporal logic property is satisfied on some/every Nash equilibrium of the game,22

whenever such a mechanism exists, can be done in PSPACE for LTL properties and in NP/ΣP
2 for23

GR(1) specifications. We also study the complexity of various related decision and optimisation24

problems, such as optimality and uniqueness of solutions, and show that the complexities of all such25

problems lie within the polynomial hierarchy. As an application, equilibrium design can be used as26

an alternative solution to the rational synthesis and verification problems for concurrent games with27

mean-payoff objectives whenever no solution exists, or as a technique to repair, whenever possible,28

concurrent games with undesirable rational outcomes (Nash equilibria) in an optimal way.29
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1 Introduction37

Over the past decade, there has been increasing interest in the use of game-theoretic38

equilibrium concepts such as Nash equilibrium in the analysis of concurrent and multi-agent39

systems (see, e.g., [3, 4, 8, 14, 15, 17, 23]). This work views a concurrent system as a40

game, with system components (agents) corresponding to players in the game, which are41

assumed to be acting rationally in pursuit of their individual preferences. Preferences may42

be specified by associating with each player a temporal logic goal formula, which the player43

desires to see satisfied, or by assuming that players receive rewards in each state the system44

visits, and seek to maximise the average reward they receive (the mean payoff ). A further45
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18:2 Equilibrium Design for Concurrent Games

possibility is to combine goals and rewards: players primarily seek the satisfaction of their46

goal, and only secondarily seek to maximise their mean payoff. The key decision problems in47

such settings relate to what temporal logic properties hold on computations of the system48

that may be generated by players choosing strategies that form a game-theoretic (Nash)49

equilibrium. These problems are typically computationally complex, since they subsume50

temporal logic synthesis [32]. If players have LTL goals, for example, then checking whether51

an LTL formula holds on some Nash equilibrium path in a concurrent game is 2EXPTIME-52

complete [14, 16, 17], rather than only PSPACE-complete as it is the case for model checking,53

certainly a computational barrier for the practical analysis and automated verification of54

reactive, concurrent, and multi-agent systems modelled as multi-player games.55

Within this game-theoretic reasoning framework, a key issue is that individually rational56

choices can cause outcomes that are highly undesirable, and concurrent games also fall prey57

to this problem. This has motivated the development of techniques for modifying games,58

in order to avoid bad equilibria, or to facilitate good equilibria. Mechanism design is the59

problem of designing a game such that, if players behave rationally, then a desired outcome60

will be obtained [26]. Taxation and subsidy schemes are probably the most important class61

of techniques used in mechanism design. They work by levying taxes on certain actions (or62

providing subsidies), thereby incentivising players away from some outcomes towards others.63

The present paper studies the design of subsidy schemes (incentives) for concurrent games,64

so that a desired outcome (a Nash equilibrium in the game) can be obtained—a problem65

that we call Equilibrium design. We model agents as synchronously executing concurrent66

processes, with each agent receiving an integer payoff for every state the overall system visits;67

the overall payoff an agent receives over an infinite computation path is then defined to be68

the mean payoff over this path. While agents (naturally) seek to maximise their individual69

mean payoff, the designer of the subsidy scheme wishes to see some temporal logic formula70

satisfied, either on some or on every Nash equilibrium of the game.71

With this model, we assume that the designer – an external principal – has a finite budget72

that is available for making subsidies, and this budget can be allocated across agent/state73

pairs. By allocating this budget appropriately, the principal can incentivise players away from74

some states and towards others. Since the principal has some temporal logic goal formula, it75

desires to allocate subsidies so that players are rationally incentivised to choose strategies so76

that the principal’s temporal logic goal formula is satisfied in the path that would result from77

executing the strategies. For this general problem, following [24], we identify two variants of78

the principal’s mechanism design problem, which we refer to as Weak Implementation79

and Strong Implementation. In the Weak variant, we ask whether the principal can80

allocate the budget so that the goal is achieved on some computation path that would be81

generated by Nash equilibrium strategies in the resulting system; in the Strong variation,82

we ask whether the principal can allocate the budget so that the resulting system has at least83

one Nash equilibrium, and moreover the temporal logic goal is satisfied on all paths that84

could be generated by Nash equilibrium strategies. For these two problems, we consider goals85

specified by LTL formulae or GR(1) formulae [5], give algorithms for each case, and classify the86

complexity of the problem. While LTL is a natural language for the specification of properties87

of concurrent and multi-agent systems, GR(1) is an LTL fragment that can be used to easily88

express several prefix-independent properties of computation paths of reactive systems, such89

as ω-regular properties often used in automated formal verification. We then go on to90

study variations of these two problems, for example considering optimality and uniqueness91

of solutions, and show that the complexities of all such problems lie within the polynomial92

hierarchy, thus making them potentially amenable to efficient practical implementations.93
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Table 1 summarises the main computational complexity results in the paper.94

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete (Thm. 6) NP-complete (Thm. 7)

Strong Implementation PSPACE-complete (Cor. 9) ΣP
2-complete (Thm. 10)

Opt-WI FPSPACE-complete (Thm. 14) FPNP-complete (Thm. 16)

Opt-SI FPSPACE-complete (Thm. 22) FPΣP
2 -complete (Thm. 25)

Exact-WI PSPACE-complete (Cor. 15) DP-complete (Cor. 17)

Exact-SI PSPACE-complete (Cor. 23) DP
2-complete (Cor. 26)

UOpt-WI PSPACE-complete (Cor. 18) ∆P
2-complete (Cor. 19)

UOpt-SI PSPACE-complete (Cor. 27) ∆P
3-complete (Cor. 28)

Table 1 Summary of main complexity results.

2 Preliminaries95

Linear Temporal Logic. LTL [31] extends classical propositional logic with two operators,
X (“next”) and U (“until”), that can be used to express properties of paths. The syntax of
LTL is defined with respect to a set AP of atomic propositions as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. As commonly found in the LTL literature, we use of the following abbreviations:96

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, Fϕ ≡ > Uϕ, and Gϕ ≡ ¬F¬ϕ.97

We interpret formulae of LTL with respect to pairs (α, t), where α ∈ (2AP)ω is an infinite
sequence of atomic proposition evaluations that indicates which propositional variables are
true in every time point and t ∈ N is a temporal index into α. Formally, the semantics of
LTL formulae is given by the following rules:

(α, t) |= >
(α, t) |= p iff p ∈ αt
(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ

(α, t) |= ϕ ∨ ψ iff (α, t) |= ϕ or (α, t) |= ψ

(α, t) |= Xϕ iff (α, t+ 1) |= ϕ

(α, t) |= ϕUψ iff for some t′ ≥ t :
(
(α, t′) |= ψ and

for all t ≤ t′′ < t′ : (α, t′′) |= ϕ
)
.

If (α, 0) |= ϕ, we write α |= ϕ and say that α satisfies ϕ.98

General Reactivity of rank 1. The language of General Reactivity of rank 1, denoted
GR(1), is the fragment of LTL given by formulae written in the following form [5]:

(GFψ1 ∧ . . . ∧GFψm)→ (GFϕ1 ∧ . . . ∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination of atomic propositions.99

CONCUR 2019



18:4 Equilibrium Design for Concurrent Games

Mean-Payoff. For a sequence r ∈ Rω, let mp(r) be the mean-payoff value of r, that is,

mp(r) = lim inf
n→∞

avgn(r)

where, for n ∈ N \ {0}, we define avgn(r) = 1
n

∑n−1
j=0 rj , with rj the (j+1)th element of r.100

Arenas. An arena is a tuple A = 〈N,Ac,St, s0, tr, λ〉 where N, Ac, and St are finite non-101

empty sets of players (write N = |N|), actions, and states, respectively; if needed, we write102

Aci(s), to denote the set of actions available to player i at s; s0 ∈ St is the initial state;103

tr : St× ~Ac→ St is a transition function mapping each pair consisting of a state s ∈ St and104

an action profile ~a ∈ ~Ac = AcN, one for each player, to a successor state; and λ : St→ 2AP
105

is a labelling function, mapping every state to a subset of atomic propositions.106

We sometimes call an action profile ~a = (a1, . . . , an) ∈ ~Ac a decision, and denote ai the107

action taken by player i. We also consider partial decisions. For a set of players C ⊆ N and108

action profile ~a, we let ~aC and ~a−C be two tuples of actions, respectively, one for all players109

in C and one for all players in N \ C. We also write ~ai for ~a{i} and ~a−i for ~aN\{i}. For two110

decisions ~a and ~a′, we write (~aC ,~a′−C) to denote the decision where the actions for players in111

C are taken from ~a and the actions for players in N \ C are taken from ~a′.112

A path π = (s0,~a0), (s1,~a1) · · · is an infinite sequence in (St× ~Ac)ω such that tr(sk,~ak) =113

sk+1 for all k. Paths are generated in the arena by each player i selecting a strategy σi that114

will define how to make choices over time. We model strategies as finite state machines with115

output. Formally, for arena A, a strategy σi = (Qi, q0
i , δi, τi) for player i is a finite state116

machine with output (a transducer), where Qi is a finite and non-empty set of internal states,117

q0
i is the initial state, δi : Qi × ~Ac→ Qi is a deterministic internal transition function, and118

τi : Qi → Aci an action function. Let Stri be the set of strategies for player i. Note that this119

definition implies that strategies have perfect information1 and finite memory (although we120

impose no bounds on memory size).121

A strategy profile ~σ = (σ1, . . . , σn) is a vector of strategies, one for each player. As with122

actions, ~σi denotes the strategy assigned to player i in profile ~σ. Moreover, by (~σB , ~σ′C)123

we denote the combination of profiles where players in disjoint B and C are assigned their124

corresponding strategies in ~σ and ~σ′, respectively. Once a state s and profile ~σ are fixed, the125

game has an outcome, a path in A, denoted by π(~σ, s). Because strategies are deterministic,126

π(~σ, s) is the unique path induced by ~σ, that is, the sequence s0, s1, s2, . . . such that127

sk+1 = tr(sk, (τ1(qk1 ), . . . , τn(qkn))), and128

qk+1
i = δi(ski , (τ1(qk1 ), . . . , τn(qkn))), for all k ≥ 0.129

Furthermore, we simply write π(~σ) for π(~σ, s0).130

Arenas define the dynamic structure of games, but lack a central aspect of a game:131

preferences, which give games their strategic structure. A multi-player game is obtained132

from an arena A by associating each player with a goal. We consider multi-player games133

with mp goals. A multi-player mp game is a tuple G =〈A, (wi)i∈N〉, where A is an arena and134

wi : St→ Z is a function mapping, for every player i, every state of the arena into an integer135

number. In any game with arena A, a path π in A induces a sequence λ(π) = λ(s0)λ(s1) · · ·136

of sets of atomic propositions; if, in addition, A is the arena of an mp game, then, for each137

player i, the sequence wi(π) = wi(s0)wi(s1) · · · of weights is also induced. Unless stated138

otherwise, for a game G and a path π in it, the payoff of player i is payi(π) = mp(wi(π)).139

Nash equilibrium. Using payoff functions, we can define the game-theoretic concept of

1 Mean-payoff games with imperfect information are generally undecidable [13].
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Nash equilibrium [26]. For a multi-player game G, a strategy profile ~σ is a Nash equilibrium
of G if, for every player i and strategy σ′i for player i, we have

payi(π(~σ)) ≥ payi(π((~σ−i, σ′i))) .

Let NE(G) be the set of Nash equilibria of G.140

3 From Mechanism Design to Equilibrium Design141

We now describe the two main problems that are our focus of study. As discussed in the142

introduction, such problems are closely related to the well-known problem of mechanism143

design in game theory. Consider a system populated by agents N, where each agent i ∈ N144

wants to maximise its payoff payi(·). As in a mechanism design problem, we assume there is145

an external principal who has a goal ϕ that it wants the system to satisfy, and to this end,146

wants to incentivise the agents to act collectively and rationally so as to bring about ϕ. In147

our model, incentives are given by subsidy schemes and goals by temporal logic formulae.148

Subsidy Schemes: A subsidy scheme defines additional imposed rewards over those given149

by the weight function w. While the weight function w is fixed for any given game, the150

principal is assumed to be at liberty to define a subsidy scheme as they see fit. Since agents151

will seek to maximise their overall rewards, the principal can incentivise agents away from152

performing visiting some states and towards visiting others; if the principal designs the153

subsidy scheme correctly, the agents are incentivised to choose a strategy profile ~σ such that154

π(~σ) |= ϕ. Formally, we model a subsidy scheme as a function κ : N→ St→ N, where the155

intended interpretation is that κ(i)(s) is the subsidy in the form of a natural number k ∈ N156

that would be imposed on player i if such a player visits state s ∈ St. For instance, if we157

have wi(s) = 1 and κ(i)(s) = 2, then player i gets 1 + 2 = 3 for visiting such a state. For158

simplicity, hereafter we write κi(s) instead of κ(i)(s) for the subsidy for player i.159

Notice that having an unlimited fund for a subsidy scheme would make some problems160

trivial, as the principal can always incentivise players to satisfy ϕ (provided that there is161

a path in A satisfying ϕ). A natural and more interesting setting is that the principal is162

given a constraint in the form of budget β ∈ N. The principal then can only spend within the163

budget limit. To make this clearer, we first define the cost of a subsidy scheme κ as follows.164

I Definition 1. Given a game G and subsidy scheme κ, we let cost(κ) =
∑
i∈N

∑
s∈St κi(s).165

We say that a subsidy scheme κ is admissible if it does not exceed the budget β, that is,166

if cost(κ) ≤ β. Let K(G, β) denote the set of admissible subsidy schemes over G given budget167

β ∈ N. Thus we know that for each κ ∈ K(G, β) we have cost(κ) ≤ β. We write (G, κ) to168

denote the resulting game after the application of subsidy scheme κ on game G. Formally,169

we define the application of some subsidy scheme on a game as follows.170

I Definition 2. Given a game G = 〈A, (wi)i∈N〉 and an admissible subsidy scheme κ, we171

define (G, κ) =〈A, (w′i)i∈N〉, where w′i(s) = wi(s) + κi(s), for each i ∈ N and s ∈ St.172

We now come to the main question(s) that we consider in the remainder of the paper.173

We ask whether the principal can find a subsidy scheme that will incentivise players to174

collectively choose a rational outcome (a Nash equilibrium) that satisfies its temporal logic175

goal ϕ. We call this problem equilibrium design. Following [24], we define two variants of this176

problem, a weak and a strong implementation of the equilibrium design problem. The formal177

definition of the problems and the analysis of their respective computational complexity are178

presented in the next sections.179

CONCUR 2019



18:6 Equilibrium Design for Concurrent Games

4 Equilibrium Design: Weak Implementation180

In this section, we study the weak implementation of the equilibrium design problem, a logic-181

based computational variant of the principal’s mechanism design problem in game theory.182

We assume that the principal has full knowledge of the game G under consideration, that is,183

the principal uses all the information available of G to find the appropriate subsidy scheme,184

if such a scheme exists. We now formally define the weak variant of the implementation185

problem, and study its respective computational complexity, first with respect to goals186

(specifications) given by LTL formulae and then with respect to GR(1) formulae.187

Let WI(G, ϕ, β) denote the set of subsidy schemes over G given budget β that satisfy a
formula ϕ in at least one path π generated by ~σ ∈ NE(G). Formally

WI(G, ϕ, β) = {κ ∈ K(G, β) : ∃~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

I Definition 3 (Weak Implementation). Given a game G, formula ϕ, and budget β:188

Is it the case that WI(G, ϕ, β) 6= ∅?189

In order to solve Weak Implementation, we first characterise the Nash equilibria of a190

multi-player concurrent game in terms of punishment strategies. To do this in our setting,191

we recall the notion of secure values for mean-payoff games [33].192

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i over193

s, that is, the maximum payoff that i can achieve from s, when all other players behave194

adversarially. Such a value can be computed by considering the corresponding two-player195

zero-sum mean-payoff game [35]. Thus, it is in NP ∩ coNP, and note that both player i and196

coalition N\{i} can achieve the optimal value of the game using memoryless strategies. Then,197

for a player i and a value z ∈ R, a pair (s,~a) is z-secure for player i if puni(tr(s, (~a−i, a′i))) ≤ z198

for every a′i ∈ Ac. Write puni(G) for the set of punishment values for player i in G.199

I Theorem 4. For every mp game G and ultimately periodic path π = (s0,~a0), (s1,~a1), . . .,200

the following are equivalent:201

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);202

2. There exists z ∈ RN, where zi ∈ puni(G) such that, for every i ∈ N203

a. for all k ∈ N, the pair (sk,~ak) is zi-secure for i, and204

b. zi ≤ payi(π).205

The characterisation of Nash Equilibria provided in Theorem 4 will allow us to turn the206

Weak Implementation problem into a path finding problem over (G, κ). On the other207

hand, with respect to the budget β that the principal has at its disposal, the definition of208

subsidy scheme function κ implies that the size of K(G, β) is bounded, and particularly, it is209

bounded by β and the number of agents and states in the game G, in the following way.210

I Proposition 5. Given a game G with |N | players and |St| states and budget β, it holds
that

|K(G, β)| = β + 1
m

(
β +m

β + 1

)
,

with m = |N × St| being the number of pairs of possible agents and states.211

From Proposition 5 we derive that the number of possible subsidy schemes is polynomial212

in the budget β and singly exponential in both the number of agents and states in the game.213

At this point, solving Weak Implementation can be done with the following procedure:214
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1. Guess:215

a subsidy scheme κ ∈ K(G, β),216

a state s ∈ St for every player i ∈ N, and217

punishment memoryless strategies (~σ−1, . . . , ~σ−n) for all players i ∈ N;218

2. Compute (G, κ);219

3. Compute z ∈ RN;220

4. Compute the game (G, κ)[z] by removing the states s such that puni(s) ≤ zi for some221

player i and the transitions (s,~a−i) that are not zi secure for player i;222

5. Check whether there exists an ultimately periodic path π in (G, κ)[z] such that π |= ϕ223

and zi ≤ payi(π) for every player i ∈ N.224

Since the set K(G, β) is finitely bounded (Proposition 5), and punishment strategies
only need to be memoryless, thus also finitely bounded, clearly step 1 can be guessed
nondeterministically. Moreover, each of the guessed elements is of polynomial size, thus
this step can be done (deterministically) in polynomial space. Step 2 clearly can be done in
polynomial time. Step 3 can also be done in polynomial time since, given (~σ−1, . . . , ~σ−n), we
can compute z solving |N| one-player mean-payoff games, one for each player i [35, Thm. 6].
For step 5, we will use Theorem 4 and consider two cases, one for LTL specifications and one
for GR(1) specifications. Firstly, for LTL specifications, consider the formula

ϕWI := ϕ ∧
∧
i∈N

(mp(i) ≥ zi)

written in LTLLim [7], an extension of LTL where statements about mean-payoff values over225

a given weighted arena can be made.2 The semantics of the temporal operators of LTLLim
226

is just like the one for LTL over infinite computation paths π = s0, s1, s3. . . .. On the other227

hand, the meaning of mp(i) ≥ zi is simply that such an atomic formula is true if, and only if,228

the mean-payoff value of π with respect to player i is greater or equal to zi, a constant real229

value; that is, mp(i) ≥ zi is true in π if and only if payi(π) = mp(wi(π)) is greater or equal230

than constant value zi. Formula ϕWI corresponds exactly to 2(b) in Theorem 4. Furthermore,231

since every path in (G, κ)[z] satisfies condition 2(a) of Theorem 4, every computation path of232

(G, κ)[z] that satisfies ϕWI is a witness to the Weak Implementation problem.233

I Theorem 6. Weak Implementation with LTL specifications is PSPACE-complete.234

Proof. Membership follows from the procedure above and the fact that model checking for235

LTLLim is PSPACE-complete [7]. Hardness follows from the fact that LTL model checking is a236

special case of Weak Implementation. For instance, consider the case in which all weights237

for all players are set to the same value, say 0, and the principal has budget β = 0. J238

Case with GR(1) specifications. One of the main bottlenecks of our procedure to solve239

Weak Implementation lies in step 5, where we solve an LTLLim model checking problem.240

To reduce the complexity of our decision procedure, we consider Weak Implementation241

with the specification ϕ expressed in the GR(1) sublanguage of LTL. With this specification242

language, the path finding problem can be solved without model-checking the LTLLim formula243

given before. In order to do this, we can define a linear program (LP) such that the LP has244

a solution if and only if WI(G, ϕ, β) 6= ∅. From our previous procedure, observe that245

2 The formal semantics of LTLLim can be found in [7]. We prefer to give only an informal description here.
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18:8 Equilibrium Design for Concurrent Games

step 1 can be done nondeterministically in polynomial time, and steps 2–4 can be done246

(deterministically) in polynomial time. Furthermore, using LP, we also can check step 5247

deterministically in polynomial time. For the lower-bound, we use [33] and note that if248

ϕ = > and β = 0, then the problem reduces to checking whether the underlying mp game249

has a Nash equilibrium. Based on the above observations, we have the following result.250

I Theorem 7. Weak Implementation with GR(1) specifications is NP-complete.251

Proof sketch. For the upper bound, we define an LP of size polynomial in (G, κ) having a
solution if and only if there is an ultimately periodic path π such that zi ≤ payi(π) and
satisfies the GR(1) specification. Recall that ϕ has the following form

ϕ =
m∧
l=1

GFψl →
n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in (G, κ) that satisfy the Boolean combinations252

ψl and θr, respectively. Property ϕ is satisfied on π if, and only if, either π visits every state253

in V (θr) infinitely often or some of the states in V (ψl) only a finite number of times. For254

the game (G, κ)[z], let W = (V,E, (wa)a∈N) be the underlying multi-weighted graph, and255

for every edge e ∈ E introduce a variable xe. Informally, the value of xe is the number of256

times that e is used on a cycle. Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E}; trg(e) =257

{v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E : src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.258

Now, consider ψl for some 1 ≤ l ≤ m, and define the following linear program LP(ψl):259

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;260

Eq2: Σe∈Exe ≥ 1 — at least one edge is chosen;261

Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 — total sum of any solution is non-negative;262

Eq4: Σsrc(e)∩V (ψl)6=∅xe = 0 — no state in V (ψl) is in the cycle associated with the solution;263

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number of times264

one enters a vertex is equal to the number of times one leaves that vertex.265

LP(ψl) has a solution if and only if there is a path π in G such that zi ≤ payi(π) for266

every player i and visits V (ψl) only finitely many times. Consider now the linear program267

LP(θ1, . . . , θn) defined as follows. Eq1–Eq3 as well as Eq5 are as in LP(ψl), and:268

Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 — this condition says that, for every V (θr), at269

least one state in V (θr) is in the cycle associated with the solution of the linear program.270

In this case, LP(θ1, . . . , θn) has a solution if and only if there exists a path π such that271

zi ≤ payi(π) for every player i and visits every V (θr) infinitely many times. Since the272

constructions above are polynomial in the size of both (G, κ) and ϕ, we can conclude it is273

possible to check in NP the statement that there is a path π satisfying ϕ such that zi ≤ payi(π)274

for every player i in the game if and only if one of the two linear programs defined above has275

a solution. For the lower-bound, we use [33] as discussed before. J276

We now turn our attention to the strong implementation of the equilibrium design problem.277

As in this section, we first consider LTL specifications and then GR(1) specifications.278
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5 Equilibrium Design: Strong Implementation279

Although the principal may find WI(G, ϕ, β) 6= ∅ to be good news, it might not be good280

enough. It could be that even though there is a desirable Nash equilibrium, the others281

might be undesirable. This motivates us to consider the strong implementation variant of282

equilibrium design. Intuitively, in a strong implementation, we require that every Nash283

equilibrium outcome satisfies the specification ϕ, for a non-empty set of outcomes. Then, let284

SI(G, ϕ, β) denote the set of subsidy schemes κ given budget β over G such that:285

1. (G, κ) has at least one Nash equilibrium outcome,286

2. every Nash equilibrium outcome of (G, κ) satisfies ϕ.287

Formally we define it as follows:

SI(G, ϕ, β) = {κ ∈ K(G, β) : NE(G, κ) 6= ∅ ∧ ∀~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

This gives us the following decision problem:288

I Definition 8 (Strong Implementation). Given a game G, formula ϕ, and budget β:289

Is it the case that SI(G, ϕ, β) 6= ∅?290

Strong Implementation can be solved with a 5-step procedure where the first four291

steps are as in Weak Implementation, and the last step (step 5) is as follows:292

5 Check whether:293

a. there is no ultimately periodic path π in (G, κ)[z] such that zi ≤ payi(π) for each i ∈ N;294

b. there is an ultimately periodic path π in (G, κ)[z] such that π |= ¬ϕ and zi ≤ payi(π),295

for each i ∈ N.296

For step 5, observe that a positive answer to 5(a) or 5(b) is a counterexample to297

κ ∈ SI(G, ϕ, β). Then, to carry out this procedure for the Strong Implementation298

problem with LTL specifications, consider the following LTLLim formulae:299

ϕ∃ =
∧
i∈N

(mp(i) ≥ zi);300

ϕ∀ = ϕ∃ → ϕ.301
302

Notice that the expression NE(G, κ) 6= ∅ can be expressed as “there exists a path π in G303

that satisfies formula ϕ∃”. On the other hand, the expression ∀~σ ∈ NE(G, κ) such that π(~σ) |=304

ϕ can be expressed as “for every path π in G, if π satisfies formula ϕ∃, then π also satisfies305

formula ϕ”. Thus, using these two formulae, we obtain the following result.306

I Corollary 9. Strong Implementation with LTL specifications is PSPACE-complete.307

Proof. Membership follows from the fact that step 5(a) can be solved by existential LTLLim
308

model checking, whereas step 5(b) by universal LTLLim model checking—both clearly in309

PSPACE by Savitch’s theorem. Hardness is similar to the construction in Theorem 6. J310

Case with GR(1) specifications. Notice that the first part, i.e., NE(G, κ) 6= ∅ can be
solved in NP [33]. For the second part, observe that

∀~σ ∈ NE(G, κ) such that π(~σ) |= ϕ

CONCUR 2019
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is equivalent to
¬∃~σ ∈ NE(G, κ) such that π(~σ) |= ¬ϕ.

Thus we have

¬ϕ =
m∧
l=1

GFψl ∧ ¬
( n∧
r=1

GFθr
)
.

To check this, we modify the LP in Theorem 7. Specifically, we modify Eq4 in LP(θ1, . . . , θn)311

to encode the θ-part of ¬ϕ. Thus, we have the following equation in LP′(θ1, . . . , θn):312

Eq4: there exists r, 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe = 0 — this condition ensures that at least one313

set V (θr) does not have any state in the cycle associated with the solution.314

In this case, LP′(θ1, . . . , θn) has a solution if and only if there is a path π such that315

zi ≤ payi(π) for every player i and, for at least one V (θr), its states are visited only finitely316

many times. Thus, we have a procedure that checks if there is a path π that satisfies ¬ϕ317

such that zi ≤ payi(π) for every player i, if and only if both linear programs have a solution.318

Using this new construction, we can now prove the following result.319

I Theorem 10. Strong Implementation with GR(1) specifications is ΣP
2 -complete.320

Proof sketch. For membership, observe that by rearranging the problem statement, we have321

the following question: Check whether the following expression is true322

∃κ ∈ K(G, β), (1)323

∃~σ ∈ σ1 × · · · × σn, such that ~σ ∈ NE(G, κ), (2)324

and325

∀~σ′ ∈ σ1 × · · · × σn, if ~σ′ ∈ NE(G, κ) then π(~σ′) |= ϕ. (3)326
327

Statement (2) can be checked in NP (Theorem 4), whereas verifying statement (3) is in328

coNP; to see this, notice that we can rephrase (3) as follows: ¬∃z ∈ {puni(s) : s ∈ St}N such329

that both LP(ψl) and LP′(θ1, . . . , θn) have a solution in (G, κ)[z]. Thus, membership in ΣP
2330

follows. We prove hardness via a reduction from QSAT2 (satisfiability of quantified Boolean331

formulae with 2 alternations), which is known to be ΣP
2 -complete [28]. J332

6 Optimality and Uniqueness of Solutions333

Having asked the questions studied in the previous sections, the principal – the designer334

in the equilibrium design problem – may want to explore further information. Because the335

power of the principal is limited by its budget, and because from the point of view of the336

system, it may be associated with a reward (e.g., money, savings, etc.) or with the inverse337

of the amount of a finite resource (e.g., time, energy, etc.) an obvious question is asking338

about optimal solutions. This leads us to optimisation variations of the problems we have339

studied. Informally, in this case, we ask what is the least budget that the principal needs to340

ensure that the implementation problems have positive solutions. The principal may also341

want to know whether a given subsidy scheme is unique, so that there is no point in looking342

for any other solutions to the problem. In this section, we investigate these kind of problems,343

and classify our study into two parts, one corresponding to the Weak Implementation344

problem and another one corresponding to the Strong Implementation problem.345
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6.1 Optimality and Uniqueness in the Weak Domain346

We can now define formally some of the problems that we will study in the rest of this section.347

To start, the optimisation variant for Weak Implementation is defined as follows.348

I Definition 11 (Opt-WI). Given a game G and a specification formula ϕ:349

What is the optimum budget β such that WI(G, ϕ, β) 6= ∅?350

Another natural problem, which is related to Opt-WI, is the “exact” variant – a351

membership question. In this case, in addition to G and ϕ, we are also given an integer b,352

and ask whether it is indeed the smallest amount of budget that the principal has to spend353

for some optimal weak implementation. This decision problem is formally defined as follows.354

I Definition 12 (Exact-WI). Given a game G, a specification formula ϕ, and an integer b:355

Is b equal to the optimum budget for WI(G, ϕ, β) 6= ∅?356

To study these problems, it is useful to introduce some concepts first. More specifically, let357

us introduce the concept of implementation efficiency. We say that a Weak Implementation358

(resp. Strong Implementation) is efficient if β = cost(κ) and there is no κ′ such that359

cost(κ′) < cost(κ) and κ′ ∈WI(G, ϕ, β) (resp. κ′ ∈ SI(G, ϕ, β)). In addition to the concept360

of efficiency for an implementation problem, it is also useful to have the following result.361

I Proposition 13. Let zi be the largest payoff that player i can get after deviating from a362

path π. The optimum budget is an integer between 0 and
∑
i∈N zi · (|St| − 1).363

Using Proposition 13, we can show that both Opt-WI and Exact-WI can be solved in364

PSPACE for LTL specifications. Intuitively, the reason is that we can use the upper bound365

given by Proposition 13 to go through all possible solutions in exponential time, but using366

only nondeterministic polynomial space. Formally, we have the following results.367

I Theorem 14. Opt-WI with LTL specifications is FPSPACE-complete.368

I Corollary 15. Exact-WI with LTL specifications is PSPACE-complete.369

The fact that both Opt-WI and Exact-WI with LTL specifications can be answered in,370

respectively, FPSPACE and PSPACE does not come as a big surprise: checking an instance371

can be done using polynomial space and there are only exponentially many instances to372

be checked. However, for Opt-WI and Exact-WI with GR(1) specifications, these two373

problems are more interesting.374

I Theorem 16. Opt-WI with GR(1) specifications is FPNP-complete.375

Proof sketch. Membership follows from the fact that the search space, which is bounded376

as in Proposition 13, can be explored using binary search and Weak Implementation as377

an oracle. More precisely, we can find the smallest budget β such that WI(G, ϕ, β) 6= ∅ by378

checking every possible value for β, which lies between 0 and 2n, where n is the length of the379

encoding of the instance. Since, due to the binary search routine, we need logarithmically380

many calls to the NP oracle (i.e., to Weak Implementation), in the end we have a searching381

procedure that would run in polynomial time. For the lower bound, we reduce from TSP382

Cost (the optimal travelling salesman problem), which is FPNP-complete [28]. J383

I Corollary 17. Exact-WI with GR(1) specifications is DP-complete.384
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Proof. For membership, observe that an input is a “yes” instance of Exact-WI if and385

only if it is a “yes” instance of Weak Implementation and a “yes” instance of Weak386

Implementation Complement (the problem where one asks whether WI(G, ϕ, β) = ∅).387

Since the former problem is in NP and the latter problem is in coNP, membership in DP
388

follows. For the lower bound, we use the same reduction technique as in Theorem 16, and389

reduce from Exact TSP, a problem known to be DP-hard [28, 29]. J390

Following [27], we may naturally ask whether the optimal solution given by Opt-WI is391

unique. We call this problem UOpt-WI. For some fixed budget β, it may be the case that392

for two subsidy schemes κ, κ′ ∈WI(G, ϕ, β) – we assume the implementation is efficient – we393

have κ 6= κ′ and cost(κ) = cost(κ′). With LTL specifications, it is not difficult to see that we394

can solve UOpt-WI in polynomial space. Therefore, we have the following result.395

I Corollary 18. UOpt-WI with LTL specifications is PSPACE-complete.396

For GR(1) specifications, we reason about UOpt-WI using the following procedure:397

1. Find the exact budget using binary search and Weak Implementation as an oracle;398

2. Use an NP oracle once to guess two distinct subsidy schemes with precisely this budget;399

if no such subsidy schemes exist, return “yes”; otherwise, return “no”.400

The above decision procedure clearly is in ∆P
2 (for the upper bound). Furthermore, since401

Theorem 16 implies ∆P
2 -hardness [22] (for the lower bound), we have the following corollary.402

I Corollary 19. UOpt-WI with GR(1) specifications is ∆P
2 -complete.403

6.2 Optimality and Uniqueness in the Strong Domain404

In this subsection, we study the same problems as in the previous subsection but with405

respect to the Strong Implementation variant of the equilibrium design problem. We406

first formally define the problems of interest and then present the two first results.407

I Definition 20 (Opt-SI). Given a game G and a specification formula ϕ:408

What is the optimum budget β such that SI(G, ϕ, β) 6= ∅?409

I Definition 21 (Exact-SI). Given a game G, a specification formula ϕ, and an integer b:410

Is b equal to the optimum budget for SI(G, ϕ, β) 6= ∅?411

For the same reasons discussed in the weak versions of these two problems, we can prove412

the following two results with respect to games with LTL specifications.413

I Theorem 22. Opt-SI with LTL specifications is FPSPACE-complete.414

I Corollary 23. Exact-SI with LTL specifications is PSPACE-complete.415

For GR(1) specifications, observe that using the same arguments for the upper-bound416

of Opt-WI with GR(1) specifications, we obtain the upper-bound for Opt-SI with GR(1)417

specifications. Then, it follows that Opt-SI is in FPΣP
2 . For hardness, we define an FPΣP

2-418

complete problem, namely Weighted MinQSAT2. Recall that in QSAT2 we are given419

a Boolean 3DNF formula ψ(x,y) and sets x = {x1, . . . , xn},y = {y1, . . . , ym}, with a set420

of terms T = {t1, . . . , tk}. Define Weighted MinQSAT2 as follows. Given ψ(x,y) and a421

weight function c : x→ Z≥, Weighted MinQSAT2 is the problem of finding an assignment422

~x ∈ {0, 1}n with the least total weight such that ψ(x,y) is true for every ~y ∈ {0, 1}m. Observe423

that Weighted MinQSAT2 generalises MinQSAT2, which is known to be FPΣP
2[logn]-hard424

[12], i.e., MinQSAT2 is an instance of Weighted MinQSAT2, where all weights are 1.425
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I Theorem 24. Weighted MinQSAT2 is FPΣP
2-complete.426

Proof. Membership follows from the upper-bound of MinQSAT2 [12]: since we have an427

exponentially large input with respect to that of MinQSAT2, by using binary search we will428

need polynomially many calls to the ΣP
2 oracle. Hardness is immediate [12]. J429

Now that we have an FPΣP
2 -hard problem in our hands, we can proceed to determine the430

complexity class of Opt-SI with GR(1) specifications. For the upper bound we one can use431

arguments analogous to those in Theorem 16. For the lower bound, one can reduce from432

Weighted MinQSAT2. Formally, we have:433

I Theorem 25. Opt-SI with GR(1) specifications is FPΣP
2-complete.434

I Corollary 26. Exact-SI with GR(1) specifications is DP
2 -complete.435

Proof. Membership follows from the fact that an input is a “yes” instance of Exact-SI (with436

GR(1) specifications) if and only if it is a “yes” instance of Strong Implementation and a437

“yes” instance of Strong Implementation Complement, the decision problem where we438

ask SI(G, ϕ, β) = ∅ instead. The lower bound follows from the hardness of Strong Imple-439

mentation and Strong Implementation Complement problems, which immediately440

implies DP
2 -hardness [1, Lemma 3.2]. J441

Furthermore, analogous to UOpt-WI, we also have the following corollaries.442

I Corollary 27. UOpt-SI with LTL specifications is PSPACE-complete.443

I Corollary 28. UOpt-SI with GR(1) specifications is ∆P
3 -complete.444

7 Conclusions & Related and Future Work445

Equilibrium design vs. mechanism design – connections with Economic theory.446

Although equilibrium design is closely related to mechanism design, as typically studied in447

game theory [21], the two are not exactly the same. Two key features in mechanism design448

are the following. Firstly, in a mechanism design problem, the designer is not given a game449

structure, but instead is asked to provide one; in that sense, a mechanism design problem is450

closer to a rational synthesis problem [14, 16]. Secondly, in a mechanism design problem, the451

designer is only interested in the game’s outcome, which is given by the payoffs of the players452

in the game; however, in equilibrium design, while the designer is interested in the payoffs of453

the players as these may need to be perturbed by its budget, the designer is also interested –454

and in fact primarily interested – in the satisfaction of a temporal logic goal specification,455

which the players in the game do not take into consideration when choosing their individual456

rational choices; in that sense, equilibrium design is closer to rational verification [17] than457

to mechanism design. Thus, equilibrium design is a new computational problem that sits458

somewhere in the middle between mechanism design and rational verification/synthesis.459

Technically, in equilibrium design we go beyond rational synthesis and verification through460

the additional design of subsidy schemes for incentivising behaviours in a concurrent and461

multi-agent system, but we do not require such subsidy schemes to be incentive compatible462

mechanisms, as in mechanism design theory, since the principal may want to reward only463

a group of players in the game so that its temporal logic goal is satisfied, while rewarding464

other players in the game in an unfair way – thus, leading to a game with a suboptimal465

social welfare measure. In this sense, equilibrium design falls short with respect to the more466

demanding social welfare requirements often found in mechanism design theory.467
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Equilibrium design vs. rational verification – connections with Computer science.468

Typically, in rational synthesis and verification [14, 16, 17, 23] we want to check whether469

a property is satisfied on some/every Nash equilibrium computation run of a reactive,470

concurrent, and multi-agent system. These verification problems are primarily concerned471

with qualitative properties of a system, while assuming rationality of system components.472

However, little attention is paid to quantitative properties of the system. This drawback has473

been recently identified and some work has been done to cope with questions where both474

qualitative and quantitative concerns are considered [3, 6, 9, 10, 11, 18, 20, 34]. Equilibrium475

design is new and different approach where this is also the case. More specifically, as476

in a mechanism design problem, through the introduction of an external principal – the477

designer in the equilibrium design problem – we can account for overall qualitative properties478

of a system (the principal’s goal given by an LTL or a GR(1) specification) as well as for479

quantitative concerns (optimality of solutions constrained by the budget to allocate additional480

rewards/resources). Our framework also mixes qualitative and quantitative features in a481

different way: while system components are only interested in maximising a quantitative482

payoff, the designer is primarily concerned about the satisfaction of a qualitative (logic)483

property of the system, and only secondarily about doing it in a quantitatively optimal way.484

Equilibrium design vs. repair games and normative systems – connections with AI.485

In recent years, there has been an interest in the analysis of rational outcomes of multi-agent486

systems modelled as multi-player games. This has been done both with modelling and with487

verification purposes. In those multi-agent settings, where AI agents can be represented as488

players in a multi-player game, a focus of interest is on the analysis of (Nash) equilibria489

in such games [8, 17]. However, it is often the case that the existence of Nash equilibria490

in a multi-player game with temporal logic goals may not be guaranteed [16, 17]. For this491

reason, there has been already some work on the introduction of desirable Nash equilibria in492

multi-player games [2, 30]. This problem has been studied as a repair problem [2] in which493

either the preferences of the players (given by winning conditions) or the actions available494

in the game are modified; the latter one also being achieved with the use of normative495

systems [30]. In equilibrium design, we do not directly modify the preferences of agents in the496

system, since we do not alter their goals or choices in the game, but we indirectly influence497

their rational behaviour by incentivising players to visit, or to avoid, certain states of the498

overall system. We studied how to do this in an (individually) optimal way with respect to499

the preferences of the principal in the equilibrium design problem. However, this may not500

always be possible, for instance, because the principal’s temporal logic specification goal is501

just not achievable, or because of constraints given by its limited budget.502

Future work: social welfare requirements and practical implementation.503

As discussed before, a key difference with mechanism design is that social welfare requirements504

are not considered [25]. However, a benevolent principal might not see optimality as an505

individual concern, and instead consider the welfare of the players in the design of a subsidy506

scheme. In that case, concepts such as the utilitarian social welfare may be undesirable as the507

social welfare maximising the payoff received by players might allocate all the budget to only508

one player, and none to the others. A potentially better option is to improve fairness in the509

allocation of the budget by maximising the egalitarian social welfare. Finally, given that the510

complexity of equilibrium design is much better than that of rational synthesis/verification,511

we should be able to have efficient implementations, for instance, as an extension of EVE [19].512
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