
Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Volumen 4, n̈ı¿ 1
2
mero 8, diciembre de 2008, p̈ı¿ 1

2
ginas 99–138

Process Calculi to Analyze Emerging

Applications in Concurrency1

Cálculos de Procesos para el Análisis de Aplicaciones Emergentes en

Concurrencia

Alejandro Arbeláez 2 Andrés Aristizábal 3 Julian Gutiérrez 4

Hugo A. López 5 Jorge A. Pérez 6 Camilo Rueda 7

Frank D. Valencia 8

Recepción:23-abr-20XX/Modificación:16-oct-20XX/Aceptación:16-oct-20XX

Abstract
The notion of computation has significantly evolved in the last ten years or so. Modern
computing systems (e.g., Internet) now exhibit infinite behavior, usually in the context
of decentralized networks where interactions are inherently concurrent. This new kind
of systems is ubiquitous nowadays, so techniques for designing them in a reliable
way are fundamental. Process calculi are formal specification languages of concurrent
systems in which the notions of process and interaction prevail. They are endowed
with reasoning techniques that allow to rigorously determine whether a system exhibits
some desirable properties. The generic nature of process calculi has made possible their
successful application in very diverse areas. Based on work by the authors, this paper
illustrates the use of process calculi in two emerging application areas: biology and
security protocols. Basic notions of process calculi are introduced, real systems in the
two areas are modeled, and some of their properties are verified.

Key words: Computer Science, Semantics of Programming Languages, Concurrency

Theory, Modeling and Verification of Concurrent Systems, Process Calculi.

1 This is a revised and extended version of a paper presented in LOG&CO 2006 (The Third Re-
gional Workshop on Logic and Computing) which took place from April 3 to 7, 2006 in Universidad
del Cauca (Popayán, Colombia).
2 MSR-INRIA Joint Centre, Orsay, France.
3 Pontificia Universidad Javeriana - Cali, Colombia.
4 Laboratory for Foundations of Computer Science, University of Edinburgh, UK.
5 IT University of Copenhagen, Denmark.
6 Department of Computer Science, University of Bologna, Italy.
7 Pontificia Universidad Javeriana - Cali, Colombia.
8 CNRS and LIX, École Polytechnique de Paris, France.

Universidad EAFIT 99|

http://www.eafit.edu.co/ingciencia/

Process Calculi to Analyze Emerging Applications in Concurrency

Resumen
La noción de computación ha evolucionado significativamente en los últimos diez años.
Sistemas de cómputo modernos como Internet exhiben comportamiento infinito, ge-
neralmente en el contexto de redes descentralizadas en donde las interacciones son
inherentemente concurrentes. La presencia ubicua de este tipo de sistemas lleva a la
necesidad de desarrollarlos en forma confiable. Los cálculos de procesos son lengua-
jes formales de especificación de sistemas concurrentes en los cuales las nociones de
proceso e interacción son predominantes. Estos cálculos están dotados con técnicas
de razonamiento que permiten determinar rigurosamente si un sistema cumple con
algunas propiedades. La naturaleza genérica de los cálculos de procesos ha hecho po-
sible su aplicación en áreas muy diversas. Basado en trabajo previo por los autores,
este art́ıculo ilustra el uso de los cálculos de procesos en dos áreas emergentes de apli-
cación: bioloǵıa sistémica y protocolos de seguridad. Nociones básicas de cálculos de
procesos son introducidas, algunos sistemas reales en ambas áreas son modelados, y
sus propiedades son verificadas.

Palabras claves: Ciencias de la computación, Semántica de Lenguajes de Programa-
ción, Teoŕıa de la Concurrencia, Modelamiento y Verificación de Sistemas Concurren-
tes, Cálculos de procesos.

1 Introduction

Recent years have seen the impressive development of Internet and the increase in
flexibility and power of communication networks. We now find ourselves in “global
computing” environments, in which a significant evolution of the notion of computa-
tion can be recognized. There are two main issues that evidence this change. First,
software artifacts are now meant to be infinite, in the sense that the applications
they are part of demand an uninterrupted execution. For instance, in the context
of operating systems and Web-based applications (such as online banking services),
interruptions are a highly undesirable defect and, in some cases, can be even catas-
trophic. Secondly, since modern computer devices (e.g., portable computers, mobile
phones) interact in the context of decentralized communication networks, the type of
behavior underlying them is inherently concurrent, rather than sequential. Popular
online services for instant communication and file-sharing communities exhibit con-
current interactions among the involved users. Concurrency is also central to critical
e-commerce applications.

These new characteristics of computation have a direct impact in the way soft-
ware is conceived. In particular, the non-terminating and concurrent nature of mod-
ern computing systems constitutes a serious challenge in software verification. The
traditional approach to software verification, focused on the study of the resulting
outputs with respect to a given set of inputs, is clearly inadequate in the context of
software pieces that are supposed to run forever. Moreover, traditional (sequential)

|100 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

techniques also fail in providing comprehensive mechanisms for describing and rea-
soning about complex interactions commonly occurring in applications running in
concurrent/mobile environments.

The above suggests a paradigm shift in the goals of software verification tech-
niques. The main goal of such techniques should be determining whether software
components hold a set of desirable properties, instead of merely studying their in-
put/output behavior. Some examples of interesting properties that a system should
exhibit include:

• correctness properties, that ensure that software components do what they are
supposed to do;

• safety properties, that guarantee that nothing bad occurs during software exe-
cution;

• liveness properties, that guarantee that something good happens because of
software execution.

Independently of the exact definition of the desired properties (which will depend on
the particular features of each system), it is clear that one prefers general properties,
valid for the whole system, instead of particular properties that are valid only for
certain scenarios. This observation suggests that the disciplined use of formal veri-
fication techniques (i.e., those with mathematical grounds) is a reasonable research
direction.

Concurrency theory is the branch of Computer Science that aims at providing
foundational techniques to describe and reason about concurrent systems and their
behavior. A particularly important class of such techniques is represented by process
calculi : these are “small” languages provided with a few operators that are intended
to capture the essential features of the systems of interest. Several reasoning tech-
niques on concurrent systems have been developed on top of process calculi.

Although process calculi were originally conceived for the study of distributed,
mobile communicating systems, recent research reveals an increasing interest on an-
alyzing phenomena in other fields that also exhibit concurrent behavior. In this way,
for instance, process calculi have been used to describe and analyze systems in areas
as diverse as computer music [1,2,3], data integration on the Web [4], Web services [5],
biology [6, 7, 8, 9, 10] and secure communications [11, 12, 13, 14]. Several works have
shown how process calculi may provide new insights on the behavior of systems in
such areas. This opens up the way for the development of software tools imple-
menting the reasoning techniques associated to process calculi, thus constituting an
alternative approach to property verification in the areas of interest.

This paper offers an introduction to the modeling of concurrent systems using
process calculi. Based on recent work, we illustrate the use of process calculi in

Volumen 4, n̈ı¿ 1
2
mero 8 101|

Process Calculi to Analyze Emerging Applications in Concurrency

two emerging applications in concurrency: systems biology and computer security.
More specifically, we show how a process calculus based on the notion of constraint
as an element of partial information turns out to be appropriate in modeling and
analyzing biological systems. Then, we describe the use of a process calculus pro-
posed for describing security protocols for the analysis of protocols for Peer-to-Peer
(P2P) communication systems. Some properties in each application are discussed and
formalized, and the reasoning techniques associated to each calculus are presented.
Also, representative examples of systems specifications are given.

The rest of this paper is structured as follows. Next, a general introduction to
process calculi is provided. In Section 3, the use of process calculi in Biology and
Security applications is discussed. Section 4 concludes.

2 Process Calculi

Process calculi (also known as process algebras) can be defined as formalisms devised
for the description and analysis of the behavior of concurrent systems ; i.e., systems
consisting of multiple computing agents (processes) that interact with each other. As
such, the goal of a process calculus is to provide a formal framework where complex
systems can be analyzed, including reasoning techniques to verify their essential prop-
erties. In this section we discuss some basic principles on process calculi, including
several issues that distinguish them from other formal models for concurrency and
the main approaches to giving meaning to processes. In addition, some verification
tools derived from process calculi will be mentioned.

The nature and features of concurrent systems occurring in the real world makes
it difficult the task of finding a canonical model in which every system can be repre-
sented. In fact, even in the context of a restricted field (say, distributed systems) a
wide variety of different phenomena, occurring at different levels, can be recognized.
The goal is then to identify a common set of underlying principles in the systems
of interest, and to define suitable operators that capture them in a precise way. In
other words, a process of abstraction is required to define meaningful calculi in the
simplest possible way.

Process calculi are then abstract specification languages for concurrent systems.
This implies that models of systems abstract from real but unimportant details that
do not contribute in some interactions of interest. Abstraction not only allow design-
ers to better understand the core of a system, but it also turns out to be necessary
for an effective use of reasoning techniques associated to the calculi.

In addition, process calculi follow a compositional approach to systems descrip-
tion. As such, a process calculus model of a system is given in terms of models
representing its subsystems. This favors an appropriate abstraction of the main

|102 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

components of the systems and, more importantly, allows to explicitly reason about
the interactions among the identified subsystems. As we will see later, each calculus
assumes a particular abstraction criteria over systems, which will have influence on
the level of compositionality that models will exhibit.

Process calculi also pay special attention to economy. There are few process
constructors, each one with a distinct and fundamental role in capturing the behavior
of systems. A reduced number of constructors in the language helps to maintain the
theory underlying the calculus tractable, and stimulates a precise definition of the
abstraction criteria that the calculus intends to enforce.

Let us illustrate the interplay of the above issues by introducing one of the most
representative process calculus for mobility.

2.1 A Process Calculus for Mobile Systems

The π-calculus [15, 16], was proposed by Milner, Parrow and Walker in the early
90’s for the analysis of mobile, distributed systems. The ability of representing
link mobility is one of the main advances of the π-calculus with respect to CCS
(Calculus for Communicating Systems) [17], its immediate predecessor. In the π-
calculus, the description of mobile systems and their interactions is based on the
notion of name. In principle, a process (an abstraction of a mobile agent) should be
capable of evolving in many different ways, but always maintaining its identity during
the whole computation. In addition, a process should be capable of identifying other
related processes. In the π-calculus a name also denotes a communication channel,
in such a way that communication among two processes is possible provided that
they share the same channel. As a consequence, in the π-calculus a name abstracts
the identity of processes in an interaction by considering the communication channel
each process is related to.

In the π-calculus, process capabilities are abstracted as atomic actions. They
come in two main flavors:

• x(z), representing the reception (or reading) of the datum z on the channel x.

• xd, denoting the transmission of a datum d over the channel x.

Actions (denoted by α) are used in the context of processes that are constructed by
the following syntax:

P,Q, . . . ::= 0 |
∑

i∈I

αi.Pi | P ‖ Q | !P | (νx)P .

Some intuitions underlying the behavior of these processes follow.

Volumen 4, n̈ı¿ 1
2
mero 8 103|

Process Calculi to Analyze Emerging Applications in Concurrency

• Process 0 represents the process that does nothing. It is meant to be the basis
of more complex processes.

• The interaction of processes P and Q is represented by their parallel compo-
sition, denoted P ‖ Q. In addition to the individual actions of each process,
their communication is possible, provided that they synchronize on a channel,
as illustrated in the following example.

R = x(y).yz.0 ‖ xw.0

Here, R represents the interaction of two processes sharing a channel x. The
transmission of w through x is complemented by its reception, which involves
recognizing w as y. This is regarded as an atomic computational step. After-
wards, a datum z is sent, using the received name w as communication channel.
Notice that in the context of R, there is no partner for w in its attempt of trans-
mitting z.

•
∑

i∈I αi.Pi, usually known as a summation process, represents a (non-determi-
nistic) choice on the involved Pi’s, depending on the capabilities represented by
each αi. Only when any such processes is ready to interact with another one,
a choice among all the possible interaction options takes place. For instance,
in the process

(x(y).zy.0 + z(y).0 + x(w).w(z).0) ‖ xr.0

the first and third components of the sum are ready to interact with xr.0. De-
pending on the choice, different resulting processes are possible. For instance,
if the third component is selected, the resulting interaction would lead to the
process r(z).0.

• Process !P represents the infinite execution (or replication) of process P . There
will be an infinite number of copies of P executing: !P = P ‖ P ‖ P ‖

• Process νxP is meant to describe restricted names. Name x is said to be local
to P and is only visible to it. A disciplined use of restricted names is crucial in
delimiting communication.

The π-calculus is thus a language based in a few simple, yet powerful, abstrac-
tions. In addition to the above-mentioned abstraction of name as communication
channels that can be transmitted, in the π-calculus the behavior of mobile systems
is reduced to a few representative phenomena: synchronization on shared channels,
infinite behavior and restricted communication. The compositional nature of the
calculus is elegantly defined by the parallel composition operator, which is the basis
for representing interactions among processes and the construction of models.

|104 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

2.2 Key Issues in Process Calculi

There are many different process calculi in the literature, mainly agreeing in the
formal flavor they encourage, as well as in the principles of abstraction, composi-
tionality, and economy discussed before. Main distinctions among these calculi arise
from issues such as the process constructs considered (i.e., the process languages they
define), the methods used to give meaning to process terms (i.e., semantics), and the
methods to reason about process behavior (i.e., tools for property verification). In
what follows we discuss some of these issues, following [18].

Process Constructs

The role of process constructs is to faithfully capture the intended phenomena each
process calculus wants to reason about. As a consequence, each calculus will de-
fine different process constructs. Nevertheless, the following elements are commonly
found in process calculi:

• Action constructs for representing atomic, basic actions.

• Composition constructs for expressing the parallel composition of processes

• Summation constructs for expressing the possibility of diverse courses of action
in a computation

• Restriction constructs, for delimiting the interactions of processes.

• Infinite behavior constructs.

It is interesting to observe how calculi that are in principle quite different co-
incide in these basic issues for their definitions. As an example, consider process
calculi based on Concurrent Constraint Programming (CCP) [19], a model for con-
currency based on partial information. As opposed to the π-calculus, which defines
a point-to-point communication discipline, CCP is a model of shared-memory com-
munication. Intuitively, this implies that a process in a communication broadcasts
messages to every other agent in the system. In spite of this important difference,
process constructs in CCP-based process calculi are very similar to those defined in
the π-calculus: there are constructors for parallel composition, local behavior and
infinite execution. Not surprisingly, the only significant differences arise in the con-
structs concerning communication and synchronization: in CCP-based calculi there
are operations for increasing the knowledge of the pool of agents and for querying the
current knowledge those agents posses. A CCP-based process calculus called ntcc

will be discussed in Section 3.

Volumen 4, n̈ı¿ 1
2
mero 8 105|

Process Calculi to Analyze Emerging Applications in Concurrency

Meaning of Processes

Endowing process terms with a formal meaning is crucial in order to analyze process
behavior. There are at least three main approaches used to give meaning to process
terms.

• Operational Semantics An operational semantics interprets a process term by
using transitions that define computational steps. A common practice is to
capture the state of the system by means of configurations, succinct structures
that, in addition to a process term, may include other relevant information.
Transitions are usually labeled by the actions that originate evolution between
configurations. This is commonly denoted as P

a
−→ Q, meaning that process

P performs action a and then behaves as process Q. Operational semantics
are then defined by a set of (transition) rules that formally define the features

of the relation
a

−→. The set of transition rules that constitute the operational
behavior of a calculus is also known as its labeled transition system (or LTS).

As an example, consider the rule that formalizes the communication of inter-
acting processes in the π-calculus, informally discussed in the previous section:

x(y).P ‖ xz.Q
τ

−→ P{z/y} ‖ Q.

In this rule, label τ is used to represent a synchronization (in this case, on name
x); P{z/y} denotes the syntactic replacement of all occurrences of the name y
with the name z in the context of process P .

• Denotational Semantics A denotational semantics interprets processes by us-
ing a function [[·]] which maps them into a mathematical object (e.g., a set or a
category). Definitions of denotational semantics usually involve the identifica-
tion of relevant objects that can be observed from process behavior. A process
is then equated to the set of observations that can be made of it. As an exam-
ple, consider [[·]]obs, a simple interpretation for the π-calculus that characterizes
a process P by the set of names that are transmitted during its evolution.
For instance, the denotation of the process R = x(y).yz.0 ‖ xw.0 is given by
[[R]]obs = {w, z}.

Interestingly, the compositionality principle in process calculi also appears in
denotational semantics definitions, as the meaning of processes is determined
by the meaning of its sub-processes. As an example, consider the denotation
of a binary summation:

[[P +Q]]obs = [[P]]obs ∪ [[Q]]obs.

|106 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

• Algebraic Semantics Algebraic semantics attempt to give meaning by stating a
set of laws (or axioms) equating process terms. Processes and their operations
are then interpreted as structures that obey these laws. In its more basic
use, the algebraic approach can be used to formally equate processes with
minor syntactic differences. This gives rise to a relation known as structural
congruence, that allows for cleaner rule definitions in the operational semantics.
As an example of the kind of “equality” that can be characterized by means of
algebraic semantics, in the π-calculus it is safe to consider the following set of
axioms for parallel composition:

P ‖ 0 ≡ P, P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

These axioms succinctly define that parallel composition is a commutative and
associative operation, and that its module is the process 0.

It is important to remark that a process language can have several semantic inter-
pretations. In fact, the combination of two or more approaches is a common practice,
since for instance, one of them can be more appropriate for intuitive understanding
of processes whereas another one can be more suitable for mathematical proofs. This
is usually the case of Operational Semantics and Denotational/Algebraic ones. The
use of several semantics motivates a legitimate question, that of determining whether
different semantics are equivalent to each other.

Property Verification

As argued in the introduction, obtaining solid guarantees about the behavior of sys-
tems makes property verification the ultimate goal when formalizing systems using
process calculi. Using process calculi, there are two main approaches for property
verification. The first one pertains to comparing process calculi specifications. The
idea consists in determining whether two process specifications are equivalent up to
some notion of behavioral equivalence. In this way, for instance, a specification repre-
senting a system’s implementation is compared against a specification that is assumed
to have the desired property. If both specifications are regarded as equivalent, then
there are solid guarantees to consider that the implementation specification holds the
property in question.

Naturally, this approach relies on the power and features of the selected behavioral
equivalence. To get an idea of such an equivalence consider bisimilarity. Roughly
speaking, two processes P and Q are said to be bisimilar if whenever P performs an
action a evolving into P ′, then Q can also perform a and evolve into a Q′ that is
bisimilar to P ′, and similarly with P and Q interchanged. It is worth noticing that a

Volumen 4, n̈ı¿ 1
2
mero 8 107|

Process Calculi to Analyze Emerging Applications in Concurrency

great deal of what can be said about the comparison approach to property verification
relies on the discriminating power of behavioral equivalences. This implies that there
are some equivalences more strict than others (that is, accept less processes as being
equal), and that one should select the most appropriate one for analysis.

Complementary to the above approach, where one tries to show that two process
specifications agree in all properties expressible with a given (modal) logic, a second
approach to property verification is aimed at checking whether a process specification
satisfies a particular property expressible with such a modal (or temporal) logic. The
key aspect here is to find a formal relationship between process terms and formulas
of the logic. Several ways of obtaining such a formal relationship between process
terms and logic formulas have been proposed in the literature; in the next section
we will give an in-depth description of how this is done in the case of ntcc, which is
equipped with a proof system of a linear-time temporal logic (or LTL).

2.3 Verification Tools based on Process Calculi

The theoretical development of process calculi has led to the development of software
tools and programming languages that implement their most representative results.
This is certainly an attractive option for verification of critical systems, as engineers
count with solid frameworks where design flaws can be discovered in early devel-
opment phases. There is a variety of tools that take process calculi into practice;
they all differ in the kind of specification languages that are supported (and that are
usually very similar to process calculi specification), the kind of properties they can
verify and the user interfaces they provide, among other features. Here we summarize
the main features of some of these tools, namely the programming language Pict, the
Edinburgh Concurrency Workbench (CWB) and the Concurrency Workbench of the
New Century (CWB-NC).

Pict [20] is a concurrent programming language based in the π-calculus. It is a
functional programming language with static typing, based on a core language that
corresponds to an asynchronous variant of the π-calculus. Several intuitive additions
to this core language are available, including basic data structures and concurrent
objects.

The Edinburgh Concurrency Workbench (CWB) [21], is a popular automated tool
for manipulation and analysis of concurrent systems. The base description languages
for CWB are CCS and its synchronous variant SCCS. Using CWB it is possible to:

• perform analysis of semantic equivalences among specifications;

• define propositions in a modal logic and check whether a given process satisfies
a specification formulated in this logic;

|108 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

• derive automatically logical formulas which distinguish nonequivalent proce-
sses;

• interactively simulate an agent’s behavior.

Finally, the Concurrency Workbench of the New Century (CWB-NC) [22] is a
tool that offers several approaches for verification, providing support for different
languages, including CCS and LOTOS [23]. The simplest of such approaches is
reachability analysis: the tool is provided with a formal specification of the system
and with a logic formula describing an undesirable state of it. The tool then explores
every possible state of the system and checks if such a state can be reached. If
so, the user is provided with an execution sequence leading to such a state. The
second approach is similar, and consists in performing a model checking process over a
system description. This description is then analyzed with respect to a temporal logic
formula that describes a property that the system should exhibit during its execution.
Finally, a third technique available pertains to the above-mentioned equivalence-based
approach to property verification. Efficient algorithms for equivalence checking and
routines for performing these types of verification have been implemented. The tool
also provides diagnostic information for explaining why two systems fail to be related
by a given behavioral equivalence.

3 Applications

In this section we illustrate the use of process calculi in two emerging applications,
namely, systems biology and security in communication protocols. In order to do so,
a particular process calculus for each application area is presented and described.
An example extracted from real scenarios is modeled and verified. Related work in
using process calculi in each area is also mentioned.

3.1 Systems Biology

Recent progress in molecular biology has allowed to describe the structure of many
components making up biological systems (e.g., genes and proteins) as isolated en-
tities. However, instead of being alone, these entities are part of complex biological
networks present at the cellular environment (such as genetic regulatory networks)
whose aim is to define and regulate cellular processes. The current challenge is to
move from molecular biology to systems biology [24], in order to understand how
these individual components or entities integrate among them in the networks they

Volumen 4, n̈ı¿ 1
2
mero 8 109|

Process Calculi to Analyze Emerging Applications in Concurrency

shape. Once this integration has been accomplished, it will be then possible to have
a system-level understanding of how these entities perform their tasks.

The complexity and size of biological systems has motivated the use of computa-
tional models that allow to abstract their behavior and make their study easier. In
this way, the inherent concurrent behavior of biological systems has motivated the
use of process calculi as suitable description languages. The principles of abstrac-
tion, compositionality, and economy discussed before have proven very useful for the
analysis of biological systems. Next we review some works in which process calculi
have been exploited in the biological context.

Most of the work using process calculi in biology have used formalisms such as
the π-calculus and the Ambient calculus [25], or some extensions of them. Some rep-
resentative pieces of work in such a direction are [9,8,26]. In other cases, new process
calculi have been proposed for modeling more particular biological phenomena and
systems. For instance, calculi to reason about interactions among membranes [27],
interactions among proteins [28], reversibility in bio-molecular processes [29], and
hybrid biological systems [30] can be found in the literature.

However, apart from [30] which uses hybrid concurrent constraint programming,
none of the above calculi has tackled the problem of modeling biological systems
where only partial information about their behavior at system level is available. This
is a significant group of systems, if we consider that lots of biological phenomena are
still being discovered and/or investigated. For this reason, we have explored the use
of the CCP (Concurrent Constraint Programming) model as a suitable framework
for representing this kind of information in the biological context. In this way, our
interest is centered in the study of process calculi based on constraints, identifying
advantages in their use that would make the study of biological systems easier.

In particular, in [7] we have argued for the use of ntcc, a timed CCP process
calculus, for describing biological systems. ntcc comprises a variety of features for
describing, simulating and reasoning about complex biological systems. Some of these
features include: the natural use of concurrent agents (i.e., processes) for modeling
biological entities, the explicit notion of time for describing the evolution of dyna-
mic biological systems, constraints as a formal mechanism for representing partial
information in the state of systems, asynchronous and non-deterministic operators
for modeling partial information about the behavior of systems and the possibility
of including quantitative information for parameterizing models with actual values
coming from experimentation.

A crucial advantage is that this theoretical framework for studying biological
systems can be implemented in a CCP programming language such as Mozart [31].
This allows to observe and analyze, at system level, the behavior of models proposed
using the calculus.

|110 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

Background

In this section we give a concise introduction to CCP and ntcc, the process calculus
we have used for describing biological systems. Let us begin with some basic notions.
CCP is a computational formalism for describing the behavior of concurrent systems.
In CCP all (partial) information is monotonically accumulated in a so-called store.
The store keeps the knowledge about the system in terms of constraints, or statements
defining the possible values a variable can take (e.g., x+ y ≥ 7). Concurrent agents
(i.e., processes) that are part of the system interact with each other using the store
as a shared communication medium. They have two basic capabilities over the store,
represented by tell and ask operations. While the former adds some information
about the system, the latter queries the store to determine whether some piece of
information can be inferred from its current content. Ask operations are then the
basis for synchronization among processes.

One of the most distinguishing features of CCP is that it provides a unified frame-
work where processes have a dual perspective: the traditional operational view of
process calculi and a declarative one based on logic. This allows CCP to take advan-
tage of techniques and tools from both process calculi and logic to model and reason
about concurrent systems.

The ntcc process calculus is a temporal extension of CCP. The process constructs
of the calculus naturally capture the main features of timed and reactive systems. In
particular, ntcc allows to model:

• unit-delays to explicitly model pauses in system executions.

• time-outs to execute a process in the next time unit if in the current one a
piece of information cannot be inferred from the store.

• synchrony to control and coordinate the concurrent execution of multiple sys-
tems.

• infinite behavior to represent the persistent execution of a system.

• asynchrony to represent unbounded but finite delays in the execution of a
system.

• non-determinism to express the diverse execution alternatives for a system from
the same initial conditions.

We now proceed to summarize the main features that ntcc has to offer to systems
biology.

Theoretical Opportunities There are some conceptual features of ntcc that
are specially important in the biological context.

Volumen 4, n̈ı¿ 1
2
mero 8 111|

Process Calculi to Analyze Emerging Applications in Concurrency

• Time for Modeling of Complex Dynamic Systems In some biological scenarios
it is important to know only the initial and final states of a system. Never-
theless, in other situations it is mandatory to be able to analyze the evolution
of the system in time. This is why having a description language with an
explicit notion of time is fundamental for both achieving the control of the
systems that are modeled and supervising their evolution step-by-step. ntcc is
equipped with constructs that allow to explicitly control temporal features of
modeled systems.

• Partial information As mentioned before, this kind of information arises nat-
urally in the biological context since the structure and behavior of many biolog-
ical phenomena are nowadays a matter of research. Two main kinds of partial
information can be identified in biological systems: quantitative and behavioral.
While partial quantitative information usually involves incomplete information
on the state of the system (e.g., the set of possible values for a variable, the
probability for a system to evolve to a certain future state), partial behavioral
information is related to uncertainty associated to the behavior of interactions
(e.g., the unknown relative speeds on which two systems interact, the time
interval during which a medicine is effective).

In ntcc, whereas partial quantitative information is represented with the aid of
constraints, partial behavioral information is described by means of the asyn-
chronous and non-deterministic process constructs in the calculus. The appro-
priate use of these elements for describing biological systems can build up, with
a certain abstraction degree, rather complex biological patterns of behavior.

• Verification of Biological Properties As discussed before, perhaps the most
important feature of process calculi is that their solid mathematical foundations
allow to verify properties of the systems they model. In the case of ntcc

such properties can be verified following a logic-based approach, expressing
properties using a linear-time temporal logic (LTL) and deriving proofs using
a proof system associated with the calculus.

Practical Opportunities Complementary to these advantages, ntcc presents a
useful feature in practical terms, as systems represented by means of the calculus can
be easily implemented and their behavior observed using ntccSim [32], a simulation
tool of ntcc processes. Indeed, ntccSim uses Mozart (a CCP-based programming lan-
guage) to implement the rules of the operational semantics of ntcc. Since these rules
formalize process behavior, in ntccSim it is possible to execute ntcc specifications so
as to observe and analyze systems described using the calculus.

|112 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

P1

t = 1

e1 r2

P3

e2r1

P2

e3

.

t = 3t = 2

r3

Figure 1: Discrete Reactive Computation in ntcc

A Process Calculus with Explicit Time and Constraints

ntcc is a temporal concurrent constraint calculus suitable to model non-deterministic
and asynchronous behavior. As such, it is particularly appropriate to model reactive
systems, those that compute by reacting to stimuli coming from their environments.
As mentioned in the previous section, one of the main features of ntcc is that it is
equipped with a proof system for verifying linear-time temporal properties of ntcc
processes. In this section we briefly describe the syntax, operational semantics and
proof system of ntcc, referring the reader to [33, 34] for further details.

A fundamental notion in CCP-based calculi is that of a constraint system. Ba-
sically, a constraint system provides a signature from which syntactically denotable
objects in the language called constraints can be constructed, and an entailment re-
lation (|=) specifying interdependencies among such constraints. More precisely, a
constraint system is a pair (Σ,∆) where Σ is a signature of function and predicate
symbols, and ∆ is a decidable theory over Σ (i.e., a decidable set of sentences over Σ
with at least one model). The underlying language L of (Σ,∆) contains the symbols
¬,∧,⇒, ∃, true and false which denote logical negation, conjunction, implication,
existential quantification, and the always true and always false predicates, respec-
tively. Constraints, denoted by c, d, . . . are first-order formulas over L. We say that
c entails d in ∆, written c |=∆ d (or just c |= d when no confusion arises), if c⇒ d is
true in all models of ∆. For operational reasons we shall require |= to be decidable.

In ntcc time is divided into discrete intervals (or time units), each of them
having its own (constraint) store. In this way, each time unit can be understood as
a reactive entity, where a process Pi receives a stimulus ei (i.e., a constraint) from
the environment. The process Pi is then executed considering this input, responding
with some output ri (that is, new constraints) once no further processing over the
store is possible. Computation in the next time unit is then based on a residual
process resulting from Pi and on new inputs provided by the environment. Figure 1
illustrates this kind of computation.

Volumen 4, n̈ı¿ 1
2
mero 8 113|

Process Calculi to Analyze Emerging Applications in Concurrency

Process Syntax Processes P , Q, . . .∈ Proc are built from constraints c ∈ C and
variables x ∈ V in the underlying constraint system by:

P,Q, . . . ::= tell(c) |
∑
i∈I

when ci do Pi | P ‖ Q | local x in P

| next (P) | unless c nextP | ⋆ P | !P

Below we provide some intuitions regarding the behavior of ntcc processes in the
biological context. For the sake of space, some formal details are elided from this
presentation.

Adding and Querying (Partial) Information. Process tell(c), the simplest oper-
ation to express partial information, adds a constraint c into the current store, thus
making it available to other processes in the same time interval.

In the biological context, tell operations allow to represent at least two kinds of
partial information statements: ground rules and state definition statements. The
first ones precisely state certain conditions that apply during the life of the biological
system. A clear advantage here w.r.t. other calculi for biology is that these conditions
can be expressed by exploiting the available (possibly incomplete) knowledge.

Remarkably, the declarative flavor in this kind of statements could favor the
definition of essential properties in (biological) models. Complementary to ground
rules, state definition statements refer to those constraints intended to define the
exact values for the variables in the system. This is particularly useful when one
knows exactly the set of possible states of the system at a given time; series of such
statements (for different time units) thus constitute a detailed view of the behavior
of the system.

Complementary to tell operations, guarded operations of the form when c do P
constitute the basic means for querying (or asking) information about the state of a
system. Intuitively, a process when c do P queries the current constraint store: if
c is present in such a store then the execution of P is enabled. The “presence” of c
depends on the inference capabilities associated with the store. That is, a particular
constraint could not be explicitly present in the store, but it could be inferred from
the information that is available.

Non-deterministic Choices. Non-determinism is a valuable way of representing
several possible courses of action from the same initial state without providing any
information on how one of such courses is selected.

In ntcc, non-deterministic behavior is obtained by generalizing processes of the
form when c do P : a guarded-choice summation

∑
i∈I when ci do Pi, where I is

a finite set of indexes, represents a process that, in the current time interval, must
non-deterministically choose one of the Pj (j ∈ I) whose corresponding constraint cj
is entailed by the store. The chosen alternative, if any, precludes the others. If no

|114 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

choice is possible then the summation is precluded. We shall use skip to denote the
process

∑
i∈I when ci do Pi when I = ∅.

In the biological context, the combination of guarded choices and partial informa-
tion represents an appropriate mechanism to formalize the inherent unpredictability
in system interactions. In this sense, non-determinism is a way of explicitly repre-
senting partial behavioral information.

Communication. The concurrent execution of two processes P and Q is repre-
sented by the parallel composition P ‖ Q. We use

∏
i∈I Pi, where I is a finite set of

indexes, to denote the parallel composition of all Pi.

Local Information. Process local x in P behaves like P , except that all the
information on x produced by P can only be seen by P , and the information on x
produced by other processes cannot be seen by P .

Basic Time Constructs. ntcc provides two basic time operators, 0P and
unless c next (P). Let us analyze them separately. nextP represents the activation
of P in the next time unit. Hence, a move of nextP is a unit-delay of P . nextP
can be also considered as the simplest way of expressing the dynamical behavior over
time. This is fundamental in ntcc, since information is not automatically transferred
from one time interval to the next. We shall use nextn (P) as an abbreviation for
00. . . 0P . . .), where next is repeated n times.

In the context of partial information, to be able to reason about absence of in-
formation is both important and necessary. Although sometimes it is possible to
predict some of the possible future states for a system, usually there is a strong need
of expressing unexpected behavior. In this kind of scenarios, processes of the form
unless c nextP may come in handy: P will be activated only if c cannot be inferred
from the current store. The unless processes thus add (weak) time-outs in the exe-
cution, i.e., they wait one time unit for a piece of information c to be present and if
it is not, they trigger activity in the next time unit.

Asynchrony. The ⋆ operator allows to express asynchronous behavior through
time intervals. Process ⋆P represents an arbitrary long but finite delay in the acti-
vation of P . This kind of behavior therefore constitutes another instance of partial
information: in addition to the partial information on the variables that are part of
the state of the system (and that is expressed by the operators discussed above), the
⋆ operator allows to express partial information on the time units where processes
are executed. This is particularly interesting when describing (biological) processes
that interact at unknown relative speeds.

Persistent Behavior. Somehow opposed to the eventual behavior enforced by
asynchronous behavior, persistent (or infinite) behavior serves to express conditions
that are valid in every possible state of the system. The replicated process !P rep-
resents P ‖ 0P ‖ next2(P) ‖ . . ., i.e. unboundedly many copies of P but one at

Volumen 4, n̈ı¿ 1
2
mero 8 115|

Process Calculi to Analyze Emerging Applications in Concurrency

a time. As such, persistent behavior is an appropriate way of enforcing conditions
stating ground rules of the systems of interest.

Operational Semantics The intuitive behavior of ntcc processes described above
is formalized by means of an operational semantics that considers transitions between
process-store configurations of the form 〈P, c〉 with stores represented as constraints.
The transitions of the semantics are given by the relations −→ and =⇒. They are
formally defined in [33]. Intuitively, an internal transition 〈P, d〉 −→ 〈P ′, d′〉 should
be read as “P with store d reduces, in one internal step, to P ′ with store d′ ”. The

observable transition P
(c,d)

====⇒ R should be read as “P on input c, reduces in one time
unit to R and outputs d”. The observable transitions are obtained from terminating
sequences of internal transitions.

Let us now consider an infinite sequence of observable transitions (or run) P =

P1
(s1,r1)
====⇒ P2

(s2,r2)
====⇒ P3

(s3,r3)
====⇒ This sequence can be interpreted as an inter-

action between the system P and an environment. At a time unit i, the environment
provides a stimulus si and Pi produces ri as a response. If α = s1.s2.s3 . . . and

α′ = r1.r2.r3 . . ., then the above interaction is represented as P
(α,α′)
====⇒ω.

Alternatively, if α = trueω, we can interpret the run as an interaction among the
parallel components in P without the influence of an external environment (i.e.,each
component is part of the environment of the others). In this case α is called the empty
input sequence and α′ is regarded as a timed observation of such an interaction in
P . We will say that the strongest postcondition of a process P , denoted sp(P),
denotes the set of all infinite sequences that P can possibly output. More precisely,

sp(P) = {α′ | for some α : P
(α,α′)
====⇒ω}.

A Logic Approach to Property Verification The linear-time Temporal Logic
associated with ntcc is defined as follows. Formulas A,B, . . . ∈ A are defined by the
grammar:

A,B, . . . := c | A ⇒̇B | ¬̇A | ∃̇xA | ◦A | �A | ♦A.

Here c denotes an arbitrary constraint which acts as an atomic proposition. Sym-
bols ⇒̇, ¬̇ and ∃̇x represent linear-time temporal logic implication, negation and ex-
istential quantification. These symbols are not to be confused with the logic symbols
⇒, ¬ and ∃x of the constraint system. Symbols ◦, � and ♦ denote the linear-time
temporal operators next, always and eventually. We use A ∨̇B as an abbreviation of
¬̇A ⇒̇B and A ∧̇B as an abbreviation of ¬̇(¬̇A ∨̇ ¬̇B). The standard interpretation
structures of linear temporal logic are infinite sequences of states. In ntcc, states

|116 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

LTELL tell(c) ⊢ c LSUM
∀i ∈ I Pi ⊢ Ai

P

i∈I
when ci do Pi ⊢

˙_

i∈I
(ci ∧̇Ai) ∨̇

˙^

i∈I
¬̇ ci

LPAR
P ⊢ A Q ⊢ B

P ‖ Q ⊢ A ∧̇B
LUNL

P ⊢ A

unless c next P ⊢ c ∨̇◦A

LREP
P ⊢ A

!P ⊢ �A
LLOC

P ⊢ A

local x in P ⊢ ∃̇x A

LSTAR
P ⊢ A

⋆P ⊢ ♦A
LNEXT

P ⊢ A

next (P) ⊢ ◦A
LCONS

P ⊢ A

P ⊢ B
if A ⇒̇B

Table 1: A proof system for verifying linear-time temporal properties of ntcc processes

are represented with constraints, thus we consider as interpretations the elements of
Cω. When α ∈ Cω is a model of A, we write α |= A.

We shall say that P satisfies A if every infinite sequence that P can possibly
output satisfies the property expressed by A. A relatively complete proof system for
assertions P ⊢ A, whose intended meaning is that P satisfies A, is given in Table 1.
We shall write P ⊢ A if there is a derivation of P ⊢ A in this system.

Example: Modeling a biological mutation using ntcc

This section illustrates the most important ntcc features for describing biological
systems. We shall present the use of ntccSim to observe the behavior of an ntcc

model of the system. Finally, a property of such a model will be verified using the
proof system for the temporal logic associated to ntcc.

In this example, we are interested in modeling the control system of a biolog-
ical network, including a set of genes. To do so we define three ntcc processes:
StartControl, MutatedGene and WildGene. The first process indicates the number
of molecules interacting with the control region at the start of the study of the sys-
tem. The second one defines the behavior of the system under mutated conditions.
The last one represents the behavior of the system in wild or normal conditions.
These processes can be formalized in ntcc as follows:

StartControl
def
= tell(x = n)

MutatedGene
def
= ⋆ ! (tell(mut = 1) ‖ next tell(x = fm))

WildGene
def
= ! unless mut = 1 next tell(x = fw)

ControlRegion
def
= StartControl ‖MutatedGene ‖WildGene

Volumen 4, n̈ı¿ 1
2
mero 8 117|

Process Calculi to Analyze Emerging Applications in Concurrency

Figure 2: Molecular concentration in a DNA region of a mutated gene

where x is a variable representing the cellular concentration of molecules inter-
acting with the control region of the set of genes, and n is a real number as a starting
value.

On the one hand, the processMutatedGene establishes that a mutation will even-
tually occur in the gene in an undetermined future time unit and, as a consequence,
the behavior of the system will be defined by the constraint x = fm, where fm is a
function determining an incorrect behavior in the gene control region. On the other
hand, the process WildGene states that the behavior of the control region is repre-
sented by the constraint x = fw unless the mutation occurs (i.e., which is represented
by the constraint mut = 1). Function fw represents the behavior of the system in
wild conditions. Figure 2 illustrates the behavior of the system; it was obtained using
ntccSim, with n = 0.

A logic-based approach to verifying biological properties. In this section we verify
a system property using the inference system associated with ntcc. As a case study,
we will verify that when the mutation occur, variable x will be determined only by
function fm. Formally, we wish to verify the following formula:

ControlRegion ⊢ ♦�x = fm

|118 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

The formulas for processes StartControl, MutatedGene and WildGene are:

StartControl ⊢ x = n
MutatedGene ⊢ ♦�(mut = 1 ∧̇◦x = fm)
WildGene ⊢ �(mut = 1 ∨̇◦x = fw)

StartControl ⊢ x = n
LTELL

MutatedGene ⊢ ♦�(mut = 1 ∧̇◦x = fm)
LRULES1

StartControl ‖ MutatedGene ⊢ (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm))
LPAR

where LRULES1 denotes the systematic application of rules LSTAR, LREP, LPAR,
LNEXT and LTELL of the proof system over process MutatedGene. We assume
the following abbreviations: WG = WildGene, SC = StartControl and MG =
MutatedGene.

WG ⊢ (�(mut = 1 ∨̇◦x = fw))
LRULES2

SC ‖ MG ⊢ (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm)))

WG ‖ SC ‖ MG ⊢ (�(mut = 1 ∨̇◦x = fw)) ∧̇ (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm))
LPAR

where LRULES2 represents the application of rules LREP, LUNL and LTELL over
process WildGene. Finally, we can perform the following deduction:

ControlRegion ⊢ (� (mut = 1 ∨̇◦x = fw)) ∧̇ (x = n) ∧̇ (♦� (mut = 1 ∧̇◦x = fm))

ControlRegion ⊢ � (mut = 1 ∨̇◦x = fw) ∧̇ ♦� (mut = 1 ∧̇◦x = fm)
LCONS

ControlRegion ⊢ ♦� ((mut = 1 ∨̇◦x = fw) ∧̇ (mut = 1 ∧̇◦x = fm))
LCONS

ControlRegion ⊢ ♦� (mut = 1 ∧̇ (mut = 1 ∧̇◦x = fm))
LCONS

ControlRegion ⊢ ♦�◦x = fm
LCONS

ControlRegion ⊢ ♦�x = fm
LCONS

The above logical expression verify that the constraint x = fm will define the
behavior of the system in an undetermined future time, and that this behavior will
continue forever.

In this way, we have shown how the behavior of a system can be formally analyzed
in two ways: (i) following the ntcc operational semantics in a mechanical way by
using ntccSim (see Figure 2) and (ii) by means of a logical-temporal proof derived
with the inference system associated with ntcc. Concerning logic-based proofs, a
remarkable aspect to consider here is that certain aspects of systems might be difficult
to study by just using simulations; in our example, it is possible that simulations do
not reveal the presence of a mutation, as it could occur in a very long time. As a

Volumen 4, n̈ı¿ 1
2
mero 8 119|

Process Calculi to Analyze Emerging Applications in Concurrency

consequence, in this case the logic proof can be regarded as being more effective,
since it can reveal the actual behavior of the system.

It is worth mentioning other works relating to the use of ntcc and CCP for the
study of biological systems. In [35] a study of the state of the art in the modeling of
biological systems using process calculi is presented. The advantages of using CCP in
biology are analyzed there. The paper [7] offers a detailed explanation of how ntcc

process constructs can be used to model biological systems. A biological system for
ion transport is also modeled and verified there. In [36, 37] a complete ntcc model
of the lactose operon genetic regulatory network is proposed. Similar to the example
discussed here, a stability property that cannot be ensured by simulation is formally
verified using the proof system associated with the calculus. Finally, [38] presents a
summary of the work on ntcc in systems biology.

3.2 Security in Communication Protocols

The security of information has always been one of the main concerns in social be-
havior. The assurance of a personal secret which cannot be revealed to someone
unauthorized, and the notion of trust have been relevant concerns since the begin-
nings of commerce and wars. The emergence of global communications, electronic
processing, and distributed computation have increased the relevance of these con-
cerns. Data from the Internet Fraud Crime report [39] is just but one example of the
strong influence secure communications have in business: about 228.400 complaints
(with quantitative losses of US$183,14 Millions) were reported to be related with
threats including electronic fraud, identity theft and even hacking.

A wide variety of (automated) tools have been developed to overcome security
risks, including firewalls, access control mechanisms and cryptographic-based soft-
ware. Nevertheless, these mechanisms by themselves are not enough to provide se-
curity warranties; the open nature of the communications and the inherent vulnera-
bilities of distributed systems make it essential to provide higher levels of assurance
for participants of privacy-sensitive communication processes. This is why security
protocols were created: these are sets of routines that define a precise set of steps
that participants (also known as principals, agents or parties) have to follow in order
to establish some security goals during communications.

There exist diverse kinds of interesting properties related to the behavior of se-
curity protocols (security properties), and usually aim at achieving different objec-
tives [40]. Some representative examples include:

• secrecy, or the guarantee that a secret message never appears unprotected on
the medium;

|120 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

• authentication, or the guarantee that no principal is impersonated by an un-
known or malicious agent;

• anonymity, or the guarantee that the responsibles of actions cannot be identi-
fied.

In this context, the use of process calculi for the analysis of security protocols
appears as a promising approach. Several facts support this claim. First, the open
nature of network scenarios is naturally captured by process calculi models, allowing
for the inclusion of malicious attackers inside the environment. Second, the ab-
straction principle of process calculi helps engineers and designers to focus in the
communication components of the protocol, leaving aside unimportant implementa-
tion details. In addition, the compositional approach of process calculi specifications
allows to accurately describe network agents, their capabilities and complex inter-
actions. Finally, a process calculi approach to modeling of protocols would allow to
(automatically) verify their security properties by means of the reasoning techniques
associated with the calculi.

The above intuitions have been widely studied in the literature. Below we provide
a summary of the most representative efforts in this direction.

One of the first attempts involves the use of the CSP process algebra [41]. In
CSP, systems of concurrent agents interact via message exchange. It is intended to
be a multipurpose algebra: several specialized theories could be constructed on the
top of its semantic model. In this way, concrete formalisms can be designed and
verified using this theory, with an environment especially crafted for each purpose.
Several approaches for analyzing security properties in protocols [42, 43] have been
developed. In such works, network models and attacker abilities are abstracted as
processes, whereas security properties are defined as predicates over the execution
traces of such processes.

Another significant approach is the one that uses the π-calculus as specification
language. Here protocol participants are abstracted as concurrent processes that
exchange messages through channels. Remarkably, secret generation is abstracted by
means of restricted names. In this way, for instance, process (νs)(A ‖ B) represents
a secret s that is shared by interacting agents A and B. Although this approach
is clearly incomplete for modeling purposes in the security context, it served as
inspiration for several extensions to the calculus. In fact, the Spi calculus [12] —one
of such extensions— allows for the expression of cryptographic operations, using the
behavioral equivalence approach to property verification. Other extensions include
the applied π-calculus [44], a variant where operations over functions and data-types
are treated in a general framework, thus enabling the use of complex cryptographic
functions within protocol specifications. Recent works ([11]) involve the combination
of a version of this applied π-calculus, type systems and logic interpretations of

Volumen 4, n̈ı¿ 1
2
mero 8 121|

Process Calculi to Analyze Emerging Applications in Concurrency

processes to analyze security protocols from a logic perspective: formal specifications
of protocols are translated into logic clauses to perform reachability analysis about
their properties.

Other process calculi have adopted an operational view of processes by using
different foundations such as Petri Nets. One of such calculi is the Security Protocol
Language (SPL) [13]. Next we provide an in-depth introduction to it.

A Process Calculus for Security Protocols

SPL is a process calculus that models security protocols as the asynchronous exchange
of messages between agents. It is based on a persistent network model, in which every
transmitted message is remembered for an unlimited period of time; this represents
the power of an attacker to infinitely collect information from the network. SPL
provides an event-based operational semantics, which allows to represent protocol
evolutions in a clear and intuitive way, as well as an intuitive set of proof techniques,
that allow to verify security properties by taking advantage of the semantics. SPL
has been successfully used in the analysis of several communication protocols (see,
e.g., [45,14,46]). Next we provide a formal introduction to the SPL process calculus,
following [47, 13].

Syntax Let us start by giving the syntactic sets of the calculus:

• An infinite set N of names, denoted by ~x. Names range over newly-generated
values (known as nonces) and agent identifiers. It is common to denote agent
identifiers with capital letters.

• Variables over names (~x), keys (~χ) and messages (~ψ).

• A set of processes P,Q,R,

In addition to these elements, it is possible to give a complete notion of messages
by defining message tuples (denoted (M1 ,M2)), messages ciphered with a key (de-
noted {|M |}x, x being the key), and messages involving cryptographic primitives for
handling public and private keys (denoted Pub(v), P riv(v) andKey(~v), respectively).

SPL processes can be classified in two groups: replication constructions that allow
for composition of processes and binding processes that restrict variables in different
contexts. While the former group is defined in the expected way, in the latter the
output process

outnew(~x)M .P

|122 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

Variables
v ::= x |Y (names)

k ::= Pub(v) |Priv(v) |Key(~v) (keys)

M ::= v | k | (M,M ′) | {|M |}k (messages)

Processes
(Binding) P ::= outnew(~x)M .P (secret generation)

| in pat ~x~χ~ψM .P (pattern-matching input)

(Replication) | ‖i∈I Pi (process composition)

| !P (infinite behavior)

Table 2: Syntax of SPL

binds the vector ~x to a set of fresh values ~n, outputting the message M [~n/~x] to the
network while defining the evolution of P into P[~n/~x]1. In addition, the process

inpat ~x~χ~ψM .P

acts as a pattern-matching input, receiving every message from the network that
match the pattern M , binding the new variables ~x, ~χ, ~ψ with the received contents.
Table 2 summarizes these syntactic elements.

Operational Semantics One of the main characteristics of SPL is the inclusion of
a dual operational semantics to analyze the evolution of a process during its execution.
A labeled transition system for SPL is defined over a set of configurations of the form
〈p, s, t〉, where p is a closed (i.e., variable-free) process term, s a subset of names, and
t a subset of variable-free messages (i.e., the messages available in the network). The
reduction rules allow to analyze how the information is included and how processes
are affected by such an inclusion. They are defined as follows:

• The output rule, labeled by outnew(~n)M [~n/~x], defines the evolution of a
process outnew(x)M .P as the process P[~n/~x], including the information in
the fresh variables ~n in the set of names and augmenting the set of messages
with the information transmitted in M .

• The input rule is labeled by inM [~n/~x,~k/~χ, ~N/~ψ] and allows the evolution of a

process in pat ~x~χ~ψM .P as the process P, with the new variables instantiated
from the contents of M .

1Notice that P [~n/~x] has an analogous meaning to the P{x/z} notation explained before: all the
occurrences of the message ~x in the context of process P are replaced by ~n.

Volumen 4, n̈ı¿ 1
2
mero 8 123|

Process Calculi to Analyze Emerging Applications in Concurrency

• The parallel composition rule (labeled by j : α, being j the index of one of
the processes involved in the composition) decomposes an indexed composition
process ‖i∈I Pi into each of its subprocesses for further analysis.

Although this transition semantics is an appropriate method of representing pro-
cess behavior, it is not fine enough to describe dependencies between events, or to
support typical proof techniques such as those based on maintaining invariants along
the trace of the execution of protocols. For this reason, SPL provides an additional
semantics based in events that makes protocol events and their dependencies more
explicit.

SPL event-based semantics relies on a variant of persistent Petri nets, so-called
SPL-nets [47], which define events in the way they affect conditions, and how the
models stated evolve using a general methodology (so-called token games). The
interested reader may find full details about Petri Nets and persistent SPL-nets
in [48] and [47], respectively. With the foundations of SPL-nets, every action present
in a protocol can be described as a transition that generates a set of typed conditions
(Petri net events). These events can be grouped in three different kinds (see Figure
3):

• Control conditions (ce and ec), representing the current state of execution of a
given process.

• Name conditions (ne and en), that denote the names generated along the net-
work.

• Output conditions (oe and eo), the pieces of information sent through the net-
work. An important characteristic is the natural persistence of these kind of
events, which models the fact that information always can be accessed form
the network once it is published.

Notice that all the actions that can be performed using the transition semantics
can be related to transitions in the event-based semantics with three typical actions:
output, input and parallel composition transitions.

To illustrate the elements of the event semantics, consider a simple output event
e = (Out(outnew(~x)M);~n), where ~n = n1 . . . nt are the distinct names to match
with variables ~x = x1 . . . xt. The action act(e) corresponding to this event is the
output action outnew ~nM [~n/~x]. Conditions associated to this event are:

ce = 〈outnew(~x)M .p, a〉 oe = ∅ ne = ∅
ec = 〈Ic(p[~n/~x])〉 eo = {M [~n/~x]} en = {n1, . . . nt},

|124 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

pi

ni

Ni
Mi

mi

qi

act(e)

Output Conditions
(Persistent)

Name Conditions

Control Conditions

Figure 3: Events and transitions of SPL event based semantics: pi and qi denote control
conditions, ni and mi name conditions and Ni, Mi output conditions.

Attacker Capability SPL formalization

Compose messages Spy1 ≡ inψ1 .inψ2 .outψ1 , ψ2

Decompose a message Spy2 ≡ inψ1 , ψ2 .outψ1 .outψ2

in sub-components

Encrypt any message Spy3 ≡ in x .inψ.out {|ψ |}Pub(x)

with available keys Spy4 ≡ inKey(x , y).inψ.out {|ψ |}Key(x ,y)

Decrypt messages Spy5 ≡ inPriv(x).in {|ψ |}Pub(x).outψ

with available keys Spy6 ≡ inKey(x , y).in {|ψ |}Key(x ,y).outψ

Sign messages with available keys Spy7 ≡ inPriv(x).inψ.out {|ψ |}Priv(x)

Verify signatures with available keys Spy8 ≡ in x .in {|ψ |}Priv(x).outψ

Create new random values Spy9 ≡ out new(~n)~n

Table 3: SPL spy model

where ∗e and e∗ represent the pre and postconditions of the event e, respec-
tively. Ic(p) stands for the initial control conditions of a closed process; it is de-
fined inductively as Ic(X) = {X} if X is an input or an output process, and as
Ic(‖i∈I Pi) =

⋃
i∈I{i : c | c ∈ Ic(Pi)} otherwise.

Proving Security Properties in SPL Proofs of security properties in SPL follow
a general methodology. Once the protocol has been modeled, an attacker capable
of altering its correct execution is included in the obtained model. This attacker
relies on the Dolev-Yao threat model [49], in which the attacker is a malicious entity
capable to overhear, intercept, introduce and synthesize messages over the network.
An SPL representation of a powerful attacker can be seen in Table 3.

Volumen 4, n̈ı¿ 1
2
mero 8 125|

Process Calculi to Analyze Emerging Applications in Concurrency

After that, a property is defined using a general set of proof principles, which
state a general set of theorems available for the verification of security properties.
Counting with these general principles is one of the advantages SPL has over other
process calculi in terms of property verification. Some of the available proof principles
are the following (see [45] for a formal definition):

• Well-Foundedness: If a property P holds in the initial condition i and then is
violated at a stage t, then there is an event that breaks the property between
i and t.

• Freshness: Only one copy of a name is generated in a run of the protocol.

• Control Precedence: There exists a casual dependency between control condi-
tions.

• Input/Output Precedence: There exists a casual dependency between output
conditions.

• Message Surroundings: There exists a relation between messages and sub-
messages at a given level of encryption.

The final step in the proof consists in deriving a contradiction. First, an event
in which the property does not hold is assumed. For instance, if we wish to proof
secrecy of a message, we assume that it is accessed by an attacker. Then, using the
operational semantics and following event dependencies, one tries to find an event
that breaks the property. If such an event cannot be reached, then it can be concluded
that the protocol holds the desired property.

Example: Modeling and Verifying P2P Systems using SPL

P2P architectures are one of the most revolutionary changes in communication net-
works. They allow for collaboration between two different entities no matter the
barriers between them. In P2P systems, every node is connected to the network in
a decentralized manner, acting simultaneously as a requester, forwarder, and source
of information. This feature has broaden the applicability of these systems, consti-
tuting a novel approach to distributed computing. P2P architectures have become
a major force in nowadays computing world because of benefits such as architecture
cost, scalability, viability, and resource aggregation of distributed management in-
frastructures. These benefits have been extensively exploited in multiple application
areas, such as information retrieval, routing and content discovery, providing a huge
set of tools based on P2P architectures (see, e.g., [50, 51, 52, 53, 54]). These architec-
tures have to face several security risks: the open nature of the network brings the

|126 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

opportunity to attackers to inflict damages in the protocol, by, for instance, reading
privacy-sensitive information in transmit or writing fake information that could af-
fect the correct execution of the protocol. Also, the multiplicity of the roles present
in each agent implies that the communication must ensure the same level of security
at each phase, no matter who receive the information.

Recently, we have shown that SPL provides a useful approach to analyze these
kind of systems [14]. The compositionality of the calculus allows to model complex
scenarios where attackers can affect each of the phases of the protocol. Also, the
persistent network model turns to be useful to express the possibility attackers have
of listening for a message over an infinite amount of time. Further, process replication
allows to model infinite scenarios, stressing the level of complexity in security.

We shall illustrate this by modeling MUTE, a P2P protocol for content-sharing
networks. Application examples of this kind of networks include online communities
dedicated to music distribution on the Web. The MUTE protocol intends to pro-
vide reliable communication for the agents involved in the network (so-called peers),
working as a tool to communicate requests of keywords through the network, so that
an specific file can be found and then received [55]. This protocol is composed of
two main phases: searching and routing parts. We will focus directly in its search-
ing phase, due to its significance in terms of security: if the information related to
the search (which agent is requesting, and who has the correct information) is safe-
guarded, then the routing phase will guarantee that only the correct principals will
know the information. Next we present a formalization of MUTE, followed by a
proof of secrecy over shared keys along the protocol run.

Abstracting P2P systems Let us give some definitions for P2P systems. They
will serve to abstract common behaviors and objects in such systems:

Definition 1 (Sets in Mute). Let Files be the set of all the files in the P2P network
and Files(A) the set of files belonging to peer A. Let Keywords be the set of keywords
associated to the files Files, Keywords(A) the keywords associated to the peer A
and Keys the relation Files : Keywords, representing the keywords associated to
a particular file. Let Headers be the set of headers of files, which is associated to
Files, Headers(A) the set directly related to Files(A), such that each header which
belongs to Headers(A) will be associated to a unique file belonging to Files(A).

The following definition will provide a formal basis to define and reason about
P2P networks:

Definition 2 (P2P Network model). We shall describe a P2P network as an undi-
rected graph G whose nodes represent the peers and whose edges mean the direct
connections among them. We use Peers(G) to denote the set of all the nodes in G.
Given a node X ∈ Peers(G), Let ngb(X) be the set of immediate neighbors of X.

Volumen 4, n̈ı¿ 1
2
mero 8 127|

Process Calculi to Analyze Emerging Applications in Concurrency

Init(A) ≡ (‖B ∈ ngb(A) out new(n) ({|n,Kw |}Key(A,B),A,B).
(‖Y ∈ ngb(A) in ({| n, res,m |}Key(Y ,A),Y ,A))

Interm(A) ≡ !(‖Y ∈ ngb(A) in ({|M |}Key(Y ,A),Y ,A) .
‖B ∈ ngb(A)−{Y } o({|M |}Key(A,B), A,B))

Resp(A) ≡ ‖Y ∈ ngb(A) , kw ∈ Keys(F iles(A)) in ({| x ,Kw |}Key(Y ,A),Y ,A) .
(‖B ∈ ngb(A)out new(m) ({| x , res,m |}Key(A,B),A,B))

Node(A) ≡ Init(A) ‖ Interm(A) ‖ Resp(A)
SecureMUTE ≡ ‖A ∈ Peers(G)Node(A)

Figure 4: MUTE specification on SPL

For example, consider a P2P network G with A,B ∈ Peers(G). Suppose that
A initiates the protocol by broadcasting a request to all of its neighbors in order to
find a particular answer, and B is the agent which has the desired answer that A is
searching for, deciding to send a response. In this case, B can be any node inside the
network with the desired file on its store. A requests for a particular file it wishes
to download, sending the request to the network by broadcasting it to its neighbors.
This request includes a keyword kw ∈ Keywords, which will match the desired file,
and a nonce N which will act as the request identifier. Along the searching path
an unknown amount of peers will forward the request until B is reached, the peer
with the correct file such that ∃f ∈ Files(B) and kw ∈ Keys(f). Then, B sends its
response by means of the header of the file RES, among with the identifier N and
a new name M generated by it to recognize the message as an answer. This is done
again by broadcasting the message through a series of forward steps, until reaching
the actual sender A.

The following specification shows how a protocol for P2P systems can be con-
structed. Considering only the searching protocol of MUTE, the phases consid-
ered are the ones that involve the transmission of the keyword, the response mes-
sage and the keys (leaving aside the phases of connection), and the sub-messages
that include plaintext. We assume that the symmetric keys are equivalent (i.e.,
key(A,B) = key(B,A)). A formal model of this scenario is presented in Figure 42.

Some intuitions behind the model follow. It is assumed that the topology of the
net has already been established. The agent starts searching for an own keyword.
Then this agent broadcasts the desired keyword to all of its neighbors. They receive
the message and check whether the keyword matches one of their files. When at
least one of the neighbors find the requested keyword, it will broadcast a response

2Notation (‖i∈I Pi).R, representing the execution of process R once parallel composition ‖i∈I Pi

is fully executed, can be easily encoded using elements in the language. See [56] for more details.

|128 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

message, in such a way that eventually the one searching for the keyword will get
it and understand it as an answer to its request. The message will be forwarded
by all the agents until it reaches its destination. In the case that the keyword does
not match any file of the agent, it will broadcast it to its neighbors asking them for
the same keyword. The choice of having or not the right file is modeled in a non-
deterministic way. Notice that the model abstracts away from performance issues
such as, e.g., the search for the best path, concentrating the analysis only in the
satisfaction of a secrecy property.

Verifying a Typical Security Property: Secrecy Considering the guidelines
stated before, the complete model must consider the spy presented in Table 3. The
final model could be seen as

MUTE ≡ SecureMUTE‖!(‖i∈{1...8} Spyi)

To analyze secrecy of a given protocol in SPL, one considers arbitrary runs of the
protocol.

Definition 3 (Run of a Protocol). A run of a process p = p0 is a sequence

〈p0, s0, t0〉
e1−→ · · ·

ew−→ 〈pw, sw, tw〉
ew+1

−→ . . .

Analyzing the specification, the set of events can be made explicit.

Events in MUTE Each role in the specification generates different roles ac-
cording to the action they execute. The complete model must consider all the rules
for a complete proof, as described in the following definition:

Definition 4 (Events in MUTE). The event ew is an event in the set

Ev(MUTE) = Init : Ev(pInit) ∪ Interm : Ev(pInterm) ∪

Resp : Ev(pResp) ∪ Spy : Ev(pSpy)

We now proceed to explain the events.

• Initiator Events: The initiator events indicate the behavior of process Init(A).
This process can be splitted in two main sub-processes: an output process that
generates a new name n and a request message

({|n, kw |}Key(A,B), A,B)

Volumen 4, n̈ı¿ 1
2
mero 8 129|

Process Calculi to Analyze Emerging Applications in Concurrency

over the store, and an input process that receives the answer message

({|n, res ,m |}Key(A,B), A,B)

via an input action in ({|n, res ,m |}Key(A,B),A,B). Figures 5(a) and 5(b) de-
scribe these sub-processes.

Init(A) : j : B out new(n)({n, kw}Key(A,B), A,B)

out new(n)({n, kw}key(A,B), A,B)

({n, kw}key(A,B), A,B)

n

Init(A) : j : in ({n, res,m}Key(Y,A), Y, A)

(a) Initiator Output action

in ({n, res,m}key(Y,A), Y, A)

({n, res,m}key(Y,A), Y, A)Init(A) : j : in ({n, res,m}key(Y,A), Y, A)

(b) Initiator Input action

Figure 5: Initiator Events

• Intermediator Events: Each agent acting as an intermediator has to forward
the received messages. Figure 6(a) illustrates the event in which the interme-
diator process receives the message ({|M |}Key(Y,A), Y, A) via an input action
in ({|M |}Key(Y ,A),Y ,A). The composition of a second sub-process (Figure
6(b)) completes the intermeditator behavior, forwarding the received messages
M to one of the neighbors by means of an output o({|M |}Key(A,B), A,B).

in ({M}Y,A, Y, A)

({M}key(Y,A), Y, A)Initerm(A) : j : in ({M}Y,A, Y, A)

Interm(A) : j : B : out({M}key(A,B), A,B)

(a) Input action

out({M}key(A,B), A,B)

({M}key(A,B), A,B)

Interm(A) : j : B : out({M}key(A,B), A,B)

(b) Output action

Figure 6: Intermediator Events

• Responder Events: A responder agent is basically composed by two processes:
an initial input (Figure 7(a)) that waits for a message request ({|n, kw |}Key(Y,A), Y, A),
and a subsequent output of the answer
({|n, res ,m |}Key(A,B), A,B) via an output action o({|n, res ,m |}Key(A,B), A,B),
with a new name m (Figure 7(b)).

|130 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

in ({n, kw}Y,A, Y, A)

({n, kw}Y,A, Y, A)Resp(A) : j : in ({n, kw}Y,A, Y, A)

Resp(A) : j : B : out new(m)({x, res,m}key(A,B), A,B)

(a) Input action

Resp(A) : j : B out new(m)({x, res,m}A,B, A,B)

out new(m)({x, res,m}A,B, A,B)

({x, res,m}key(A,B), A,B)
m

(b) Output action

Figure 7: Responder Events

The property: secrecy over shared keys The secrecy theorem for the
MUTE protocol concerns the shared keys of neighbors. If they are not corrupted
from the start and the peers behave as the protocol states then the keys will not be
leaked during a protocol run. If we assume that the shared keys are not contained
in the initial output conditions (key(X,Y) 6⊑ t0, where X,Y ∈ Peers), then at the
initial state of the run there is no danger of corruption.

Theorem 1. Given a run of MUTE 〈MUTE, s0, t0〉
e1−→ · · ·

ev−→ 〈pv, sv, tv〉
ev+1

−→
. . . and A0, B0 ∈ Peers(G), if key(A0, B0) 6⊑ t0 then for each w ≥ 0 in the run
key(A0, B0) 6⊑ tw

Proof. By contradiction. Suppose there is a run of MUTE in which key(A0, B0)
appears on a message sent over the network. This means, since key(A0, B0) 6⊑ t0,
that there is a stage w > 0 in the run such that

key(A0, B0) 6⊑ tw−1 and key(A0, B0) ⊑ tw.

Where ew ∈ Ev(MUTE) (Definition 4). By the evolution of nets with persistent
conditions (SPL-nets token game), we can infer that key(A0, B0) ⊑ eo

w. As can be
easily checked by using the events defined before, the shape of every Init or Interm

or Resp event

e ∈ Init : Ev(pInit) ∪ Interm : Ev(pInterm) ∪ Resp : Ev(pResp)

does not fulfill that. key(A0, B0) ⊑ eo, so the event ew can therefore only be a spy
event. If ew ∈ Spy : Ev(pSpy), however by using the proof principle of control
precedence and the token game for SPL-nets, there must be an earlier stage u in the
run, u < w such that key(A0, B0) ⊑ tu which clearly is a contradiction.

This small but illustrative example has served as a basis for the study of more
complex properties, such as considering the secrecy threats involved with outsider

Volumen 4, n̈ı¿ 1
2
mero 8 131|

Process Calculi to Analyze Emerging Applications in Concurrency

attackers in the protocol [14]. This approach using process calculi has allowed us
to expand our analyzes, considering new, more powerful models of attackers. These
attackers are capable to infiltrate inside the P2P network with greater knowledge
about the requests, answers and keys involved. Also, our approach has allowed us to
find security attacks within these models, and to propose new designs that correct
the protocol, guaranteeing a full secrecy property [56].

In the same sense, other classes of P2P protocols have been studied. For instance,
protocols for collaborative P2P applications (such as Microsoft Messenger [57,58] and
collaborative searches [53]) aim to allow application-level collaboration between users.
There exist high security risks in these applications: the transmission of private data
through the network is an important issue so that attackers will not access that kind
of secrets. We have demonstrated the applicability of the process calculi approach
in the modeling and verification of collaborative P2P applications, extending the
language to consider attackers in dynamic reconfiguration systems [56].

4 Concluding Remarks

In this paper we have introduced basic ideas underlying process calculi, a set of
formalisms aimed to describe and analyze essential properties of concurrent systems.
The design of a process calculus adheres to a series of basic principles (abstraction,
compositionality, economy) and intends to constitute a rigorous framework for the
study of particular phenomena. An introduction to the most relevant issues and
components of a process calculus was also given.

Although process calculi were originally devised for the study of distributed and
mobile computing systems, a recent research trend consists in using them for ana-
lyzing systems and phenomena in emerging applications in the arts, the sciences and
the engineering. The generic nature of process calculi and their associated techniques
are some of the reasons that have motivated such a trend.

Based on previous works by the authors, the paper focused on two of such emerg-
ing applications, namely systems biology and computer security. Two different calculi
(ntcc and SPL) were presented in order to illustrate some examples of systems in
each application area. The particular motivations and underlying ideas of these cal-
culi were discussed and explained. Some properties of the modeled applications were
verified using the reasoning techniques associated to each calculus. The proofs pre-
sented here are interesting in that they are useful for demonstrating the applicability
of our modeling and verification approach in different contexts.

It is important to remark that process calculi verification can complement usual
methods for system design and construction. In systems biology, for instance, process
calculi can contribute to study the behavior of systems that are difficult to analyze

|132 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

using conventional experimentation. Some important steps in this direction have
been taken; nevertheless, both theoretical and practical research efforts are needed
to build more effective tools for biologists and related experts. As for security, the
increasing flexibility of communication networks certainly poses new challenges for
the design of protocols that ensure relevant security properties. One approach that
seems particularly promising is the one that seeks the translation of protocol descrip-
tions as some kind of logic formulas. As a consequence, further efforts are required
in order to automatically verify more sophisticated properties. Representing more
powerful and smarter attackers is also an interesting challenge to undertake.

Another challenge pertains to the development of software tools. This is partic-
ularly urgent as process calculi are trying to constitute an alternative for property
verification in domains where experts usually know little (or even know nothing at
all) about Computer Science formalisms. Therefore, tools to be designed must in-
volve intuitive notations and user interfaces as well as efficient simulation capabilities.
Some reported initial efforts in this practical direction are the tools for biological sim-
ulation proposed in [59] and χ-Spaces [60, 61], a framework for the development of
protocols that is close to SPL.

Acknowledgements

Research reported in this work was supported by the Pontificia Universidad Javeriana-
Cali under the project “Modelamiento de Problemas en Ciencia y Tecnoloǵıa usando
Cálculos de Procesos Concurrentes (Fase II)”. This work was carried out while au-
thors Arbeláez, Gutiérrez, López, and Pérez were research assistants at the AVISPA
Research Group of the Pontificia Universidad Javeriana, Cali.

We are grateful to Andrés Sicard Ramı́rez for handling the publication of this pa-
per. We record our appreciation to the organizing committee of LOG&CO: Freddy
Ángel Amaya Robayo, Gabriela Arbeláez Rojas (coordinator), Freddy William Bus-
tos Rengifo, Diego Correa Cuené, Luz Victoria de la Pava Castro, Luis C. Recalde
Caicedo, Andrés Sicard Ramı́rez.

References

[1] C. Rueda, G. Alvarez, L. O. Quesada, G. Tamura, F. D. Valencia, J. F. Dı́az,
and G. Assayag. Integrating constraints and concurrent objects in musical ap-
plications: A calculus and its visual language. Constraints, 6(1):21–52, 2001.

Volumen 4, n̈ı¿ 1
2
mero 8 133|

Process Calculi to Analyze Emerging Applications in Concurrency

[2] A. Allombert, G. Assayag, M. Desainte-Catherine, and C. Rueda. Concurrent
Constraint Models for Specifying Interactive Scores. In Proc. of the Third Sound
and Music Computing Conference (SMC’06)., May 2006.

[3] C. Rueda and F. D. Valencia. A Temporal CCP Calculus as an Audio Processing
Framework. In Proceedings of Sound and Music Computing (SMC’05), 2005.

[4] P. Gardner and S. Maffeis. Modelling dynamic web data. Theor. Comput. Sci.,
342(1):104–131, 2005.

[5] C. Laneve and G. Zavattaro. web-pi at work. In R. De Nicola and D. San-
giorgi, editors, Trustworthy Global Computing, volume 3705 of Lecture Notes in
Computer Science, pages 182–194. Springer, 2005.

[6] D. Prandi, C. Priami, and P. Quaglia. Process calculi in a biological context.
Bulletin of the EATCS, February 2005.

[7] J. Gutiérrez, J. A. Pérez, C. Rueda, and F. D. Valencia. Timed Concurrent
Constraint Programming for Analysing Biological Systems. Electr. Notes Theor.
Comput. Sci., 171(2):117–137, 2007.

[8] A. Regev and E. Shapiro. Cells as Computation. Nature, 419:343, September
2002.

[9] A. Regev and E. Shapiro. Modelling in Molecular Biology, chapter The π-calculus
as an abstraction for biomolecular systems, pages 219–266. Natural Computing
Series. Springer, 2004.

[10] C. Olarte and C. Rueda. Using Stochastic NTCC to Model Biological Systems.
CLEI Elec. Journal, 9(2), 2006.

[11] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types
and Logic Programs. Journal of the ACM, 52(1):102–146, January 2005.

[12] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput., 148(1):1–70, 1999.

[13] F. Crazzolara and G. Winskel. Events in security protocols. In P. Samarati, edi-
tor, Proceedings of the 8th ACM Conference on Computer and Communications
Security, pages 96–105, Philadelphia, PA, USA, November 2001. ACM Press.

[14] A. Aristizábal, H. A. López, C. Rueda, and F. D. Valencia. Formally reasoning
about security issues in P2P protocols: A case study. In S. Cruz-Lara and Y. K.
Tsay, editors, Proc. of the Third Taiwanese-French Conference on Information
Technology (TFIT 2006), INRIA Technical Reports, pages 555–577. INRIA,
2006.

|134 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

Arbeláez et al.

[15] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

[16] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[17] R. Milner. Comunication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[18] C. Palamidessi and F. D. Valencia. Languages for Concurrency. Bulletin of the
EATCS, 90:155–171, 2006.

[19] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of
concurrent constraint programming. In POPL ’91, pages 333–352, Jan 1991.

[20] B. C. Pierce and D. Turner. The Pict Program-
ming Language, 2006. More information available at
http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html.

[21] School of Informatics, University of Edinburgh. The Edinburgh
Concurrency Workbench, 2006. More information available at
http://homepages.inf.ed.ac.uk/perdita/cwb/.

[22] Computer Science Department at Stony Brook University. The Concur-
rency Workbench of the New Century, 2006. More information available at
http://www.cs.sunysb.edu/~cwb/.

[23] P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors. The formal description
technique LOTOS. Elsevier Science Publishers B.V., 1989.

[24] H. Kitano. Foundations of Systems Biology, chapter Systems Biology: Toward
System-level Understanding of Biological Systems. MIT Press, 2001.

[25] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci.,
240(1):177–213, 2000.

[26] C. Priami. Stochastic π-calculus. The Computer Journal, 38(6):578–589, 1995.

[27] L. Cardelli. Brane calculi. In Vincent Danos and Vincent Schachter, editors,
CMSB, volume 3082 of Lecture Notes in Computer Science, pages 257–278.
Springer, 2004.

[28] V. Danos and C. Laneve. Formal molecular biology. Theor. Comput. Sci.,
325(1):69–110, 2004.

Volumen 4, n̈ı¿ 1
2
mero 8 135|

http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html
http://homepages.inf.ed.ac.uk/perdita/cwb/
http://www.cs.sunysb.edu/~cwb/

Process Calculi to Analyze Emerging Applications in Concurrency

[29] J. Krivine and V. Danos. Formal molecular biology done in CCS-R. In BioCon-
cur 2003, Workshop on Concurrent Models in Molecular Biology, 2003.

[30] A. Bockmayr and A. Courtois. Using hybrid concurrent constraint programming
to model dynamic biological systems. In P. J. Stuckey, editor, ICLP, volume
2401 of Lecture Notes in Computer Science, pages 85–99. Springer, 2002.

[31] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of LNCS, pages 324–343. Springer - Verlag, 1995.

[32] AVISPA Research Group. ntccSim: A simulator of timed concurrent processes,
2006. Available at http://avispa.puj.edu.co.

[33] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint
programming: Denotation, logic and applications. Nordic Journal of Computing,
9:145–188, 2002.

[34] F. D. Valencia. Temporal Concurrent Constraint Programming. PhD thesis,
BRICS, University of Aahrus, November 2002.

[35] J. Gutiérrez, J. A. Pérez, and C. Rueda. Modelamiento de sistemas biológicos
usando cálculos de procesos concurrentes. Epiciclos, 4(1):79–101, 2005.

[36] A. Arbeláez, J. Gutiérrez, C. Olarte, and C. Rueda. A Generic Framework to
Model, Simulate and Verify Genetic Regulatory Networks (Poster). In Proc. of
CLEI 2006 (32nd Latinamerican Conference on Informatics), 2006.

[37] A. Arbeláez and J. Gutiérrez. Estudio Exploratorio de la Aplicación de la Pro-
gramación Concurrente por Restricciones en Bioinformática. B.Sc. Thesis Dis-
sertation, Pontificia Universidad Javeriana, Cali, Colombia, May 2006.

[38] A. Arbeláez, J. Gutiérrez, and J. A. Pérez. Timed Concurrent Constraint Pro-
gramming in Systems Biology. The Association for Logic Programming Newslet-
ter, 19(4), November/December 2006.

[39] National White Collar Crime Center and Federal Bureau of Investigation. IC3
2005 Internet Fraud-Crime Report, 2006.

[40] M. Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, 20th Int. Summer
School, Marktoberdorf, Germany, pages 39–60. IOS Press, 2000.

[41] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

|136 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

http://avispa.puj.edu.co

Arbeláez et al.

[42] S. Schneider. Security Properties and CSP. In SP ’96: Proceedings of the 1996
IEEE Symposium on Security and Privacy, page 174, Washington, DC, USA,
1996. IEEE Computer Society.

[43] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and
Analysis of Security Protocols. Addison-Wesley, 2001.

[44] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 104–115, New York, NY, USA, 2001.
ACM Press.

[45] M. J. Cáccamo, F. Crazzolara, and G. Milicia. The ISO 5-pass authentication in
χ-Spaces. In Y. Mun and H. R. Arabnia, editors, Proceedings of the Security and
Management Conference (SAM’02), pages 490–495, Las Vegas, Nevada, USA,
June 2002. CSREA Press.

[46] A. Aristizábal, H. A. López, and C. Rueda. Using a declarative process language
for P2P protocols. The Association for Logic Programming Newsletter, 18(4),
November 2005.

[47] F. Crazzolara. Language, Semantics, and Methods for Security Protocols. PhD
thesis, BRICS, University of Aahrus, 2003.

[48] K. Jensen. An introduction to the theoretical aspects of coloured petri nets. In A
Decade of Concurrency, Reflections and Perspectives, REX School/Symposium,
pages 230–272, London, UK, 1994. Springer-Verlag.

[49] D. Dolev and A. C. Yao. On the Security of Public-Key Protocols. IEEE
Transactions of Information Theory, 2(29), 1983.

[50] A. Esenther. Instant co-browsing: Lightweight real-time collaborative web
browsing. In Proc. of the International WWW Conference, Hawaii, USA, 2002.

[51] S. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol. Technical report, Computer Science Department, Columbia
University, September 2004.

[52] N. S. Good and A. Krekelberg. Usability and privacy: a study of Kazaa P2P file-
sharing. In CHI ’03: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 137–144, New York, NY, USA, 2003. ACM Press.

[53] M. Bender, S. Michel, G. Weikum, and C. Zimmer. The MINERVA Project:
Database Selection in the Context of P2P Search. In BTW, pages 125–144,
2005.

Volumen 4, n̈ı¿ 1
2
mero 8 137|

Process Calculi to Analyze Emerging Applications in Concurrency

[54] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. Proceed-
ings of the First International Conference on Peer-to-Peer Computing (P2P’01),
00:0099, 2001.

[55] J. Rohrer and M. Roth. Mute: Simple, anonymous file sharing, 2005. Available
at http://mute-net.sourceforge.net/howAnts.shtml.

[56] A. A. Aristizábal and H. A. López. Using Process Calculi to Model and Verify
Security Properties in Real-Life Communication Protocols. B.Sc. Thesis Disser-
tation, Pontificia Universidad Javeriana, Cali, Colombia, January 2006.

[57] H. J. Wang, Y. Hu, C. Yuan, Z. Zhang, and Y. Wang. Friends troubleshoot-
ing network: Towards privacy-preserving, automatic troubleshooting. In G. M.
Voelker and S. Shenker, editors, IPTPS, volume 3279 of Lecture Notes in Com-
puter Science, pages 184–194. Springer, 2004.

[58] Q. Huang, H. J. Wang, and N. Borisov. Privacy-preserving friends troubleshoot-
ing network. ISOC NDSS, San Diego, CA., 2005.

[59] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning
biochemical networks from temporal logic properties. T. Comp. Sys. Biology,
pages 68–94, 2006.

[60] Giuseppe Milicia. χ-Spaces: Programming Security Protocols. In Proceedings
of the 14th Nordic Workshop on Programming Theory (NWPT’02), November
2002.

[61] F. Crazzolara and G. Milicia. A framework for the development of protocols. In
Application of Concurrency to System Design, pages 239–240. IEEE Computer
Society, 2003.

|138 Ingenier̈ı¿ 1
2
a y Ciencia, ISSN 1794–9165

	Introduction
	Process Calculi
	A Process Calculus for Mobile Systems
	Key Issues in Process Calculi
	Verification Tools based on Process Calculi

	Applications
	Systems Biology
	Security in Communication Protocols

	Concluding Remarks

