
To appear in EPTCS.

The µ-Calculus Alternation Hierarchy Collapses
over Structures with Restricted Connectivity

Julian Gutierrez
University of Cambridge, United Kingdom

Felix Klaedtke
ETH Zurich, Switzerland

Martin Lange
University of Kassel, Germany

It is known that the alternation hierarchy of least and greatest fixpoint operators in the µ-calculus is
strict. However, the strictness of the alternation hierarchy does not necessarily carry over when con-
sidering restricted classes of structures. A prominent instance is the class of infinite words over which
the alternation-free fragment is already as expressive as the full µ-calculus. Our current understand-
ing of when and why the µ-calculus alternation hierarchy is not strict is limited. This paper makes
progress in answering these questions by showing that the alternation hierarchy of the µ-calculus
collapses to the alternation-free fragment over some classes of structures, including infinite nested
words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that
the connectivity between the components in a structure from such a class is restricted in the sense
that the removal of certain vertices from the structure’s graph decomposes it into graphs in which all
paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They
subsume, generalize, and strengthen several prior results on the expressivity of the µ-calculus over
restricted classes of structures.

1 Introduction

The µ-calculus [15], hereafter Lµ , extends modal logic with least and greatest fixpoint operators, which
act as monadic second-order (MSO) quantifiers within the logic. The possibility to arbitrarily mix and
nest fixpoint operators makes Lµ an expressive logic, which subsumes many dynamic, temporal, and
description logics such as PDL and CTL*. In fact, Lµ is essentially the most expressive logic of that
kind as it can express, up to bisimulation equivalence, all MSO-definable properties [13].

An important question about the expressivity of Lµ is whether more alternation—the nesting of
mutually dependent least and greatest fixpoint operators in formulas—gives more expressive power.
Bradfield [7] proved that indeed this is in general the case, i.e., there is a hierarchy of properties that
require unbounded alternation of least and greatest fixpoint operators. Lenzi [19] independently showed
a similar strictness result—for a fragment of Lµ—with respect to an alternation hierarchy different from
the one we consider in this paper. In both cases, their strictness results apply to the class of finite directed
graphs and therefore to all bigger classes of structures. However, the strictness of the alternation hierar-
chy need not necessarily carry over when considering classes of structures that are either incomparable to
or smaller than the class of finite directed graphs. Trivial examples over which the alternation hierarchy
is non-strict are classes that only consist of a single graph. Here, each formula is equivalent to either true
or false, depending on whether the graph satisfies the formula or not.

Overall, little is known about the expressivity of Lµ over restricted classes of structures. Since Lµ is
bisimulation-invariant and every finite graph, either directed or undirected, is bisimilar to a possibly in-
finite tree, the strictness of the hierarchy also holds for the class of trees. In fact, as shown by Arnold [4]
and Bradfield [8], the hierarchy is strict even on the class of binary infinite trees. Alberucci and Fac-
chini [1] also strengthened the initial strictness result by showing that the hierarchy remains strict over
the class of reflexive finite directed graphs.

2 The µ-Calculus over Structures with Restricted Connectivity

On the opposite side, there are a few classes of structures over which it is known that the alternation
hierarchy is not strict. For instance, the hierarchy collapses to its alternation-free fragment over the
class of finite directed acyclic graphs [20]. That is, for every Lµ formula ϕ , there is an alternation-free
Lµ formula ψ , i.e., one in which least and greatest fixpoint operators do not mutually depend on each
other, such that ϕ and ψ are satisfied by exactly the same set of finite acyclic graphs. This collapse
result is not too surprising since the denotation of the least and greatest fixpoint operators of Lµ differs
only when considering models which contain infinite paths—and finite directed acyclic graphs only
contain finite paths. Thus, in this case, every greatest fixpoint operator can be replaced by a least one,
resulting in an alternation-free formula. It is also known, when restricting Lµ to infinite words, that the
Lµ ’s alternation hierarchy collapses to its alternation-free fragment [14]. Moreover, over infinite nested
words, as shown by Arenas et al. [3], the alternation hierarchy collapses to the fragment with at most
one alternation between least and greatest fixpoint operators. Finally, it is known that Lµ ’s alternation
hierarchy collapses over the class of transitive finite directed graphs [1,10,9]. If the graphs are transitive
and undirected, then the hierarchy even collapses to the modal fragment [1, 10].

This paper provides further classes of structures over which the alternation hierarchy of Lµ collapses
to its alternation-free fragment. In fact, our collapse results subsume, generalize, and strengthen some
of the collapse results mentioned above. In particular, we show that the alternation hierarchy collapses
over classes of finite directed graphs with feedback vertex sets of a bounded size. Recall that removing
the vertices in a feedback vertex set decomposes the graph into finite directed acyclic graphs and thus
the removal of these vertices eliminates the infinite behavior in the original graph. Finite directed acyclic
graphs have the empty set as feedback vertex set. We also show that, as for infinite words, all Lµ

properties of infinite nested words can already be expressed within the alternation-free fragment. Our
collapse results are obtained in a uniform way by looking at bounded classes of so-called bottlenecked
directed acyclic graphs. The vertices of such a kind of graphs are grouped into layers and the infinite
paths must visit infinitely often vertices in certain layers, which are bounded in their size. Intuitively
speaking, these bounded layers are the bottlenecks and the removal of these vertices disconnects the
graph into graphs in which all paths have finite length. Nested words and the unfoldings of finite directed
graphs with bounded feedback vertex sets are special instances of such graphs.

Our work is carried out in an automata-theoretic setting. Roughly speaking, the question of whether
the alternation hierarchy collapses to the alternation-free fragment over a class of structures U can be
answered positively by showing that alternating parity automata are as expressive as weak alternating
automata over U. Translations between automata and Lµ formulas are known, e.g., [23, 11, 18, 25]. Yet,
the translation from weak alternating automata to alternation-free formulas we provide here is more direct
than the known ones in the sense that it avoids the construction of formulas in vectorial form, cf. [5].

Another technical contribution of this paper is a generalization of the ranking construction developed
by Kupferman and Vardi [17], which can be used to translate alternating coBüchi word automata into
language-equivalent weak alternating word automata. We generalize it to the parity acceptance condi-
tion and to more complex classes of structures, namely, to bounded bottlenecked graphs. Kupferman and
Vardi [16] have already generalized their ranking construction for word automata and applied it to solve
the nonemptiness problem for nondeterministic parity tree automata. However, our generalization of their
ranking construction [17] is conceptually simpler: It eliminates the odd colors of a parity automaton in
a single construction step. An additional step is needed to obtain from the resulting Büchi automaton
a weak automaton. In contrast, Kupferman and Vardi’s generalization [16] successively eliminates the
colors, alternating between odd and even colors. The acceptance conditions of the intermediate word au-
tomata are a combination of a parity acceptance condition and a Büchi or coBüchi acceptance condition.

We proceed as follows. Preliminaries on Lµ and alternating automata are given in Section2. Transla-

J. Gutierrez, F. Klaedtke & M. Lange 3

tions between Lµ formulas and automata appear in Section3. Section 4 presents our generalization of the
ranking construction. Section 5 contains our collapse results. Finally, in Section6, we draw conclusions
and outline directions for future work. Due to space limitations some of the proof details have been omit-
ted. They can be found in the full version of the paper, which is available from the authors’ web pages.

2 Preliminaries

In this section, we provide notation and terminology that we use throughout the paper.

2.1 The µ-Calculus

Graphs Let A be a nonempty finite set, whose elements are called actions, and let Σ be an alphabet.
A (Σ,A)-graph is a directed, labeled, and pointed graph

(
V,(Ea)a∈A,vI,λ

)
, where V is a set of vertices,

Ea ⊆ V ×V is a set of edges labeled by a ∈ A, vI ∈V is the source, and λ : V → Σ a labeling function.
We require in the following that V is at most countable.

Syntax and Semantics We define the µ-calculus, Lµ for short, over (2P ,A)-graphs, where P is a
nonempty set of propositions. Let V = {X ,Y, . . .} be a countable set of variables. The syntax of Lµ is
given by the grammar

ϕ ::=X
∣∣ p

∣∣¬p
∣∣ϕ ∧ϕ

∣∣ϕ ∨ϕ
∣∣ [a]ϕ

∣∣ 〈a〉ϕ ∣∣µX .ϕ
∣∣νX .ϕ ,

where X ranges over V , p over P , and a over A. The semantics of Lµ is as follows. Let G =(
V,(Ea)a∈A,vI,λ

)
be a (2P ,A)-graph. A valuation σ assigns each variable in V to a set of vertices. For

X ∈ V and U ⊆V , we write σ [X �→U] if we alter σ at X , i.e., σ [X �→U](Y) := U if Y = X and σ [X �→
U](Y) := σ(Y), otherwise. The set [[ϕ]]Gσ of vertices in G that satisfy ϕ under σ is defined as follows:

[[X]]Gσ := σ(X)

[[p]]Gσ :=
{

v ∈V
∣∣ p ∈ λ (v)

}
[[¬p]]Gσ :=

{
v ∈V

∣∣ p 	∈ λ (v)
}

[[ϕ ∧ψ]]Gσ := [[ϕ]]Gσ ∩ [[ψ]]Gσ
[[ϕ ∨ψ]]Gσ := [[ϕ]]Gσ ∪ [[ψ]]Gσ
[[[a]ϕ]]Gσ :=

{
v ∈V

∣∣ if (v,v′) ∈ Ea then v′ ∈ [[ϕ]]Gσ , for all v′ ∈V
}

[[〈a〉ϕ]]Gσ :=
{

v ∈V
∣∣ (v,v′) ∈ Ea and v′ ∈ [[ϕ]]Gσ , for some v′ ∈V

}
[[µX .ϕ]]Gσ :=

⋂{
U ∈ 2V

∣∣ [[ϕ]]Gσ [X �→U] ⊆U
}

[[νX .ϕ]]Gσ :=
⋃{

U ∈ 2V
∣∣ [[ϕ]]Gσ [X �→U] ⊇U

}
The grammar of Lµ guarantees that formulas are in negation normal form, i.e., negations only occur

directly in front of propositions in P . This syntactic feature ensures monotonicity and thus existence of
the least and greatest fixpoints expressed by µ and ν , respectively.

The size of ϕ , written |ϕ |, is its number of syntactically distinct subformulas. A formula ϕ is a
sentence iff ϕ does not have free variables. In this case, [[ϕ]]Gσ does not depend on σ . For a sentence ϕ
and a set of (2P ,A)-graphs U, we define

LU(ϕ) :=
{
G ∈ U

∣∣ vI ∈ [[ϕ]]Gσ , with vI the source of G and σ some valuation
}

.

4 The µ-Calculus over Structures with Restricted Connectivity

Alternation Hierarchy Lµ formulas determine an infinitely large hierarchy, which relies on the mu-
tual interdependencies between least and greatest fixpoint operators. To define this hierarchy, we follow
Niwiński [22]:

– Σ0 = Π0 is the set of formulas without fixpoint operators, i.e., modal logic formulas.

– For n ≥ 0, Σn+1 is the smallest set that contains the formulas in Σn ∪Πn and is closed under the
following rules: (i) if ϕ ,ψ ∈ Σn+1 then ϕ ∧ψ ∈ Σn+1 and ϕ ∨ψ ∈ Σn+1; (ii) if ϕ ∈ Σn+1 and a ∈ A
then [a]ϕ ∈ Σn+1 and 〈a〉ϕ ∈ Σn+1; (iii) if ϕ ∈ Σn+1 and X ∈ V then µX .ϕ ∈ Σn+1; (iv) if ϕ ,ψ ∈ Σn+1

and X ∈ V then ϕ [ψ/X] ∈ Σn+1 provided that no free variable of ψ gets bound by a fixpoint operator
in ϕ and where ϕ [ψ/X] denotes the formula obtained from substituting the free occurrences of X by
ψ in ϕ .

– For n ≥ 0, Πn+1 is analogously defined as Σn+1: instead of closure under the least fixpoint operator µ ,
we require closure with respect to the greatest fixpoint operator ν .

– For n ≥ 0, we also define ∆n := Σn ∩Πn.

The alternation depth of ϕ , denoted by ad(ϕ), is the smallest n ≥ 0 such that ϕ ∈ ∆n+1. A formula ϕ is
alternation-free iff ad(ϕ) ≤ 1, i.e., it is in ∆2.

We remark that there is no agreement in the literature how to define the alternation hierarchy of
Lµ . For instance, Emerson and Lei [12] define Σn and Πn slightly differently. The differences are
insubstantial for our results. Furthermore, we point out that our definition of the alternation depth of a
formula is purely based on the formula’s syntax and not on the property it describes.

2.2 Alternating Automata

Propositional Logic We denote the set of positive Boolean formulas over the proposition set P by
B+(P), i.e., B+(P) consists of the formulas that are inductively built from the Boolean constants tt
and ff , the propositions in P , and the Boolean connectives ∨ and ∧. For M ⊆ P and ϕ ∈ B+(P),
write M |= ϕ iff ϕ holds when assigning true to the propositions in M and false to those in P \M .

Words and Trees We denote the set of finite words over the alphabet Σ by Σ∗, the set of infinite words
over Σ by Σω , and the empty word by ε . For a word w, wi denotes the symbol of w at position (i + 1).
Write v � w if v is a prefix of w.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N
∗ satisfies the following conditions: (i) T is

prefix-closed, i.e., v ∈ T and u � v implies u ∈ T , and (ii) if vi ∈ T and i > 0 then v(i− 1) ∈ T . The
elements in T are called the nodes of t and the empty word ε is called the root of t. A node vi ∈ T with
i ∈N is called a child of the node v ∈ T . A branch in t is a word π ∈N

∗∪N
ω such that either π ∈ T and π

does not have any children, or π is infinite and every finite prefix of π is in T . We writet̄(π) for the word
t(ε)t(π0)t(π0π1) . . . t(π0π1 . . .πn−1) ∈ Σ∗ if π is a finite branch of length n and t(ε)t(π0)t(π0π1) . . . ∈ Σω

if π is infinite.

Automata In the following, we define alternating automata where the inputs are (2P ,A)-graphs, where
P is a nonempty finite set of propositions and A is a nonempty finite set of actions. Such automata are es-
sentially alternating parity tree automata that operate over the tree unfolding of the given input. The clas-
sical automata models for words and trees are special instances when encoding the letters of an alphabet
Σ by subsets of propositions and by viewing words and trees in a straightforward way as (Σ,A)-graphs.

J. Gutierrez, F. Klaedtke & M. Lange 5

A parity (P,A)-automaton, (P,A)-PA for short, is a tuple A = (Q,δ ,qI,α), where Q is a finite set
of states, δ : Q → B+

(
P ∪ P̄ ∪ (Q×{ �,�}×A)

)
is the transition function with P̄ := {p̄ | p ∈ P},

qI ∈ Q is the initial state, and α : Q → N determines the (parity) acceptance condition. Assume that
P∩P̄ = /0. We refer to α(q) as the color of the state q∈Q. The index of A is ind(A) := |{α(q) | q∈Q}|
and the size of A is the number of syntactically distinct subformulas that occur in the transitions, i.e.,
||A|| :=

∣∣⋃
q∈Q

{
ψ

∣∣ ψ is a subformula of δ (q)
}∣∣. In the following, we assume that |Q| ∈O(||A||), which

holds when, e.g., every state occurs in some transition of A.
Let A = (Q,δ ,qI,α) be a (P,A)-PA and G =

(
V,(Ea)a∈A,vI,λ

)
a (2P ,A)-graph. A run of A on

G is a tree ρ : R → V ×Q with some R ⊆ N
∗ such that ρ(ε) = (vI,qI) and for each node x ∈ R with

ρ(x) = (v, p), there is a set M ⊆ Q×{ �,�}×A such that{
q ∈ P

∣∣ q ∈ λ (v)
}∪{

q̄ ∈ P̄
∣∣ q 	∈ λ (v)

}∪M |= δ (p)

and the following conditions are satisfied:

(a) If (q, �,a) ∈ M , then there is a node v′ ∈ V with (v,v′) ∈ Ea such that there is a child x′ ∈ R of x
with ρ(x′) = (v′,q).

(b) If (q,�,a) ∈ M , then for all nodes v′ ∈ V with (v,v′) ∈ Ea there is a child x′ ∈ R of x such that
ρ(x′) = (v′,q).

Roughly speaking, A starts in its initial state by scanning the input graph from its source. The label
(v, p) of the node x in the run is the current configuration of A. That is, A is currently in the state p
and the read-only head is at the vertex v of the input. The transition δ (p) specifies with respect to the
labeling λ (v) a constraint that has to be respected by the automaton’s successor states. In particular,
for a proposition (q, �,a) ∈ M , the read-only head must move along some a-labeled edge starting at v.
Similarly, for (q,�,a) ∈M , a copy of the read-only head must move along every a-labeled edge starting
at vertex v.

An infinite branch π in a run ρ with ρ̄(π) = (v0,q0)(v1,q1) . . . is accepting iff max{α(q) | q ∈
inf(q0q1 . . .)} is even, where inf(q0q1 . . .) denotes the set of states that occur infinitely often in q0q1
The run ρ is accepting iff every infinite branch in ρ is accepting. The language of A with respect to a
set U of (2P ,A)-graphs is the set

LU(A) := {G ∈ U | there is an accepting run of A on G} .

By restricting the acceptance condition and the automaton’s transitions, we obtain the following
automata classes. Let A = (Q,δ ,qI,α) be a (P,A)-PA.

– A is Büchi iff {α(q) | q ∈ Q} ⊆ {1,2}.

– A is coBüchi iff {α(q) | q ∈ Q} ⊆ {0,1}.

– A is weak iff there is a partition Q0, . . . ,Qn on Q, for some n ≥ 0 such that for all i ∈ {0, . . . ,n}, the
following holds: (i) All states in the component Qi have the same parity, i.e., α(q) ≡ α(q′) mod 2, for
all q,q′ ∈ Qi. (ii) δ (q) ∈ B+(

P ∪ P̄ ∪⋃
j∈{i,...,n}(Qj ×{ �,�}×A)

)
, for all q ∈ Qi. That is, when

reading a vertex label the automaton can stay in the current component Qi or go to components with
higher indices.

We also call A a (P,A)-BA, (P,A)-CA, and (P,A)-WA when it is Büchi, coBüchi, and weak, respec-
tively.

6 The µ-Calculus over Structures with Restricted Connectivity

Finally, dualizing an alternating automaton corresponds to complementation [21]. In our case, the
dual automaton of a (P,A)-PA A = (Q,δ ,qI ,α) is defined as the (P,A)-PA A := (Q,δ ,qI ,α), where
for each q ∈ Q, δ (q) := δ (q) with

tt := ff ff := tt

p := p̄, for p ∈ P p̄ := p, for p̄ ∈ P̄

(q, �,a) := (q,�,a) (q,�,a) := (q, �,a)

β ∧ γ := β ∨ γ β ∨ γ := β ∧ γ

and α(q) := α(q) + 1. It is not too hard to show that the dual automaton accepts the complement
language, i.e., LU(A) = LU(A). Furthermore, note that A is weak if A is weak.

3 From the µ-Calculus to Automata and Back

Translations between Lµ and automata are known for various automaton models. For the sake of com-
pleteness, we present in this section such translations with respect to our automaton model from Sec-
tion 2.2. In the remainder of the text, let P and A be nonempty finite sets of propositions and actions,
respectively. Furthermore, throughout this section, let U be a set of (2P ,A)-graphs

3.1 From Lµ to Parity Automata

The following translation is similar to the one in [25]. However, since our automaton model does not
support ε-transitions, we need to require for the translation that formulas are guarded, i.e., variables
occur under the scope of a modal operator within their defining fixpoint formulas. For a proof of the
following lemma, see, e.g., [24].

Lemma 3.1. For every sentence ϕ , there is a guarded sentence ψ of size 2O(|ϕ |) such that LU(ψ) = LU(ϕ)
and ad(ψ) = ad(ϕ).1

From guarded formulas one easily obtains equivalent parity automata.

Theorem 3.2. For every guarded sentence ϕ , there is a (P,A)-PA Aϕ with |ϕ | states and LU(Aϕ) =
LU(ϕ). Moreover, ||Aϕ || ∈ O(|ϕ |) and ind(Aϕ) ≤ ad(ϕ)+1.

3.2 From Weak Automata to Alternation-free Lµ

The following translation is similar to the one in [18]. However, our variant avoids a vectorial form for
Lµ formulas.

Let A = (Q,δ ,qI,α) be a (P,A)-WA. Without loss of generality, assume Q = {q0, . . . ,qn}, qI = q0,
and for i, j ∈ {0, . . . ,n}, if qj occurs in the Boolean formula δ (qi) then i < j or α(qi) ≡ α(qj) mod 2.
Also, assume that the Boolean constants tt and ff do not occur in A’s transitions.

From A we define the Lµ sentence ϕA with the variables X0, . . . ,Xn ∈ V . Intuitively, Xi evaluates to
the set of vertices of an input that can be labeled by qi in an accepting run. We obtain the formula ϕA

1We are not aware of polynomial translations into the guarded fragment. The claimed polynomial upper bounds of trans-
lations found in the literature are flawed. Counterexamples are families of formulas like µX1. . . .µXn.

∨n
i=1 Xi ∧ 〈a〉∧n

i=1 Xi,
where a is an action. For the given translations, these formulas cause exponential blow-ups.

J. Gutierrez, F. Klaedtke & M. Lange 7

N0L 0 L 1 N1 L 2 N2 L 3 N3 L 4

Figure 1: Bottlenecked directed acyclic graph (BDAG)

from the formulas ψn, . . . ,ψ0 defined inductively for i = n, . . . ,0: let ψi := κiXi. tri
(
δ (qi)

)
, where κi := µ

if α(qi) is odd and κi := ν if α(qi) is even, and the function tri is as follows:

tri(ϕ) :=

p if ϕ = p with p ∈ P

¬p if ϕ = p̄ with p̄ ∈ P̄

〈a〉ψ j if ϕ = (qj, �,a) and j > i

〈a〉Xj if ϕ = (qj, �,a) and j ≤ i

[a]ψ j if ϕ = (qj,�,a) and j > i

[a]Xj if ϕ = (qj,�,a) and j ≤ i

tri(ψ)� tri(ψ ′) if ϕ = ψ �ψ ′ with � ∈ {∧,∨}
We point out that at most the variables X0, . . . ,Xi−1 occur free in ψi. With ϕA := ψ0 we obtain the
following theorem.

Theorem 3.3. For every (P,A)-WA A with n states, there is an alternation-free sentence ϕA with
|ϕA| ∈ O

(
n · ||A||) and LU(ϕA) = LU(A).

4 From Parity Automata to Weak Automata

In this section, we show that parity automata and weak automata have the same expressive power over
so-called bottlenecked directed acyclic graphs (BDAGs) with a bounded width. BDAGs are fundamental
to this paper as our collapse results rely on reductions of different structures—such as various classes of
graphs and words—to BDAGs with a bounded width; see Section 5. The schematic form of BDAGs is
illustrated in Figure 1. Their definition is as follows.

Definition 4.1. Let G =
(
V,(Ea)a∈A,vI,λ

)
be a (Σ,A)-graph.

– G is a directed acyclic graph (DAG) iff it does not contain cycles, i.e., there are no vertices v0, . . . ,vn ∈
V with n ≥ 1 such that v0 = vn and (vi,vi+1) ∈ ⋃

a∈A Ea, for all i ∈ N with 0 ≤ i < n.

– G is a bottlenecked DAG (BDAG) of width w ∈ N iff G is a DAG and V can be split into the pairwise
disjoint sets L0,N0,L1,N1, . . . such that

(i)
⋃

a∈A Ea ⊆ ⋃
i∈N

(
(Li ×Li)∪ (Li ×Ni)∪ (Ni×Li+1)

)
,

(ii) w = sup
{|Ni|

∣∣ i ∈ N
}

, and

(iii) each Li is well-founded, i.e., the graph obtained from G by restricting the vertex set to Li does not
contain infinite paths.

8 The µ-Calculus over Structures with Restricted Connectivity

Note that BDAGs naturally define a connectivity measure, which is given by their widths: removing
the vertices in the Nis disconnects the structure into DAGs in which all paths are finite and thus the
infinite behavior described by the original structure is eliminated.

Before presenting our collapse results in Section 5, we need the following construction, parametric
in w ∈ N, that translates parity automata into language-equivalent weak automata with respect to the
class of bottlenecked graphs of width at most w. In the following, let w ∈ N and let BDAG≤w be the
class of (2P ,A)-graphs that are BDAGs of width at most w. Moreover, for n ∈ N, we abbreviate the set
{0,1, . . . ,n} by [n].

4.1 Rankings

Let A = (Q,δ ,qI,α) be a (P,A)-PA and ρ : R → V × Q a run of A on G ∈ BDAG≤w with G =(
V,(Ea)a∈A,vI,λ

)
. Without loss of generality, we assume that in the run ρ equally labeled nodes have

isomorphic subtrees and therefore that ρ is memoryless; formally, for all x,y ∈ R if ρ(x) = ρ(y) then for
all z∈N

∗, whenever xz∈R then yz∈R and ρ(xz) = ρ(yz). For the memoryless run ρ , we define the graph
Gρ := (V ρ ,Eρ) with Vρ :=

{
ρ(x)

∣∣ x ∈ R
}

and Eρ :=
{(

ρ(x),ρ(y)
) ∣∣ x,y ∈ R and y is a child of x

}
. The

graph Gρ is a representation of the memoryless run ρ in which equally labeled nodes are merged. Fur-
thermore, Gρ is a BDAG of width at most |Q|w.

Let c ≥ 0. A state q ∈ Q is c-releasing iff α(q) > c and α(q) 	≡ c mod 2. An infinite path of the
form (h0,q0)(h1,q1) . . . in Gρ is c-dominated iff there is a state q ∈ inf(q0q1 . . .) with α(q) = c and no
c-releasing state in inf(q0q1 . . .). The function f : Vρ → [2|Q|w] is a c-ranking for Gρ iff the following
two conditions hold:

(i) For all (h,q) ∈Vρ , if f (h,q) is odd then α(q) 	= c.

(ii) For all v,v′ ∈V ρ with v = (h,q), if (v,v′) ∈ Eρ and f (v) < f (v′) then q is c-releasing.

The c-ranking f is safe iff every infinite path in Gρ either visits infinitely many vertices with c-releasing
states or f gets trapped in an odd rank on the path, i.e., iff for every infinite path (h0,q0)(h1,q1) . . . in Gρ ,
either there is a state q ∈ inf(q0q1 . . .) with α(q) > c and α(q) 	≡ c mod 2, or there is an integer n ∈ N

such that f (hn,qn) is odd and f (hj,qj) = f (hn,qn), for all j ≥ n. We point out that the color α(q) of a
state q ∈ Q and the rank f (h,q) of a vertex (h,q) ∈Vρ have different meanings. In particular, the parities
of α(q) and f (h,q) can differ.

It holds that the run ρ is accepting iff for all odd c ≥ 1, all infinite paths in Gρ are not c-dominated.
The following theorem reduces the problem of checking whether every infinite path in Gρ is not domi-
nated by one specific color to the problem of checking the existence of a safe ranking for Gρ .

Theorem 4.2. Let c ≥ 0. Every infinite path in Gρ is not c-dominated iff there is a safe c-ranking for Gρ .

The proof of Theorem 4.2 is based on ingredients that appear in the Kupferman and Vardi’s correct-
ness proof of the construction that translates alternating coBüchi word automata into weak alternating
word automata [17]. Since our automata are parity automata that operate over BDAGs instead of words,
some arguments are more subtle than in the coBüchi-word-automata case.

In the following, we show that the existence of a safe ranking can be checked by a Büchi automaton.
The ranks are guessed during a run with the states of the Büchi automaton. The conditions (i) and (ii) of
a ranking are locally checked by the transition function of the automaton. With the acceptance condition
of the automaton we check whether the guessed ranking is safe. Details of the construction are given in
Theorem 4.4 below. For proving the correctness of the construction, it does not suffice to only assume
the existence of a safe ranking. The ranking must also satisfy additional technical requirements, which
are guaranteed by the following lemma.

J. Gutierrez, F. Klaedtke & M. Lange 9

Lemma 4.3. Let c ≥ 0. If Gρ has a safe c-ranking then there is a safe c-ranking g : Vρ → [2|Q|w] that
satisfies the following additional properties:

– g(vI,qI) = 2|Q|w, and

– g(h1,q) = g(h2,q), for all vertices (h1,q),(h2,q) ∈V ρ for which there exists a vertex (h′, p) ∈V ρ with(
(h′, p),(h1,q)

) ∈ Eρ and
(
(h′, p),(h2,q)

) ∈ Eρ .

We finally present the construction of the Büchi automaton that checks whether a safe ranking exists.

Theorem 4.4. Let c ≥ 0. There is a (P,A)-BA Bc with |Q| · (2|Q|w+1) states and LBDAG≤w(Bc) equals{
G ∈ BDAG≤w

∣∣ there is a memoryless run ρ of A on G such that Gρ has a safe c-ranking
}

.

Furthermore, ||Bc|| ∈ O
(||A|| · (|Q|w+1)

)
.

Proof. We define Bc as
(
Q× [2|Q|w],η , pI,β

)
, where pI, η , and β are as follows:

– The initial state pI is the tuple (qI,2|Q|w).

– To define the transition function η , we need the following two definitions. (1) For q ∈ Q and r,r′ ∈
[2|Q|w], we write r′ �q r if either r′ ≤ r or q is c-releasing. (2) For ϕ ∈ B+

(
P ∪P̄ ∪ (Q×{ �,�}×

A)
)
, q ∈ Q, and r ∈ [2|Q|w], we define releaseq(ϕ ,r) as the positive Boolean formula that we obtain

by replacing each proposition (p,�,a) in ϕ by the disjunction
∨

r′�qr

(
(p,r′),�,a

)
. For q ∈ Q and

r ∈ [2|Q|w], we define

η(q,r) :=

{
releaseq

(
δ (q),r

)
if α(q) 	= c or r is even,

ff otherwise.

– The acceptance condition is determined by β : Q× [2|Q|w] →{1,2} where

β (q,r) :=

{
2 if q is c-releasing or r is odd,

1 otherwise.

Obviously, Bc has |Q| · (2|Q|w + 1) states. An upper bound on the number of distinct subformulas
in the positive Boolean formula η(q,r) for q ∈ Q and r ∈ [2|Q|w] is O

(
m+ |Q| · (|Q|w+1)

)
, where m is

the number of distinct formulas in δ (q). Note that the disjunction
∨

r′�qr

(
(p,r′),�,a

)
in η(q,r), which

replaces a proposition of the form (p,�,a) in δ (q), is a subformula of
∨

0≤r′≤2|Q|w
(
(p,r′),�,a)

)
. The

disjunction
∨

0≤r′≤2|Q|w
(
(p,r′),�,a)

)
has O(|Q|w+1) subformulas. Since we count multiple occurrences

of the same subformula in the transitions of an automaton only once, we obtain that ||Bc|| ∈ O
(||A|| ·

(|Q|w+1)+ |Q| · (|Q|w+1)
)⊆ O

(||A|| · (|Q|w+1)
)
. It remains to prove that G ∈ LBDAG≤w(Bc) iff there

is a run ρ of A on G such that the graph Gρ has a safe c-ranking.

(⇒) Let ρ ′ : R →V × (
Q× [2|Q|w]

)
be an accepting, memoryless run of Bc on G =

(
V,(Ea)a∈A,vI,λ

)
.

We define the tree ρ : R → V ×Q with ρ(x) := (h,q), for every x ∈ R with ρ′(x) =
(
h,(q,r)

)
, i.e., the

labels of the nodes in ρ are the projections of the labels of ρ′ on V ×Q. The tree ρ is a run of A on G

since the transition function of Bc just annotates state of A by ranks. We can assume that there are no
x,y ∈ R with ρ ′(x) = (h,(q,r)), ρ ′(y) = (h,(q,r)), and r 	= r′. That is, the rank r ∈ [2|Q|w] assigned by
the run ρ ′ to a vertex (h,q) in the graph Gρ representing ρ is unique. We define f (h,q) := r.

It follows from the definition of η that f is a c-ranking for Gρ . Since ρ ′ is accepting, on every branch
π in ρ ′ there are either c-releasing states or odd ranks which, in both cases, occur infinitely often. The
case where π visits infinitely many vertices with c-releasing states is obvious. Assume that π visits only

10 The µ-Calculus over Structures with Restricted Connectivity

finitely many vertices with c-releasing states. Then, the ranks do not increase from some point onwards.
Thus, they must eventually stabilize. We conclude that f is safe.

(⇐) Let f : V ρ → [2|Q|w] be a safe c-ranking on the graph representation Gρ = (V ρ ,Eρ) of the run
ρ : R →V ×Q of A on G =

(
V,(Ea)a∈A,vI,λ

)
. The idea is to attach the ranks given by f to the labels of

the nodes in ρ to obtain an accepting run ρ′ : R →V × (
Q× [2|Q|w]

)
of Bc on G. However, we cannot

use f directly, since the following situation might occur. Assume that there are vertices h,h1,h2 ∈V with
(h,h1),(h,h2) ∈ Ea, for some a ∈ A. Furthermore, assume ρ(x) = (h, p) and δ (p) = (q,�,d), for some
node x ∈ R and states p,q ∈ Q. Then, the node x must have children y,y′ ∈ R such that ρ(y) = (h1,q) and
ρ(y′) = (h2,q). If ρ ′ attaches the ranks of (h, p), (h1,q) and (h2,q) to the labels of the nodes x, y, and y′,
respectively, i.e., ρ′(x) =

(
p, f (h, p)

)
, ρ ′(y) =

(
q, f (h1,q)

)
, ρ ′(y′) =

(
q,(f (h2,q)

)
, we do not obtain a

run when the ranks of (h1,q) and (h2,q) differ. However, Lemma 4.3 allows us to assume that f (h1,q) =
f (h2,q). In the following, let f be a safe c-ranking with the additional properties in Lemma4.3.

We define the tree ρ′ : R→V ×(
Q× [2|Q|w]

)
now by ρ ′(x) :=

(
h,(q, f (h,q))

)
, for x∈R with ρ(x) =

(h,q). We first show that ρ′ is a run of Bc on G. By definition of ρ′, we have ρ ′(ε) =
(
vI,(qI,2|Q|w)

)
.

Hence, the root of ρ′ is well labeled with respect to the initial state of Bc. Consider a node x ∈ R
with ρ(x) = (h,q) and assume that r ∈ [2|Q|w] is the rank of (h,q), i.e., r = f (h,q). Let S be the set
of labels of the successors of node x in ρ . By condition (ii) of a ranking, we have f (h′,q′) ≤ r, for
each (h′,q) ∈ S if q is not c-releasing. Furthermore, α(q) = c and r odd cannot hold at the same time
because of condition (i) of a ranking. Moreover, by Lemma4.3, we have f (h′,q′) = f (h′′,q′′) whenever
q′ = q′′, for all (h′,q′),(h′′,q′′) ∈ S. Thus, the set S′ of the labels of the successor nodes of x in ρ′ is{
(h′,(q′,r′))

∣∣ (h′,q′) ∈ S and r′ = f (h′,q′)
}

. It is now easy to obtain from this set S′ of labels a model
of η(q,r) which witnesses that the labeling corresponds to a valid transition of Bc with respect to the
vertex label λ (h).

The run ρ ′ is accepting: since f is safe, every infinite path in Gρ that does not visit c-releasing
vertices infinitely often gets trapped in an odd rank. Then, by the definition of β , every infinite branch in
ρ ′ is accepting.

4.2 Applications

The first application is to obtain weak automata from Büchi automata.

Lemma 4.5. Let A be a (P,A)-BA with n states. There is a (P,A)-WA B with n(2nw + 1) states and
LBDAG≤w(B) = LBDAG≤w(A). Furthermore, ||B|| ∈ O

(||A|| · (nw+1)
)
.

Proof. First construct from A the coBüchi automaton C by dualizing the transition function of A and its
acceptance condition. C accepts the complement of A. Let B1 be the Büchi automaton obtained from
Theorem 4.4 for the only odd color 1. This automaton is weak as C does not have 1-releasing states. It
has n(2nw+1) states and ||B1|| ∈ O

(||A|| · (nw+1)
)
. It follows from Theorem 4.2 that LBDAG≤w(B1) =

LBDAG≤w(C). The dual automaton of B1 accepts LBDAG≤w(A).

We now show how to combine Büchi automata for different odd colors from Theorem4.4 so that
they simultaneously check the existence of safe rankings.

Lemma 4.6. Let A be a (P,A)-PA with n states and index k. There is a (P,A)-BA B with O
(
kn(2nw+

1)�k/2�) states and LBDAG≤w(B) = LBDAG≤w(A). Moreover, ||B|| ∈ O
(
k||A||(2nw+1)�k/2�).

Proof. Assume the odd colors of A are c1, . . . ,c� ∈ N, for some � ≤ �k/2�. For i ∈ {1, . . . , �}, let Bci

be the Büchi automaton from Theorem 4.4. From the automata Bc1 , . . . ,Bc�
, we construct a so-called

J. Gutierrez, F. Klaedtke & M. Lange 11

L0 N0 L1 N1 N2L2 L3 N3 L4

+1 +1 +1 +1 +1 +1 +1 +1

L 0 N0 L 1 L 2 L 3N1 N2

jump+1

+1
+1

+1 +1

+1

+1 +1

+1
+1jump

jump

Figure 2: BDAG representation of infinite words (left) and infinite nested words (right)

generalized Büchi automaton C, i.e., one where the acceptance condition is the finite conjunction of
finitely many Büchi acceptance conditions. Since the transition functions of Bc1 , . . . ,Bc�

agree on the
state space of A, the states of C have the form (q,r1, . . . ,r�), where q is a state of A and the ris are
ranks of the Bis. Thus, C has n(2nw+1)� states. An upper bound on ||C|| is O

(||A||(nw+1)+n(2nw+
1)�

) ⊆ O(||A||(2nw + 1)�
)
. With Theorem 4.2 we conclude that C accepts the language LBDAG≤w(A).

It is standard to obtain from C an equivalent Büchi automaton B with O
(
kn(2nw + 1)�k/2�) states and

||B|| ∈ O
(
k||A||(2nw+1)�k/2�).

5 Collapse Results

By consecutively applying the previously presented translations to a Lµ sentence, we obtain that Lµ ’s al-
ternation hierarchy over any class only containing BDAGs of width at most w collapses to its alternation-
free fragment, for a fixed w ∈ N.

Theorem 5.1. Let w ≥ 2 and U ⊆ BDAG≤w. For every sentence ϕ , there is an alternation-free sentence

ψ of size wO(|ϕ |·ad(ϕ)) such that LU(ψ) = LU(ϕ). If ϕ is guarded, then the size of ψ is
(|ϕ | ·w)O(ad(ϕ))

.

Proof. Suppose ϕ is guarded and let n := |ϕ | and k := ad(ϕ). We construct the parity automaton Aϕ with
||Aϕ || ∈O(n) and ind(Aϕ) = k+1 (Theorem 3.2). Then, we construct from Aϕ the Büchi automaton Bϕ

with ||Bϕ || ∈ (nw)O(k) (Lemma 4.6). From Bϕ , we obtain the weak automaton Cϕ with ||Cϕ || ∈ (nw)O(k) ·(
2(nw)O(k)w + 1

) ⊆ (nw)O(k) (Lemma 4.5). Finally, we construct the alternation-free sentence ψ with
|ψ | ∈ (nw)O(k) (Theorem 3.3). By construction, LBDAG≤w(ϕ) = LBDAG≤w(ψ). Since U ⊆ BDAG≤w, we
have that LU(ϕ) = LU(ψ). When ϕ is not guarded we first transform it into guarded form (Lemma3.1),
which results in an exponential blow-up.

In the following, we derive from Theorem 5.1 further classes of structures over which the alternation
hierarchy of Lµ collapses to the alternation-free fragment.

Infinite Nested Words Nested words [2] extend words with a hierarchical structure. Infinite words and
infinite nested words when represented as graphs are BDAGs of width 1. We omit the details; instead,
see Figure 2 for illustrations, where the set of actions is {+1} and {+1, jump}, respectively.

Then, by Theorem 5.1, the Lµ alternation hierarchy over these structures collapses to the alternation-
free fragment. This improves prior results in [3, 6] on the expressivity of Lµ over infinite nested words.

Graphs with Bounded Feedback Sets In the following, we consider classes of finite graphs that can
be unfolded to bisimilar BDAGs with bounded width. The width of these BDAGs is characterized by a
minimal feedback vertex set of the original folded graph. A set F ⊆V is a feedback vertex set (FVS) of
G =

(
V,(Ea)a∈A,vI,λ

)
iff the removal of the vertices in F separates G into a set of finite DAGs. Finite

DAGs have the empty set as a feedback vertex set. We say that a finite graph G is k-DAG-decomposable

12 The µ-Calculus over Structures with Restricted Connectivity

iff the minimal cardinality of a FVS of G is k∈N. Recall that the (Σ,A)-graphs G =
(
V,(Ea)a∈A,vI,λ

)
and

G′ =
(
V ′,(E ′

a)a∈A,v′I,λ
′) are bisimilar iff there is an equivalence relation R ⊆V ×V′ with the following

properties: (i) λ (v) = λ ′(v′), for all (v,v′) ∈ R, (ii) (vI,v′I) ∈ R, (iii) for all u,v ∈V , u′ ∈V ′, and a ∈ A, if
(u,v) ∈ Ea and (u,u′) ∈ R then (u′,v′) ∈ E ′

a and (v,v′) ∈ R, for some v′ ∈V ′, and (iv) for all u′,v′ ∈V ′,
u ∈V , and a ∈ A, if (u′,v′) ∈ E ′

a and (u,u′) ∈ R then (u,v) ∈ Ea and (v,v′) ∈ R, for some v ∈V .

Lemma 5.2. For every k-DAG-decomposable (Σ,A)-graph G, with k ∈ N, there is a bisimilar BDAG D

of width k.

Proof. Let G be a (Σ,A)-graph
(
V,(Ea)a∈A,vI,λ

)
with a minimal FVS F ⊆ V of cardinality k. Further-

more, let T be the tree unfolding of G and let unf be the relation between the vertices of G and T that
witnesses that G and T are bisimilar. The construction of a bisimilar BDAG D of width k is as follows,
which is done in a layer-wise manner.

Construct β , a (partial and surjective) function between the vertices of T and D (i.e., from the ele-
ments of the tree T to the elements of the acyclic graph D), as follows: Assume that for each layer i,
there is a set Si of seeds for such a layer. Using unf collect all vertices in T that can be reached from the
vertices in Si until, in every branch, (i) a vertex with no successors is reached or (ii) two occurrences in
the unfolding T of a vertex v ∈ F ⊆V in G are found. Such vertices belong to layer i in T. Then, β maps
such a subset of vertices in T, denoted by Ri, to vertices in layer i of D as follows—and let max(Ri) be
the set of maximal or terminal elements in the forest Ri:

∀u′,u′′ ∈ max(Ri). ∀v ∈ F. (v,u′) ∈ unf and (v,u′′) ∈ unf=⇒ β (u′) = β (u′′) . (1)

Edges in layer i of D are edges in layer i of T which respect β , i.e., if (w′,w′′) in layer i of T via
action a ∈ A then (β (w′),β (w′′)) in layer i of D via action a. As in D every vertex belongs to Li or Ni,
then the following holds:

∀u ∈ max(Ri). ∀v ∈ F. (v,u) ∈ unf=⇒ β (u) ∈ Ni , (2)

otherwise β (u) ∈ Li. In order to define the set of seeds Si+1 for the (i+1)th layer of T, firstly one needs
to define a subset F′

i of max(Ri) whose successors in T will be the seeds Si+1 of the layer i of T. The set
F ′

i is a subset of max(Ri) that satisfies two conditions:

(a) if ∃(v,u) ∈ unf with v ∈ F and u ∈ max(Ri) then ∃!u′ ∈ F ′
i such that (v,u′) ∈ unf, and

(b) if u′ ∈ F ′
i then ∃(v,u′) ∈ unf such that v ∈ F and u′ ∈ max(Ri).

Condition (a) ensures that F′
i contains no more than one vertex in the unfolding under unf of a vertex in

F as well as that there is one vertex in F′
i for each vertex in max(Ri) which is associated under unf with

a vertex in F . Condition (b) ensures that every vertex in F′
i is the occurrence in the unfolding under unf

of a vertex in F . It is because of condition (a) that the function β is partial rather than total.
Edges between vertices in consecutive layers are defined as expected: if (u,s) in T via action a ∈ A,

with u ∈ max(Ri) and s ∈ Si+1, then (β (u),β (s)) in D via action a. The labeling function in D is as
in T (and obviously as in G): for any vertex β (u) in D, λT(u) = λD(β (u)). Finally, D is constructed
recursively using unf and β by letting the set S0 be the singleton set that only contains the root of T.

Clearly, D is a DAG. Within as well as between layers β always respects the acyclic structure pro-
duced by unf, even when different occurrences of vertices in F ⊆ V are unified as they are always
terminal elements of a given Ri and thus edges in Ni×Li+1, i.e. the source of edges to the next layer.

Finally, G and D are bisimilar because either (i) a vertex in D is obtained by a tree unfolding, and
every graph is bisimilar to its own tree unfolding or (ii) a vertex in D is obtained by unifying occurrences
of the same vertex in G, and of course every vertex of a graph is bisimilar to itself. Then, bisimilarity is

J. Gutierrez, F. Klaedtke & M. Lange 13

preserved when constructing D. To see that D is a BDAG of width at most k observe that sup
{|Ni|

∣∣ i ∈
N

} ≤ k because every Ni defined by rule (2) cannot contain more than one occurrence of a vertex in F
due to rule (1). Then, in fact, there must exist some i ∈ N such that |F| = |Ni| since F is minimal.

Then, we obtain the following result.

Theorem 5.3. Let k ∈ N and U be a class of k-DAG-decomposable (2P ,A)-graphs. For every sentence
ϕ , there is an alternation-free sentence ψ such that LU(ψ) = LU(ϕ).

Proof. It follows from Lemma 5.2 that each graph in U can be unfolded into a BDAG of width k. We
then apply Theorem 5.1 to this obtained class of unfolded BDAGs.

Since collapse results carry over to smaller classes of structures, Theorem5.3 implies the collapse of
the alternation hierarchy over the smaller class of undirected k-DAG-decomposable graphs.

Finally, we consider classes of graphs that can be decomposed by removing a bounded number of
edges. Let G =

(
V,(Ea)a∈A,vI,λ

)
be a (Σ,A)-graph. A set F ⊆ ⋃

a∈A Ea is a feedback edge set (FES) of
G iff the removal of the edges in F separates G into a set of finite DAGs. Since every graph with FES F
has also a FVS of cardinality at most |F|, we obtain the following corollary.

Corollary 5.4. Let k ∈ N and U be a class of finite (2P ,A)-graphs with minimal FESs of size k. For
every sentence ϕ , there is an alternation-free sentence ψ such that LU(ψ) = LU(ϕ).

6 Conclusion and Future Work

The results in this paper focus on Lµ ’s expressivity. By generalizing and utilizing automata-theoretic
methods, we have unified, generalized, and strengthened prior collapse results of Lµ ’s alternation hier-
archy, namely, the results on finite acyclic directed graphs [20], infinite words [14], and infinite nested
words [3]. Future work includes to investigate whether our automata construction for eliminating odd
colors in parity automata can be generalized and to explore over which other classes of structures
such generalizations apply. The ultimate goal is to characterize the classes of graphs over which the
alternation-free fragment has already the same expressivity as the full µ-calculus.

We mainly ignore complexity issues in this paper, except the established upper bounds on the sizes
of the resulting alternation-free formulas. It remains as future work to provide lower bounds and to
investigate the computational complexity of the satisfiability problem for Lµ with respect to classes of
structures over which its alternation hierarchy collapses.

Acknowledgments The authors thank Christian Dax for initial discussions on the topic of this paper
and Julian Bradfield for advice on the alternation hierarchy. Julian Gutierrez acknowledges with gratitude
the support of EPSRC grant ‘Solving Parity Games and Mu-Calculi’ and ERC Advanced grant ECSYM.

References

[1] Luca Alberucci & Alessandro Facchini (2009): The modal µ-calculus over restricted classes of transition
systems. J. Symb. Log. 74(4), pp. 1367–1400, doi: 10.2178/jsl/1254748696.

[2] Rajeev Alur & P. Madhusudan (2009): Adding Nesting Structure to Words. J. ACM 56(3), pp. 1–43,
doi:10.1145/1516512.1516518.

[3] Marcelo Arenas, Pablo Barceló & Leonid Libkin (2011): Regular Languages of Nested Words: Fixed Points,
Automata, and Synchronization. Theor. Comput. Syst. 49(3), pp. 639–670, doi: 10.1007/s00224-010-9292-5.

14 The µ-Calculus over Structures with Restricted Connectivity

[4] André Arnold (1999): The modal µ-calculus alternation-depth is strict on binary trees. Theor. Inform. Appl.
33(4–5), pp. 329–339, doi:10.1051/ita:1999121.

[5] André Arnold & Damian Niwiński (2001): Rudiments of µ-calculus. Studies in Logic and the Foundations
of Mathematics 146, North-Holland.

[6] Laura Bozzelli (2007): Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Lan-
guages. In: CONCUR’07, Lect. Notes Comput. Sci. 4703, pp. 476–491, doi: 10.1007/978-3-540-74407-8 32 .

[7] Julian C. Bradfield (1998): The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci.
195(2), pp. 133–153, doi:10.1016/S0304-3975(97)00217-X.

[8] Julian C. Bradfield (1999): Fixpoint alternation: arithmetic, transition systems, and the binary tree. Theor.
Inform. Appl. 33(4–5), pp. 341–356, doi: 10.1051/ita:1999122.

[9] Giovanna D’Agostino & Giacomo Lenzi (2010): On the µ-calculus over transitive and finite transitive
frames. Theoret. Comput. Sci. 411(50), pp. 4273–4290, doi: 10.1016/j.tcs.2010.09.002.

[10] Anuj Dawar & Martin Otto (2009): Modal characterisation theorems over special classes of frames. Ann.
Pure Appl. Logic 161(1), pp. 1–42, doi: 10.1016/j.apal.2009.04.002.

[11] E. Allen Emerson & Charanjit S. Jutla (1991): Tree Automata, Mu-Calculus and Determinacy. In: FOCS’91,
pp. 368–377, doi:10.1109/SFCS.1991.185392.

[12] E. Allen Emerson & Chin-Laung Lei (1986): Efficient Model Checking in Fragments of the Propositional
Mu-Calculus. In: LICS’86, pp. 267–278.

[13] David Janin & Igor Walukiewicz (1996): On the Expressive Completeness of the Propositional mu-Calculus
with Respect to Monadic Second Order Logic. In: CONCUR’96, Lect. Notes Comput. Sci. 1119, pp. 263–
277, doi:10.1007/3-540-61604-7 60.

[14] Roope Kaivola (1995): Axiomatising Linear Time Mu-calculus. In: CONCUR’95, Lect. Notes Comput. Sci.
962, pp. 423–437, doi:10.1007/3-540-60218-6 32.

[15] Dexter Kozen (1983): Results on the Propositional µ-Calculus. Theoret. Comput. Sci. 27(3), pp. 333–354,
doi:10.1016/0304-3975(82)90125-6.

[16] Orna Kupferman & Moshe Y. Vardi (1998): Weak Alternating Automata and Tree Automata Emptiness. In:
STOC’98, pp. 224–233, doi:10.1145/276698.276748.

[17] Orna Kupferman & Moshe Y. Vardi (2001): Weak Alternating Automata Are Not that Weak. ACM Trans.
Comput. Log. 2(3), pp. 408–429, doi: 10.1145/377978.377993.

[18] Orna Kupferman & Moshe Y. Vardi (2005): From Linear Time to Branching Time. ACM Trans. Comput.
Log. 6(2), pp. 273–294, doi:10.1145/1055686.1055689.

[19] Giacomo Lenzi (1996): A Hierarchy Theorem for the µ-Calculus. In: ICALP’96, Lect. Notes Comput. Sci.
1099, pp. 87–97, doi:10.1007/3-540-61440-0 119 .

[20] Radu Mateescu (2002): Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Sys-
tems. In: TACAS’02, Lect. Notes Comput. Sci. 2280, pp. 281–295, doi: 10.1007/3-540-46002-0 20.

[21] David E. Muller & Paul E. Schupp (1987): Alternating Automata on Infinite Trees. Theoret. Comput. Sci.
54(2–3), pp. 267–276, doi:10.1016/0304-3975(87)90133-2.

[22] Damian Niwiński (1986): On fixed-point clones. In: ICALP’86, Lect. Notes Comput. Sci. 226, pp. 464–473,
doi:10.1007/3-540-16761-7 96.

[23] Damian Niwiński (1988): Fixed points vs. infinite generation. In: LICS’88, pp. 402–409,
doi:10.1109/LICS.1988.5137.

[24] Igor Walukiewicz (1995): Completeness of Kozen’s Axiomatization of the Propositional µ-Calculus. In:
LICS’95, pp. 14–24, doi:10.1109/LICS.1995.523240.

[25] Thomas Wilke (2001): Alternating Tree Automata, Parity Games, and Modal µ-Calculus. Bull. Soc. Math.
Belg. 8(2), pp. 359–391.

