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Abstract. Concurrent games as event structures form a partial order
model of concurrency where concurrent behaviour is captured by non-
deterministic concurrent strategies—a class of maps of event structures.
Extended with winning conditions, the model is also able to give seman-
tics to logics of various kinds. An interesting subclass of this game model
is the one considering deterministic strategies only, where the induced
model of strategies can be fully characterised by closure operators. The
model based on closure operators exposes many interesting mathematical
properties and allows one to define connections with many other seman-
tic models where closure operators are also used. However, such a closure
operator semantics has not been investigated in the more general non-
deterministic case. Here we do so, and show that some nondeterministic
concurrent strategies can be characterised by a new definition of nonde-
terministic closure operators which agrees with the standard game model
for event structures and with its extension with winning conditions.
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1 Introduction

Event structures [13] are a canonical model of concurrency within which the par-
tial order behaviour of nondeterministic concurrent systems can be represented.
In event structures, the behaviour of a system is modelled via a partial order of
events which are used to explicitly model the causal dependencies between the
events that a computing system performs. Following this approach, in the model
of event structures, the interplay between concurrency (independence of events)
and nondeterminism (conflicts between events) can be naturally captured.

Event structures have a simple two-player game-theoretic interpretation [16].
Within this framework, games are represented by event structures with polari-
ties, and a strategy on a game is a polarity-preserving map of event structures
satisfying some behaviour-preserving properties. In [16], concurrent games were
presented as event structures and proposed as a new, alternative basis for the
semantics of concurrent systems and programming languages. The definition of
strategies as presented in [16] was given using spans of event structures—a fam-
ily of maps of event structures. This definition has been both generalised and
specialised to better understand particular classes of systems/games.
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For instance, in [20] the original definition of strategies was given a charac-
terisation based on profunctors, and related sheaves and factorisation systems, a
more abstract presentation that can provide links with other models of concur-
rency based on games. In the other direction, in [19], Winskel studied a subclass
of concurrent systems corresponding to deterministic games. In this simpler set-
ting, concurrent strategies were shown to correspond to closure operators.

In this paper, we will investigate a model of strategies that is intermediate
between the representations based on closure operators (which correspond to
deterministic strategies) and profunctors (which correspond to the general model
of nondeterministic strategies). In particular, we provide a mathematical model,
which builds on closure operators and has a simple game-theoretic interpretation,
where some forms of concurrency and nondeterminism are allowed to coexist.

Semantic frameworks based on closure operators are not new. In fact, they
have been used in various settings as a semantic basis, amongst other rea-
sons, because they can provide a mathematically elegant model of concurrent
behaviour—see, e.g., [3, 7, 14, 17, 19], for some examples. In particular, seman-
tics based on closure operators provide an intuitively simple operational reading
of their behaviour. However, such a simplicity comes at a price: the interplay
between concurrency and nondeterminism must be severely restricted.

The model we provide here inherits many of the desirable features of systems
with closure operator semantics, but also some of its limitations. In particu-
lar, it can be used to represent concurrent systems/games represented as event
structures having a property called race-freedom, a structural condition on event
structure games which ensures that no player can interfere with the moves avail-
able to the other. Our main results are significant since most known applications
of games as event structures fall within the scope of the class of race-free games
(cf. Section 6). The various models of games and strategies we have described
above can be organised, in terms of expressive power, as shown in Figure 1.

DCG // RCG // CG

DS/CO // NCO // S/P

Fig. 1: The following abbreviations are used: Deterministic Concurrent Games
(DCG); Race-free Concurrent Games (RCG); General Concurrent Games (CG);
Deterministic Strategies (DS); Closure Operators (CO); Nondeterministic CO
(NCO); Strategies as spans of event structures (S) and profunctors (P). The
model of strategies in bold (NCO) is the one investigated in this paper.

Structure of the Paper. The rest of the paper is organised as follows. Section 2
presents some background material on concurrent games as event structures
and Section 3 introduces nondeterministic closure operators. Section 4 describes
when and how concurrent strategies can be characterised as nondeterministic
closure operators and Section 5 extends such a characterisation to games with
winning conditions. Section 6 concludes, describes some relevant related work,
and puts forward a number of potential interesting application domains.
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2 Concurrent Games as Event Structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy axioms:

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations of E consist of those subsets x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite =⇒ X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

We write C(E) for the set of configurations of E. We say that an event structure
is well-founded if all its configurations are finite. We only consider well-founded
event structures. Two events e1, e2 which are both consistent and incomparable
with respect to causal dependency in an event structure are regarded as concur-
rent, written e1 co e2. In games the relation of immediate dependency e _ e′,
meaning e and e′ are distinct with e ≤ e′ and no event in between plays an
important role. For X ⊆ E we write [X ] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the
down-closure of X ; note that if X ∈ Con then [X ] ∈ Con. We use x−⊂y to mean

y covers x in C(E), i.e., x ⊂ y with nothing in between, and x
e

−−⊂ y to mean

x ∪ {e} = y for x, y ∈ C(E) and event e /∈ x. We use x
e

−−⊂ , expressing that

event e is enabled at configuration x, when x
e

−−⊂ y for some configuration y.

Let E and E′ be event structures. A map of event structures is a partial
function on events f : E → E′ such that for all x ∈ C(E) its direct image
fx ∈ C(E′) and if e1, e2 ∈ x and f(e1) = f(e2) (with both defined) then
e1 = e2. The map expresses how the occurrence of an event e in E induces
the coincident occurrence of the event f(e) in E′ whenever it is defined. Maps
of event structures compose as partial functions, with identity maps given by
identity functions. Thus, we say that the map is total if the function f is total.

The category of event structures is rich in useful constructions on processes.
In particular, pullbacks are used to define the composition of strategies, while
restriction (a form of equalizer) and the defined part of maps will be used in
defining strategies. Any map of event structures f : E → E′, which may be a
partially defined on events, has a defined part the total map f0 : E0 → E′, in
which the event structure E0 has events those of E at which f is defined, with
causal dependency and consistency inherited from E, and where f0 is simply f
restricted to its domain of definition. Given an event structure E and a subset
R ⊆ E of its events, the restriction E ↾R is the event structure comprising events
{e ∈ E | [e] ⊆ R} with causal dependency and consistency inherited from E; we
sometimes write E \ S for E ↾ (E \ S), where S ⊆ E.
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Event Structures with Polarity Both a game and a strategy in a game are
represented with event structures with polarity, comprising an event structure
E together with a polarity function pol : E → {+,−} ascribing a polarity +
(Player) or − (Opponent) to its events; the events correspond to moves. Maps
of event structures with polarity, are maps of event structures which preserve
polarities. An event structure with polarityE is deterministic iff

∀X ⊆fin E. Neg[X ] ∈ ConE =⇒ X ∈ ConE ,

where Neg[X ] =def {e′ ∈ E | pol (e′) = − & ∃e ∈ X. e′ ≤ e}. We write Pos[X ] if
pol(e′) = +. The dual, E⊥, of an event structure with polarity E comprises the
same underlying event structure E but with a reversal of polarities.

Given two sets of events x and y, we write x ⊂+ y to express that x ⊂ y and
pol(y \ x) = {+}; similarly, we write x ⊂− y iff x ⊂ y and pol(y \ x) = {−}.

Games and Strategies Let A be an event structure with polarity—a game;
its events stand for the possible moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.

A strategy (for Player) in A is a total map σ : S → A from an event struc-
ture with polarity S, which is both receptive and innocent. Receptivity ensures
an openness to all possible moves of Opponent. Innocence, on the other hand,
restricts the behaviour of Player; Player may only introduce new relations of
immediate causality of the form ⊖ _ ⊕ beyond those imposed by the game.
Receptivity: A map σ is receptive iff

σx
a

−−⊂ & polA(a) = − =⇒ ∃!s ∈ S. x
s

−−⊂ & σ(s) = a .
Innocence: A map σ is innocent iff
s _ s′ & (pol (s) = + or pol(s′) = −) =⇒ σ(s) _ σ(s′).
Say a strategy σ : S → A is deterministic if S is deterministic.

Composing Strategies Suppose that σ : S → A is a strategy in a game A. A
counter-strategy is a strategy of Opponent, so a strategy τ : T → A⊥ in the
dual game. The effect of playing-off a strategy σ against a counter-strategy τ
is described via a pullback. Ignoring polarities, we have total maps of event
structures σ : S → A and τ : T → A. Form their pullback,

P

Π1

��

❴

✤

Π2
// T

τ

��

S
σ

// A .

The event structure P describes the play resulting from playing-off σ against τ .
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C(P ). A maximal z images to a configuration σΠ1z = τΠ2z
in C(A). Define the set of results of playing-off σ against τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C(P )} .
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Winning Conditions A game with winning conditions comprises G = (A,W )
where A is an event structure with polarity and the set W ⊆ C(A) consists of the
winning configurations (for Player). Define the losing conditions (for Player) to
be L = C(A) \W . The dual G⊥ of a game with winning conditions G = (A,W )
is defined to be G⊥ = (A⊥, L), a game where the roles of Player and Opponent
are reversed, as are correspondingly the roles of winning and losing conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning
if it always prescribes moves for Player to end up in a winning configuration,
no matter what the activity or inactivity of Opponent. Formally, a strategy σ :
S → A in G is winning (for Player) if σx ∈ W for all ⊕-maximal configurations

x ∈ C(S)—a configuration x is ⊕-maximal if whenever x
s

−−⊂ then the event s
has −ve polarity. Equivalently, a strategy σ for Player is winning if when played
against any counter-strategy τ of Opponent, the final result is a win for Player;
precisely, it can be shown [5] that a strategy σ is a winning for Player iff all the
results 〈σ, τ〉 lie within W , for any counter-strategy τ of Opponent.

3 Nondeterministic Closure Operators

It is often useful to think “operationally” of a strategy σ : S → A as an func-
tion that associates to a configuration of A another configuration of A that,
potentially, can be played next. Since, in general, a concurrent strategy can be
nondeterministic then such a function may not be between configurations of A,
but rather a function from C(A) to the powerset of C(A), denoted by ℘(C(A)).
In particular, for race-free concurrent games—those games which satisfy a struc-
tural condition called race-freedom, to be defined in the following section—given
a strategy σ : S → A, we define σµ :C(A) → ℘(C(A)) with respect to σ as follows:

y′ ∈ σµ(y) iff ∃x, x′ ∈ C(S). σx = y & x′ ∈ f−→µ (x) & σx′ = y′

for some operator f−→µ : C(S) → ℘(C(S)), also defined with respect to σ : S → A,
as a nondeterministic closure operator f−→ : C(S) → ℘(C(S)), that is, as an
operator from C(S) to ℘(C(S)) that satisfies the following properties:

1. ∀x′ ∈ f−→(x). x ⊆+ x′,
2. ∀x′ ∈ f−→(x). {x′} = f−→(x′),
3. x1 ⊆− x2 =⇒ f−→(x1) ⊆ f−→(x2)

In fact (for 3):
∀x′

1 ∈ f−→(x1). ∃ x′
2 ∈ f−→(x2). x

′
1 ⊆ x′

2 and
∀x′

2 ∈ f−→(x2). ∃!x′

1 ∈ f−→(x1). x
′

1 ⊆ x′

2.

That is, such that for some x, x′ in C(S) and f−→µ , the diagram below commutes:

x
f→

µ
//

σ

��

x′

σ

��

y
σµ

// y′
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Remark If f−→µ is deterministic in the sense that the image of f−→µ (x) is a
singleton set, for every x ∈ C(S), then f−→µ can be regarded as a usual closure
operator on the configurations of S, with the order given by set inclusion. To see
this, simply let x′, {x′}, and f−→µ (x) be cl−→(x), where cl−→(x) =

⋃
f−→µ (x), and

eliminate quantifiers as they are no longer needed. Moreover, the condition that
Pos[x1] = Pos[x2] (given by x1 ⊆− x2 in 3) can be eliminated too as no positive
event of

⋃
f−→µ (x1) is inconsistent with a positive event of x2. And since f−→µ (x)

is the set of maximal configurations in {x′ ∈ C(S) | x ⊆+ x′} we know that f−→µ
preserves negative events; then we can also omit all references to polarities so as
to yield the following presentation: 1. x ⊆ cl−→(x); 2. cl−→(x) = cl−→(cl−→(x));
3. x1 ⊆ x2 =⇒ cl−→(x1) ⊆ cl−→(x2). These facts are formally presented below.

Proposition 1 (Deterministic games). Let A be a game and σ : S → A a
concurrent strategy. If S is deterministic, then f−→µ is a closure operator.

4 Strategies as Nondeterministic Closure Operators

In [5] it was shown that in order to build a bicategory of concurrent games, where
the objects are event structures and the morphisms are concurrent strategies
(that is, innocent and receptive maps of event structures), a structural property
called race-freedom had to be satisfied by the ‘copy-cat’ strategy in order to
behave as an identity in such a bicategory. Race-freedom proved again to be
a fundamental structural property of games as event structures when studying
games with winning conditions: it was, in [5], shown to be a necessary and
sufficient condition for the existence of winning strategies in well-founded games.

Race-freedom, formally defined below, is satisfied by all concurrent games
we are aware of. Informally, race-freedom is a condition that prevents one player
from interfering with the moves available to the other player. Formally, a game
A is race-free if and only if for all configurations y ∈ C(A) the following holds:

y
a

−−⊂ & y
a′

−−⊂ & pol(a) 6= pol(a′) =⇒ y ∪ {a, a′} ∈ C(A) .

Race-freedom proves to be useful again. It is shown to be a necessary and suf-
ficient condition characterising strategies as nondeterministic closure operators.
To see that race-freedom is necessary, consider the following simple example.

Example 2 (Race-freedom). Let A be the game depicted below. The wiggly line
means conflict, that is, that the set of events {⊖,⊕} is not a configuration of A.

⊖ /o/o/o ⊕

This game is not race-free. Moreover, there is a strategy for Player that can-
not be represented as a nondeterministic closure operator, namely, the strategy
σ : S → A that plays ⊕. To see that this is the case, consider condition 3
of nondeterministic closure operators (the other two conditions are satisfied).
Let f−→ : C(S) → ℘(C(S)) be a candidate nondeterministic closure operator
to represent σ. Observe that even though ∅ ⊆ {⊖}, it is not the case that
f−→(∅) ⊆ f−→({⊖}); indeed, f−→(∅) = {{⊕}} and f−→({⊖}) = {{⊖}}. ⊓⊔
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Proposition 3. Let A be a concurrent game that is not race-free. Then, there
is a nondeterministic strategy σ : S → A for Player that do not determine a
nondeterministic closure operator on C(S)—and similarly for Opponent.

Then, if one wants to build a model where every strategy has a nondeter-
ministic closure operator representation for every game, race-freedom will be a
necessary condition. This is not a surprising result since, as mentioned before,
copy-cat strategies, which can be represented as conventional closure operators,
require this condition. What is, therefore, much more interesting is that race-
freedom is in fact a sufficient condition too, as shown by the result below.

Theorem 4 (Closure operator characterisation). Let σ : S → A be a
nondeterministic concurrent strategy in a race-free concurrent game A. Then,
the strategy σ determines a nondeterministic closure operator on C(S).

Proof (Sketch). Since A is race-free then S is race-free (because S cannot intro-
duce inconsistencies between events of opposite polarity). Then, f−→µ (x) is the set
of ⊕-maximal configurations that cover x, namely f−→µ is the nondeterministic
closure operator determined by σ, as shown next.

Suppose σx = y & σx′ = y′ & y′ ∈ σµ(y). Then (for 1) x ⊆ x′ and Neg[x] =
Neg[x′], for every x′ ∈ f−→µ (x). And, (for 2) as every x′ is ⊕-maximal, then
it cannot be extended positively by any configuration; hence, f−→µ (x′) = {x′}.
Now, (for 3) suppose σx1 = y1 & σx2 = y2 & y2 ∈ σµ(y1), with x1 ⊆− x2 (and
therefore y1 ⊆− y2). Thus, since

– f−→µ (x1) is the set of ⊕-maximal configurations that cover x1, and
– Pos[x1] = Pos[x2], and
– S is race-free,

then f−→µ (x1) ⊆ f−→µ (x2), because x2 enables at least as many ⊕-events as x1;
recall that x1 ⊆− x2 means that Neg[x1] ⊆ Neg[x2] and Pos[x1] = Pos[x2]. ⊓⊔

Informally, what Theorem 4 shows is that whereas in the deterministic case,
a strategy σ : S → A can be seen as a partial function between the configurations
ofA which satisfies the axioms of a closure operator, in the nondeterministic race-
free setting, a strategy can be seen as a partial function from C(A) to ℘(C(A))
which satisfies the axioms of a nondeterministic closure operator. This, we be-
lieve, gives a more operational view of strategies than the one given by strategies
as maps of event structures [16] or as certain fibrations and profunctors [20].

Race-free/Probabilistic Games. Because our nondeterministic closure operator
characterisation of strategies only applies to race-free games, a natural question
is whether race-freedom is either a mild or a severe modelling restriction. (We
already know that race-freedom is not a real restriction with respect to sequential
systems, but it is a restriction with respect to concurrent ones.) Even though we
do not address such a question in this paper, we would like to note that a possible
way to relax the race-freedom structural condition is by moving to a quantitative
setting where races were allowed but only in a probabilistic manner, that is, to
a setting where players’ choices are associated with a probability distribution.
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5 Characterising Winning Strategies

Theorem 4 provides a key closure operator (game semantic) characterisation of
the model of nondeterministic concurrent strategies in games as event structures.
It relies, in particular, in the fact that the games are race-free. Under the same
conditions, other general theorems for games with winning conditions can also be
given with respect to the new closure operator game semantics. In particular, we
extend the characterisation of strategies as nondeterministic closure operators
to games with winning conditions. We start by providing the following result.

Theorem 5. Let A be a race-free game. A strategy σ : S → A in (A,W ) is
winning iff σµ(y) ⊆ W for all y ∈ C(A) under σ.

Based on Theorem 5, which relates the standard definition of strategies as
maps of event structures with strategies as nondeterministic closure operators,
known techniques to characterise winning strategies can be used so that such
concurrent strategies can be characterised, instead, with respect to the existence
of nondeterministic closure operators. First, let us define the set of results of a
concurrent game via nondeterministic closure operators.

Given A and two nondeterministic closure operators σµ and τµ for Player
and Opponent, their one-step composition at y ∈ C(A), denoted by (σµ 1 τµ)(y),
induces the following set of configurations: {σµ(y

′) ⊆C(A) | y′ ∈ τµ(y)}. Now, let
the set R be the partial results of playing-off σµ against τµ, which is inductively
defined as follows: (σµ 1 τµ)(∅) ⊆ R and if y ∈ R then (σµ 1 τµ)(y) ⊆ R. Finally,
similar to the case where the results of a concurrent game are computed using
a pullback construction, we define the set of results of the game as the maximal
elements of R, which we simply denote by σµ 1 τµ. Using these definitions one
can show that 1 is a commutative operator, that is, that the following holds.

Proposition 6. Let σ and τ be two strategies for Player and Opponent. Then

σµ 1 τµ = τµ 1 σµ

The equivalence relation given by Proposition 6 ensures that the two strate-
gies can be played in parallel while preserving the same set of results—a property
of the composition of strategies in the model of games as event structures.

Based on the above results, one can also show that winning strategies, when
represented as nondeterministic closure operators, can be characterised with
respect to the sets of results obtained when composing them with every deter-
ministic strategy, represented as closure operators, for the other player. Finally,
the following result fully captures the notion of winning in race-free games.

Theorem 7 (Winning strategies). Let A be a race-free concurrent game.
The nondeterministic closure operator σµ is winning for Player if and only if
(σµ 1 τµ) ⊆ W , for all closure operators τµ for Opponent.

Theorem 7 follows from results about winning strategies [5], and the fact that
not only every strategy σ : S → A determines a unique (partial) nondeterministic
closure operator σµ : C(A) → ℘(C(A)), but also every operator σµ is determined
by some (total) nondeterministic closure operator f−→ : C(S) → ℘(C(S)).
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6 Conclusions, Application Domains, and Related Work

In this paper, we studied a mathematical model, which builds on closure opera-
tors and has a game-theoretic interpretation, where some forms of concurrency
and nondeterminism are allowed to coexist. In particular, the model extends
those based on deterministic games—and hence on closure operators too.

Indeed, deterministic games/strategies are already important in the model of
games as event structures. Strategies in this kind of games can represent stable
spans and stable functions [18], Berry’s dI-domains [4], closure operator models
of CCP [17], models of fragments of Linear Logic [1,3], and innocent strategies in
simple games [8], which underlie Hyland–Ong [9] and AJM [2] games. Strategies
in deterministic games are also equivalent to those in Melliès and Mimram [11]
model of asynchronous games with receptive ingenious strategies.

However, none of the models above mentioned allow a free interplay of non-
determinism and concurrency: either nondeterminism is allowed in a sequential
setting, or concurrency is studied in a deterministic setting. Still, nondetermin-
ism is needed in certain scenarios, or may be a desirable property. We would like
to mention three prominent cases: concurrent game models of logical systems [5],
formal languages with nondeterministic behaviour [12, 15], and concurrent sys-
tems with partial order behaviour—also called ‘true-concurrency’ systems [13].

Logical systems. In order to give a concurrent game semantics of logical systems
such as classical or modal logics, the power to express nondeterministic choices is
needed, in particular, in order to be able to interpret disjunctions in a concurrent
way—a “parallel or” operator. Deterministic strategies—and hence conventional
closure operators—are unable to do this in a full and faithful way.

Formal languages. Another example where nondeterminism is allowed is within
formal languages such as ntcc [12], a nondeterministic extension of CCP, and in
simple programming languages with nondeterminism as the one initially studied
by Plotkin using powerdomains [15]. Whereas in the former case no game the-
oretic model has been studied, in the latter case no closure operator semantics
has been investigated. Indeed, to the best of our knowledge, no game theo-
retic characterisation of powerdomains has been defined so far. An interesting
potential application would be a (nondeterministic closure operator) game char-
acterisation of Kahn–Plotkin concrete domains [10] given the simpler structure
of nondeterministic choices allowed in such a denotational model.

True-concurrency. In concurrent systems with partial order behaviour, such as
Petri nets or asynchronous transition systems, both concurrency and nondeter-
minism are allowed at the same time, which prevents the use of conventional
closure operators as the basis for the definition of a fully abstract model. In all
of these cases, the model of concurrent games as event structures could be used
as an underlying semantic framework, and in particular our nondeterministic clo-
sure operator characterisation/semantics when restricted to race-free systems. A
good starting point would be to consider free-choice nets [6], since in this case
race-freedom can be easily imposed by associating it with conflicts in the net.
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