
A Tool for the Automated Verification of

Nash Equilibria in Concurrent Games

Alexis Toumi, Julian Gutierrez, and Michael Wooldridge

University of Oxford, Department of Computer Science, Oxford, UK.

Abstract. Reactive Modules is a high-level specification language for concur-

rent and multi-agent systems, used in a number of practical model checking tools.

Reactive Modules Games is a game-theoretic extension of Reactive Modules, in

which concurrent agents in the system are assumed to act strategically in an at-

tempt to satisfy a temporal logic formula representing their individual goal. The

basic analytical concept for Reactive Modules Games is Nash equilibrium. In this

paper, we describe a tool through which we can automatically verify Nash equi-

librium strategies for Reactive Modules Games. Our tool takes as input a system,

specified in the Reactive Modules language, a representation of players’ goals

(expressed as CTL formulae), and a representation of players strategies; it then

checks whether these strategies form a Nash equilibrium of the Reactive Modules

Game passed as input. The tool makes extensive use of conventional temporal

logic satisfiability and model checking techniques. We first give an overview of

the theory underpinning the tool, briefly describe its structure and implementa-

tion, and conclude by presenting a worked example analysed using the tool.

1 Introduction

Model checking is the best-known and most successful technique for automated formal

verification, and is focussed on the problem of checking whether a (computer) system S

satisfies a property ϕ, where typically ϕ is represented as a temporal logic formula.

Model checking has proved to be a very successful technique for systems where S is a

complete and monolithic description of the state space of the system. In this case, S is

usually called a closed system. However, in many situations, especially when dealing

with concurrent and distributed multi-agent systems, S can be better represented as a

collection of local and inter-dependent processes. In this modelling framework, it is

common to understand such processes as modules, that is, as being open rather than

closed systems, in which the behaviour of each process/module may depend on the

behaviour of other processes, which constitute its environment, cf., [2, 12].

We are interested in the verification of concurrent and multi-agent systems where

(computer) processes are modelled as open systems. In particular, we are interested in

systems modelled using a game-theoretic approach. In this setting, a system is mod-

elled as a game, system components are modelled as players (each choosing and then

following a given strategy), possible computation runs are the plays of the game, and

the desired or expect behaviour of the system is specified with the goals that the players

of the game wish to see satisfied. In many cases, for instance when considering reactive

systems, such goals can be naturally expressed using temporal logic formulae.

2 A. Toumi, J. Gutierrez, M. Wooldridge

However, because now one is following a game-theoretic approach, it is only natural

to ask whether the system has a stable behaviour from a game-theoretic point of view,

that is, whether the strategies used by the players modelling the system are in equi-

librium [15]. Then, in this case, we talk about equilibrium checking rather than model

checking. In fact, model checking is a simpler instance of equilibrium checking where

either players are forced to cooperate or the whole system is modelled as a one-player

game. However, in general, these may not be the best representations of the system.

A way to model the kind of systems just described (open systems) is using the Re-

active Modules Language (RML [2]). This is a high-level specification language for

reactive, concurrent, and multi-agent systems, which is used in model checking tools

such as MOCHA [1] and Prism [13]. However, RML is used to specify general open

systems rather than concurrent games. Recently [11], a subset of RML, called the Sim-

ple Reactive Modules Language (SRML [19]) was given a game-theoretic interpretation,

which provides a game semantics for reactive and concurrent systems written in SRML,

and which can be used to perform an equilibrium analysis of open systems modelled

as SRML specifications. Indeed, with SRML, one can analyse systems using a language

that is much closer to real-world programming and system modelling languages.

In this paper, we present a tool for the automated verification of Nash equilibria in

concurrent and reactive systems modelled as concurrent games succinctly represented

using the SRML specification language. More specifically, we develop a Python im-

plementation of the above theory of games that, in particular, can be used to solve the

equilibrium checking problem for this kind of concurrent games/systems. Since the tool,

which we call EAGLE (“Equilibrium Analyser for Game-Like Environments”), can be

used to automatically check whether a set of strategies forms a Nash Equilibrium in a

given game-like concurrent system, its analytical power goes beyond model checking.

Related Work. Reactive Modules [2] is used as a specification language in verification

tools such as MOCHA [1] and Prism [13]. In each case, open systems modelled as con-

current games can also be specified. However, these tools do not have explicit support

for equilibrium analysis. Instead, it is model checking with respect to logics such as

PCTL and ATL what these tools allow. MCMAS [14] is another tool for the specifica-

tion and verification of open systems, modelled as multi-agent systems. In MCMAS,

systems are described using the Interpreted Systems Programming Language and prop-

erties are described using ATL∗ and strategy logic—see [5]. Similar to MOCHA and

Prism, in MCMAS the analysis of systems focuses on the model checking problem for

the logics just mentioned. Because strategy logic can express the existence of Nash

equilibria in a concurrent and multi-agent game, in principle, it is possible to analyse

some equilibrium properties of MCMAS systems. However, this has to be manually

crafted. Closer to EAGLE is PRALINE [4], a tool for computing Nash equilibria in

concurrent games played on graphs. Whereas PRALINE focuses on the synthesis prob-

lem (constructing strategies in equilibrium), EAGLE focuses on the verification prob-

lem (checking that a given profile of strategies is in equilibrium). There are many other

tools available online which either use game techniques for design and verification or

allow the analysis of winning strategies in games. For instance, see [3, 6, 9] for a few

references. However, as just said, these tools focus on the study of winning strategies in

such games rather than in the equilibrium analysis of these systems/games.

EAGLE: an Equilibrium Analyser for Game-Like Environments 3

Acknowledgment: EAGLE was implemented by Toumi as part of his final Computer

Science project [18] at Oxford. Both EAGLE and [18] can be obtained from him.1 We

also acknowledge the support of the ERC Research Grant 291528 (“RACE”) at Oxford.

2 Preliminaries

Logic. In this paper we will be dealing with logics that extend classical propositional

logic. Thus, these logics are based on a finite set Φ of Boolean variables. A valuation for

propositional logic is a set v ⊆ Φ, with the intended interpretation that p ∈ v means that

p is true under valuation v, while p 6∈ v means that p is false under v. For formulaeϕ we

write v |= ϕ to mean that ϕ is satisfied by v. Let V(Φ) = 2Φ be the set of all valuations

for variables Φ; where Φ is clear, we omit reference to it and simply write V .

Kripke Structures. We use Kripke structures to model the dynamics of our systems. A

Kripke structure K over Φ is given by K = (S, S0,R, π), where S = {s0, . . .} is a finite

non-empty set of states, R ⊆ S × S is a total transition relation on S, S0 ⊆ S is the set

of initial states, and π : S → V is a valuation function, assigning a valuation π(s) to

every s ∈ S. Where K = (S, S0,R, π) is a Kripke structure over Φ, and Ψ ⊆ Φ, then we

denote the restriction of K to Ψ by K|Ψ , where K|Ψ = (S, S0,R, π|Ψ) is the same as K

except that the valuation function π|Ψ is defined as follows: π|Ψ (s) = π(s) ∩ Ψ.

Runs. A run of K is a sequence ρ = s0, s1, s2, . . . where for all t ∈ N we have

(st, st+1) ∈ R. Using square brackets around parameters referring to time points, we

let ρ[t] denote the state assigned to time point t by run ρ. We say ρ is an s-run if

ρ[0] = s. A run ρ of K where ρ[0] ∈ S0 is referred to as an initial run. Let runs(K, s)
be the set of s-runs of K, and let runs(K) be the set of initial runs of K. Notice that a

run ρ ∈ runs(K) induces an infinite sequence ρ ∈ Vω of propositional valuations, viz.,

ρ = π(ρ[0]), π(ρ[1]), π(ρ[2]), The set of these sequences, we denote by runs(K).
Given Ψ ⊆ Φ and a run ρ : N → V(Φ), we denote the restriction of ρ to Ψ by ρ|Ψ , that

is, ρ|Ψ [t] = ρ[t] ∩ Ψ for each t ∈ N. We can extend the notation for restriction of runs

to sets of runs. In particular, we write runs(K)|Ψ for the set {ρ|Ψ : ρ ∈ runs(K)}.

Trees. By a tree we here understand a non-empty set T ⊆ N
∗

0, such that (i) T is closed

under prefixes, i.e., for every u ∈ T, also prefix(u) ⊆ T, and (ii) u ∈ T implies ux ∈ T

for some x ∈ N0. For s ∈ S, a state-tree for a Kripke structure K = (S, S0,R, π) is a

function κ : T → S, where T ⊆ N
∗

0 is a tree, κ(ǫ) ∈ S0, and, for every u ∈ N
∗

0 and

x, y ∈ N0 such that ux, uy ∈ T, (i) κ(u) R κ(ux), and (ii) κ(ux) = κ(uy) implies x = y.

By trees(K) we denote the state-trees for the Kripke structure K. By a computation tree

we understand a function κ : T → V(Φ), where T is a tree. For Ψ ⊆ Φ we write κ|Ψ
for the restriction of κ to Ψ , i.e., for every u ∈ T, κ|Ψ (u) = κ(u) ∩ Ψ . Notice that

every state-tree κ : T → S induces a computation tree κ : T → V(Φ) such that for every

u ∈ T we have that κ[u] = π(κ(u)). In such a case κ is said to be a computation tree

for K. The set of computation trees for K we denote by trees(K). We can extend the

notation for restrictions of computation trees to sets of computation trees as done for

runs, that is, we write trees(K)|Ψ for the set {κ|Ψ : κ ∈ trees(K)}.

1 To obtain EAGLE or [18], please, send an email to Alexis.Toumi at gmail.com

4 A. Toumi, J. Gutierrez, M. Wooldridge

3 Reactive Modules Games

Reactive Modules. The objects used to define agents in RML are known as modules.

An SRML module consists of: (i) an interface, which defines the name of the module

and lists the Boolean variables under the control of the module; and (ii) a number of

guarded commands, which define the choices available to the module at every state.

Guarded commands are of two kinds: those used for initialising the variables under

the module’s control (init guarded commands), and those for updating these variables

subsequently (update guarded commands). A guarded command has two parts: a con-

dition part (the “guard”) and an action part, which defines how to update the value of

(some of) the variables under the control of a module. The intuitive reading of a guarded

command ϕ❀ α is “if the condition ϕ is satisfied, then one of the choices available to

the module is to execute the action α”. We note that the truth of the guard ϕ does not

mean that α will be executed: only that it is enabled for execution—it may be chosen.

Formally, a guarded command g over a set of Boolean variables Φ is an expression

ϕ❀ x′1 := ψ1; · · · ; x′k := ψk

whereϕ (the guard) is a propositional formula overΦ, each xi is a member ofΦ and each

ψi is a propositional logic formula over Φ. Let guard(g) denote the guard of g. Thus, in

the above rule, guard(g) = ϕ. We require that no variable appears on the left hand side

of two assignment statements in the same guarded command. We say that x1, . . . , xk are

the controlled variables of g, and denote this set by ctr(g). If no guarded command of

a module is enabled, the values of all variables in ctr(g) are left unchanged.

Formally, an SRML module, mi, is defined as a triple mi = (Φi, Ii,Ui), where:Φi ⊆ Φ

is the (finite) set of variables controlled by mi; Ii is a (finite) set of initialisation guarded

commands, such that for all g ∈ Ii, we have ctr(g) ⊆ Φi; and Ui is a (finite) set of

update guarded commands, such that for all g ∈ Ui, we have ctr(g) ⊆ Φi.

Moreover, an SRML arena, A, is defined to be an (n + 2)-tuple

A = (N, Φ,m1, . . . ,mn)

where N = {1, . . . , n} is a set of agents, Φ is a set of Boolean variables, and for each

i ∈ N, mi = (Φi, Ii,Ui) is an SRML module over Φ that defines the choices available to

agent i. We require that {Φ1, . . . , Φn} forms a partition of Φ (so every variable in Φ is

controlled by some agent, and no variable is controlled by more than one agent).

The behaviour of an SRML arena is obtained by executing guarded commands, one

for each module, in a synchronous and concurrent way. The execution of an SRML arena

proceeds in rounds, where in each round every module mi = (Φi, Ii,Ui) produces a val-

uation vi for the variables in Φi on the basis of a current valuation v. For each SRML

arena A, the execution of guarded commands induces a unique Kripke structure KA,

which formally defines the semantics of A. Based on KA, one can define the sets of runs

and computation trees allowed in A, namely, those associated with the Kripke struc-

ture K; we write runs(A) and trees(A) for such sets. Indeed, one can show that for

every A there is a KA such that runs(A) = runs(KA)|Φ and trees(A) = trees(KA)|Φ,

that is, with the same runs and computation trees when restricted to Φ. Likewise, for ev-

ery K there is an SRML module whose runs and computation trees are those of K. In this

paper, we provide, amongst others, a Python implementation of all these constructions.

EAGLE: an Equilibrium Analyser for Game-Like Environments 5

Games. The model of games we consider has two components. The first component is

an arena: this defines the players, some variables they control, and the choices available

to them in every game state. Preferences are specified by the second component of the

game: every player i is associated with a goal γi, which will be a logic formula. The

idea, as in several models of strategic behaviour, is that players desire to see their goal

satisfied by the outcome of the game. Formally, a game is given by a structure:

G = (A, γ1 . . . , γn)

where A = (N, Φ,m1, . . . ,mn) is an arena with player set N, Boolean variable set Φ,

and mi an SRML module defining the choices available to each player i; moreover, for

each i ∈ N, the temporal logic formula γi represents the goal that i aims to satisfy.2

Games are played by each player i selecting a strategy σi that will define how to

make choices over time. Given an SRML arena A = (N, Φ,m1, . . . ,mn), a strategy for

module mi = (Φi, Ii,Ui) is a structure σi = (Qi, q
0
i , δi, τi), where Qi is a finite and non-

empty set of states, q0
i ∈ Qi is the initial state, δi : Qi × V−i → 2Qi \ {∅} is a transition

function, and τi : Qi → Vi is an output function. Note that not all strategies for a module

may comply with that module’s specification. For instance, if the only guarded update

command of a module mi has the form ⊤ ❀ x′ := ⊥, then a strategy for mi should

not prescribe mi to set x to true under any contingency. Strategies that comply with the

module’s specification are called consistent. Let Σi be the set of consistent strategies

for mi. A strategy σi can be represented by an SRML module (of polynomial size in |σi|)
with variable set Φi ∪ Qi. We write mσi

for such a (strategy) module specification.

Once every player i has selected a strategy σi, a strategy profile ~σ = (σ1, . . . , σn)
results and the game has an outcome, which we will denote by [[~σ]]. The outcome [[~σ]]
of a game with SRML arena A = (N, Φ,m1, . . . ,mn) is defined to be the Kripke struc-

ture associated with the SRML arena A~σ = (N, Φ ∪
⋃

i∈N Qi,mσ1
, . . . ,mσn

) restricted

to valuations with respect to Φ, that is, the Kripke structure KA~σ
|Φ. The outcome of a

game will determine whether or not each player’s goal is or is not satisfied. Because

outcomes are Kripke structures, in general, goals can be given by any logic with a well

defined Kripke structure semantics. Assuming the existence of such a satisfaction rela-

tion, which we denote by “|=”, we can say that a goal γi is satisfied by an outcome [[~σ]]
if and only if [[~σ]] |= γi; in order to simplify notations, we may simply write ~σ |= γi.

We are now in a position to define a preference relation %i over outcomes for each

player i with goal γi. For strategy profiles ~σ and ~σ′, we say that

~σ %i ~σ
′ if and only if ~σ′ |= γi implies ~σ |= γi.

On this basis, we can also define the standard solution concept of Nash equilibrium [15]:

given a game G = (A, γ1, . . . , γn), a strategy profile ~σ is said to be a Nash equilibrium

of G if for all players i and all strategies σ′

i in the game, we have

~σ %i (~σ−i, σ
′

i),

where (~σ−i, σ
′

i) denotes the strategy profile (σ1, . . . , σi−1, σ
′

i , σi+1, . . . , σn). Hereafter,

let NE(G) be the set of (pure strategy) Nash equilibria of game G.

2 Goals can be given by any logic with a Kripke structure semantics. Although we will consider

CTL goals here, due to generality, at this point all definitions will be made leaving this open.

Indeed, one could extend our implementation to SRML games with CTL∗ or µ-calculus goals.

6 A. Toumi, J. Gutierrez, M. Wooldridge

4 Reactive Modules Games in Python

Our main contribution is EAGLE, a Python implementation of the theory of games

described in the previous sections. In particular, EAGLE allows a simple high-level

Python description of games specified in SRML, where players are assumed to have

branching-time (CTL) goals and strategies can be described as SRML modules. More

importantly, EAGLE allows the automated verification of solutions of such games, that

is, checking whether a particular profile of strategies is or is not a Nash equilibrium of

a given RM game—a problem called equilibrium checking. From a systems analysis

point of view, this is the game-theoretic equivalent to the model checking problem in

formal verification. A short description of our verification tool is given next.

Our tool expects as input an RM game G = (A = (N, Φ,m0, ...,mn), (γi)i∈N) and a

strategy profile ~σ. Because strategies are modelled as finite state machines with output

(which are known as transducers), they can easily be described, uniformly, using SRML.

Goals, on the other hand, are written using the syntax for CTL formulae in [7]. For

ease of use, a simple command-line interface can be used to input text files with the

specification of games. An concrete example will be given later, but all implementation

details can be found in [18]. Moreover, EAGLE implements an algorithm—which uses

two external libraries for CTL satisfiability and model checking—that automatically

solves these multi-player games, that is, their (Nash) equilibrium problem.

More precisely, on input (G, ~σ), the tool outputs True if and only if ~σ ∈ NE(G).
We have also implemented, using the command-line interface, a “verbose” mode in

which a detailed account of the running process of the algorithm is given. For instance,

apart from checking solutions of a given game, the tool reports whether or not players

get their goal achieved, and in the case they do not, whether they could benefit from

changing the strategy they are currently using. We should note that because in a Nash

equilibrium strategy profile no player can benefit from unilaterally changing its strategy,

it is the case that if the tool reports that ~σ 6∈ NE(G), then there is some player who does

not get its goal achieved, but can change to a different strategy that achieves its goal.

On the contrary, if the tool reports that ~σ ∈ NE(G), then no player can benefit from

changing its strategy, in particular, those who do not get their goal achieved.

Throughout, we made the following assumptions, which define what a correct input

is. In some cases, the assumptions are about the games themselves (1 & 2), and in other

cases about the input files (3). In particular, we have made the following assumptions:

1. That the modules, both for the arena and for the strategy profile, respect the speci-

fication of SRML. In particular, we require: (a) that no variable is assigned twice in

the same guarded command; (b) that the guards to init commands are “⊤”; (c) that

in the assignment statements x := ψ in init commands, ψ is a Boolean constant, ⊤
or ⊥; (d) that for every module mi = (Φi, Ii,Ui), both Ii and Ui are sets instead of

bags, i.e. that they contain only pairwise distinct elements; (e) that for every module

mi = (Φi, Ii,Ui) and for every command g ∈ Ii ∪ Ui we have that ctr(g) ⊆ Φi.

2. That the strategy profile is consistent with the arena, as required by the game model.

3. That the input strings for goals are syntactically correct CTL formulae, in particular

that they respect the alternation between path quantifiers and tense operators.

To make this concrete, we will, later and in the next section, present some examples.

EAGLE: an Equilibrium Analyser for Game-Like Environments 7

CTL Satisfiability and Model Checking. In order to solve the equilibrium problem for

Reactive Modules games we used a CTL variant of the algorithms first introduced

in [10] to check whether a strategy profile is or is not a Nash equilibrium. The tech-

nique developed in [10] relies on the existence of two oracles, one for model checking

and one for satisfiability of the temporal logic at hand. In the case of this paper, such

oracles are for CTL, and can be obtained using any “off-the-shelf” open source external

libraries for CTL satisfiability (CTL SAT) and CTL model checking (CTL MC). Specif-

ically, we decided to use the Python CTL model checker MR.WAFFLES [17] and the

CTL satisfiability checker in [16], both open source libraries available online.

For CTL MC, the MR.WAFFLES library implements Kripke structures with a class

PredicatedGraph which extends the networkx library for finite graphs with a

predicate attribute for every node: a list of the propositional variables (represented

as strings) that are true at this node. It then provides a check method that takes a string

representing a CTL formula (in prefix notation) and outputs a list of the states at which

the formula is satisfied. Hence, checking whether a Kripke structure satisfies a CTL

formula amounts to checking that all the initial states are in this list. For CTL SAT, we

use a command-line interface to access an external program that inputs CTL formulae

as strings (in infix notation), which is wrapped using a Python subprocess instance.

Concrete Data Structures. We represent propositional variables as ints, and propo-

sitional valuations as lists of ints. We implemented a Python class for propositional

logic, which we used to store the guards and the Boolean values of guarded com-

mands. There is one subclass for each case in the grammar and two special instances, T

and F, to represent ⊤ and ⊥. Also, we implemented assignment statements as Python

named tuples (var,b) where var is an int and b is an instance of the propositional

logic class. Guarded commands are implemented as named tuples (guard,action)
where guard is an instance of the propositional logic class and action is a list

of assignment statements. Reactive modules were also implemented as named tuples

(ctrl,init,update) where ctrl is a list of ints representing the variables the

module controls, init and update are lists of guarded commands.3

Input Format. As expected we use Python files, which we then parse using the Python

eval function. The input to the equilibrium checking algorithm is represented as a

Python dict with three keys: (i) modules is a list of reactive modules represent-

ing the SRML arena, (ii) goals is a list of CTL formulae represented as strings in

MR.WAFFLES notation, and (iii) strategies is a list of reactive modules repre-

senting the strategy profile. More specifically, we represent modules as Python dic-

tionaries, following the same structure as the named tuples for modules described be-

fore. The guards and the Boolean values in guarded commands are expressed using

MR.WAFFLES prefix notation, and the propositional variable represented by the int n is

simply denoted by xn. At this point it is worth noting that using our Python assistant

any finite-state strategy can be represented, including non-deterministic ones, by ex-

tending the set of controlled variables to represent strategy states without affecting the

outcome of the game (of course, as long as the strategy is consistent with its module).

3 EAGLE is being improved and updated frequently. The implementation details in this paper

constitute the main design decisions at the moment of submission to ICTAC (in June 2015).

8 A. Toumi, J. Gutierrez, M. Wooldridge

System Architecture. Our system has five Python modules, as follows: 1. A module that

implements the command-line interface and the main algorithm; it also implements

the verbose mode and prints some running time measurements. 2. A module that im-

plements the propositional logic class. 3. A module that implements the concrete data

structures described before, as well as the parsing of input modules and guarded com-

mands. 4. A module that implements the algorithm to translate an arena to its induced

Kripke structure, represented as a MR.WAFFLES PredicatedGraph instance. 5. A

module that implements a construction to translate an arena, given as a list of modules,

into a single CTL formula (used with the CTL SAT command-line interface) represent-

ing the branching behaviour of the arena; this module is also responsible for wrapping

the CTL SAT command-line interface, using a Python subprocess instance.

Evaluation. EAGLE was tested with a number of systems taken from the literature, and

the results are reported in [18]. The running time measures show that its performance

is greatly driven by the CTL satisfiability solver, which is used to check whether an

alternative player’s strategy could be constructed whenever a strategy profile does not

satisfy some player’s goal. Details can be found in [18]. These experimental results go

from two-player games that required hours to be analysed (CTL SAT used) to multi-

player games whose equilibrium analysis took a few seconds (only CTL MC used). It

was clear, in all cases, that the bottleneck was in the CTL satisfiability subroutine. In

the future, we would like to compare EAGLE with PRALINE [4], the only other tool

we are aware of that is focused on the equilibrium analysis of concurrent games.

Example. This example illustrates the concrete syntax used for modules in SRML as

well as its translation to the concrete syntax in our Python implementation. The SRML

module depicted below (on the left), named toggle, controls two variables x and y. It has

two init guarded commands and two update guarded commands. The init commands

define two choices for the initialisation of the pair (x, y): assign it the value (⊤,⊥) or

the value (⊥,⊤). The first update command says that if (x, y) has the value (⊤,⊥) then

the corresponding choice is to assign it the value (⊥,⊤), while the second command

says that if the pair (x, y) has the value (⊥,⊤), we can assign it the value (y, x) in

the next state. Note that the two update commands define essentially the same choice,

but in the first command the action mentions Boolean constants directly, whereas the

second command mentions the values of the variables at the current state, and requires

to evaluate those to assign the values for the next state. In other words, the module

toggle first non-deterministically picks an initial pair in {(⊤,⊥), (⊥,⊤)}, then at each

round it deterministically toggles between these two pairs. This SRML module is written

in our Python assistant for equilibrium checking as shown below (on the right):

module toggle controls x, y

init

:: ⊤ ❀ x′ := ⊤, y′ := ⊥
:: ⊤ ❀ x′ := ⊥, y′ := ⊤
update

:: (x ∧ ¬y) ❀ x′ := ⊥, y′ := ⊤
:: (¬x ∧ y) ❀ x′ := y, y′ := x

{ # module ” t o g g l e ”

’ c t r l ’ : [0 , 1] ,

’ i n i t ’ : [

”T −> x0 ’ := T , x1 ’ := F ” ,

”T −> x0 ’ := F , x1 ’ := T ”] ,

’ u p d a te ’ : [

” (and x0 ! x1) −> x0 ’ := F , x1 ’ := T” ,

” (and ! x0 x1) −> x0 ’ := x1 , x1 ’ := x0 ”] }

EAGLE: an Equilibrium Analyser for Game-Like Environments 9

5 Case Study: A Peer-to-Peer Communication Protocol

To understand better the usefulness of an equilibrium checking tool, we now present a

case study based on the system presented in [8]. Consider a peer-to-peer network with

two agents (the extension to n > 2 agents is straightforward—we restrict to two agents

only due to space and ease of presentation). At each time step, each agent either tries to

download or to upload. In order for one agent to download successfully, the other must

be uploading at the same time, and both are interested in downloading infinitely often.

While [8] considers an iBG model [10], where there are no constraints on the values

that players choose for the variables under their control, we will consider a modified

version of the communication protocol: using guarded commands, we require that an

agent cannot both download and upload at the same time. This is a simple example of a

system which cannot be specified as an iBG, but which has an SRML representation.

We can specify the game modelling the above communication protocol as a game

with two players, 0 and 1, where each player i ∈ {0, 1} controls two variables ui

(“Player i tries to upload”) and di (“Player i tries to download”); Player i downloads

successfully if (di ∧ ui−1). Formally, we define a game G = (A, γ0, γ1), where A =
({0, 1}, Φ,m0,m1), Φ = {u0, u1, d0, d1}, and m0,m1 are defined as follows:

module m0 controls u0, d0

init

:: ⊤ ❀ u′

0 := ⊤, d′

0 := ⊥
:: ⊤ ❀ u′

0 := ⊥, d′

0 := ⊤
update

:: ⊤ ❀ u′

0 := ⊤, d′

0 := ⊥
:: ⊤ ❀ u′

0 := ⊥, d′

0 := ⊤

module m1 controls u1, d1

init

:: ⊤ ❀ u′

1 := ⊤, d′

1 := ⊥
:: ⊤ ❀ u′

1 := ⊥, d′

1 := ⊤
update

:: ⊤ ❀ u′

1 := ⊤, d′

1 := ⊥
:: ⊤ ❀ u′

1 := ⊥, d′

1 := ⊤

Players’ goals can be easily specified in CTL: the informal “infinitely often” require-

ment can be expressed in CTL as “From all system states, on all paths, eventually”.

Hence, for i ∈ {0, 1}, we define the goals as follows: γi = AGAF(di ∧ u1−i).

This is clearly a very simple system/game: only two players and four controlled

variables. Yet, checking the Nash equilibria of the game associated with this system is

a hard problem. One can show—and formally verify using EAGLE—that this game

has at least two different kinds of Nash equilibria (one where no player gets its goal

achieved, and another one, which is Pareto optimal, where both players get their goal

achieved). In general, the game has infinitely many Nash equilibria, but they all fall

within the above two categories. Based on the SRML specifications of players’ strategies

given below, which are consistent with modules m0 and m1, we can verify that both

(StPlayer(0), StPlayer(1)) 6∈ NE(G) and (OnlyDown(0),OnlyDown(1)) ∈ NE(G).

module StPlayer(i) controls ui, di

init

:: ⊤ ❀ u′

i := ⊤, d′

i := ⊥
update

:: ⊤ ❀ u′

i := di, d′

i := ui

module OnlyDown(i) controls ui, di

init

:: ⊤ ❀ u′

i := ⊥, d′

i := ⊤
update

:: ⊤ ❀ u′

i := ⊥, d′

i := ⊤

10 A. Toumi, J. Gutierrez, M. Wooldridge

6 Future Work

We see a number of ways in which EAGLE can be improved: From a theoretical point

of view, there is no reason to restrict to CTL goals. More powerful temporal logics

could be considered. Also, our tool solves games with respect to the most widely used

solution concept in game theory: Nash equilibrium. However, other solution concepts

could be considered. It would also be useful to support, e.g., quantitative/probabilistic

reasoning or epistemic specifications so that more general agent’s preference relations

or beliefs can be modelled. Finally, even though our verification system is quite easy to

use, we could implement a more user-friendly interface to input temporal logic goals. At

present, our main limitations are given by the syntax used by the two external libraries

we use to solve the underlying CTL satisfiability and model checking problems.

References

1. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA: modularity

in model checking. In CAV, volume 1427 of LNCS, pages 521–525. Springer, 1998.
2. R. Alur and T. A. Henzinger. Reactive Modules. Form. Meth. Syst. Des., 15(1):7–48, 1999.
3. D. Berwanger, K. Chatterjee, M. D. Wulf, L. Doyen, and T. Henzinger. Alpaga: A tool for

solving parity games with imperfect information. In TACAS, volume 5505 of LNCS, pages

58–61. Springer, 2009.
4. R. Brenguier. PRALINE: A tool for computing Nash equilibria in concurrent games. In

CAV, volume 8044 of LNCS, pages 890–895. Springer, 2013.
5. P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model checker

for the verification of strategy logic specifications. In CAV, volume 8559 of LNCS, pages

525–532. Springer, 2014.
6. A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist. Uppaal stratego.

In TACAS, volume 9035 of LNCS, pages 206–211. Springer, 2015.
7. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science

Volume B: Formal Models and Semantics, pages 996–1072. Elsevier, 1990.
8. D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In TACAS, volume 6015 of

LNCS, pages 190–204. Springer, 2010.
9. O. Friedmann and M. Lange. Solving parity games in practice. In ATVA, volume 5799 of

LNCS, pages 182–196. Springer, 2009.
10. J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean games. In IJCAI. IJ-

CAI/AAAI, 2013.
11. J. Gutierrez, P. Harrenstein, and M. Wooldridge. Verification of temporal equilibrium prop-

erties of games on Reactive Modules. Technical report, University of Oxford, 2015.
12. O. Kupferman, M. Vardi, and P. Wolper. Module checking. I&C, 164(2):322–344, 2001.
13. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic

real-time systems. In CAV, volume 6806 of LNCS, pages 585–591. Springer, 2011.
14. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of

multi-agent systems. In CAV, volume 5643 of LNCS, pages 682–688. Springer, 2009.
15. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
16. N. Prezza. CTLSAT. Available at “https://github.com/nicolaprezza/CTLSAT”, 2015.
17. D. Reynaud. Mr. Waffles. Available at “http://mrwaffles.gforge.inria.fr”, 2015.
18. A. Toumi. Equilibrium checking in Reactive Modules games. Technical Report, Department

of Computer Science, University of Oxford, 2015.
19. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical ATL

model checking. In AAMAS, pages 201–208. ACM, 2006.

