
Nash Equilibria in Concurrent Games with Lexicographic Preferences

Julian Gutierrez1, Aniello Murano2, Giuseppe Perelli1, Sasha Rubin2, Michael Wooldridge1
1 Department of Computer Science, Oxford University, Oxford, UK

2 Università degli Studi di Napoli Federico II, Naples, Italy

Abstract
We study concurrent games with finite-memory
strategies where players are given a Büchi and
a mean-payoff objective, which are related by
a lexicographic order: a player first prefers to
satisfy its Büchi objective, and then prefers to
minimise costs, which are given by a mean-payoff
function. In particular, we show that deciding
the existence of a strict Nash equilibrium in such
games is decidable, even if players’ deviations are
implemented as infinite memory strategies.

1 Introduction
The last twenty years has seen considerable research directed
at the use of game theoretic techniques in the analysis and
verification of multi-agent systems. From this standpoint,
processes in a multi-agent systems can be understood as
players in a game, acting strategically and rationally in
pursuit of delegated preferences; possible behaviours of
agents correspond to the strategies of players. One important
strand of work in this tradition is the development of
techniques for reasoning about what properties players (or
coalitions of players) can bring about (i.e., whether they
have “winning strategies” for certain conditions) [Alur et
al., 2002]. More recently, attention has shifted to the
analysis of the equilibrium properties of such systems.
A typical question is whether a temporal property holds
under the assumption that players select strategies that
form a Nash equilibrium. In this work, a key question
is how the preferences of agents are represented, and
one widely-adopted answer to this question is to associate
with each player a qualitative goal/objective, usually given
either by a temporal logic property or by a winning
(acceptance) condition, such as reachability, safety, Büchi,
LTL, etc [Pnueli and Rosner, 1989; Gutierrez et al., 2015;
Bouyer et al., 2015]. This setting fits very naturally with
the verification of discrete (multi-agent) systems. However,
the preference structures that are induced in this way have
a rather simple (dichotomous) structure: a player is simply
either satisfied or unsatisfied; no distinction is made between
outcomes that satisfy the player’s objective, nor is any
made between outcomes that do not satisfy the objective.
This limits the applicability of such representations for

modelling many situations of interest. Another alternative
setting is given by games where instead of having a
qualitative objective, players have quantitative goals—for
instance, to minimize a given cost, or to maximise some
reward [Ehrenfeucht and Mycielski, 1979; Ummels and
Wojtczak, 2011; Kupferman et al., 2016]. A third possibility
is to use preference models that combine qualitative and
quantitative objectives [Chatterjee et al., 2005; Bloem et al.,
2009]. To date, most models that combine qualitative and
quantitative preferences in game-based multi-agent settings
have only been studied in restricted settings (although
see [Bulling and Goranko, 2013]).

In this paper, we study this scenario and investigate
a combination of quantitative and qualitative objectives
not found in the literature. We study goals given by a
lexicographic order, where a player first desires to satisfy
its qualitative objective (given by a Büchi condition on the
states of the system), and secondarily desires to minimise its
costs (where costs are given by a quantitative mean-payoff
objective). These games are studied in the context of settings
with finite memory strategies, while the solution concept
under consideration is strict Nash equilibrium. The focus
on finite memory strategies is motivated by the fact that, in
games with quantitative objectives, finite memory strategies
can render decidable settings that would be undecidable
otherwise [Ummels and Wojtczak, 2011]. Moreover, the
combination of qualitative and quantitative objectives is
natural for situations in which agents aim to satisfy some goal
while minimising costs. For example, consider a robot whose
task is to deliver packages around a factory environment:
the primary goal of the robot is to deliver the packages
(a qualitative objective), while secondarily minimising fuel
consumption (a quantitative objective).

Our contributions are as follows. We show that, in a
concurrent game with a lexicographic order of goals given by
a Büchi (the primary goal) and a mean-payoff (the secondary
goal) condition, deciding the existence of a finite-state strict
Nash equilibrium is decidable in NP. Our results also show
how to solve the rational synthesis problem [Fisman et al.,
2010] and the rational verification problem [Wooldridge et
al., 2016]. These two problems relate to establishing which
properties (e.g., temporal, ω-regular, etc.) hold in a game,
under the assumption that players in the game (i.e., system
components) choose strategies in equilibrium.



2 Concurrent Graph-Games
In this section we introduce our game model. We make
use of multi-player games played on finite graphs (rather
than games in extensive-form or normal-form). Agents move
concurrently (which includes the special sequential case),
play deterministic (rather than randomised) and finite-state
(instead of simply memoryless or infinite-memory) strategies,
while trying to maximise their payoffs (equivalently,
minimise costs), which are given as a lexicographic
combination of a qualitative liveness property (of the form
“visit some designated set of states infinitely often”) and a
quantitative long-term average of the rewards of its actions.

We fix some notation. If X is a set, then Xω is the set of
all infinite sequences over X . If X and Y are sets, then XY

is the set of all functions α : Y → X . We will often use
uppercase Greek letters α,β, κ, · · · to name functions. Also,
we will use tuple notation: we write αy ∈ X instead of α(y).

An arena is a tuple
A = 〈Ag,Act,St, ι, τ〉

where Ag, Act, and St are finite non-empty sets of agents
(write N = |Ag|), actions, and states, respectively; ι is the
initial state; τ : St × ActAg → St is a transition function
mapping each pair, consisting of a state and an action for each
agent, namely a decision δ ∈ ActAg, to a successor state. A
weighted arena is a tupleW = 〈A, κ,β〉whereA is an arena;
κ : Ag → (Act → Z) is a weight function associating an
integer weight to each action of each agent; β : Ag → 2St

is a Büchi function associating a set of Büchi states to each
agent.

Executions: A path π = s0δ0s1δ1 · · · is an infinite sequence
over St × ActAg such that τ(si, δi) = si+1 for all i. In
particular, δi(a) is the action of agent a in step i. An
execution is a path with s0 = ι.

Let Exec denote the set of all executions. For each
execution π = s0δ0s1δ1 · · · and each agent a, define

1. the sequence κa(π) = κa(δ0(a))κa(δ1(a)) · · · ,
2. the set INF(π) = {s ∈ St : ∃∞ms = sm}.

Payoffs: For a sequence α ∈ Rω , let mp(α) be the
mean-payoff of α, that is, for every n ∈ N define

Avgn(α) =
Σn−1j=0αj

n
and then

mp(α) = lim inf
n→∞

Avgn(α).

This definition naturally extends to executions, i.e., define
mpa(π) = mp(κa(π)).

For an execution π ∈ Exec and B ∈ 2St define

BuchiB(π) =

{
> if INF(π) ∩ B 6= ∅
⊥ otherwise.

Define Buchia(π) = Buchiβ(a).
Let Ω = {⊥,>} × R denote the set of payoffs. We define

a total ordering on the set Ω of payoffs: (x, y) ≺lex (x′, y′)
iff, either (x = ⊥ and x′ = >) or (x = x′ and y < y′).

Lexicographic games: A Lex(Buchi,mp) game is a tuple
G = 〈W,pay〉 where A is a weighted arena and pay : Ag→

(Exec → Ω) is the payoff function defined by paya(π) =
(Buchia(π),mpa(π)).

Each agent is trying to maximise its payoff. In other words,
agent a’s primary goal is to see infinitely some state from the
set βa infinitely often, and its secondary goal is to maximise
it’s mp-reward (which can be seen as minimising its cost).
Remark 1. We consider weights as rewards to be maximised.
One may, instead, consider them as costs to be minimised.
All our results hold for such cost-games. Indeed, given a
weighted arena A with weights (κa)a∈Ag, define a weighted
arena A′ in which all weights are replaced by their negation.
Then agent a that maximises its payoff in A′ has the primary
goal of making Buchia(·) true and the secondary goal of
maximising mp(−κa(·)). But maximising mp(−κa(·)) =
−mp(κa(·)) is the same as minimising mp(κa(·)).

Strategies: A history is a finite sequence s0δ0···sn−1δn−1sn
such that s0 = ι and τ(si, δi) = si+1 for i < n. The set
of all histories is denoted Hst. A strategy for agent a ∈ Ag
is a function Hst → Act. A strategy profile is a function
σ : Ag → (Hst → Act). A strategy profile σ induces a
unique execution πσ, i.e., the execution πσ = s0δ0s1δ1 · · ·
such that δi(a) = σ(a)(s0s1 · · · si) for i ≥ 0.

Finite-state strategies: A strategy σ is finite-state if it is
generated by a deterministic finite automaton M with output,
i.e., M = 〈Q, q0,∆, λ〉 where Q is a finite set of states,
q0 ∈ Q is the initial state, ∆ : Q× (St ∪ActAg)→ Q is the
transition function, and λ : Q → Act is the output function,
so that, on input h ∈ Hst, the automaton M reaches a state
q such that λ(q) = ∆(h). A strategy profile is finite-state if
every strategy σ(a) is finite-state. Observe that in this case,
the unique execution πσ is ultimately periodic.

Strict εNash-equilibria: The solution concept we work with
is strict ε Nash-equilibrium. This is a natural refinement
of ε Nash-equilibrium, and includes strict Nash equilibrium
as a special case. For ε ≥ 0 and (x, y) ∈ Ω, let
(x, y) + ε denote (x, y + ε) ∈ Ω. A strategy profile σ
is a strict ε Nash-equilibrium if for every agent a ∈ Ag,
and every strategy profile σ′ that disagrees with σ on the
a-th component (i.e., σ′(a) 6= σ(a) and σ′(b) = σ(b) for
all b 6= a), we have that paya(πσ′) ≺lex paya(πσ) + ε.
If ε = 0 then we call this a strict Nash equilibrium. We
remark that an (ordinary) Nash equilibrium uses�lex instead
of ≺lex. By FSNEε(G) we denote the set of finite-state
strict ε Nash equilibria in G. We emphasise that, in the
definition of a finite-state strict ε Nash-equilibrium σ, the
deviating strategies σ′(a) need not be finite-state. This
captures worst-case behaviour of the deviators.
Remark 2. Consider the function that maps an execution
π = s0δ0s1δ1 · · · to δ0δ1 · · · . Note that, since the transition
function is deterministic and there is a unique intial state, this
map is a bijection between the set of executions Exec and the
set of sequences of decisions (ActAg)ω . Clearly, this natural
mapping applies to histories and finite sequences of decisions
too. Thus, in the following, we might refer to histories as
sequences of decisions, and to strategies as functions from
sequences of decisions to actions. This slight but equivalent
way of looking at strategies is a useful technical convenience.



Decision Problems: The central decision problem of this
work, called Rational Synthesis or Verification [Fisman et al.,
2010; Gutierrez et al., 2015; Kupferman et al., 2016], asks
if there exists a FSNEε so that the induced play πσ satisfies
a given Büchi condition. Note that in case B = St, this
amounts to the deciding the existence of a FSNEε.

Formally, for a rational ε ≥ 0 we consider the following
decision problems for the class of Lex(Buchi,mp)-games:

1. FSNEε-emptiness is the problem of deciding, given a
game G, if FSNEε(G) 6= ∅.

2. E − FSNEε is the problem of deciding, given a game G
and a set B ⊆ St, if there exists σ ∈ FSNEε(G) such
that INF(πσ) ∩ B 6= ∅.

3 E− FSNEε and FSNEε-emptiness are
decidable, and in NP

In this section we establish our main technical result, i.e.,
that E − FSNEε is in NP. This immediately gives that
FSNEε-emptiness is in NP.

Theorem 1. There is an NP algorithm that, given a rational
ε ≥ 0, a Lex(Buchi,mp) game G, and a set B ⊆ St, decides
whether there is σ ∈ FSNEε(G) such that INF(πσ) ∩ B 6= ∅.

We first apply a pre-processing step that pushes the weights
from the actions into the states, i.e., we can assume, without
loss of generality, that the weight function is of the form
κ : Ag → (St → Z). Since this step is standard and of
polynomial complexity, we omit it.

We split the remainder of the proof into three steps.

1. We study two-agent zero-sum games with a
Lex(Buchi,mp) objective (played on the same arena as
G). We prove that every such game has a value opt,
this value is computable in NP, and for every c > 0
there exists a finite-state strategy for the first agent that
guarantees a payoff of at least opt − c, and similarly a
finite-state strategy for the second agent that guarantees
a payoff of at most opt+ c.

2. We reduce the problem of whether FSNEε(G) 6= ∅
to the problem of finding thresholds z ∈ ΩAg and
an ultimately periodic path in a certain graph G[z]
such that za ≺lex paya(π) + ε. More precisely,
each za is a so-called “punishing value”, i.e., the value
of a two-agent zero-sum game with a Lex(Buchi,mp)
objective played on the same arena asG, starting at some
state s ∈ St, but with a trying to maximise its payoff
and the the rest of the opponents (viewed as a single
player) trying to minimise a’s payoff. Such values can
be computed by the previous step. Moreover, the proof
of this characterisation makes use of the approximation
result from the previous step.

3. We show how to find ultimately periodic paths π such
that za ≺lex paya(π) + ε in graphs of the form
G[z̄]. We do this in Section 3.3 by adapting the linear
programming approach for computing zero-cycles in
mean-payoff graphs [Kosaraju and Sullivan, 1988].

In the rest of this section we sketch the technicalities of
these steps, and then show how to establish the theorem.

3.1 Two-agent zero-sum Lex(Buchi,mp)-games
We begin with a study of two-agent zero-sum Lex(Buchi,mp)
games H = 〈A, κ,B〉 where A is an arena with Ag =
{1, 2}, and κ : St → Z and B ⊆ St. Agent 1 is called
“maximizer” and agent 2 is called “minimizer”. Define
pay(π) = (BuchiB(π),mp(κ(π))). The value of H is
defined as val(H) = supσ infδ pay(π〈σ,δ〉) where σ ranges
over strategies of the maximizer, δ ranges over strategies of
the minimizer, and π〈σ,δ〉 is the unique execution determined
by the profile 〈σ, δ〉.
Proposition 1. Every two-agent zero-sum Lex(Buchi,mp)
game H has a value, denoted val(H) ∈ Ω. Moreover, this
value can be computed in NP.

Proof. Without loss of generality, we can consider H to
be turn-based (see Remark 3). We compute val(H) by
reducing to solving two-agent turn-based zero-sum games J
with mean-payoff parity objectives [Chatterjee et al., 2005],
which are know to be in NP [Bloem et al., 2009]. The
games J = (W,R′, pay+) are played on state-weighted
arenas W = (A, κ,π) where κ : St → Z assigns weights
and π : St → Z assigns priorities, with payoff set R′ =
{−∞} ∪ R with its usual ordering <, and payoff function
pay+ : Exec → R′ defined as follows: pay+(π) equals −∞
if parity(π) = ⊥, and mp(κ(π)) otherwise. Here parity(π)
is defined to be > if the largest priority occuring infinitely
often on π is even, and⊥ otherwise. In words, the first player
is trying to simultaneously make the parity condition hold and
maximise its mean-payoff. The value val(J) is defined to
be the maximum payoff that the first player can achieve. It
follows from [Chatterjee et al., 2005] that values exist and
can be computed. Note that the parity condition generalises
the Büchi condition (i.e., states in B get priority 2 and all
other states get priority 1), and the co-Büchi condition (i.e.,
states in B get priority 1 and all other states get priority 0).

Since mean-payoff parity games are asymmetric, we
introduce their counterparts in which the first player is trying
to ensure the largest priority occuring infinitely often is odd
(instead of even) and, at the same time, trying to minimise
(instead of maximise) the mean-payoff. Formally, these are
games K = (W,R′, pay−) where pay−(π) equals −∞ if
parity(π) = >, and mp(κ(π)) otherwise. The value val(K)
is defined to be the minimum payoff that the first player
can achieve. Such values exist and can be computed by
reducing to mean-payoff parity games: val(K) = val(K∂)
with K∂ = (W ∂ ,R′, pay+) and W ∂ = (A, κ∂ ,π∂) with
κ∂(s) = −κ(s) and π∂(s) = π(s) + 1.

We use these facts to characterise and compute the value of
two-agent zero-sum Lex(Buchi,mp) games as follows. Let
J = (W,R′, pay+) be the mean-payoff Büchi game on the
same state-weighted arena as H . If val(J) 6= −∞, then
val(J) is the largest mean-payoff value that the first player
can enforce while ensuring the Büchi condition holds. In
this case val(H) = (>, val(J)). Indeed, if σ1 ensures
val(J) then it also ensures that (>, val(J)) �lex val(H).
On the other hand, if (>, val(J)) ≺lex val(H) then there is



some strategy σ′1 that ensures the Büchi condition holds and
achieves mean-payoff higher than val(J), which contradicts
the definition of val(J).

On the other hand, if val(J) = −∞ then the second
player can enforce the failure of the Büchi condition. Yet,
this strategy may not minimise the mean-payoff as required
in the definition of Lex(Buchi,mp) games. Thus, consider the
game K = (W,R′, pay−) on the same state-weighted arena
as H . As val(J) = −∞ we have that val(K) 6= −∞. Thus,
val(H) = (⊥, val(K)) using similar reasoning as before.

Regarding the complexity, observe that the construction of
the games J and K is linear in the size of H , and that we
employ an NP procedure once per game. Thus the overall
complexity computing val(H) is NP.

Remark 3. It is not hard to transform our two-player
zero-sum concurrent game H into a two-player zero-sum
turn-based H ′ such that val(H) = val(H ′).

To give an intuition, we replace every transition s
(c1,c2)−−−−→

s′ by two transitions s c1−→ sc1
c2−→ s′, in a way that all the

original states belong to Player 1, while every extra state sc
belongs to Player 2, and has the same weight and priority
as s (and we do not change the Büchi sets). Note that such
a construction depends on the ordering of players, i.e., in
order to compute the value for Player 2, we need to employ

a construction of a game H ′′ that replaces s
(c1,c2)−−−−→ s′ by

s
c2−→ sc2

c1−→ s′.

It is not hard to see that in two-player zero-sum
Lex(Buchi,mp)-games H , a player may need infinite
memory to achieve the optimal value val(H)
(Cfr. [Chatterjee et al., 2005, Figure 1]). However, as
proven in [Bloem et al., 2009], for every mean-payoff parity
game J and every ε > 0 there exists a finite-memory strategy
σ (that depends on ε) such that for every strategy δ, it holds
that pay(πσ,δ) ≥ val(J)− ε. Thus, using the same argument
as in Proposition 1, we get:
Proposition 2. For every two-agent zero-sum
Lex(Buchi,mp) game H and every ε > 0 there exists
a finite-state strategy σ for maximizer such that for every
strategy δ of the minimizer (not neccessarily finite-state), it
holds that val(H)− ε �lex pay(πσ,δ).

3.2 Reducing equilibrium finding to path finding
In this section we reduce the problem of the existence of σ ∈
FSNEε(G) with INF(πσ)∩B 6= ∅ in a Lex(Buchi,mp) game
G to the existence of an ultimately periodic path in a certain
subgraph of the weighted arena ofG. To do this, we adapt the
proof in [Ummels and Wojtczak, 2011, Section 6] that shows
how to decide the existence of a (not neccessarily finite-state)
Nash equilibrium for mean-payoff games.

We first need the notion of punishing values and strategies.
For a ∈ Ag and s ∈ St define the punishing value pa(s) to
be the�lex-largest (x, y) that player a can achieve from state
s by “going it alone”, i.e., by playing against the coalition
Ag \ {a}. These values can be computed by Proposition 1.
Moreover, for every ε′ > 0, fix σε

′

s,a from Proposition 2. We
view σε

′

s,a as a profile, i.e., σε
′

s,a : Ag \ {a} → (Hst→ Act),

and call σε
′

s,a(b) a ε′-punishing strategy for agent b. Note that
these ε′-punishing strategies are finite-state.

For an agent a ∈ Ag and z ∈ Ω, a pair (s, δ) ∈ St×ActAg

is z-secure for a if pa(tr(s, δ′)) �lex z for every δ′ ∈ ActAg

that agrees with δ except possibly at a.

Proposition 3. For every Lex(Buchi, mp) game G, set B ⊆
St, and ε ≥ 0, the following are equivalent:

1. There exists σ ∈ FSNEε(G) with INF(πσ) ∩ B 6= ∅.
2. There exists z̄ ∈ Ω|Ag| where za ∈ {pa(s) : s ∈ St}

and there exists an ultimately-periodic execution π =
s0δ0s1δ1 · · · in G with INF(π) ∩ B 6= ∅, such that for
every agent a,

(a) za ≺lex paya(π) + ε and
(b) for all i ∈ N, the pair (si, δi) is za-secure for a.

Proof. For (1) implies (2), take σ ∈ FSNEε(G) and let
π = πσ be the execution resulting from σ. Since σ is
finite-state, π is ultimately periodic. Define z̄ ∈ Ω|Ag| by
za = max{pa(δ(sn, δ

′
n)) : n ∈ N,∧b6=aδ′n(b) = δn(b)}, i.e.,

za is the largest value player a can get by deviating from π.
For every n ∈ N, (sn, δn) is za-secure for a (by definition
of za and za-secure). Moreover, za ≺lex paya(π) + ε:
indeed, let n be such that za = pa(δ(sn, δ

′
n)), and suppose

that paya(π) + ε �lex za; then player a would deviate
at step n by playing δ′n(a) and following a strategy that
achieves at least za from this point. Note that such a (possibly
infinite-state) strategy exists by Proposition 1. But, due to
prefix-independence of the payoff function, this is also the
payoff of the whole play, contradicting the choice of π as the
execution of a strict ε Nash-equilibrium.

For (2) implies (1), let z̄ ∈ Ω|Ag| and π = s0δ0s1δ1 . . .
be given with the stated properties. We build a strict
ε Nash-equilibrium σ such that πσ = π. For b ∈
Ag, we define σ(b) as follows. For every history h =
s0δ0 . . . sn−1δn−1sn (i.e., a prefix of π), define σb(h) =
δn(b), i.e., follow π as long as no-one has deviated from π.
For every agent a 6= b and every history of the form h =
s0δ0 . . . sn−2δn−2sn−1δ

′
n−1s

′
nv where δ′n−1 equals δn−1

except for the action of a, define σb(h) = σε
′

s,a(b)(s′nv) where
ε′ > 0 is a constant with the property that pa(s′n) + ε′ ≺lex
paya(π)+ε (such a constant exists since, by assumptions 2(a)
and 2(b), pa(s′n) �lex za ≺lex paya(π)+ε), i.e., punish a for
deviating. For any other history h, define the value σb(h) to
be some arbitrary but fixed action. Note that σ is finite-state
since π is ultimately periodic. Finite memory is needed to
remember if an agent has deviated and, if so, which agent has
deviated. Moreover, σε

′

s,a(b) is finite-state.
We show that σ ∈ FSNEε(G). Observe that πσ = π, and

so paya(πσ) = paya(π). Suppose, for a contradiction, that
there is an agent a and a strategy profile σ′ such that σ′(b) =
σ(b) for b 6= a, and (*) paya(π) + ε �lex paya(π′) where
π′ is the execution determined by σ′. Let h be the longest
common prefix of π and π′, and suppose hδs is the prefix of
π and hδ′s′ is the prefix of π′. Then δa 6= δ′a. Thus, from
the history hδ′s′, each agent b 6= a plays the strategy σεs,a(b),
and thus paya(π′) �lex pa(s′) + ε′. Combining this with (*)



we get paya(π) + ε �lex pa(s′) + ε′. By the choice of ε′, we
get paya(π) + ε ≺lex paya(π) + ε, a contradiction.

3.3 Path finding in multi-weighted graphs with
Lex(Buchi,mp) payoffs

The following theorem, of interest in its own right, will be
used to decide the existence of ultimately periodic paths in
Proposition 3. A multi-weighted graph is a structure of the
form (V,E, (wa)a∈A, (βa)a∈A) where V is a finite set of
states, E ⊆ V 2 a set of edges, A is a finite index set,
wa : V → Z and βa ⊆ V .

Theorem 2. Given a multi-weighted graph W =
(V,E, (wa)a∈A, (βa)a∈A), a starting vertex ι ∈ V , and a
vector of payoffs f ∈ ΩA, one can decide in polynomial time
whether there exists an ultimately periodic π = v0v1 · · · in
the graph with ι = v0 and fa ≺lex paya(π) for every a ∈ A.

Proof. Without loss of generality we may assume that fa ∈
{>,⊥} × {0} (to see this, redefine wa(s) to be wa(s)− fa).
Also, we may assume that every state in V is reachable
from ι (to see this, restrict V to the states reachable from ι,
computable in linear time). We now reduce the problem to
finding certain cycles in W . A cycle is a finite path of the
form s0s1 · · · sn (for some n ≥ 1) such that s0 = sn (note
that cycles are not necessarily simple). Write s ∈ C to mean
that s = si for some i ≤ n; similarly, forB ⊆ V , writeC∩B
for the set of s ∈ C such that c ∈ B. Define avga(C) =
1

n+1Σnj=0wa(sj), and Buchia(C) = > iff C ∩ βa 6= ∅.
Given W and f ∈ ({>,⊥} × {0})A, the stated problem is
equivalent to deciding if there exists a cycle C in W such
that, for every a ∈ A, fa ≺lex 〈Buchia(C), avga(C)〉.
However, writing suma(C) = Σn+1

j=0wa(sj), we can replace
avga(C) by suma(C) in this problem (since avga(C) > 0
iff suma(C) > 0). In order to decide the existence of such a
cycle, we adapt the proof from [Kosaraju and Sullivan, 1988]
that shows how to decide if there is a cycle C such that for
every a ∈ A, suma(C) = 0.

A multicycleM is a non-empty multiset of cycles. Thus a
cycle is a multicycleM with |M| = 1. A β-multicycle is a
multicycleM such that for every a ∈ A, i) Buchia(C) = >
for some C ∈ M, and ii) ΣC∈Msuma(C) > 0. We want to
decide if there exists a β-cycle.

Now, one can decide if there exists a β-multicycle in
polynomial time using linear programming. For every edge
e introduce a variable xe. Informally, the value xe is the
number of times that the edge e is used on a β-multicycle.
Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E};
trg(e) = {v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E :
src(e) = v} and in(v) = {e ∈ E : trg(e) = v}.

The linear program LP has the following inequalities and
equations:

Eq1: xe ≥ 0 for each edge e — this is a basic consistency
criterion;

Eq2: Σe∈Exe ≥ 1 — this ensures that at least one edge is
chosen;

Eq3: for each a ∈ A, Σe∈Eκa(src(v))xe > 0 — this enforces
that the total sum is positive;

Eq4: for each a ∈ A such that fa = 〈>, 0〉, Σsrc(e)∩Ba 6=∅xe ≥
1 — this ensures that the Büchi condition is satisfied;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this
“preservation” condition says that the number of times
one enters a vertex is equal to the number of times one
leaves that vertex.

Clearly every β-multicycle determines an integer solution
of the LP. Also, an integer solution of the LP determines a
β-multicycle. This is due to Eq5 and Euler’s Theorem, i.e.,
a directed graph is Eulerian if and only if it is connected and
for every vertex v, the indegree of v is equal to the outdegree
of v [Bang-Jensen and Gutin, 2008, Theorem 1.6.3].

Moreover, the program LP has a solution in the reals iff it
has a solution in the rationals [Matousek and Gärtner, 2007].
Moreover, if (xe)e∈E is a solution to LP and k ∈ N\{0}, then
(kxe)e∈E is also a solution to LP. Thus, the LP has a solution
iff it has an integer solution. Thus, the LP has a solution iff
the graph has a β-multicycle.

Recall that we want to decide if there is a β-multicycleM
such that |M| = 1, i.e., contains a single cycle. Define a
relation on V : v ≡ w iff v = w or there exists a β-multicycle
M and C ∈ M such that v, w ∈ C. Note that ≡ is an
equivalence relation: indeed, if u, v ∈ C for C ∈ M, and
v, w ∈ C ′ for C ′ ∈M′ then u,w ∈ C ′′ for C ′′ ∈M′′ where
C ′′ is formed by tracing C from w to w and then tracing C ′
from w to w, andM′′ isM∪M′ \ {C,C ′}.

Suppose ≡ has index 1, i.e., for all v, w ∈ V , v ≡ w. We
claim that there exists a β-cycle. Indeed: for every v, v′ ∈ V
letMv,v′ be a β-multicycle containing a cycle C that visits v
and v′. ThenM = ∪v,v′∈VMv,v′ is a β-multicycle such that
(*): for every v, v′ ∈ V there exists C ∈M such that v, v′ ∈
C. We now define two transformations of multicyclesM 7→
M′ that maintain the following invariants: a) sum(M) =
sum(M′), b) ifM satisfies (*) then so doesM′, c) |M′| <
|M| (i.e., the number of cycles decreases). Thus, repeatedly
applying these transformation results in a β-cycle.

First, if C occurs more than once inM, say n times, then
remove all occurences of C fromM and add the single Cn
formed by tracing C n-many times. Thus, we have thatM is
a set of cycles (i.e., not a proper multiset). Second, ifM is
not a single cycle, take C 6= C ′ ∈M, v ∈ C, v′ ∈ C ′ and by
(*) pick D ∈ M such that v, v′ ∈ D. There are three cases:
if D 6= C,D 6= C ′ then form the cycle F by tracing C from
v to v, then tracing “half” of D from v to v′, then tracing C ′
from v′ to v′, and then tracing the “other half” of D from v′

to v and letM′ beM∪ {F} \ {C,C ′, D}; if D = C (the
case D = C ′ is symmetric), then v′ ∈ C and thus form F by
tracing C from v′ to v′ and then tracing C ′ from v′ to v′, and
letM′ beM∪ {F} \ {C,C ′}. Both transformations satisfy
the invariants.

Thus, the following algorithm decides if there is a β-cycle:
if |V | = 1, then output “yes” if ≡ has index 1, and “no”
otherwise; else, compute ≡; if it has index 1 then output
“yes”; else, for each ≡-class X , recurse on the subgraph
induced by X . The algorithm is clearly sound, i.e., if it
outputs “yes” then there is indeed a β-cycle. To see that it
is complete, note if that C is a β-cycle, then for all v, w ∈ C,
v ≡ w; and thus C is contained in an ≡-class.



Regarding the complexity, observe that the size of the LP
is polynomial in the size of the graph. Moreover, computing
the equivalence relation ≡ can be done with |E| linear
programs, and hence is also polynomial in the size of the
graph (Cfr. [Kosaraju and Sullivan, 1988]). Hence, the overall
complexity of the problem is polynomial.

3.4 Putting the steps together
We can now finish the proof of Theorem 1. Consider
a rational ε ≥ 0 and a Lex(Buchi,mp) game G
with state-weighted arena W = 〈A, κ,β〉 where A =
〈Ag,Act,St, ι, τ〉, κ : Ag → (St → Z), and β :
Ag → 2St. For every agent a ∈ Ag nondeterministically
guess a state s ∈ St and, by Proposition 1 compute,
in nondeterministic polynomial time, the punishing value
pa(s). Let za = pa(s). Next, we can think of W
as a multi-weighted graph (St, E, (κa)a∈A, (βa)a∈A) where
E(s, s′) iff τ(s, δ) = s′ for some δ. For z ∈ Ω|Ag|, a pair
(s, δ) is z-secure if it is za-secure for every agent a. Let
G[z] be the multi-weighted graph formed by restricting W
to the set of edges (s, s′) for which there exists δ such that
τ(s, δ) = s′ and (s, δ) is z-secure. Thus, by Proposition 3,
to decide if there exists σ ∈ FSNEε(G) such that
INF(πσ) ∩ B 6= ∅, we run the deterministic polynomial time
decision procedure in Theorem 2 on the multi-weighted graph
(St, E, (κ′a)a∈A′ , (βa)a∈A′) and threshold f ′ ∈ Ω|Ag|+1

defined as follows: A′ = A ∪ {b} (for a fresh symbol b);
κ′a = κa for all a ∈ A, and κ′b(s) = 0 for all s ∈ St; β′a = βa
for all a ∈ A, and β′b = B; and f ′(a) = za − ε for a ∈ Ag,
and f ′(b) = (>,−1). Clearly, the overall procedure can be
implemented with a NP algorithm.

4 Related Work
The main decision problem in this work concerns the
existence of an equilibrium satisfying a system property
in concurrent multiplayer games; this problem is called
“rational synthesis” [Fisman et al., 2010] or “rational
verification” (cf., E-NASH in [Wooldridge et al., 2016]) and
includes NE-emptiness as a special case. We studied this
verification problem, specifically, for Lex(Buchi,mp)-games
and finite-state strict Nash equilibria.

Most other work in rational synthesis concerns ordinary
(not neccessarily finite-state, nor strict) NE-emptiness.
In particular, NE-emptiness has been studied for other
objectives, notably mean-payoff (NP-complete) [Ummels and
Wojtczak, 2011], Büchi (PTIME-complete) [Bouyer et al.,
2015], and lexicographic order on Büchi objectives (in NP,
but not known to be NP-complete) [Bouyer et al., 2015].

E-NASH for finite-state strategies has been studied on
iterated Boolean Games (a simple form of infinite-duration
multiplayer concurrent games) as follows: with LTL
objectives, E-NASH is 2EXPTIME-complete [Gutierrez et
al., 2015]; with objective-LTL, i.e., each agent has
to optimise a reward based on the truth value of
a finite number of fixed LTL formulas, E-NASH is
2EXPTIME-complete [Kupferman et al., 2016]. A special
case of objective-LTL is the lexicographic order on a finite
(but unbounded) number of components, each consisting

of an LTL formula, also 2EXPTIME-complete. Actually,
these lower-bounds are inherited from the fact that solving
two-player zero-sum games with LTL objectives is already
2EXPTIME-complete [Rosner, 1991].

We remark that all these works (except objective-LTL)
concern equilibria concepts in multiplayer games with either
qualitative or quantitative objectives, but not a combination,
as we do. Objective-LTL combines Boolean objectives
(given as LTL formulas) in a weak way, i.e., there are only
finitely many possible payoffs. In contrast, Lex(Buchi,mp)
combines Boolean objectives (given as Büchi sets) with
quantitative objectives (mean-payoff), and thus result in
infinitely many possible payoffs.

Combinations of qualitative and quantitative objectives
have been studied for two-player turn-based games, i.e., in the
zero-sum case: mean-payoff parity games [Chatterjee et al.,
2005; Bloem et al., 2009], energy parity games [Chatterjee
and Doyen, 2012]; and in the non zero-sum case
secure-equilibria (in which each player tries to maximise
their own payoff and then minimise their opponent’s
payoff) for a host of quantitative objectives including
mean-payoff [Bruyère et al., 2014]. In contrast, our work
considers equilibria in multiplayer games.

Finally, we mention logics that combine qualitative
and quantitative aspects, i.e., variants of resource-bounded
alternating temporal-time logics [Alechina et al., 2015;
Bulling and Goranko, 2013]. Although these works deal
with multiple-players, they do not deal with Nash equilibria
(except in so far as winning strategies form equilibria).

5 Conclusion

In the last twenty years large efforts have been devoted to
analyze qualitative and, most recently, quantitative aspects
of multi-agent systems. However, these two settings have
often been investigated separately. As this is not appropriate
in many natural scenarios, researchers have started looking
at the combination of these two worlds. The achievements
in this direction, however, are far from satisfactory, either
because the settings are too weak, e.g., they cannot model
important solution concepts such as Nash Equilibria [Bulling
and Goranko, 2013], or because they are too expensive
in terms of complexity, e.g., between ExpTime-Hard and
undecidable [Alechina et al., 2015].

In this paper we introduce a model of multi-agent systems
in which each agent’s payoff is a lexicographic combination
of qualitative (Büchi) and quantitive (mean-payoff) payoffs.
We call these Lex(Buchi,mp) games. The solution concept
we focus on is finite-state strict ε Nash equilibria (for ε ≥
0). In this setting, we prove the rational-synthesis problem
(a generalisation of the equilibrium existence problem) is
decidable, and moreover is in NP. The proof characterises the
equilibrium executions as certain ultimately periodic paths in
a multi-weighted graph. To compute this graph we solve
two-player zero-sum games with lexicographic objectives,
and to find paths in such graphs we use linear-programming.



References
[Alechina et al., 2015] N. Alechina, B. Logan, N.H. Nga,

and F. Raimondi. Model-Checking for Resource-Bounded
ATL with Production and Consumption of Resources.
CoRR, abs/1504.06766, 2015.

[Alur et al., 2002] R. Alur, T.A. Henzinger, and
O. Kupferman. Alternating-Time Temporal Logic.
Journal of the ACM, 49(5):672–713, 2002.

[Bang-Jensen and Gutin, 2008] J. Bang-Jensen and
G. Gutin. Digraphs: theory, algorithms and applications.
Springer, 2008.

[Bloem et al., 2009] R. Bloem, K. Chatterjee, T. A.
Henzinger, and B. Jobstmann. Better Quality in Synthesis
through Quantitative Objectives. In CAV’09, pages
140–156, 2009.

[Bouyer et al., 2015] P. Bouyer, R. Brenguier, N. Markey,
and M. Ummels. Pure Nash Equilibria in Concurrent
Deterministic Games. Logical Methods in Computer
Science, 11(2), 2015.

[Bruyère et al., 2014] V. Bruyère, N. Meunier, and J.-F.
Raskin. Secure equilibria in weighted games. In
CSL-LICS’14, pages 26:1–26:26, 2014.

[Bulling and Goranko, 2013] N. Bulling and V. Goranko.
How to Be Both Rich and Happy: Combining Quantitative
and Qualitative Strategic Reasoning about Multi-Player
Games (Extended Abstract). In SR’13, pages 33–41, 2013.

[Chatterjee and Doyen, 2012] K. Chatterjee and L. Doyen.
Energy parity games. Theor. Comput. Sci., 458:49–60,
2012.

[Chatterjee et al., 2005] K. Chatterjee, T. A. Henzinger, and
M. Jurdzinski. Mean-Payoff Parity Games. In LICS’05,
pages 178–187, 2005.

[Ehrenfeucht and Mycielski, 1979] A. Ehrenfeucht and
J. Mycielski. Positional strategies for mean payoff games.

International Journal of Game Theory, 8(2):109–113,
1979.

[Fisman et al., 2010] D. Fisman, O. Kupferman, and
Y. Lustig. Rational Synthesis. In 10, LNCS 6015, pages
190–204, 2010.

[Gutierrez et al., 2015] J. Gutierrez, P. Harrenstein, and
M. Wooldridge. Iterated Boolean games. Inf. Comput.,
242:53–79, 2015.

[Kosaraju and Sullivan, 1988] S. R. Kosaraju and
G. Sullivan. Detecting Cycles in Dynamic Draphs
in Polynomial Time. In STOC’88, pages 398–406. ACM,
1988.

[Kupferman et al., 2016] O. Kupferman, G. Perelli, and
M.Y. Vardi. Synthesis with Rational Environments. Ann.
Math. Artif. Intell., 78(1):3–20, 2016.

[Matousek and Gärtner, 2007] J. Matousek and B. Gärtner.
Understanding and Using Linear Programming. Springer
Science & Business Media, 2007.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the
Synthesis of a Reactive Module. In Proc. POPL’89, pages
179–190, 1989.

[Rosner, 1991] R. Rosner. Modular Synthesis of Reactive
Systems. PhD thesis, Weizmann, 1991.

[Ummels and Wojtczak, 2011] M. Ummels and
D. Wojtczak. The Complexity of Nash Equilibria in
Limit-Average Games. In CONCUR’11, pages 482–496,
2011.

[Wooldridge et al., 2016] M. Wooldridge, J. Gutierrez,
P. Harrenstein, E. Marchioni, G. Perelli, and A. Toumi.
Rational Verification: From Model Checking to
Equilibrium Checking. In AAAI’16, pages 4184–4191,
2016.


