
On Computational Tractability for Rational Verification

Julian Gutierrez1 , Muhammad Najib1 , Giuseppe Perelli2 , Michael Wooldridge1
1Department of Computer Science, University of Oxford, UK

2Department of Informatics, University of Leicester, UK
{julian.gutierrez, mnajib, michael.wooldridge}@cs.ox.ac.uk, giuseppe.perelli@leicester.ac.uk

Abstract
Rational verification involves checking which
temporal logic properties hold of a concur-
rent/multiagent system, under the assumption that
agents in the system choose strategies in game the-
oretic equilibrium. Rational verification can be un-
derstood as a counterpart of model checking for
multiagent systems, but while model checking can
be done in polynomial time for some temporal logic
specification languages such as CTL, and polyno-
mial space with LTL specifications, rational ver-
ification is much more intractable: 2EXPTIME-
complete with LTL specifications, even when using
explicit-state system representations. In this paper
we show that the complexity of rational verification
can be greatly reduced by restricting specifications
to GR(1), a fragment of LTL that can represent
most response properties of reactive systems. We
also provide improved complexity results for ra-
tional verification when considering players’ goals
given by mean-payoff utility functions—arguably
the most widely used quantitative objective for
agents in concurrent and multiagent systems. In
particular, we show that for a number of relevant
settings, rational verification can be done in poly-
nomial space or even in polynomial time.

1 Introduction
The formal verification of systems using temporal logics such
as LTL and CTL [Emerson, 1990] is a major research area,
which has led to the development of an impressive number
of industrial-strength verification tools and techniques. Ar-
guably the most successful technique within formal verifica-
tion is model checking, which can be done in polynomial
space for LTL specifications and even in polynomial time
for CTL specifications [Clarke et al., 2018]. In the con-
text of multiagent systems, rational verification forms a nat-
ural counterpart of model checking [Gutierrez et al., 2015b;
Wooldridge et al., 2016; Gutierrez et al., 2017a]. This is the
problem of checking whether a given property ϕ, expressed
as a temporal logic formula, is satisfied in a computation of
a system that might be generated if agents within the sys-
tem choose strategies for selecting actions that form a game-

theoretic (e.g., Nash) equilibrium. Unlike model checking,
rational verification is still in its infancy: the main ideas,
formal models, and reasoning techniques underlying rational
verification are under development, while current tool sup-
port is limited and cannot yet handle systems of industrial
size [Toumi et al., 2015; Gutierrez et al., 2018a].

One key difficulty is that rational verification is computa-
tionally much harder than model checking, because checking
equilibrium properties requires quantifying over the strategies
available to players in the system. Rational verification is also
different from model checking in the kinds of properties that
each technique tries to check: while model checking is inter-
ested in correctness with respect to any possible behaviour of
a system, rational verification is interested only in behaviours
that can be sustained by a Nash equilibrium, when a multia-
gent system is modelled as a multi-player game. This, in par-
ticular, adds a new ingredient to the verification problem, as it
is now necessary to take into account the preferences of play-
ers with respect to the possible runs of the system. Typically,
in rational verification, such preferences are given by associ-
ating an LTL goal γi with each player i in the game. In this
case, rational verification with respect to a specification ϕ is
2EXPTIME-complete, regardless of whether the representa-
tion of the system is given succinctly [Gutierrez et al., 2017a;
Gutierrez et al., 2015b] or explicitly simply as a finite-state
labelled transition graph [Gutierrez et al., 2015a].

In this paper, we address this issue and provide complex-
ity results that greatly improve on the 2EXPTIME-complete
result of the general case. In particular, we consider games
where the goals of players are represented as either GR(1)
formulae (an important fragment of LTL that can express
most response properties of a concurrent and reactive sys-
tem [Bloem et al., 2012]), or mean-payoff utility functions
(one of the most studied reward and quality measures used
in games for automated formal verification). In each case,
we study the rational verification problem for system spec-
ifications ϕ given as GR(1) formulae and as LTL formulae,
with respect to system models that are formally represented
as concurrent game structures [Alur et al., 2002].

Our main results, summarised in Table 1, show that in the
cases above mentioned, the 2EXPTIME result can be dramat-
ically improved, to settings where rational verification can be
solved in polynomial space, NP, or even in polynomial time
if the number of players in the game is assumed to be fixed.

Players’ goals Specification E-NASH

LTL LTL 2EXPTIME-complete
GR(1) LTL PSPACE-complete (Corollary 1)
GR(1) GR(1) FPT (Theorem 3)

mp LTL PSPACE-complete (Corollary 2)
mp GR(1) NP-complete (Theorem 5)

Table 1: Summary of main complexity results.

Related Work:
Rational verification has been studied for a number of set-
tings, including iterated Boolean games, reactive modules
games, and concurrent game structures [Gutierrez et al.,
2015b; Gutierrez et al., 2017a; Gutierrez et al., 2015a; Gutier-
rez et al., 2017b]. In all cases, the problem is 2EXPTIME-
complete. Rational verification is also closely related to ra-
tional synthesis, which is also 2EXPTIME-complete both in
the Boolean case [Fisman et al., 2010] and with rational en-
vironments [Kupferman et al., 2016]. All of the above cases
only consider perfect information. In settings with imperfect
information, the problem has been shown to be undecidable
both for games with succinct and explicit model representa-
tions [Gutierrez et al., 2018b; Filiot et al., 2018].

Our work also relates to LTL and mean-payoff (mp) games
at large. While the former are already 2EXPTIME-complete
even for two-player games (and in fact already 2EXPTIME-
hard for many LTL fragments [Alur and La Torre, 2004]),
the latter are NP-complete for multi-player games [Ummels
and Wojtczak, 2011] and in NP ∩ coNP for two-player
games [Zwick and Paterson, 1996], and in fact solvable in
quasipolynomial time since they can be reduced to two-player
perfect-information parity games [Calude et al., 2017].

2 Preliminaries
Linear Temporal Logic. LTL extends propositional logic
with two operators, X (“next”) and U (“until”), for express-
ing properties of paths [Pnueli, 1977; Emerson, 1990]. The
syntax of LTL is defined with respect to a set AP of atomic
propositions as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. As usual, we defineϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2),
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ϕ2, Fϕ ≡ > Uϕ, and Gϕ ≡ ¬F¬ϕ. We
interpret LTL formulae with respect to pairs (α, t), where α ∈
(2AP)ω is an infinite sequence of sets of atomic proposition
that indicates which propositional variables are true in every
time point and t ∈ N is a temporal index into α. Formally,
the semantics of LTL is given by the following rules:

(α, t) |= >
(α, t) |= p iff p ∈ αt
(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ
(α, t) |= ϕ ∨ ψ iff (α, t) |= ϕ or (α, t) |= ψ
(α, t) |= Xϕ iff (α, t+ 1) |= ϕ
(α, t) |= ϕUψ iff for some t′ ≥ t :

(
(α, t′) |= ψ and

for all t ≤ t′′ < t′ : (α, t′′) |= ϕ
)
.

If (α, 0) |= ϕ, we write α |= ϕ and say that α satisfies ϕ.
General Reactivity of rank 1. The language of General Re-
activity of rank 1, denoted GR(1), is the fragment of LTL of
formulae written in the following form [Bloem et al., 2012]:

(GFψ1 ∧ . . . ∧GFψm)→ (GFϕ1 ∧ . . . ∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination
of atomic propositions.
Mean-Payoff value. For an infinite sequence β ∈ Rω of real
numbers, let mp(β) be the mean-payoff value of β, that is,

mp(β) = lim inf
n→∞

avgn(β)

where, for n ∈ N, we define avgn(β) = 1
n

∑n−1
j=0 βj .

Arenas. An arena is a tuple

A =〈N,Ac,St, s0, tr, λ〉
where N, Ac, and St are finite non-empty sets of players
(write N = |N|), actions, and states, respectively; s0 ∈ St

is the initial state; tr : St× ~Ac → St is a transition function
mapping each pair consisting of a state s ∈ St and an action
profile ~a ∈ ~Ac = AcN, one for each player, to a successor
state; and λ : St → 2AP is a labelling function, mapping
every state to a subset of atomic propositions.

We sometimes call an action profile ~a = (a1, . . . , an) ∈
~Ac a decision, and denote ai the action taken by player i. We

also consider partial decisions. For a set of players C ⊆ N
and action profile ~a, we let ~aC and ~a−C be two tuples of
actions, respectively, one for all players in C and one for all
players in N\C. We also write~ai for~a{i} and~a−i for~aN\{i}.
For two decisions ~a and ~a′, we write (~aC ,~a

′
−C) to denote the

decision where the actions for players in C are taken from ~a
and the actions for players in N \ C are taken from ~a′.

A path π = (s0,~a
0), (s1,~a

1) · · · is an infinite sequence in
(St × ~Ac)ω such that tr(sk,~ak) = sk+1 for all k. Paths are
generated in the arena by each player i selecting a strategy σi
that will define how to make choices over time. We model
strategies as finite state machines with output. Formally, for
arena A, a strategy σi = (Qi, q

0
i , δi, τi) for player i is a finite

state machine with output (a transducer), where Qi is a finite
and non-empty set of internal states, q0i is the initial state,
δi : Qi × ~Ac → Qi is a deterministic internal transition
function, and τi : Qi → Aci an action function, Aci ⊆ Ac
for all i ∈ N. Let Stri be the set of strategies for player i.
A strategy profile ~σ = (σ1, . . . , σn) is a vector of strategies,
one for each player. As with actions, ~σi denotes the strategy
assigned to player i in profile ~σ. Moreover, by (~σB , ~σ

′
C) we

denote the combination of profiles where players in disjoint
B and C are assigned their corresponding strategies in ~σ and
~σ′, respectively.

Once a state s and a strategy profile ~σ are fixed, the game
has an outcome, a path inA, which we denote by π(~σ, s). Be-
cause strategies are deterministic, π(~σ, s) is the unique path
induced by ~σ, that is, the sequence s0, s1, s2, . . . such that

• sk+1 = tr(sk, (τ1(qk1), . . . , τn(qkn))), and

• qk+1
i = δi(q

k
i , (τ1(qk1), . . . , τn(qkn))), for all k ≥ 0.

Arenas define the dynamic structure of games, but lack a
central aspect of a game: preferences, which give games their
strategic structure. A multi-player game is obtained from an
arena A by associating each player with a goal. We consider
multi-player games with GR(1) and mp goals. A multi-player
GR(1) game is a tuple GGR(1) = 〈A, (γi)i∈N〉 where A is an
arena and γi is the GR(1) goal for player i. A multi-player mp
game is a tuple Gmp =〈A, (wi)i∈N〉, where A is an arena and
wi : St → Z is a function mapping every state of the arena
into an integer number. When it is clear from the context, we
refer to a multi-player GR(1) or mp game as a game and de-
note it by G. In any game with arena A, a path π in A induces
a sequence λ(π) = λ(s0)λ(s1) · · · of sets of atomic propo-
sitions; if, in addition, A is the arena of an mp game, then,
for each player i, the sequence wi(π) = wi(s0)wi(s1) · · · of
weights is also induced.

For a GR(1) game and a path π in it, the payoff of a
player i is payi(π) = 1 if λ(π) |= γi and payi(π) = 0
otherwise. Regarding an mp game, the payoff of player i
is payi(π) = mp(wi(π)). Moreover, for a GR(1) game
and a path π, by Win(π) = {i ∈ N : λ(π) |= γi} and
Lose(π) = {j ∈ N : λ(π) 6|= γj} we denote the set of
winners and losers, respectively, over π, that is, the set of
players that get their goal satisfied and not satisfied, respec-
tively, over π. With an abuse of notation, we sometime denote
Win(~σ, s) = Win(π(~σ, s)) and Lose(~σ, s) = Lose(π(~σ, s)),
respectively, the set of winners and losers over the path gen-
erated by strategy profile ~σ when starting the game from s.
Furthermore, we simply write π(~σ) for π(~σ, s0).
Nash equilibrium. Using payoff functions, we can define the
concept of Nash equilibrium [Osborne and Rubinstein, 1994].
For a game G, a strategy profile ~σ is a Nash equilibrium of G
if, for every player i and strategy σ′i ∈ Stri, we have

payi(π(~σ)) ≥ payi(π((~σ−i, σ
′
i))) .

Let NE(G) be the set of Nash equilibria of G.
E-NASH and rational verification. In rational verification,
a key question/problem is E-NASH, which is concerned with
the existence of a Nash equilibrium that fulfils a given tempo-
ral specification ϕ. Formally, E-NASH is defined as follows:
Definition 1 (E-NASH). Given a game G and a formula ϕ:

Does there exist ~σ ∈ NE(G) such that π(~σ) |= ϕ?
This problem can be instantiated in many ways. For in-

stance, in [Gutierrez et al., 2015b], E-NASH was investigated
over iterated Boolean Games with specifications and players’
goals in LTL, and was proved to be 2EXPTIME-complete. It-
erated Boolean games is a very natural framework, but it is
computationally intractable.

Motivated by this computational limitation, in this paper,
we study E-NASH for a number of relevant instantiations of
the problem, which we show to have better computational
complexity. In particular, we study cases where

• Specifications ϕ are LTL and players’ goals are GR(1);

• Specifications ϕ are LTL and players have mp goals;

• Both the specification ϕ and the goals are GR(1);

• Specifications ϕ are GR(1) and players have mp goals.

Automata. Some of the algorithms we present for the E-
NASH problem use techniques from automata theory. Specif-
ically, we use deterministic automata on infinite words with
Streett acceptance conditions. Formally, a deterministic
Streett automaton on infinite words (DSW) is a tuple A =
(Σ, Q, q0, δ,Ω) where Σ is the input alphabet, Q is a finite set
of states, δ : Q × Σ → Q is a transition function, q0 is an
initial state, and Ω is a Streett acceptance condition. A Streett
condition Ω is a set of pairs {(E1, C1), . . . , (En, Cn)} where
Ek ⊆ Q and Ck ⊆ Q for all k ∈ [1, n]. A run ρ is accepting
in a DSW A with condition Ω if ρ either visits Ek finitely
many times or visits Ck infinitely often, i.e., if for every k
either inf (ρ) ∩ Ek = ∅ or inf (ρ) ∩ Ck 6= ∅.

3 Games of General Reactivity of Rank 1
As indicated before, we solve GR(1) games in two cases:
the first one is when the specification formula is expressed in
LTL, while the goals are in GR(1); the second one when the
specification formula as well as the goals belong to GR(1).
First, we provide a general result about a characterization of
Nash Equilibrium for GR(1) given in terms of punishments.
We first require some notation.

For a GR(1) game G, player j ∈ N, and state s ∈ St,
the strategy profile ~σ−j is punishing for player j in s if
π((~σ−j , σ

′
j), s) 6|= γj , for every possible strategy σ′j of player

j. We say that a state s is punishing for j if there ex-
ists a punishing strategy profile for j on s. Moreover, we
denote by Punj(G) the set of punishing states in G. A
pair (s,~a) ∈ St × ~Ac is punishing-secure for player j, if
tr(s, (~a−j , a

′
j)) ∈ Punj(G) for every action a′j .

Theorem 1. In a given GR(1) game G, there exists a Nash
Equilibrium if and only if there exists an ultimately periodic
path π such that, for every k ∈ N, the pair (sk,~a

k) of the k-th
iteration of π is punishing secure for every j ∈ Lose(π).

Proof sketch. From left to right, let ~σ ∈ NE(G) and π be the
ultimately periodic path generated by ~σ. Assume by contra-
diction that π is not punishing secure for some j ∈ N, that is,
there is k ∈ N and action a′j such that tr(sk, (~a−j , a′j)

k) /∈
Punj(G). Thus, j can deviate at sk and satisfy γj , which is
a contradiction to ~σ being a Nash equilibrium. From right
to left, recall that π can be generated by a finite transducer,
say T. Moreover, for every losing player j, there is a punish-
ing strategy profile for j in every s ∈ Punj(G). Combining
T with such punishment strategies, we build a profile ~σ that
follows the actions prescribed by T, until a losing player j
deviates. In such a case, ~σ would start punishing player j.
Observe that GR(1) objectives are prefix-independent, which

is not true for general LTL objectives. That means that the
punishment from the k-th iteration takes effect no matter what
prefix π≤k has been played so far. Thus, there is no beneficial
deviation for j and ~σ is a Nash equilibrium.

At this point, solving E-NASH can be done as follows:

1. Guess a set W ⊆ N of winners;
2. For each player j ∈ L = N \W , a loser in the game,

compute its punishment region Punj(G);
3. Remove from G the states that are not punishing for

players j ∈ L and the edges (s, s′) that are labelled
with an action profile ~a such that (s,~a) is not punishing-
secure for some j ∈ L, thus obtaining a game G−L;

4. Check whether there exists an ultimately periodic path π
in G−L such that π |= ϕ ∧

∧
i∈W γi holds.

The four steps described in the above procedure yield Algo-
rithm 1, which solves the problem at hand.

Algorithm 1: E-NASH of GR(1) games.
1 Input: A game GGR(1) and a specification formula ϕ.
2 for i ∈ N do
3 Compute Puni(G)

4 for W ⊆ N do
5 Compute G−L
6 if π |= (ϕ ∧

∧
i∈W γi) for some π ∈ G−L then

7 return Accept

8 return Reject

While line 6 requires solving the model checking prob-
lem for an LTL formula, which can be done in polynomial
space, line 5 can be done in polynomial time. Line 4, on the
other hand, makes the procedure run in exponential time in
the number of players, but still in polynomial space. We then
only need to check line 3: this step can be done in polynomial
time, as we now show.
Theorem 2. For a given GR(1) game G over the arena
A = 〈N,Ac,St, s0, tr, λ〉 and a player j ∈ N, computing
the winning region Punj(G) of player j can be done in poly-
nomial time with respect to the size of both G and γj .

Proof. We reduce the problem to computing the winning re-
gion of a suitably defined Streett game of index k = 1,
whose complexity is known to be O(mnk+1kk!) [Piterman
and Pnueli, 2006]. Given that in our case we have k = 1, we
obtain a polynomial time algorithm.

Recall that the goal of player j is of the form:

γj =

mj∧
l=1

GFψjl →
nj∧
r=1

GFθjr ,

where ψjl ’s and θjr’s are boolean combinations of
atomic propositions. Then, consider the arena
A′ =〈N,Ac,St′, s′0, tr

′〉 1 where

1We omit the definition of labelling function, as not needed here.

• St′ = St× {0, . . . ,mj} × {0, . . . , nj};
• s′0 = (s0, 0, 0);
• tr′((s, ι1, ι2),~a) = (tr(s,~a), ι′1, ι

′
2) where

ι′1 =


1, if ι1 = 0

ι1, if ι1 6= 0 and s 6|= ψjι1
(ι1 ⊕(mj+1) 1), otherwise

, and

ι′2 =


1, if ι2 = 0

ι2, if ι2 6= 0 and s 6|= θjι2
(ι2 ⊕(nj+1) 1), otherwise

2

Intuitively, arena A′ mimics the behaviour of A and carries
two indexes, ι1 and ι2. Index ι1 is increased by one every
time the path visits a state that satisfies ψjι1 and resets to 0

every time the path visits a state that satisfies ψjmj
. Clearly,

ι1 is reset infinitely many times if and only if the path sat-
isfies every ψjl infinitely many times, and so if and only if
it satisfies the temporal specification

∧mj

l=1 GFψjl . The same
argument applies to index ι2, but with respect to the boolean
combinations θjr’s.

Now, consider the sets Cj = St × {0} × {0, . . . , nj} and
Ej = St × {0, . . . ,mj} × {0}. Clearly, the Streett pair
(Cj , Ej) is satisfied by all and only the paths inA′ that satisfy
γj . Therefore, the winning region of γj can be computed as
the winning set of the Streett game of index 1 with (Cj , Ej)
being the only Streett pair. As this can be done in polynomial
time, we proved the statement.

Based on Theorem 2, we have the following result.
Corollary 1. The E-NASH problem for GR(1) games with an
LTL specification is PSPACE-complete.

Proof. The upper-bound follows from the procedure de-
scribed above. Regarding the lower-bound, note that model-
checking an LTL formula ϕ against a Kripke structure K
can be easily encoded as an instance of E-NASH where G is
played over a Kripke structure K, taken to be its arena, play-
ers’ goals being tautologies, and the specification being ¬ϕ.
In such a case, we have that K |= ϕ if and only if E-NASH
for the pair (G, ϕ) has a negative answer.

Corollary 1 sharply contrasts with the same result in case
the goals of the players are general LTL formulae. In this
more general case, E-NASH is 2EXPTIME-complete.
The special case of GR(1) specifications. One of hardest
parts of Algorithm 1 is line 6, where an LTL model checking
problem has to be solved, making the running time of the
whole procedure exponential in the size of the specification
and goals of the players. As we show in this section, a way to
drastically reduce the complexity of our decision procedure
is to let the specification be in GR(1) too. In such a case, the
LTL model checking procedure in line 6 of Algorithm 1 can
be avoided, leading to a much simpler construction, which
runs in polynomial time for every fixed number of players. In
this section, we provide precisely such a simpler construction.

Recall that every GR(1) specification ϕ can be regarded
as a Streett condition of index 1 over an arena A′ suitably

2By ⊕k we denote the addition modulo k.

constructed from the original arena A. Thus, by denoting
(Cϕ, Eϕ) and (Ci, Ei) the Streett pairs corresponding to the
GR(1) conditions ϕ and γi, respectively, the problem of find-
ing a path in A′ satisfying the formula ϕ∧

∧
i∈W γi amounts

to deciding the emptiness of the Streett automaton A =

〈 ~Ac,St′, s′0, tr,Ω〉 where Ω = {(Cϕ, Eϕ), (Cγi , Eγi)i∈W }.
Note that the size of A′ is polynomial in the size of

the GR(1) formulae involved, polynomial in the number of
states and actions in the original arena A, and exponen-
tial in the number of players. More specifically, we have
that |St′| = |St| · |γ||N| and so the number of edges is
at most |St′|2. Moreover, the emptiness problem of a de-
terministic Streett word automaton can be solved in time
that is polynomial in the automaton’s index and its number
of states and transitions [Rauch Henzinger and Telle, 1996;
Kupferman, 2015]. The complexity of the E-NASH problem
takes 2|N| times a procedure for computing at most |N | pun-
ishing regions (that is polynomial in the size of both G and
ϕ, γ1, . . . , γN) plus the complexity of the emptiness prob-
lem for a Streett automaton whose size is polynomial in G
ϕ, γ1, . . . , γN , and exponential in the number of players.

Based on the constructions described above, we can show
the following (fixed-parameter tractable) complexity result.

Theorem 3. For a given GR(1) game G and a GR(1) formula
ϕ, the E-NASH problem can be solved in time that is polyno-
mial in |St|, |Ac|, and |ϕ|, |γ1|, . . . , |γN | and exponential in
the number of players |N|. Therefore, the problem is fixed-
parameter tractable, parametrized in the number of players.

4 Mean-Payoff Games
We now focus on multi-player mean-payoff (mp) games. As
in the previous case, we first characterise the Nash Equilibria
of a game in terms of punishments and then reduce E-NASH
to a suitable path-finding problem in the underlying arena. To
do this, we first need to recall the notion of secure values for
mean-payoff games [Ummels and Wojtczak, 2011].

For a player i and a state s ∈ St, by puni(s) we denote the
punishment value of i over s, that is, the maximum payoff that
i can achieve from s, when all other players behave adversar-
ially. Such a value can be computed by considering the cor-
responding two-player zero-sum mean-payoff game [Zwick
and Paterson, 1996]. Thus, it is in NP ∩ coNP, and note that
both player i and coalition N \ {i} can achieve the optimal
value of the game using memoryless strategies.

For a player i and a value z ∈ R, a pair (s,~a) is z-secure
for i if puni(tr(s, (~a−i, a

′
i))) ≤ z for every a′i ∈ Ac.

Theorem 4. For every mp game G and ultimately periodic
path π = (s0,~a0), (s1,~a

1), . . ., the following are equivalent

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);

2. There exists ~z ∈ RN, where zi ∈ {puni(s) : s ∈ St}
such that, for every i ∈ N

(a) for all k ∈ N, the pair (sk,~a
k) is zi-secure for i,

and
(b) zi ≤ payi(π).

Proof sketch. (1)⇒ (2): We prove by contraposition. Let zi
be the largest value player i can get by deviating from π, and
let k ∈ N be such that zi = puni(tr(sk, (~a−i, a

′
i))), i.e., i can

get as much as zi by “going alone” at sk. Suppose further that
payi(π) < zi. Thus, player i would deviate at sk since i can
get better payoff by not following π—which is a contradiction
to π being a path induced by a Nash equilibrium.

(2)⇒ (1): Define strategy profile ~σ that follows π as long
as no-one has deviated from π. In such a case where player
i deviates on the k-th iteration, the strategy profile ~σ−i starts
playing the zi-secure strategy for player i that guarantees the
payoff of player i to be less than zi. Therefore, we have
payi(π(~σ−i, σ

′
i)) ≤ zi ≤ payi(π), for every possible strat-

egy σ′i of player i (the second inequality is due to condition
2(b)). Thus, there is no beneficial deviation for player i and
π is a path induced by a Nash equilibrium.

The characterization of Nash Equilibria provided in Theo-
rem 4 allows us to turn the E-NASH problem for mp games
into a path finding problem over G. Similarly to the case of
GR(1) games, we have the following procedure.

1. For every i ∈ N and s ∈ St, compute the value puni(s);

2. Guess a vector z ∈ RN of values, each of them being a
punishment value for a player i;

3. Compute the game G[z] by removing the states s such
that puni(s) ≤ zi for some player i and the transitions
(s,~a) that are not zi secure for some player i;

4. Find an ultimately periodic path π in game G[z] such that
π |= ϕ and zi ≤ payi(π) for every player i ∈ N.

Step 1 can be done in NP for every pair (i, s), step 2 can be
done in exponential time and polynomial space in the number
of z-secure values, and step 3 can be done in polynomial time,
similar to the case of GR(1) games. Regarding the last step,
its complexity depends on the specification language. For the
case of ϕ being an LTL formula, consider the formula

ϕE-NASH := ϕ ∧
∧
i∈N

(mp(i) ≥ zi),

written in the language LTLLim, an extension of LTL where
statements about mean-payoff values over a given weighted
arena can be made [Boker et al., 2014]. Observe that for-
mulaϕE-NASH corresponds exactly to requirement 2(b) in The-
orem 4. Moreover, since every path in G[z] satisfies condi-
tion 2(a) by construction, every path that satisfies ϕE-NASH

is a solution of the E-NASH problem and viceversa. We
can solve the latter problem by model checking the formula
against the arena underlying G[z]. Since this can be done in
PSPACE [Boker et al., 2014], we have the following result.

Corollary 2. The E-NASH problem for mp games with an
LTL specification formula ϕ is PSPACE-complete.

As for the case of GR(1) games, we can summarize the
procedure in the following algorithm (Algorithm 2).
The special case of GR(1) specifications. As in the case of
GR(1) games, here we show that restricting the specification
language to GR(1) lowers the complexity also for mp games.

Algorithm 2: E-NASH of mp games.
1 Input: A game Gmp and a specification formula ϕ.
2 for i ∈ N and s ∈ St do
3 Compute puni(G)

4 for ~z ∈ {puni(s) : s ∈ St}N do
5 Compute G[z]
6 if π |= ϕE-NASH for some π ∈ G[z] then
7 return Accept

8 return Reject

The reason is that the path finding problem for GR(1) spec-
ifications can be done while avoiding model-checking of an
LTLLim formula. In order to do this, we follow a different ap-
proach. Using an mp game G and a GR(1) specification ϕ we
define a linear program such that the linear program has a so-
lution if and only if the pair (G, ϕ) is an instance of E-NASH.
In particular, this approach is similar to the technique used in
[Gutierrez et al., 2017c, Theorem 2], where Linear Program-
ming is used to find the complexity of solving a variant of
E-NASH. Formally, we have the following result.

Theorem 5. The E-NASH problem for mp games with a
GR(1) specification ϕ is NP-complete.

Proof. We will define a linear program of size polynomial in
G having a solution if and only if there exists an ultimately
periodic path whose payoff for every player i is at least a
minimum threshold zi and satisfies the GR(1) specification.

In order to do that, first recall that ϕ has the following form

ϕ =

m∧
l=1

GFψl →
n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in G that sat-
isfy the Boolean combinations ψl and θr, respectively. Ob-
serve that property ϕ is satisfied over a path π if, and only
if, either π visits every V (θr) infinitely many times or visits
some of the V (ψl) only a finite number of times.

For the game G[z], let〈V,E〉 be the underlying graph, and
for every edge e ∈ E introduce a variable xe. Informally, the
value xe is the number of times that the edge e is used on a
cycle. Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E};
trg(e) = {v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E :
src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.

Consider ψl for some 1 ≤ l ≤ m, and define the linear pro-
gram LP(ψl) with the following inequalities and equations:

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;

Eq3: for each a ∈ A, Σe∈Ewa(src(e))xe ≥ 0 — this enforces
that the total sum of any solution is positive;

Eq4: Σsrc(e)∩V (ψl)6=∅xe = 0 — this ensures that no state in
V (ψl) is in the cycle associated with the solution;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this con-
dition says that the number of times one enters a vertex
is equal to the number of times one leaves that vertex.

By construction, it follows that LP(ψl) admits a solution if
and only if there exists a path π in G such that zi ≤ payi(π)
for every player i and visits V (ψl) only finitely many times. In
addition, consider the linear program LP(θ1, . . . , θn) defined
with the following inequalities and equations:

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;
Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;
Eq3: for each a ∈ A, Σe∈Ewa(src(e))xe ≥ 0 — this enforces

that the total sum of any solution is positive;
Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 — this ensures

that for every V (θr) at least one state is in the cycle;
Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this con-

dition says that the number of times one enters a vertex
is equal to the number of times one leaves that vertex.

In this case, LP(θ1, . . . , θn) admits a solution if and only if
there exists a path π such that zi ≤ payi(π) for every player
i and visits every V (θr) infinitely many times.

Since the constructions above are polynomial in the size
of both G and ϕ, we can conclude it is possible to check in
NP the statement that there is a path π satisfying ϕ such that
zi ≤ payi(π) for every player i in the game if and only if
one of the two linear programs defined above has a solution.
For the lower bound, we use [Ummels and Wojtczak, 2011]
and observe that if ϕ is true, then the problem is equivalent to
checking whether the mp game has a Nash equilibrium.

5 Other Rational Verification Problems
E-NASH is, arguably, the most fundamental problem in the
rational verification framework, but it is not the only one. The
two other key problems are A-NASH and NON-EMPTINESS.
The former is the dual problem of E-NASH, which asks, given
a game G and a specification ϕ, whether ϕ is satisfied in all
Nash equilibria of G. The latter simply asks whether the game
G has at least one Nash equilibrium, and it is the special case
of E-NASH where the specification ϕ is any tautology.

We can conclude from (the proofs of) the results pre-
sented so far, which are summarised in Table 1, that while
A-NASH for GR(1) games is also PSPACE and FPT, re-
spectively, in case of LTL and GR(1) specifications, for mp
games the problem is, respectively, PSPACE and coNP, in
each case. In addition, we can also conclude that whereas
NON-EMPTINESS for GR(1) games is FPT, for mp games
is NP-complete. These results contrast with those when
players’ goals are general LTL formulae, where all prob-
lems are 2EXPTIME-complete since LTL synthesis, which is
2EXPTIME-hard [Pnueli and Rosner, 1989], can be encoded.
These results also contrast with those presented in [Gao et al.,
2017], where it is shown that, in succinct model representa-
tions given by iterated Boolean games or reactive modules,
all problems in the rational verification framework can be re-
duced to NON-EMPTINESS, which clearly cannot be the case
here, unless the whole polynomial hierarchy collapses.

Acknowledgments
Najib acknowledges the support of the Indonesia Endowment
Fund for Education (LPDP), and Perelli the support of the
ERC project “dSynMA” (grant agreement No 772459).

References
[Alur and La Torre, 2004] Rajeev Alur and Salvatore La

Torre. Deterministic Generators and Games for LTL
Fragments. ACM Transactions on Computational Logic,
5(1):1–25, 2004.

[Alur et al., 2002] Rajeev Alur, Thomas Henzinger, and
Orna Kupferman. Alternating-Time Temporal Logic.
Journal of the ACM, 49(5):672–713, 2002.

[Bloem et al., 2012] Roderick Bloem, Barbara Jobstmann,
Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. Journal of Computer and System
Sciences, 78(3):911–938, 2012.

[Boker et al., 2014] Udi Boker, Krishnendu Chatterjee,
Thomas Henzinger, and Orna Kupferman. Temporal
Specifications with Accumulative Values. ACM Trans-
actions on Computational Logic, 15(4):27:1–27:25,
2014.

[Calude et al., 2017] Cristian S. Calude, Sanjay Jain,
Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
Deciding parity games in quasipolynomial time. In STOC,
pages 252–263. ACM, 2017.

[Clarke et al., 2018] Edmund M. Clarke, Orna Grumberg,
Daniel Kroening, Doron Peled, and Helmut Veith. Model
Checking (2nd edition). MIT Press, 2018.

[Emerson, 1990] E. Allen Emerson. Temporal and modal
logic. In Handbook of Theoretical Computer Science Vol-
ume B: Formal Models and Semantics, pages 996–1072.
Elsevier, 1990.

[Filiot et al., 2018] Emmanuel Filiot, Raffaella Gentilini,
and Jean-François Raskin. Rational Synthesis Under Im-
perfect Information. In LICS, pages 422–431. ACM, 2018.

[Fisman et al., 2010] Dana Fisman, Orna Kupferman, and
Yoad Lustig. Rational Synthesis. In TACAS, volume 6015
of LNCS, pages 190–204. Springer, 2010.

[Gao et al., 2017] Tong Gao, Julian Gutierrez, and Michael
Wooldridge. Iterated Boolean Games for Rational Verifi-
cation. In AAMAS, pages 705–713. ACM, 2017.

[Gutierrez et al., 2015a] Julian Gutierrez, Paul Harrenstein,
and Michael Wooldridge. Expresiveness and Complexity
Results for Strategic Reasoning. In CONCUR, volume 42
of LIPIcs, pages 268–282. Schloss Dagstuhl, 2015.

[Gutierrez et al., 2015b] Julian Gutierrez, Paul Harrenstein,
and Michael Wooldridge. Iterated Boolean Games. Infor-
mation and Computation, 242:53–79, 2015.

[Gutierrez et al., 2017a] Julian Gutierrez, Paul Harrenstein,
and Michael Wooldridge. From Model Checking to Equi-
librium Checking: Reactive Modules for Rational Verifi-
cation. Artificial Intelligence, 248:123–157, 2017.

[Gutierrez et al., 2017b] Julian Gutierrez, Paul Harrenstein,
and Michael Wooldridge. Reasoning about Equilibria in

Game-like Concurrent Systems. Annals of Pure and Ap-
plied Logic, 168(2):373–403, 2017.

[Gutierrez et al., 2017c] Julian Gutierrez, Aniello Murano,
Giuseppe Perelli, Sasha Rubin, and Michael Wooldridge.
Nash Equilibria in Concurrent Games with Lexicographic
Preferences. In IJCAI, pages 1067–1073, 2017.

[Gutierrez et al., 2018a] Julian Gutierrez, Muhammad Na-
jib, Giuseppe Perelli, and Michael Wooldridge. EVE: A
Tool for Temporal Equilibrium Analysis. In ATVA, vol-
ume 11138 of LNCS, pages 551–557. Springer, 2018.

[Gutierrez et al., 2018b] Julian Gutierrez, Giuseppe Perelli,
and Michael Wooldridge. Imperfect Information in Re-
active Modules games. Information and Computation,
261(Part):650–675, 2018.

[Kupferman et al., 2016] Orna Kupferman, Giuseppe
Perelli, and Moshe Vardi. Synthesis with Rational
Environments. Annals of Mathematics and Artificial
Intelligence, 78(1):3–20, 2016.

[Kupferman, 2015] Orna Kupferman. Automata Theory and
Model Checking. Handbook of TCS, 2015.

[Osborne and Rubinstein, 1994] Martin J. Osborne and Ariel
Rubinstein. A Course in Game Theory. MIT Press, 1994.

[Piterman and Pnueli, 2006] Nir Piterman and Amir Pnueli.
Faster Solutions of Rabin and Streett Games. In LICS,
pages 275–284, 2006.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, pages 179–
190. ACM Press, 1989.

[Pnueli, 1977] Amir Pnueli. The Temporal Logic of Pro-
grams. In FOCS, pages 46–57. IEEE, 1977.

[Rauch Henzinger and Telle, 1996] Monika Rauch Hen-
zinger and Jan Telle. Faster Algorithms for the Nonempti-
ness of Streett Automata and for Communication Protocol
Pruning. In SWAT, pages 16–27, 1996.

[Toumi et al., 2015] Alexis Toumi, Julian Gutierrez, and
Michael Wooldridge. A Tool for the Automated Verifica-
tion of Nash Equilibria in Concurrent Games. In ICTAC,
volume 9399 of LNCS, pages 583–594. Springer, 2015.

[Ummels and Wojtczak, 2011] Michael Ummels and Do-
minik Wojtczak. The Complexity of Nash Equilibria in
Limit-Average Games. In CONCUR, pages 482–496,
2011.

[Wooldridge et al., 2016] Michael Wooldridge, Julian
Gutierrez, Paul Harrenstein, Enrico Marchioni, Giuseppe
Perelli, and Alexis Toumi. Rational Verification: From
Model Checking to Equilibrium Checking. In AAAI,
pages 4184–4191. AAAI Press, 2016.

[Zwick and Paterson, 1996] Uri Zwick and Mike Paterson.
The Complexity of Mean Payoff Games on Graphs. Theo-
retical Computer Science, 158(1):343 – 359, 1996.

	Introduction
	Preliminaries
	Games of General Reactivity of Rank 1
	Mean-Payoff Games
	Other Rational Verification Problems

