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Abstract

In this paper we introduce model-checking games that allow local second-order power on sets
of independent transitions in the underlying partial order models where the games are played.
Since the interleaving semantics of such models is not considered, some problems that may
arise when using interleaving representations are avoided and new decidability results for partial
order models of concurrency are achieved. The games are shown to be sound and complete,
and therefore determined. While in the interleaving case they coincide with the local model-
checking games for the µ-calculus, in a partial order setting they verify properties of a number of
fixpoint modal logics that can specify, in concurrent systems with partial order semantics, several
properties not expressible with the µ-calculus. The games underpin a novel decision procedure
for model-checking all temporal properties of a class of infinite and regular event structures, thus
improving, in terms of temporal expressive power, previous results in the literature.
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1. Introduction

Model-checking games [12, 35], also called Hintikka evaluation games, are played by two
players, a “Verifier” Eve (∃) and a “Falsifier” Adam (∀). These logic games [2] are played in
a formula φ and a mathematical model M. In a game G(M, φ) the goal of Eve is to show that
M |= φ, while the goal of Adam is to refute such an assertion. Solving these games amounts to
answering the question of whether or not Eve has a strategy to win the game G(M, φ). These
games have a long history in mathematical logic and in the last two decades have become an
active area of research in computer science, both from theoretical and practical view points.
Good introductions to the subject can be found in [12, 33].

In concurrency and program verification, most usually φ is a modal or a temporal formula and
M is a Kripke structure or a labelled transition system (LTS), i.e., a graph structure, and the two
players play the game G(M, φ) globally by picking single elements of M, according to the game
rules defined by φ. This setting works well for concurrent systems with interleaving semantics
since one always has a notion of global state enforced by the nondeterministic sequential com-
putation of atomic actions, which in turn allows the players to choose only single elements of
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the structure M. However, when considering concurrent systems with partial order models [26],
explicit notions of locality and concurrency have to be taken into account. A possible solution
to this problem – the traditional approach – is to use the one-step interleaving semantics of such
models in order to recover the globality and sequentiality of the semantics of formulae.

This solution is, however, problematic for at least five reasons. Firstly, interleaving models
usually suffer from the state space explosion problem [4]. Secondly, interleaving interpretations
cannot be used to give completely satisfactory game semantics to logics with partial order mod-
els as all information on independence in the models is lost in the interleaving simplification
[1]. Thirdly, although temporal properties can still be verified with the interleaving simplifica-
tion, properties involving concurrency, causality and conflict, natural to partial order models of
concurrency, can no longer be verified [28]. From a more practical standpoint, partial order re-
duction methods [9, 11] or unfolding techniques [8] cannot be applied directly to interleaving
models in order to build less complex model checkers based on these techniques. Finally, the
usual techniques for verifying interleaving models cannot always be used to verify partial order
ones since such problems may become undecidable [21, 27].

For these reasons, we believe that the study of verification techniques for partial order models
continues to deserve much attention since they can help alleviate some of the limitations related
with the use of interleaving models. We therefore abandon the traditional approach to defining
model-checking games for logics with partial order models and propose a new class of games
called ‘trace local monadic second-order (LMSO) model-checking games’, where sets of inde-
pendent elements of the structure at hand can be locally recognized. These games avoid the need
of using the one-step interleaving semantics of partial order models, and thus define a more nat-
ural framework for analysing fixpoint modal logics with noninterleaving semantics. Moreover,
their use in the temporal verification of a class of regular event structures [34] improves previous
results in the literature [21, 27]. We do so by allowing a free interplay of fixpoint operators and
local second-order power on conflict-free sets of transitions.

The logic we consider is Separation Fixpoint Logic (SFL) [14], a µ-calculus (Lµ) [19] exten-
sion that can express causal properties in partial order models [26], e.g., transition systems with
independence, Petri nets or event structures, and allows for doing dynamic local reasoning. The
notion of locality in SFL, namely separation or disjointness of independent sets of resources, was
inspired by the one defined statically for Separation Logic [29]. Since SFL is as expressive as Lµ
in an interleaving context, nothing is lost with respect to the main approaches to logics for con-
currency with interleaving semantics. Instead, logics and techniques for interleaving concurrency
are extended to a partial order setting with SFL.

The structure of the paper is as follows: in Section 2 we introduce the partial order models
of concurrency that are used in the paper and in Section 3 the syntax and semantics of SFL is
defined. In Section 4, trace LMSO model-checking games are defined, and in Section 5 their
soundness and completeness is proved. In Section 6, we show that the games are decidable and
their coincidence with the local model-checking games for Lµ in the interleaving case. In Section
7 the game is used to effectively model-check a class of regular and infinite event structures.
Finally, in Section 8 a summary of related work is given, and in Section 9 the paper concludes.

2. Preliminaries

This section introduces the background material that is needed in the following sections,
namely the partial order models of our interest.
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2.1. Partial Order Models of Concurrency

In concurrency there are two main approaches to modelling concurrent behaviour. On the
one hand, interleaving models represent concurrency as the nondeterministic combination of all
possible sequential behaviours in the system. On the other hand, partial order models represent
concurrency explicitly by means of an independence relation on the set of actions, transitions or
events in the system that can be executed concurrently.

We are interested in partial order models of concurrency for several reasons. In particular,
because they can be seen as a generalisation of the interleaving models as will be explained later
on in this section. This allows us to define the model-checking games presented here in a uniform
way for several different models of concurrency, regardless of whether they have an interleaving
or a partial order semantics. In the following, we present the three partial order models of concur-
rency that we consider here, namely Petri nets, transition systems with independence and event
structures [26]. We also present some basic relationships between these three models, and how
they generalize two important models for interleaving concurrency, which are also embraced in
the uniform framework for model-checking we propose here. For further information the reader
is referred to [26, 30] where one can find a more comprehensive presentation.

2.1.1. Petri Nets
A labelled net N is a tuple (P, A,W,F ,Σ), where P is a set of places, A is a set of actions,

W ⊆ (P × A) ∪ (A × P) is a relation between places and actions, and F is a labelling function
F : A→ Σ from actions to a set Σ of action labels. Places and actions are called nodes; given
a node n, •n = {x | (x, n) ∈ W} is the preset of n and n• = {y | (n, y) ∈ W} is the postset of n.
These elements define the static structure of a net.1 The notion of computation state in a net (its
dynamic part) is that of a ‘marking’, which is a set or a multiset of places; in the former case
such nets are called safe. Hereafter we only consider safe nets. Finally, a Petri net N is a tuple
(N ,M0), where N = (P, A,W,F ,Σ) is a net and M0 ⊆ P is its initial marking.

As mentioned before markings define the dynamics of nets; they do so in the following way.
We say that a marking M enables an action t iff •t ⊆ M. If t is enabled at M, then t can occur and
its occurrence leads to a successor marking M′, where M′ = (M \ •t) ∪ t•, written as M

t
−→ M′.

Let
t
−→ be the relation between all successive markings, and −→∗ the reflexive and transitive

closure of
t
−→. Given a Petri net N = (N ,M0), the relation −→∗ defines the set of reachable

markings in the system N; such a set of reachable markings is fixed for any M0 and can be
constructed using the occurrence net unfolding of N as defined in [25].

Finally, let par be the symmetric independence relation on actions such that t1 par t2 iff
•t•1 ∩

•t•2 = ∅, where •t• stands for the set •t ∪ t•, and there exists a reachable marking M such
that both •t1 ⊆ M and •t2 ⊆ M. Then, if two actions t1 and t2 can occur concurrently they must
be independent, i.e., (t1, t2) ∈ par.

2.1.2. Transition Systems with Independence
A transition system with independence (TSI) is a labelled transition system (LTS) where

independent transitions can be recognized. Formally, a TSI T is a structure (S , s0,T, I,Σ), where
S is a set of states with initial state s0, T ⊆ S × Σ × S is a transition relation, Σ is a set of labels,

1The reader acquainted with net theory may have noticed that we use the word ‘action’ instead of ‘transition’, more
common in the literature on (Petri) nets. We chose this notation in order to avoid confusion later on in the document.
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and I ⊆ T × T is an irreflexive and symmetric relation on independent transitions. The binary
relation ≺ on transitions defined by

(s, a, s1) ≺ (s2, a, q)⇔
∃b.(s, a, s1) I (s, b, s2) ∧ (s, a, s1) I (s1, b, q) ∧ (s, b, s2) I (s2, a, q)

expresses that two transitions are instances of the same a-labelled action, but in two different
interleavings (see Figure 1 for a graphical description). We let ∼ be the least equivalence rela-
tion that includes ≺, i.e., the reflexive, symmetric and transitive closure of ≺. The equivalence
relation ∼ is used to group all transitions that are instances of the same action in all its possible
interleavings. Additionally, I is subject to the following axioms:

• A1. (s, a, s1) ∼ (s, a, s2)⇒ s1 = s2

• A2. (s, a, s1) I (s, b, s2)⇒ ∃q.(s, a, s1) I (s1, b, q) ∧ (s, b, s2) I (s2, a, q)

• A3. (s, a, s1) I (s1, b, q)⇒ ∃s2.(s, a, s1) I (s, b, s2) ∧ (s, b, s2) I (s2, a, q)

• A4. (s, a, s1) (≺ ∪ �) (s2, a, q) ∧ (s2, a, q) I (w, b,w′)⇒ (s, a, s1) I (w, b,w′)

Axiom A1 states that from any state, the execution of a transition leads always to a unique
state. This is a determinacy condition. Axioms A2 and A3 ensure that independent transitions
can be executed in either order. Finally, A4 ensures that the relation I is well defined. More
precisely, A4 says that if two transitions t and t′ are independent, then all other transitions in
the equivalence class [t]∼ (i.e., all other transitions that are instances of the same action but
in different interleavings) are independent of t′ as well, and vice versa. Having said that, an
alternative and possibly more intuitive definition for axiom A4 can be given. Let I(t) be the set
{t′ | t I t′}. Then, axiom A4 is equivalent to this expression: A4’. t ∼ t2 ⇒ I(t) = I(t2).

This axiomatization of concurrent behaviour was defined by Winskel and Nielsen [26], but
has its roots in the theory of traces [22], notably developed by Mazurkiewicz for trace languages,
one of the simplest partial order models of concurrency. As shown in Figure 1, this axiomatiza-
tion can be used to generate a ‘concurrency diamond’ for any two independent transitions t and
t′, say, for t = (s, a, s1) and t′ = (s, b, s2).

s1
• b

��>
>>

s
◦

a ??���

b ��>
>>

I q
•

s2
•

a

??���

Figure 1: A concurrency diamond for t I t′. Concurrency or independence is recognized by the symbol I inside the
square. The initial state of the TSI is marked by the circle ◦.

In a further (sub)section, we give a brief discussion about the relationships between this
model and other mathematical formalisms, including languages and automata for concurrency.

Notation 2.1. Given a transition t = (s1, a, s2), also written as s1
a
−→ s2 or s1

t
−→ s2 if no confusion

arises, the state s1 is called the source node, the state src(t) = s1; s2 the target node, trg(t) = s2;
and a the label of t, lbl(t) = a.
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2.1.3. Event Structures
A labelled event structure E is a tuple (E,4, ], η,Σ), where E is a set of events that are

partially ordered by 4, the causal dependency relation on events. Notice that events in an event
structure are occurrences of actions in a system. Moreover ] ⊆ E × E is an irreflexive and
symmetric conflict relation, and η : E → Σ is a labelling function such that the following hold:

If e1, e2, e3 ∈ E and e1 ] e2 4 e3, then e1 ] e3.
∀e ∈ E the set {e′ ∈ E | e′ 4 e} is finite.

The independence relation on events is defined with respect to the causal and conflict rela-
tions. Two events e1 and e2 are concurrent, denoted by e1 co e2, iff e1 $ e2 and e2 $ e1 and
¬(e1 ] e2). The notion of computation state for event structures is that of a configuration. A con-
figuration C is a conflict-free set of events (i.e., if e1, e2 ∈ C, then ¬(e1 ] e2)) such that if e ∈ C
and e′ 4 e, then e′ ∈ C. The initial configuration (or initial state) of any event structure E is by
definition the empty configuration {}. Finally, a successor configuration C′ of a configuration C
is given by C′ = C ∪ {e} such that e < C. Write C

e
−→ C′ for this relation, and let −→∗ be defined

similarly to the Petri net case.

2.1.4. Towards a Unified View of Different Models of Concurrency
Despite being different informatic structures, the models of concurrency just presented have a

number of fundamental relationships between them, as well as with some models for interleaving
concurrency. More precisely, TSI are noninterleaving transition-based representations of Petri
nets, whereas event structures are unfoldings of TSI. This is analogous to the fact that LTS are
interleaving transition-based representations of Petri nets while trees are unfoldings of LTS.

On the other hand, there are also simple relationships between TSI and LTS as well as be-
tween event structures and trees in this way: LTS are exactly those TSI with an empty indepen-
dence relation I on transitions, and trees are those event structures with an empty co relation on
events. In this way, partial order models generalize the interleaving ones.

Since the results presented here are valid across all the models previously mentioned, it is
convenient to fix some notations to refer unambiguously to any of them. To this end, we will use
the notation coming from the TSI model and present the maps that determine a TSI model based
on the primitives of the Petri net and event structure models. Also, with no further distinctions
we use the word ‘system’ when referring to any of these models or to sub-models of them, e.g.,
an LTS or a Kripke structure.

The are two main reasons for this choice of notation. The first one is that the basic compo-
nents of the TSI model can be easily and uniformly recognized in all the other models studied
here. Thus, the translations are simple and direct. The second reason has to do with the fact that
the concept of local dualities in partial order models, which is defined in the next section, can be
presented explicitly in terms of the basic components of the TSI model.

Moreover, TSI models are preferred since they can be used to give a a noninterleaving se-
mantics to CCS processes and related languages for concurrency [26]; in this way, simple CCS
terms can be used to describe both finite and infinite TSI structures. TSI models also enjoy sev-
eral interesting properties and are closely related to other models of concurrency, especially to
‘asynchronous transition systems’ [26] where TSI models appear as a well-structured subclass
of systems. Through this relationship with asynchronous transition systems—which was studied
in [17] using category theory tools—other connections can be found with many more models of
concurrency [30] and even with automata theory, e.g., with Droste’s concurrent automata [7], a
kind of automata that generalizes asynchronous transition systems, and hence TSI models.
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Just to recall, those components in the TSI model that can be identified uniformly in all other
partial order models of concurrency are the following: a set S of states (with a uniquely defined
initial state), a set T of labelled transitions between states, an independence relation I on elements
of T , and an alphabet Σ of action labels.

TSI Representation of Petri Nets. A Petri net system N = (N ,M0), where N = (P, A,W,F ,Σ)
as defined before, can be represented as a TSI T = (S , s0,T, I,Σ) as follows:

S = {M ⊆ P | M0 −→
∗ M}

T = {(M, a,M′) ∈ S × Σ × S | ∃t ∈ A. a = F (t),M
t
−→ M′}

I = {((M1, a,M′1), (M2, b,M′2)) ∈ T × T | ∃(t1, t2) ∈ par.

a = F (t1), b = F (t2),M1
t1
−→ M′1,M2

t2
−→ M′2}

where S represents the set of reachable markings of the Petri net system N, the initial state s0 is
the initial marking M0, and the set of labels Σ remains the same in both models.

TSI Representation of Event Structures. A TSI T = (S , s0,T, I,Σ) is determined by an event
structure E = (E,4, ], η,Σ) using the following mapping:

S = {C ⊆ E | {} −→∗ C}
T = {(C, a,C′) ∈ S × Σ × S | ∃e ∈ E. a = η(e),C

e
−→ C′}

I = {((C1, a,C′1), (C2, b,C′2)) ∈ T × T | ∃(e1, e2) ∈ co.
a = η(e1), b = η(e2),C1

e1
−→ C′1,C2

e2
−→ C′2}

where S represents the set of configurations of the event structure E, the initial state s0 is the
initial configuration {}, and, as before, the set of labels Σ remains the same in both models.
Notice that given this mapping from event structures to TSI, an infinite event structure would
generate an infinite TSI. Since this is undesirable for model-checking purposes, in a later section
we define a different mapping—from a class of infinite and regular event structures to TSI—that
is better for model-checking as it always produces finite TSI representations.

Finally, also notice that actions in a Petri net, transitions in a TSI and events in an event
structure are all different. As said before, transitions are instances of actions, i.e., are actions
relative to a particular interleaving. On the other hand, events are occurrences of actions, i.e.,
are actions relative to the causality relation. However, they can all be analysed uniformly using
a mathematical structure called a process space, which is to be defined in the following sections.
Such a structure is used as a common bridge between different partial order models, and underlies
the semantics of Separation Fixpoint Logic formulae, which we simply call ‘SFL formulae’.

2.2. Local Dualities in Partial Order Models
We present two ways in which concurrency can be regarded as a dual concept to conflict

and causality, respectively. These two ways of observing concurrency will be called immediate
concurrency and linearized concurrency. Whereas immediate concurrency is dual to conflict,
linearized concurrency is dual to causality. These local dualities were first defined in [14].

The intuitions behind these two observations are the following. Consider a concurrent system
and any two different transitions t1 and t2 with the same source node, i.e., src(t1) = src(t2). These
two transitions are either immediately concurrent, and therefore independent, i.e., (t1, t2) ∈ I, or
dependent, in which case they must be in conflict. Similarly, consider any two transitions t1 and
t2 where trg(t1) = src(t2). Again, the pair of transitions (t1, t2) can either belong to I, in which
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case the two transitions are concurrent, yet have been linearized, or the pair does not belong to
I, and therefore the two transitions are causally dependent. In both cases, the two conditions are
exclusive and there are no other possibilities.

Notice that these dualities make sense only in a local setting. If two arbitrary transitions t1
and t2 do not have the property that src(t1) = src(t2) or trg(t1) = src(t2) (or vice versa), then
nothing can be said about them doing only this analysis. However, as we will see later on, this
simple notion of observation we introduce here is rather powerful since it is the basic ingredient
for defining modal logics with partial order models.

The local dualities just described are formally defined in the following way, and notice the
dual conditions between ⊗ and # and between 	 and ≤ with respect to the independence relation
on transitions, if assuming valid the locality requirement:

⊗
def
= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ t1 I t2}

# def
= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ ¬(t1 I t2)}

	
def
= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ t1 I t2}

≤
def
= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ ¬(t1 I t2)}

Definition 2.2. (Local dualities) Let t1 and t2 be two transitions. We say that t1 and t2 are
immediately concurrent iff (t1, t2) ∈ ⊗, in conflict iff (t1, t2) ∈ #, linearly concurrent iff (t1, t2) ∈ 	,
or causally dependent iff (t1, t2) ∈ ≤.

2.3. Sets in a Local Context
The relation ⊗ defined on pairs of transitions can be used to recognize sets where every

transition is independent of each other and hence can all be executed concurrently. Such sets are
said to be conflict-free and belong to the same trace, which is—following Mazurkiewicz trace
theory—a conflict-free partially ordered set of actions, events or transitions for a given ‘conflict’
relation on the elements of such a set.

Definition 2.3. (Conflict-free sets) A conflict-free set of transitions P is a set of transitions with
the same source node, where t1 ⊗ t2 for any two distinct elements in P.

Notice that by definition empty and singleton sets are trivially conflict-free. Given a system
T, all conflict-free sets of transitions at a state s can be defined locally from the maximal set of
transitions Rmax(s) consisting of all transitions t such that src(t) = s. We simply write Rmax when
the state s is defined elsewhere or is implicit from the context. Moreover, all maximal sets and
conflict-free sets of transitions are fixed given a particular system T. Now we define the notion
of locality used to give the semantics of the modal logics to be introduced in the next section.

Definition 2.4. (Support sets) Given a system T, a support set R in T is either a maximal set of
transitions in T or a non-empty conflict-free set of transitions in T.

Given a system T, the set of all its support sets is denoted by P. As can be seen from
the definition, support sets can be of two kinds, and one of them provides us with a way of
doing local reasoning. More precisely, doing local reasoning on sets of independent transitions
becomes possible when considering conflict-free sets since they can be separated or decomposed
into smaller sets, where every transition is, as well, independent of each other.

Definition 2.5. (Complete traces) Given a support set R, a complete trace W of R, denoted by
W v R, is a support set W ⊆ R such that ¬∃t ∈ R \W. ∀t′ ∈ W. t ⊗ t′.

7



It is easy to see that if R is a conflict-free support set, then W is R. However, if R is not a
conflict-free support set, then R is necessarily a maximal set Rmax, and W must be a proper subset
of R. Therefore, if R = Rmax, then the sets W such that W v Rmax are the biggest conflict-free
support sets, which we call maximal traces, that can be recognized in a particular state s of a
system T. Since all complete and maximal traces are support sets, then they are also fixed and
computable given a system T.

3. Fixpoint Modal Logics

The local dualities and sets defined in the previous section can be used to build the semantics
of a number of fixpoint modal logics which capture that behaviour of partial order models that is
not present in interleaving one. As a consequence, these logics are more adequate languages for
expressing properties of systems such as Petri nets, event structures or TSI.

The semantics of SFL is based on the recognition of what is actually observable in a partial
order model. In other words, properties of system executions that are conflict-free. As defined by
its semantics, SFL captures the duality between concurrency and causality by means of refining
the usual modal operator of the µ-calculus, Lµ [19]. On the other hand, SFL captures the duality
between concurrency and conflict with the use of a separating operator that behaves as a structural
conjunction. This structural operator allows local reasoning on conflict-free support sets.

3.1. Process Spaces

Definition 3.1. (Process spaces) Let T = (S , s0,T,Σ, I) be a system, i.e., a partial order model
as defined before. A process space S is the lattice S ×P × A, such that S is the set of states of
T, P is the set of support sets of T, and A is the set of transitions T ∪ {tε}, where tε is the empty
transition such that for all t ∈ T , s0 = src(t) iff tε ≤ t. A tuple (s,R, t) ∈ S is called a process,
and the initial process of S is the tuple (s0,Rmax(s0), tε).

In practice one does not need to actually consider the whole lattice S × P × A, since sup-
port sets are defined with respect to a particular state. Therefore, if one knows the support set
component of a process, then it is possible to infer the particular state in T.

3.2. Separation Fixpoint Logic

Definition 3.2. (SFL syntax) Separation Fixpoint Logic (SFL) has formulae φ built from a set
Var of variables Y,Z, ... and a set Σ of labels a, b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈a〉cφ1 | 〈a〉ncφ1 | φ1 ∗ φ2 | µZ.φ1

where Z ∈ Var and µZ.φ1 has the restriction that any free occurrence of Z in φ1 must be within the
scope of an even number of negations. Dual boolean, modal, and fixpoint operators are defined
in the usual way:

φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2)

[a]c φ1
def
= ¬〈a〉c¬φ1

[a]nc φ1
def
= ¬〈a〉nc¬φ1

φ1 1 φ2
def
= ¬(¬φ1 ∗ ¬φ2)

νZ.φ1
def
= ¬µZ.¬φ1 [¬Z/Z]
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where [¬Z/Z] means substitution. Also, define the following derived operators: ff def
= µZ.Z,

tt def
= ¬ff, 〈a〉φ1

def
= 〈a〉cφ1 ∨ 〈a〉ncφ1, [a] φ1

def
= [a]c φ1 ∧ [a]nc φ1. Using modal µ-calculus notation,

the following abbreviations are also used: 〈K〉 for
∨

a∈K〈a〉, where K ⊆ Σ, [−] for [Σ] and [−K]
for [Σ \ K], and similarly for all other box and diamond modalities.

Informally, the meanings of the basic SFL operators are the following: ∧ and ¬ are the usual
boolean operators, 〈a〉c (resp. 〈a〉nc) asserts that there is a causally dependent (resp. a non-causally
dependent or linearly concurrent) transition with label a that can be performed; as defined in
Section 2.2, such a transition is always either causally dependent or linearly concurrent w.r.t. the
last transition that has been executed. φ1 ∗ φ2 specifies that there exists a partition in the support
set, i.e., a partition of the transitions in the set to be considered, w.r.t. which both formulae φ1 and
φ2 can hold independently. This does not necessarily mean that both formulae hold in parallel
everywhere because the operator ∗ has a local meaning. Finally, µ is simply a least fixpoint
operator that allows the specification of recursive behaviour.

Definition 3.3. (SFL semantics) An SFL model M is a system T = (S , s0,T,Σ, I) together with
a valuation V : Var → 2S, where S = S ×P × A is the process space associated with T. The
denotation ‖φ1‖

T
V

of an SFL formula φ in the model M = (T,V) is a subset of S, given by the
following rules (omitting the superscript T):

‖Z‖V = V(Z)
‖¬φ1‖V = S − ‖φ1‖V
‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖〈a〉cφ1‖V = {(s,R, t) ∈ S | ∃s′ ∈ S . ∃t′ ∈ R.

t′ = s
a
−→ s′ ∧ t ≤ t′ ∧ (s′,R′max, t

′) ∈ ‖φ1‖V}

‖〈a〉ncφ1‖V = {(s,R, t) ∈ S | ∃s′ ∈ S . ∃t′ ∈ R.
t′ = s

a
−→ s′ ∧ t 	 t′ ∧ (s′,R′max, t

′) ∈ ‖φ1‖V}

‖φ1 ∗ φ2‖V = {(s,R, t) ∈ S | ∃R1,R2 ∈ P.
R1 ] R2 v R ∧ (s,R1, t) ∈ ‖φ1‖V ∧ (s,R2, t) ∈ ‖φ2‖V}

where R′max is the maximal set at s′ and ]means disjoint union of sets. Given the usual restriction
on free occurrences of variables, imposed in order to obtain monotone operators in P(S) = 2S,
the powerset lattice of S, it is possible to define the denotation of the fixpoint operator µZ.φ1 in
the standard way, according to the Knaster-Tarski fixpoint theorem:

‖µZ.φ1‖V =
⋂
{Q ⊆ S | ‖φ1‖V[Z:=Q] ⊆ Q}

whereV [Z := Q] is the valuationV′ which agrees withV save thatV′(Z) = Q. Since ‘positive
normal form’ is assumed henceforth, the semantics of the dual boolean, modal, structural and
fixpoint operators can be given in the usual way.

3.3. Examples
SFL can express all usual temporal properties, such as, liveness, safety, fairness, and so on,

in systems with interleaving and partial order semantics.

Example 3.4. Let φ be the following reachability formula: φ = µZ.(〈a〉ctt ∗ 〈b〉ctt)∨ 〈−〉cZ. This
SFL formula expresses the property that there exists an execution of causally dependent actions
such that eventually two actions a and b can be executed in parallel. This specification is better
than a similar one given by, e.g., the µ-calculus, since in the SFL case unnecessary interleavings
are not checked and hence a combinatorial explosion of the state space to be searched is avoided.
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On the other hand, since SFL is a logic for ‘true-concurrency’, it differentiates concurrency
from nondeterminism in very simple ways. Consider the following systems (in CCS notation
and with a partial order semantics, e.g., using TSI [26], Petri nets [6], or event structures [36]):
P = a ‖ b and Q = a.b + b.a. Processes P and Q, in Figure 2, are equivalent in an interleaving
context (e.g., they are strongly bisimilar [16]), but different from a partial order viewpoint as they
are not equated by any equivalence for true-concurrency. Such a difference can be captured, e.g.,
using the SFL formulae φ = 〈a〉tt ∗ 〈b〉tt or ψ = 〈a〉c〈b〉nctt, which are satisfied by P but not by Q.

• b
""FFF

◦

a <<xxx

b ""FFF
I •

•
a
<<xxx

•
b // •

◦

a ;;www

b ##GGG

• a
// •

Figure 2: Interleaving vs. partial order (TSI) representations of P = a ‖ b (on the left) and Q = a.b + b.a (on the right).

Example 3.5. The strong distinguishing power of SFL allows the recognition of very subtle
differences in the partial order behaviour of concurrent systems. For instance, SFL can dif-
ferentiate some systems that are history-preserving (hp) bisimilar, but that are not hereditary
history-preserving (hhp) bisimilar, such as those in Figure 3 (see [10] for a good reference on
equivalences for true-concurrency).
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Figure 3: Concurrent systems with different partial order behaviour. Two hp bisimilar systems that are not hhp bisimilar.

4. Trace LMSO Model-Checking Games

Trace LMSO model-checking games G(M, φ) are played on a model M = (T,V), where
T = (S , s0,T, I,Σ) is a system, and on an SFL formula φ. The game can also be presented as
GM(H0, φ), or even as GM(s0, φ), where H0 = (s0,Rmax(s0), tε) is the initial process of S. The
board in which the game is played has the form B = S × Sub(φ), where S is the process space
S × P × A associated with T and Sub(φ) is the subformula set of the SFL formula φ, which is
defined by the Fischer–Ladner closure of SFL formulae in the standard way.

A play is a possibly infinite sequence of configurations C0,C1, ..., written as (s,R, t) ` φ
or H ` φ whenever possible; each Ci is an element of the board B.2 Every play starts in the

2Note that a configuration in a game is different from a configuration in an event structure. We use the same word
and notation in both contexts for historical reasons. However, this is not a problem since confusion will never arise.
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(FP)
H ` σZ.φ

H ` Z
where σ ∈ {µ, ν}

(VAR)
H ` Z
H ` φ

for some σZ.φ

(∨)
H ` φ0 ∨ φ1

H ` φi
[∃] i : i ∈ {0, 1}

(∧)
H ` φ0 ∧ φ1

H ` φi
[∀] i : i ∈ {0, 1}

(〈 〉c)
(s,R, t) ` 〈a〉cφ

(s′,R′max(s′), t′) ` φ
[∃] a : t′ = s

a
−→ s′, t′ ∈ R, t ≤ t′

(〈 〉nc)
(s,R, t) ` 〈a〉ncφ

(s′,R′max(s′), t′) ` φ
[∃] a : t′ = s

a
−→ s′, t′ ∈ R, t 	 t′

([ ]c)
(s,R, t) ` [a]c φ

(s′,R′max(s′), t′) ` φ
[∀] a : t′ = s

a
−→ s′, t′ ∈ R, t ≤ t′

([ ]nc)
(s,R, t) ` [a]nc φ

(s′,R′max(s′), t′) ` φ
[∀] a : t′ = s

a
−→ s′, t′ ∈ R, t 	 t′

(∗)
(s,R, t) ` φ0 ∗ φ1

(s,Ri, t) ` φi
[∃] R0,R1; [∀] i : R0 ] R1 v R, i ∈ {0, 1}

(1)
(s,R, t) ` φ0 1 φ1

(s,Ri, t) ` φi
[∀] R0,R1; [∃] i : R0 ] R1 v R, i ∈ {0, 1}

Figure 4: Trace LMSO Model-Checking Game Rules of SFL. Whereas the notation [∀] denotes a choice made by Player
∀, the notation [∃] denotes a choice by Player ∃.

configuration C0 = H0 ` φ, and proceeds according to the rules of the game given in Figure 4.
As usual for model-checking games, player ∃ tries to prove that H0 |= φ whereas player ∀ tries
to show that H0 6|= φ.

The rules (FP) and (VAR) control the unfolding of fixpoint operators. Their correctness
is based on the fact that σZ.φ ≡ φ

[
σZ.φ/Z

]
according to the semantics of the logic. Rules

(∨) and (∧) have the same meaning as the disjunction and conjunction rules, respectively, in a
Hintikka game for propositional logic. Rules (〈 〉c), (〈 〉nc), ([ ]c) and ([ ]nc) are like the rules
for quantifiers in a standard Hintikka game semantics for first-order (FO) logic, provided that the
box and diamond operators behave, respectively, as restricted universal and existential quantifiers
sensitive to the causal information in the partial order model.

Finally, the most interesting rules are (∗) and (1). Local monadic second-order moves are
used to recognize conflict-free sets of transitions in M, i.e., those in the same trace. Such moves,
which restrict the second-order power (locally) to traces, give the name to this game. The use
of (∗) and (1) requires both players to make a choice: whereas the player who moves first must
look for two conflict-free sets R0 and R1, the player that moves afterwards has to select a formula
φi whose support set will be the corresponding Ri, for i ∈ {0, 1}, just chosen by the other player.
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Guided by the semantics of ∗ (resp. 1), it is defined that player ∃ (resp. ∀) must look for
a pair of non-empty conflict-free sets of transitions R0 and R1 to be assigned to each formula
φi as their support sets. This situation is equivalent to playing a trace for each subformula in
the configuration. Then player ∀ (resp. ∃) must choose one of the two subformulae, with full
knowledge of the sets that have been given by player ∃ (resp. ∀). It is easy to see that ∗ should
be regarded as a special kind of conjunction and 1 of disjunction. Indeed, they are a structural
conjunction and disjunction, respectively.

Definition 4.1. (Winning conditions) The following rules are the winning conditions that de-
termine a unique winner for every finite or infinite play C0,C1, ... in a game GM(H0, φ).

Player ∀ wins a finite play C0,C1, ...,Cn or an infinite play C0,C1, ... iff:

1. Cn = H ` Z and H < V(Z).
2. Cn = (s,R, t) ` 〈a〉cψ and {(s′,R′max, t

′) : t ≤ t′ = s
a
−→ s′ ∈ R} = ∅.

3. Cn = (s,R, t) ` 〈a〉ncψ and {(s′,R′max, t
′) : t 	 t′ = s

a
−→ s′ ∈ R} = ∅.

4. Cn = (s,R, t) ` φ0 ∗ φ1 and {(s,R0 ∪ R1, t) : R0 ] R1 v R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z appears, such that

Z is the least fixpoint of some subformula µZ.ψ and the syntactically outermost variable in
φ that occurs infinitely often.

Player ∃ wins a finite play C0,C1, ...,Cn or an infinite play C0,C1, ... iff:

1. Cn = H ` Z and H ∈ V(Z).
2. Cn = (s,R, t) ` [a]c ψ and {(s′,R′max, t

′) : t ≤ t′ = s
a
−→ s′ ∈ R} = ∅.

3. Cn = (s,R, t) ` [a]nc ψ and {(s′,R′max, t
′) : t 	 t′ = s

a
−→ s′ ∈ R} = ∅.

4. Cn = (s,R, t) ` φ0 1 φ1 and {(s,R0 ∪ R1, t) : R0 ] R1 v R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z appears, such that

Z is the greatest fixpoint of some subformula νZ.ψ and the syntactically outermost variable
in φ that occurs infinitely often.

In order to win a game, Player ∀ and Player ∃make their choices according to their strategies.
More precisely, a strategy for a player is a function which, given a play so far and a position where
there is a choice, returns a specific choice and so tells the player how to move. A winning strategy
is one which, if followed, guarantees that the player will win all plays of the game.

5. Soundness and Completeness.

Let us first give some intermediate results. The statements in this section are all either stan-
dard modal µ-calculus statements, or standard statements where additional cases for the new
operators of SFL need to be checked. We give the statements in full, and the usual proof out-
lines, for the sake of being self-contained.

Let T be a system and C = (s,R, t) ` ψ a configuration in the game GM(H0, φ), as defined
before. As usual, the denotation ‖φ‖T

V
of an SFL formula φ in the model M = (T,V) is a subset

of S. We say that a configuration C of GM(H0, φ) is true iff (s,R, t) ∈ ‖ψ‖T
V

and false otherwise.

Fact 5.1. SFL is closed under negation.
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Lemma 5.2. A game GM(H0, φ), where player ∃ has a winning strategy, has a dual game
GM(H0,¬φ) where player ∀ has a winning strategy, and conversely.

Proof. First, note that since SFL is closed under negation, for every rule that requires a player to
make a choice on a formula ψ there is a dual rule in which the other player makes a choice on
the negated formula ¬ψ. Also, note that for every winning condition for one of the players in a
formula ψ there is a dual winning condition for the other player in ¬ψ. Now, suppose player ∃ has
a winning strategy π in the game GM(H0, φ). Player ∀ can use π in the dual game GM(H0,¬φ)
since whenever he has to make a choice, by duality, there is a rule that requires ∃ to make a
choice in GM(H0, φ). In this way, regardless of the choices that player ∃ makes, player ∀ can
enforce a winning play for himself. The case when player ∀ has a winning strategy in the game
GM(H0, φ) is dual.

Lemma 5.3. Player ∃ preserves falsity and can preserve truth with her choices. Hence, she can-
not choose true configurations when playing in a false configuration. Dually, Player ∀ preserves
truth and can preserve falsity with his choices. Then, he cannot choose false configurations when
playing in a true configuration.

Proof. The cases for the rules (∧) and (∨) are just as for the Hintikka evaluation games for FO
logic. Thus, let us go on to check the rules for the other operators. Firstly, consider the rule (〈 〉c)
and a configuration C = (s,R, t) ` 〈a〉cψ, and suppose that C is false. In this case there is no a
such that t ≤ t′ = s

a
−→ s′ ∈ R, and (s′,R′max(s′), t′) ∈ ‖ψ‖T

V
. Hence, the following configurations

will be false as well. Contrarily, if C is true, then player ∃ can make the next configuration
(s′,R′max(s′), t′) ` ψ true by choosing a transition t′ = s

a
−→ s′ ∈ R such that t ≤ t′. The case

for (〈 〉nc) is similar (simply change ≤ for 	), and the cases for ([ ]c) and ([ ]nc) are dual. Now,
consider the rule (∗) and a configuration C = (s,R, t) ` ψ0 ∗ ψ1, and suppose that C is false. In
this case there is no pair of sets R0 and R1 such that R0 ] R1 v R and both (s,R0, t) ∈ ‖ψ0‖

T
V

and
(s,R1, t) ∈ ‖ψ1‖

T
V

to be chosen by player ∃. Hence, player ∀ can preserve falsity by choosing
the i ∈ {0, 1} where (s,Ri, t) < ‖ψi‖

T
V

, and the next configuration (s,Ri, t) ` ψi will be false as
well. On the other hand, suppose that C is true. In this case, regardless of which i player ∀
chooses, player ∃ has previously fixed two support sets R0 and R1 such that for every i ∈ {0, 1},
(s,Ri, t) ∈ ‖ψi‖

T
V

. Therefore, the next configuration (s,Ri, t) ` ψi will be true as well. Finally,
the deterministic rules (FP) and (VAR) preserve both truth and falsity because of the semantics
of fixpoint operators. Recall that for any process H, if H ∈ ‖σZ.ψ‖ then H ∈ ‖ψ‖Z:=‖σZ.ψ‖ for all
free variables Z in ψ.

Lemma 5.4. In any infinite play of a game GM(H0, φ) there is a unique syntactically outermost
variable that occurs infinitely often.

Proof. By contradiction, assume that the statement is false. Without loss of generality, suppose
that there are two variables Z and Y that are syntactically outermost and appear infinitely often.
The only possibility for this to happen is that Z and Y are at the same level in φ. However, if
this is the case Z and Y cannot occur infinitely often unless there is another variable X that also
occurs infinitely often and whose unfolding contains both Z and Y . But this means that both Z
and Y are syntactically beneath X, and therefore neither Z nor Y is outermost in φ, which is a
contradiction.

Fact 5.5. Only rule (VAR) can increase the size of a formula in a configuration. All other rules
decrease the size of formulae in configurations.
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Lemma 5.6. Every play of a game GM(H0, φ) has a uniquely determined winner.

Proof. Suppose the play is of finite length. Then, the winner is uniquely determined by one
of the winning conditions one to four (Definition 4.1) of either player ∃ or player ∀ since such
rules cover all possible cases and are mutually exclusive. Now, suppose that the play is of infinite
length. Due to Fact 5.5, rule (VAR) must be used infinitely often in the game, and thus, there is at
least one variable that is replaced by its defining fixpoint formula each time it occurs. Therefore,
winning condition five of one of the players can be used to uniquely determine the winner of
the game since, due to Lemma 5.4, there is a unique syntactically outermost variable that occurs
infinitely often.

Definition 5.7. (Approximants) Let Z be the least fixpoint of some formula φ and let α, λ ∈ Ord
be two ordinals, where λ is a limit ordinal. Then:

Z0 := ff, Zα+1 = φ [Zα/Z], Zλ =
∨
α<λ Zα

For greatest fixpoints the approximants are defined dually. Let Z be the greatest fixpoint of some
formula φ and, as before, let α, λ ∈ Ord be two ordinals, where λ is a limit ordinal. Then:

Z0 := tt, Zα+1 = φ [Zα/Z], Zλ =
∧
α<λ Zα

We can now show that the analysis for fixpoint modal logics [3] can be extended to this
scenario. The proof of soundness uses similar arguments to that in the µ-calculus case, but we
present it here in full because it is the basis of the decision procedure for SFL model-checking.

Theorem 5.8. (Soundness) Let M = (T,V) be a model of a formula φ in the game GM(H0, φ).
If H0 < ‖φ‖

T
V

then player ∀ wins H0 ` φ.

Proof. Suppose H0 < ‖φ‖
T
V

. We construct a possibly infinite game tree that starts in H0 ` φ, for
player ∀. We do so by preserving falsity according to Lemma 5.3, i.e., whenever a rule requires
player ∀ to make a choice then the tree will contain the successor configuration that preserves
falsity. All other choices that are available for player ∃ are included in the game tree.

First, consider only finite plays. Since player ∃ only wins finite plays that end in true config-
urations, then she cannot win any finite play by using her winning conditions one to four. Hence,
player ∀ wins each finite play in this game tree.

Now, consider infinite plays. The only chance for player ∃ to win is to use her winning
condition five. So, let the configuration H ` νZ.φ be reached such that Z is the syntactically
outermost variable that appears infinitely often in the play according to Lemma 5.4. In the next
configuration H ` Z, variable Z is interpreted as the least approximant Zα such that H < ‖Zα‖T

V

and H ∈ ‖Zα−1‖T
V

, by the principle of fixpoint induction. As a matter of fact, by monotonicity and
due to the definition of fixpoint approximants it must also be true that H ∈ ‖Zβ‖T

V
for all ordinals

β such that β < α. Note that, also due to the definition of fixpoint approximants, α cannot be a
limit ordinal λ because this would mean that H < ‖Zλ =

∧
β<λ Zβ‖T

V
and H ∈ ‖Zβ‖T

V
for all β < λ,

which is impossible.
Since Z is the outermost variable that occurs infinitely often and the game rules follow the

syntactic structure of formulae, the next time that a configuration C′ = H′ ` Z is reached, Z can
be interpreted as Zα−1 in order to make C′ false as well. And again, if α − 1 is a limit ordinal λ,
there must be a γ < λ such that H′ < ‖Zγ‖T

V
and H′ ∈ ‖Zγ−1‖T

V
. One can repeat this process even

until λ = ω.
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But, since ordinals are well-founded the play must eventually reach a false configuration
C′′ = H′′ ` Z where Z is interpreted as Z0. And, according to Definition 5.7, Z0 := tt, which
leads to a contradiction since the configuration C′′ = H′′ ` tt should be false, i.e., H′′ ∈ ‖tt‖T

V

should be false, which is impossible. In other words, if H had failed a maximal fixpoint, then
there must have been a descending chain of failures, but, as can be seen, there is not.

As a consequence, there is no such least α that makes the configuration H ` Zα false, and
hence, the configuration H ` νZ.φ could not have been false either. Therefore, player ∃ cannot
win any infinite play with her winning condition 5 either. Since player ∃ can win neither finite
plays nor infinite ones whenever H0 < ‖φ‖

T
V

, then player ∀ must win all plays of GM(H0, φ).

Remark 5.9. If only finite state systems are considered Ord, the set of ordinals, can be replaced
by N, the set of natural numbers.

Notice that, in our setting, the previous remark is particularly important when the system
T in a model M is the TSI representation of an event structure, since any concurrent system
featuring recursive behaviour would be represented by an infinite event structure, and hence, by
an infinite-state TSI model, if one uses the mapping from event structures to TSI given previously.
Therefore, in this setting, we have to consider the possibility of dealing with infinite-state systems
in order for the results of this section to apply to all the partial order models we presented in
Section 2, as well as to the interleaving models they generalize.

Theorem 5.10. (Completeness) Let M = (T,V) be a model of a formula φ in the game
GM(H0, φ). If H0 ∈ ‖φ‖

T
V

then player ∃ wins H0 ` φ.

Proof. Suppose that H0 ∈ ‖φ‖
T
V

. Due to Fact 5.1 it is also true that H0 < ‖¬φ‖
T
V

. According
to Theorem 5.8, player ∀ wins H0 ` ¬φ, i.e., has a winning strategy in the game GM(H0,¬φ).
And, due to Lemma 5.2, player ∃ has a winning strategy in the dual game GM(H0, φ). Therefore,
player ∃ wins H0 ` φ if H0 ∈ ‖φ‖

T
V

.

Theorems 5.8 and 5.10 imply that the game is determined. Determinacy and perfect informa-
tion make the notion of truth defined by this Hintikka game semantics coincide with its Tarskian
counterpart.

Corollary 5.11. (Determinacy) Player ∀ wins the game GM(H0, φ) iff player ∃ does not win
the game GM(H0, φ).

6. Local Properties and Decidability

We have shown that trace LMSO model-checking games are still sound and complete even
when players are allowed to manipulate sets of independent transitions. Importantly, the power
of these games, and also of SFL, is that such a second-order quantification is kept both local
and restricted to transitions in the same trace. We now show that trace LMSO model-checking
games enjoy several local properties that in turn make them decidable in the finite case. Such a
decidability result is used in the forthcoming sections to extend the decidability border of model-
checking a category of partial order models of concurrency.

Proposition 6.1. (Winning strategies) The winning strategies for the trace LMSO model-checking
games of Separation Fixpoint Logic are history-free.
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Proof. Consider a winning strategy π for player ∃. According to Lemma 5.3 and Theorem 5.10
such a strategy consists of preserving truth with her choices and annotating variables with their
approximant indices. But neither of these two tasks depends on the history of a play. Instead
they only depend on the current configuration of the game. In particular notice that, of course,
this is also the case for the structural operators since the second-order quantification has only a
local scope. Similar arguments apply for the winning strategies of player ∀.

Remark 6.2. Corollary 5.11 and Proposition 6.1 also follow from the fact that the trace LMSO
model-checking games for SFL are a form of parity games with perfect information.

This result is key to achieve decidability of these games in the presence of the local second-
order quantification on the traces of the partial order models we consider. Also, from a more
practical standpoint, memoryless strategies are desirable as they are easier to synthesize.

Theorem 6.3. The model-checking game for finite systems against Separation Fixpoint Logic
specifications is decidable.

Proof. Recall that a game is decidable if one can tell in all possible cases which of the two players
has a winning strategy in the game. Since the game is determined, finite plays are decided by
winning conditions one to four of either player. Now consider the case of plays of infinite length;
since the winning strategies of both players are history-free, we only need to look at the set of
different configurations in the game, which is finite even for plays of infinite length. Now, in a
finite system an infinite play can only be possible if the model is cyclic. But, since the model
has a finite number of states, there is an upper bound on the number of fixpoint approximants
that must be calculated (as well as on the number of configurations of the game board that must
be checked) in order to ensure that either a greatest fixpoint is satisfied or a least fixpoint has
failed. As a consequence, all possible history-free winning strategies for a play of infinite length
can be computed, so that the game can be decided using winning condition five of one of the
players.

Remark 6.4. The complexity of model-checking is in principle substantially worse than for Lµ,
but in practice not. The change in complexity from plain Lµ arises from the local second-order
quantification in the ∗ operator – in principle, this could involve choosing a partition of a set of
the order of the size of the state space, making the ∗ operation NP in the state space; hence the
complexity for a formula of length k and alternation depth d on a system of size n is O(kn.2nd)
with the simple algorithms (or O(kn.2nd/2) using the Browne et al. optimization). This maximal
complexity occurs in highly concurrent systems, where it is the inevitable manifestation of state
explosion. For typical systems encountered in reality, where the concurrency is small compared
to the overall size, the support sets will be much smaller than the size of the system. Hence for
practical purposes, the complexity is unlikely to be significantly worse than that of Lµ.

6.1. The Interleaving Case.

Local properties of trace LMSO model-checking games can also be found in the interleaving
case, namely, they coincide with the local model-checking games for the modal µ-calculus as
defined by Stirling [32]. Notice that interleaving systems can be cast using SFL by both syntactic
and semantic means. The importance of this feature of SFL is that even having constructs for
independence and a partial order model, nothing is lost with respect to the main approaches
to interleaving concurrency. For instance, Lµ can be obtained from SFL by considering the
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∗-free language and using only the following derived operators: 〈a〉φ = 〈a〉cφ ∨ 〈a〉ncφ and
[a] φ = [a]c φ ∧ [a]nc φ.

Proposition 6.5. If either the class of models is restricted to those with an empty independence
relation, or the class of formulae is restricted to Lµ, then the trace LMSO model-checking games
for SFL degenerate to the local model-checking games for the µ-calculus.

Proof. Let us consider the case when the syntactic Lµ fragment of SFL is considered. The first
observation to be made is that the ∗-free fragment of SFL only considers maximal sets. Hence if
a transition can be performed at s then it is always in the support set at s. Therefore, support sets
in P can be disregarded. Also, without loss of generality, consider only the case of the modal
operators since the Lµ and SFL boolean and fixpoint operators have the same denotation.

‖〈a〉φ‖T
V
= {(s, t) ∈ S × A | ∃s′ ∈ S . t ≤ t′ = s

a
−→ s′ ∧ (s′, t′) ∈ ‖φ‖T

V
}

∪ {(s, t) ∈ S × A | ∃s′ ∈ S . t 	 t′ = s
a
−→ s′ ∧ (s′, t′) ∈ ‖φ‖T

V
}

The second observation is that when computing the semantics of the combined operator 〈a〉, the
conditions t ≤ t′, i.e., (t, t′) < I, and t 	 t′, i.e., (t, t′) ∈ I, complement each other and become
always true (since there are no other possibilities). Therefore, the second component of every
pair in S × A can also be disregarded.

‖〈a〉φ‖T
V
= {s ∈ S | ∃s′ ∈ S . s

a
−→ s′ ∧ s′ ∈ ‖φ‖T

V
}

The case for the box operator [a] is similar. Now, note that the new game rules and winning
conditions enforced by these restrictions coincide with the ones defined by Stirling for the local
model-checking games of Lµ. In particular, the new game rules and winning conditions for the
modalities are as follows.

In a finite play C0,C1, ...,Cn of GM(H0, φ), where Cn has a modality as a formula component,
player ∀ wins iff Cn = s ` 〈a〉ψ and {s′ : s

a
−→ s′} = ∅, and player ∃ wins iff Cn = s ` [a]ψ and

{s′ : s
a
−→ s′} = ∅. Since winning conditions for infinite plays do not depend on modalities, they

remain the same. Furthermore, the game rules for modal operators reduce to:

(〈 〉)
s ` 〈a〉φ
s′ ` φ

[∃]a : s
a
−→ s′ ([ ])

s ` [a] φ
s′ ` φ

[∀]a : s
a
−→ s′

Clearly, the games just defined are equivalent to the ones presented in [32]. The reason for this
coincidence is that when a modality 〈a〉φ (resp. [a] φ) is encountered, only player ∃ (resp. player
∀) gets to choose both the next subformula and the transition used to verify (resp. falsify) the
truth value of φ.

Now, let us look at the case when a model with an empty independence relation is considered.
In such a case the rules ([ ]nc) and (1) become trivially true and (〈 〉nc) and (∗) trivially false since
in an interleaving model all pairs of transitions are in ≤. For these reasons the elements that
belong to the sets P and A need no longer be considered and the rules ([ ]c) and (〈 〉c) become
([ ]) and (〈 〉), respectively. The other rules remain the same.
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7. Model-Checking Partial Order Models of Concurrency

In this section we use trace LMSO model-checking games to push forward the decidability
border of the model-checking problem of a particular class of partial order models, namely, of a
class of event structures [26, 34]. More precisely, we improve previous results [21, 27] in terms
of temporal expressive power.

7.1. SFL on Trace Event Structures
As we have shown in the previous sections, trace LMSO model-checking games can be

played in either finite or infinite state systems (with finite branching). However, decidability
for the games was proved only for finite systems. Therefore, if the system at hand has recursive
behaviour and, moreover, is represented by an event structure, then the TSI representation of it
may be infinite, and decidability is not guaranteed.

We now analyse the decidability of trace LMSO model-checking games for a special class of
infinite, but regular, event structures called regular trace event structures. This class of systems
was introduced in [34] by Thiagarajan in order to give a canonical representation to the set of
Mazurkiewicz traces modelling the behaviour of a finite concurrent system. The model-checking
problem for this class of models has been studied elsewhere [21, 27], and shown to be rather
difficult. In the reminder of this section we show that model-checking SFL properties of this
kind of systems is also decidable.

As shown in Section 2, an event structure E = (E,4, ], η,Σ) determines a TSI model T =
(S , s0,T, I,Σ) by means of an inclusion functor from the category ES of event structures to the
category TSI of TSI. The mapping we presented in Section 2 was given in a set-theoretic way
since such a presentation is more convenient for us. A categorical one can be found in [18]. Let
λ : ES → TSI be such a construction.

Definition 7.1. (Regular trace event structures) A regular trace event structure is an event
structure E = (E,4, ], η,Σ) as defined before, where for all configurations C of E, and for all
events e ∈ C, the set of future non-isomorphic configurations rooted at e defines an equivalence
relation of finite index.

Let Conf be the set of configurations of E. Notice that the restriction to image-finite models
implies that the partial order 4 of E is of finite branching, and hence for all C ∈ Conf , the set
of immediately next configurations is bounded. Also notice that the set of states S of the TSI
representation of an event structure E is isomorphic to the set Conf of configurations of E.

7.2. A Computable Folding Functor from Event Structures to TSI
In order to overcome the problem of dealing with infinite event structures, such as the regular

trace event structures just defined, we present a new morphism (a functor) that folds a possibly
infinite event structures into a TSI. This way, a finite process space can be constructed so as to
give the semantics of SFL formulae, and hence, play a trace LMSO model-checking game in a
finite board. Such a morphism and the procedure to effectively compute it is described below.

The Quotient Set Method. Let Q = (Conf /∼) be the quotient set representation of Conf by ∼
in a finite or infinite event structure E, where Conf is the set of configurations in E and ∼ is
an equivalence relation on such configurations. The equivalence class [X]∼ of a configuration
X ∈ Conf is the set {C ∈ Conf | C ∼ X}. A quotient set Q where ∼ is decidable is said to have a
decidable characteristic function, and will be called a computable quotient set.
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Definition 7.2. (Regular quotient sets) A regular quotient set (Conf /∼) of an event structure
E is a computable quotient set representation of E with a finite number of equivalence classes.

Having defined a regular quotient set representation of E, the morphism λ : ES → TSI
above can be modified to defined a new map λ f : ES → TSI which folds a (possibly infinite)
event structure into a TSI:

S = {[C]∼ ⊆ Conf | ∃[X]∼ ∈ Q = (Conf /∼). C ∼ X}
T = {([C]∼, a, [C′]∼) ∈ S × Σ × S | ∃e ∈ E. η(e) = a, e < C,C′ = C ∪ {e}}
I = {(([C1]∼, a, [C′1]∼), ([C2]∼, b, [C′2]∼)) ∈ T × T | ∃(e1, e2) ∈ co.

η(e1) = a, η(e2) = b,C′1 = C1 ∪ {e1},C′2 = C2 ∪ {e2}}

where the initial state s0 is the equivalence class [C]∼ such that C ∼ {}.

Lemma 7.3. Let T be a TSI and E an event structure. If T = λ f (E), then the models (T,V) and
(E,V) satisfy the same set of SFL formulae.

Proof. The morphism λ f : ES → TSI from the category of event structures to the category of
TSI has a unique right adjoint ε : TSI → ES, the unfolding functor that preserves labelling and
the independence relation between events, such that for any E we have that E′ = (ε ◦ λ f ) (E),
where E′ is isomorphic to E. But SFL formulae do not distinguish between models and their
unfoldings, and hence cannot distinguish between (T,V) and (E′,V). Moreover, SFL formulae
do not distinguish between isomorphic models equally labelled, and therefore cannot distinguish
between (E′,V) and (E,V) either.

Having defined a morphism λ f that preserves SFL properties, one can now define a procedure
that constructs a TSI model from a given event structure.

Definition 7.4. (Representative sets) Let E = (E,4, ], η,Σ) be an event structure and (Conf /∼)
a regular quotient set representation of E. A representative set Er of E is a subset of E such that
∀C ∈ Conf . ∃X ⊆ Er. C ∼ X.

Lemma 7.5. Let E be an event structure. If E is represented as a regular quotient set (Conf /∼),
then a finite representative set Er of E is effectively computable.

Proof. Construct a finite representative set Er as follows. Start with Er = ∅ and C j = C0 = ∅,
the initial configuration or root of the event structure. Check C j ∼ Xi for every equivalence class
[Xi]∼ in Q = (Conf /∼) and whenever C j ∼ Xi holds define both a new quotient set Q′ = Q \ [Xi]∼
and a new Er = Er ∪ C j. This subprocedure terminates because there are only finitely many
equivalence classes to check and the characteristic function of the quotient set is decidable. Now,
do this recursively in a breadth-first search fashion in the partial order defined on E by 4, and stop
when the quotient set is empty. Since 4 is of finite branching and all equivalence classes must
have finite configurations, the procedure is bounded both in depth and breath and the quotient set
will always eventually get smaller. Hence, such a procedure always terminates. It is easy to see
that this procedure only terminates when Er is a representative set of E.

A finite representative set Er is big enough to define all states in the TSI representation of E
when using λ f . However, such a set may not be enough to recognize all transitions in the TSI. In
particular, cycles cannot be recognized using Er. Therefore, it is necessary to compute a set E f

where cycles in the TSI can be recognized. We call E f a complete representative set of E. The
procedure to construct E f is similar to the previous one.

19



Lemma 7.6. Let E = (E,4, ], η,Σ) be an event structure and Er a finite representative set of E.
If E is represented as a regular quotient set (Conf /∼), then a finite complete representative set
E f of E is effectively computable.

Proof. Start with E f = Er, and set C = Conf (Er), the set of configurations generated by Er. For
each C j in Er check in 4 the set Next(C j) of next configurations to C j, i.e., those configurations
C′j such that C′j = C j ∪ {e} for some event e in E \ C j. Having computed Next(C j), set E f =

E f ∪ (
⋃

Next(C j)) and C = C \ {C j}, and stop when C is empty. This procedure behaves as the
one described previously. Notice that at the end of this procedure E f is complete since it contains
the next configurations of all elements in Er.

Proposition 7.7. The TSI T generated from an event structure E using λ f and a finite complete
representative E f of E is the smallest TSI that represents E.

Proof. From Lemmas 7.5 and 7.6. There is only one state in T for each equivalence class in
the quotient set representation of E. Similarly there can be only one transition in T for each
relation on the equivalence classes of configurations in E since, due to A1 of TSI (determinacy),
λ f forgets repeated transitions in T .

7.3. Temporal Verification of Regular Infinite Event Structures
Based on Lemmas 7.3 and 7.6 and on Theorem 6.3, we can give a decidability result for the

class of event structures studied in [21, 34] against SFL specifications. Such a result, which is
obtained by representing a regular event structure as a regular quotient set, is a corollary of the
following theorem:

Theorem 7.8. The model-checking problem for an event structure E represented as a regular
quotient set (Conf /∼) against SFL specifications is decidable.

Proof. Due to Lemma 7.6 one can construct a finite complete representative set E f of E. Then a
finite TSI T that satisfies the same set of SFL formulae as E can be defined by using the folding
map λ f from event structures to TSI, and using E f instead of E as the new set of events. Since
such a morphism preserves all SFL properties (Lemma 7.3), the model-checking problem for this
kind of event structures can be reduced to solving the model-checking game for finite TSI, and
hence for finite systems in general, which due to Theorem 6.3 is decidable.

7.3.1. Regular Event Structures as Finite CCS Processes.
A regular event structure can be generated by a finite concurrent system represented by a

finite number of (possibly recursive) CCS processes [23, 36]. Syntactic restrictions on CCS that
generate only finite systems have been studied. Notice that the combination of the syntactic
restriction to finite CCS processes and the semantic restriction to image-finite models give the
requirements for regularity on the event structures that are generated, in particular, of the regular
trace event structures defined before.

Now, w.l.o.g., consider only deterministic CCS processes without auto-concurrency. A CCS
process is deterministic if whenever a.M+b.N, then a , b, and similarly has no auto-concurrency
if whenever a.M ‖ b.N, then a , b. Notice that any CCS process P that either is nondeterministic
or has auto-concurrency can be converted into an equivalent process Q which generates an event
structure that is isomorphic, up to relabelling of events, to the one generated by P.

Eliminating nondeterminism and auto-concurrency can be done by relabelling events inP(P),
the powerset of CCS processes of P, with an injective map θ : Σ→ Σ∗ (where Σ∗ is a set of labels
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and Σ ⊆ Σ∗), and by extending the Synchronization Algebra [36] according to the new labelling
of events so as to preserve pairs of (labels of) events that can synchronize. Also notice that the
original labelling can always be recovered from the new one, i.e., the one associated with the
event structure generated by Q, since θ is injective and hence has inverse θ−1 : Σ∗ → Σ.

7.3.2. Finite CCS Processes as Regular Quotient Sets.
Call ES Proc(P) the set of configurations of the event structure generated by a CCS process

P of the kind described above. The set ES Proc(P) together with an equivalence relation between
CCS processes ≡CCS given simply by syntactic equality between them is a regular quotient set
representation (ES Proc(P) / ≡CCS ) of the event structure generated by P.

Notice that since there are finitely many different CCS expressions, i.e., P(P) is finite, then
the event structure generated by P is of finite-branching and the number of equivalence classes is
also bounded. Finally, ≡CCS is clearly decidable because the process P is always associated with
the ∅ configuration and any other configuration in ES Proc(P) can be associated with only one
CCS expression in P(P) as they are deterministic and have no auto-concurrency after relabelling.

The previous simple observations lead to the following result:

Corollary 7.9. Model-checking regular trace event structures against Separation Fixpoint Logic
specifications is decidable.

8. Discussion and Related Work

Model-checking games have been an active area of research in the last decades (cf. [12,
35]). They have been studied from both theoretical and practical perspectives. For instance, for
the proper definition of their mathematical properties [13, 20], or for the construction of tools
for property verification [31]. Most approaches based on games have considered either only
interleaving systems or the one-step interleaving semantics of partial order models. Our work
differs from these approaches in that we deal with games played on partial order models without
considering interleaving simplifications. Although verification procedures in finite partial order
models can be undecidable, the game presented here is decidable in the finite case.

Regarding model-checking in a broader sense, many procedures, not only game-theoretic,
have been studied elsewhere for concurrent systems both with interleaving and with partial order
semantics. See, e.g., [4, 28] and the references therein for several examples of various techniques
and approaches to model-checking concurrent systems. However, since our main motivation was
to develop a decision procedure to verify concurrent systems with partial order models, only the
techniques considering these kinds of systems relate to our work, though, as said before, such
procedures are not game-theoretic.

Regarding the temporal verification of event structures, previous studies have been done on
restricted classes. Closer to our work is [21, 27]. Indeed, model-checking regular trace event
structures has turned out to be rather difficult and previous work has shown that verifying MSO
properties on these structures is already undecidable. For this reason weaker logics have been
studied. Unfortunately, although very interesting results have been achieved, especially in [21]
where CTL∗ properties can be verified, previous approaches have not managed to define decid-
able theories for a logic with enough power to express all usual temporal properties as can be
done with Lµ in the interleaving case, and hence with SFL in a partial order setting.
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Recall that one of the reasons why Lµ is more expressive than CTL∗ is that Lµ can express
properties about “moments” in computation paths, whereas CTL∗ in general cannot do so. Simi-
larly, one can think of simple properties that talk about moments in traces of partial order models.
Those kinds of properties are not expressible in logics whose temporal expressive power equals
that of CTL∗ on interleaving models, e.g., [24]. For instance, the following temporal property
would not be expressible: “along any trace, at all even moments φ holds, and at all odd moments
φ may hold or not”, which is the partial order version of the same property for paths, or in gen-
eral the computations of an interleaving system (cf. [5]). This means that there are temporal
properties of partial order models expressible with SFL formulae which are not definable with
other logics (over partial order models) whose temporal expressive power on traces equals that
of CTL∗ on trees, labelled transition graphs, or Kripke structures.

Finally, the difference between [21] and the approach we presented here is that in [21] a
global second-order quantification on conflict-free sets in the partial order is permitted, whereas
only a local second-order quantification in the same kind of sets is defined here, but such a
second-order power can be embedded into fixpoint specifications, which in turn allows one to
express more temporal properties. Therefore, we have improved in terms of temporal expressive
power previous results on model-checking regular trace event structures against a branching-time
logic. Our work is the first (local) game approach in doing so.

9. Conclusion

In this paper we introduced a new kind of model-checking games where both players are
allowed to choose sets of independent elements in the underlying model. These games, which
we call trace LMSO model-checking games, are proved to be sound and complete, and there-
fore determined. They can be played on partial order models of concurrency since the one-step
interleaving semantics of such models need not be considered.

However, the results of this work suggest that there may be a general approach to verification,
since we have actually defined a uniform framework for model-checking several different kinds
of concurrent systems, not only those with partial order semantics, since interleaving systems
appear as a special case of our framework. This is clearly reflected by the fact that we got for
free the local model-checking procedure for interleaving systems defined by Stirling for Lµ.

We also showed that by defining infinite games where both players have a local second-order
power on conflict-free sets of transitions, i.e., those in the same trace, one can obtain new positive
decidability results on the study of partial order models of concurrency. Indeed, we have pushed
forward the borderline of the decidability of model-checking event structures. To the best of our
knowledge the technique we presented here is the only game-based procedure defined so far that
can be used to verify all usual temporal properties of the kind of event structures we studied. We
wonder how much further one can go in terms of temporal expressive power before reaching the
MSO undecidability barrier when model-checking event structures.
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