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Abstract

Reactive Modules is a high-level modelling language for concurrent, distributed, and
multi-agent systems, which is used in a number of practical model checking tools.
Reactive Modules Games are a game-theoretic extension of Reactive Modules, in
which system components are assumed to act strategically in an attempt to satisfy a
temporal logic formula representing their individual goal. Reactive Modules Games with
perfect information have been extensively studied, and the complexity of game theoretic
decision problems relating to such games (such as the existence of Nash equilibria) have
been comprehensively classified. In this article, we study Reactive Modules Games in
which agents have only partial visibility of their environment.

Keywords: Games, Temporal Logic, Multi-Agent Systems, Formal Verification.

1. Introduction

A common technique in the formal analysis computer systems is to model a system
as a game in which two players—sometimes called “System” and “Environment” or
“Player” and “Opponent”—interact with each other, possibly over infinitely many rounds.
In these games, it is typically assumed that the system has a goal given in a logical
form, e.g., expressed as a temporal logic formula ϕ, which the system wishes to satisfy.
Such a goal may represent either the behaviour of the computer system one wants to
synthesize (an automated design problem [1]) or a particular system property which
one wants to check (an automated verification problem [2]). In this framework, it is
assumed that the system plays against an adversarial environment, that is, that the goal
of the environment is to prevent the system from achieving its goal. In game-theoretic
terms, this means that the problem is modelled as a zero-sum game, and hence that its
solution is given by the computation of a winning strategy for either the system or the
environment. From a logical viewpoint, this assumption amounts to letting the goal of
the environment be ¬ϕ, whenever the goal of the system is given by the temporal logic
formula ϕ. A great deal of work has been done based on this idea—see, e.g., [3, 4] and
the references therein for surveys containing several results on this topic.

Although this approach has been found to be appropriate in a wide range of settings,
the zero-sum assumption is often either too restrictive or else simply inappropriate.
For example, when dealing with concurrent systems one may have several system
components, each with their own temporal goal, which are not necessarily in conflict.
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The appropriate model here is a non-zero-sum n-player game, rather than a two-player
zero-sum game. In the non-zero-sum n-player setting it is no longer the computation
of a winning strategy that provides a solution to the problem under consideration, but
rather, the computation of a strategy profile (a set of strategies, one for each player
in the game) which can be regarded as in equilibrium in the game-theoretic sense [5]:
a situation where no player wishes to deviate from the strategy it is currently using.
While the use of zero-sum games in the analysis and design of computer systems is
well-established, the approach of modelling computer systems as non-zero-sum games
is much less so. Nevertheless, over the past decade, an increasing number of authors
have begun to investigate this approach—see, for example, [6, 7, 8] for references.

In this article, we study non-zero-sum n-player games in which the choices available
to players are defined using the Simple Reactive Modules Language (SRML), a subset
of Reactive Modules [9], a popular and expressive system modelling language that is
used in several practical model checking systems (e.g., MOCHA [10] and Prism [11]).
Reactive Modules supports succinct and high-level modelling of concurrent and multi-
agent systems. In the games we study, the preferences of system components are
specified by associating with each player in the game a Linear Temporal Logic (LTL)
formula, representing a goal that the player desires to be satisfied. Reactive Modules
Games with perfect information (where each player can see the entire system state)
have been extensively studied [12], but in this paper we focus on imperfect information
cases. We interpret imperfect information to mean that system components must make
choices based on a partial view of the system state—more precisely, that there are some
variables in the system whose value is hidden from them. Agents may have different
views of the system: thus, one agent might have only a very minimal view of the system
state while another is able to perceive the values of all variables in the system.

We study the decidability and complexity of checking the existence of Nash equi-
libria in Reactive Modules games with imperfect information. Using our framework,
one can analyse the behaviour of open systems modelled as multi-player games using
a modelling language that is widely used, and which already has a number of tool
implementations. However, our results go beyond simply the specific language of SRML
itself as, more generally, we provide complexity results that apply to a wide range of
imperfect information games with succinct representations.

There are a number of good reasons to study imperfect information in this setting.
Firstly, from a modelling point of view, it may not be realistic to expect that a simple
module, which is supposed to represent some local, reactive, and independent behaviour,
must be aware of the entirety of the state space of the systems it is part of. A more
realistic situation is, for instance, that the module is aware only of the values of the
Boolean variables associated with its linear temporal logic goal. Secondly, from a
practical point of view, it is desirable to have specifications that are as small as possible
so that the synthesis task may be simpler. Take, for instance, a system composed of
thousands of Boolean variables. In a perfect information setting, every module will have
to have a strategy that considers all possible valuations for those variables. Instead, if a
particular module is allowed to have imperfect information, then a specification for such
a module could be given so that the set of strategies associated with such a module will
only have to take into account the values of a small subset of some of those Boolean
variables, leading to potentially better results in practice. Thirdly, it may also be the case,
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as illustrated by Example 1 presented later on, that it is simply not the case that a setting
with perfect information faithfully represents the situation we want to model. Finally,
from a game-theoretic point of view, because the set of Nash equilibria of a system is
sensitive to the visibility of players in a game, we can use imperfect information rather
easily in the context of Reactive Modules Games to modify the set of Nash equilibria of
a given game. This issue is discussed in more detail in Section 9.

The main results contained in the paper are as follows. We show that Reactive
Modules Games with imperfect information are undecidable if three or more players
are allowed. In contrast, if restricted to two players, the games are decidable and their
solution (computing a Nash equilibrium if one exists) can be obtained in 2EXPTIME.
For the latter decidability result, we provide a conceptually simple decision procedure
based on synthesis techniques for CTL? under imperfect information. We also explore
a number of variants of the general imperfect-information framework. For instance, we
study variants of these games with respect to the class of strategies under consideration,
e.g., memoryless, myopic, polynomially bounded, and show that such games can be
solved, respectively, in NEXPTIME, EXPSPACE, and PSPACE; we also explore the use
of a solution concept where coordinated behaviour is allowed—in whose case strong
Nash equilibrium is considered instead—and show that going from Nash to strong Nash
equilibria can be done without paying a (worst-case) complexity cost. We then study in
more detail the connection between imperfect information and the existence of Nash
equilibria. Specifically, we provide conditions under which the set of Nash equilibria of
an imperfect-information game can be preserved (or refined) with respect to the amount
of information that players in such a Reactive Modules Game have.

Technically, the undecidability results in the paper rely on the undecidability of the
uniform synthesis problem for LTL formulae [13]. In Section 4 we show how such a
problem can be described as a Reactive Modules Game with three players in which one
is interested in the existence of a Nash equilibrium in the game. On the positive side,
our decidability results rely on the solution of different problems, showing the diversity
of techniques that one could use to solve the particular instances at hand. For instance,
for two-player games with imperfect information we propose a technique, to the best of
our knowledge only previously explored in [14], where checking the existence of a Nash
equilibrium is reduced to a number of CTL∗ synthesis problems. On the other hand,
for the positive results given for memoryless and polynomially bounded strategies a
simple nondeterministic algorithm can be used. The lower bounds, in NEXPTIME and
PSPACE, respectively, are obtained via reductions from the satisfiability problem for
Dependency Quantified Boolean Formulae (DQBF [15, pp. 86–87]) and the LTL model
checking problem for compressed words [16]. Finally for the case considering myopic
strategies we use the satisfiability problem for Quantified LTL (QPTL [17]) formulae.

Structure of the paper. Section 2 gives some background information and Section 3
introduces the model of games we consider here, namely Reactive Modules Games, and
illustrate with an example the difference between perfect and imperfect information
games. In Section 4 we show that checking the existence of Nash equilibria in imperfect
information games with more than two players is an undecidable problem, even for the
simple case of iterated Boolean games [18]. Section 5, contrarily, shows that in games
with at most two players, such a problem is decidable and can be solved in 2EXPTIME.
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In Sections 6, 7, and 8, we investigate three special cases: games with memoryless,
bounded, and myopic strategies, respectively. In Sections 9 and 10 we study conditions
to ensure the preservation of Nash Equilibria, whenever they exist, and the problems
given by rational verification as proposed in [19]. Finally, in Section 11, we discuss
relevant related work, draw a number of conclusions, and outline ideas for future work.

A note on this contribution. In this document, we provide more explanations of the mate-
rial contained in [20], as well as the full proof details of all the results. Moreover, we in-
clude more comprehensive examples, as well as results on iterated Boolean Games [18]
and other questions addressed within the rational verification framework [19].

2. Preliminaries

Logic. We work with logics that extend classical propositional logic. These logics are
based on a finite set Φ of Boolean variables. A valuation for propositional logic is a set
v ⊆ Φ, with the intended interpretation that p ∈ v means that the variable p is true under
valuation v, while p 6∈ v means that p is false under v. Let V(Φ) = 2Φ be the set of all
valuations for variables Φ; where Φ is clear, we omit reference to it and write V .

Kripke Structures. We use Kripke structures [2] to model the dynamics of our systems.
A Kripke structure K over Φ is given by a tuple K =〈S, S0,R, π〉, where S = {s0, . . .}
is a finite non-empty set of states, S0 ⊆ S is the set of initial states, R ⊆ S× S is a total
transition relation on S, and π : S→ V is a valuation function, assigning a valuation π(s)
to every state s ∈ S. Where K =〈S, S0,R, π〉 is a Kripke structure over Φ, and Ψ ⊆ Φ,
we denote the restriction of K to Ψ by K|Ψ, where K|Ψ =〈S, S0,R, π|Ψ〉 is the same as
K except that π|Ψ is the valuation function defined as follows: π|Ψ(s) = π(s) ∩Ψ.

Runs. A run of K is an infinite sequence ρ = s0, s1, s2, . . . where for all t ∈ N we
have (st, st+1) ∈ R. Using square brackets around parameters referring to time points,
we let ρ[t] denote the state assigned to time point t by run ρ. We say ρ is an s-run if
ρ[0] = s. A run ρ of K where ρ[0] ∈ S0 is referred to as an initial run. Let runs(K, s)
be the set of s-runs of K, and let runs(K) be the set of initial runs of K. Notice that a
run ρ ∈ runs(K) induces an infinite sequence ρ ∈ Vω of propositional valuations, viz.,
ρ = π(ρ[0]), π(ρ[1]), π(ρ[2]), . . .. The set of these sequences, we denote by runs(K).
Given Ψ ⊆ Φ and a run ρ : N→ V(Φ), we denote the restriction of ρ to Ψ by ρ|Ψ, that
is, we have ρ|Ψ[t] = ρ[t] ∩Ψ for each t ∈ N.

Linear Temporal Logic. We make extensive use of Linear-Temporal Logic (LTL), an
extension of classical propositional logic with two modal tense operators, X (“next”)
and U (“until”) [21]. LTL is a standard language for expressing properties of infinite
runs, such as the runs of Kripke structures. The syntax of LTL is defined with respect to
a set Φ of Boolean variables by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ Φ. The remaining classical logic operators are defined in the standard
way; we also use the following abbreviations: Fϕ = >Uϕ and Gϕ = ¬F¬ϕ, for
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“eventually” and “always” respectively. We interpret formulae of LTL with respect to
pairs (ρ, t), where ρ is a run of a Kripke structure K = 〈S, S0,R, π〉 and t ∈ N is a
temporal index into ρ:

(ρ, t) |= >
(ρ, t) |= p iff p ∈ π(ρ[t])
(ρ, t) |= ¬ϕ iff it is not the case that (ρ, t) |= ϕ
(ρ, t) |= ϕ ∨ ψ iff (ρ, t) |= ϕ or (ρ, t) |= ψ
(ρ, t) |= Xϕ iff (ρ, t + 1) |= ϕ
(ρ, t) |= ϕUψ iff for some t′ ≥ t : ((ρ, t′) |= ψ and

for all t ≤ t′′ < t′: (ρ, t′′) |= ϕ).

If (ρ, 0) |= ϕ, we also write ρ |= ϕ and say that ρ satisfies ϕ. An LTL formula ϕ is
satisfiable if there is some run satisfying ϕ. Moreover, a Kripke structure K satisfies
ϕ if ρ |= ϕ for all initial runs ρ of K. Finally, with |ϕ| we denote the size of the LTL
formula ϕ, given by its number of subformulae.

3. Reactive Modules Games

We use Reactive Modules [9] as our basic language for modelling concurrent and
multi-agent systems. The main purpose of Reactive Modules is to permit the specifi-
cation of a collection of individual agents (“modules” in the terminology of Reactive
Modules)—the choices that are available to them over time, and how these choices
affect their shared environment. We use a natural imperfect information extension of the
Simple Reactive Modules language, a subset of Reactive Modules introduced by [22] to
study the complexity of practical ATL model checking.

An SRML module with imperfect information (SMRLI) consists of:

(i) an interface, which defines the module’s name, the set of Boolean variables under
the control of the module, and the set of variables that are visible to the module;
and

(ii) a number of guarded commands, which define the choices available to the module
at every state.

Guarded commands are of two kinds: those used for initialising the variables under
the module’s control (init guarded commands), and those for updating these variables
subsequently (update guarded commands). A guarded command has two parts: a
condition part (the “guard”) and an action part, which defines how to update the value of
(some of) the variables under the control of a module. The intuitive reading of a guarded
command ϕ; α is “if the condition ϕ is satisfied, then one of the choices available to
the module is to execute the action α”. We note that the truth of the guard ϕ does not
mean that α will be executed: only that such a command is enabled for execution—it
may be chosen.

Formally, a guarded command g over some set of Boolean (visible) variables Vis is
an expression

ϕ; x′1 := ψ1; · · · ; x′k := ψk
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where ϕ (the guard) is a propositional formula over Vis, each xi is a controlled variable,
and each ψi is a propositional logic formula over Vis. Let guard(g) denote the guard
of g. Thus, in the above rule, guard(g) = ϕ. We require that no variable appears on
the left hand side of two assignment statements in the same guarded command. We
say that x1, . . . , xk are the controlled variables of g, and denote this set by ctr(g). If no
guarded command of a module is enabled, the values of all variables in ctr(g) are left
unchanged; in SRML notation, if needed, skip will refer to this particular case.

Formally, an SRMLI module, mi, is defined as a quadruple mi = 〈Φi,Visi, Ii,Ui〉,
where: Φi ⊆ Φ is the (finite) set of variables controlled by mi; Visi is the (finite) set
of variables that are visible to mi, with Φi ⊆ Visi; Ii is a (finite) set of initialisation
guarded commands, such that for all g ∈ Ii, we have ctr(g) ⊆ Φi; and Ui is a (finite)
set of update guarded commands, such that for all g ∈ Ui, we have ctr(g) ⊆ Φi. To
simplify notations, since, by definition, Φi ⊆ Visi, when we hereafter write Visi = Ψ
(where Ψ ⊆ Φ), we mean Visi = Φi ∪Ψ.

Moreover, an SRMLI arena is defined to be an (n + 2)-tuple A =〈N,Φ,m1, . . . ,mn〉
where N = {1, . . . , n} is a set of agents, Φ is a set of Boolean variables, and for
each i ∈ N, we let mi = 〈Φi,Visi, Ii,Ui〉 be an SRMLI module over the set of Boolean
variables Φ that defines the choices available to agent i. In addition, we require that
{Φ1, . . . ,Φn} forms a partition of Φ (so every variable in Φ is controlled by some
module, and no variable is controlled by more than one module).

The behaviour of an SRMLI arena is obtained by executing guarded commands, one
for each module, in a synchronous and concurrent way. The execution of an SMRLI
arena proceeds in rounds, where in each round every module mi = 〈Φi,Visi, Ii,Ui〉
produces a valuation vi for the variables in Φi on the basis of a current valuation v. For
each SRMLI arena A, the execution of guarded commands induces a unique Kripke
structure, denoted by KA, which formally defines the semantics of A. Based on KA,
one can define the sets of runs allowed in A, namely, those associated with the Kripke
structure K. Finally, we sometimes will be concern with the size of an arena. We say that
the size of an arena A =〈N,Φ,m1, . . . ,mn〉, denoted by |A| is |m1|+ . . .+ |mn|, where
the size of a module mi =〈Φi,Visi, Ii,Ui〉, denoted by |mi|, is |Φi|+ |Visi|+ |Ii|+ |Ui|.

In what follows, we will use LTL characterisations of the runs of arenas A and
modules m. The basic idea is that for every arena A, we can define an LTL formula
TH(A) (the theory of A), such that the runs satisfying TH(A) are precisely the runs of
A. Similarly, for every module m we can define an LTL formula TH(m) such that the
satisfying runs of TH(m) are the possible runs of m. (In fact, TH(A) is defined in terms
of TH(m) for component modules m of A). Moreover—and this is essential for many
constructions—TH(A) and TH(m) are of size polynomial in |A| and |m| respectively.
We will not give details of the constructions here: they are provided in detail in [12].

As an aside, we note that the formalism of Reactive Modules is related to Boolean
games [18], and the underlying framework of propositional control [23]. A propositional
control setting is defined by a collection of agents, a collection of Boolean variables, and
an allocation of the variables to the agents. The basic idea is that agents have the power
to choose the values for all the variables under their control. Boolean games extend such
settings by assuming that each player has a goal, expressed as a logical formula over
the set of variables; players then attempt to choose values for their variables so as to
satisfy the formula. In [18], formulas were given in LTL, and the resulting framework is
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close to the setting of Reactive Module games. In fact, it is easy to see that propositional
control settings can be modelled within Reactive Modules, but Reactive Modules in fact
provide greater expressive power compared to propositional control settings. This is
because, in propositional control settings, no restrictions are placed on the assignments
that players can make to their variables—all possible allocations are permitted. In
Reactive Modules, in any given state, the only assignments to variables that can be made
are those corresponding to the enabled guarded commands. This makes it possible to
more naturally model settings such as (for example) multi-agent planning [12].

Games. The model of games we consider has two components. The first component is
an arena: this defines the players, the variables they control, and the choices available
to them in every game state. The arena plays a role analogous to that of a game form in
conventional game theory [5, p. 201]: while it defines players and their choices, it does
not specify the preferences of players. Preferences associated with a goal γi, which
will be a logic formula. The idea is that players desire to see their goal satisfied by the
outcome of the game. Formally, a game is given by a structure G = 〈A, γ1, . . . , γn〉
where A = 〈N,Φ,m1, . . . ,mn〉 is an arena with player set N, Boolean variable set Φ,
and mi an SRMLI module defining the choices available to each player i; moreover,
for each i ∈ N, the logic formula γi represents the goal that i aims to satisfy. For the
moment, we will not restrict ourselves to any particular language for goals. Thus, each
player i desires to act so as to satisfy its goal γi. We define the size of a game, |G|, by
|A|+ |γ1|+ · · ·+ |γn|, where |γi| denotes the size of γi.

Games are played by each player i selecting a strategy σ that will define how to
make choices over time. We use a finite state representation of strategies; more precisely
we model strategies as Moore machines (finite state machines with output). Given an
SRMLI arena A =〈N,Φ,m1, . . . ,mn〉, a strategy for mi =〈Φi,Visi, Ii,Ui〉 is a structure

σi =〈Qi, q0
i , δi, τi〉,

where

• Qi is a finite and non-empty set of states,

• q0
i ∈ Qi is the initial state,

• δi : Qi × 2Visi → 2Qi \ ∅ is a transition function, and

• τi : Qi → 2Φi is an output function.

Since a strategy may not comply with a module’s specification, we define consistency
between a module and a strategy in the following way. We say that a strategy σi =
〈Qi, q0

i , δi, τi〉 is consistent with module mi = 〈Φi,Visi, Ii,Ui〉 if the following two
conditions hold (a similar definition of consistency is also given in [12]):

1. τi(q0
i ) = evali(g0

i , ∅), for some g0
i ∈ Ii; and,

2. for all q, q′ ∈ Qi, if q′ ∈ δi(q, v) then τ(q′) = (τi(q) \ ctr(gi)) ∪ evali(gi, v), for
some gi ∈ Ui that is enabled by v, i.e., such that v |= guard(gi),
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where evali : (Ii ∪ Ui) × 2Visi → 2Φi is a function that determines the value of the
Boolean variables at the right-hand side of a guarded command when such a guarded
command is enabled by a valuation. Formally, evali is defined, for a guarded command
gi = ϕ; x′1 := ψ1; · · · ; x′k := ψk and a (visible) valuation v, as follows: evali(gi, v) =
{xj ∈ {x1, . . . , xk} : v |= ψj}. Based on the definition of consistency given above,
note, for instance, that if the only guarded update command of a module mi has the
form > ; x′ := ⊥, then a strategy for mi will not prescribe mi to set x to true under
any contingency. Moreover, note also that if a module’s visibility set does not contain
some variable p, then no strategy for such a module will depend on the value of p. Let
Σi be the set of consistent strategies for module mi. Moreover, hereafter, by a strategy
for module mi we mean a strategy that is consistent with module mi.

We now mention a construction that we find useful in what follows. Any finite state
machine strategy σ can be represented by an SRML module (of polynomial size in |σ|)
with variable set Φi∪Qi (that is, in addition to the variables Φi controlled by the player i,
we introduce new variables, one for each of the states Qi of the finite state machine. We
write mσ for such a module specification. The actual definition of mσ is straightforward,
and we leave this as an exercise for the reader.

Games are played by each player i selecting a strategy σ that will define how to make
choices over time. Once every player i has selected a strategy σ, a strategy profile ~σ =
(σ1, . . . , σn) results and the game has an outcome, which we will denoted by [[~σ]]. The
outcome [[~σ]] of a game with SRML arena A = 〈N,Φ,m1, . . . ,mn〉 is defined to be the
Kripke structure associated with the SRML arena A~σ =〈N,Φ ∪

⋃
i∈N Qi,mσ1

, . . . ,mσn〉
restricted to valuations with respect to Φ, that is, the Kripke structure [[~σ]] = KA~σ |Φ.

The basic assumption in our model is that the outcome of a game will determine
whether or not each player’s goal is or is not satisfied. Because outcomes are Kripke
structures, in general, goals can be defined using any logic with a well-defined Kripke
structure semantics. Assuming the existence of such a satisfaction relation, which we
denote by “|=”, we can say that a goal γi is satisfied by an outcome [[~σ]] if and only if
[[~σ]] |= γi; to simplify notation, we may simply write ~σ |= γi.

If we only consider deterministic strategies, that is, those where δi : Qi× 2Visi → Qi,
then it is easy to see that outcomes correspond to single runs, and we write ρ(~σ) for the
unique run induced by ~σ in such a case. Hereafter, we will assume that goals are LTL
formulae and that strategies are deterministic.

We are now in a position to define a preference relation %i over outcomes for each
player i with goal γi. For strategy profiles ~σ and ~σ′, we say that

~σ %i ~σ
′ if and only if ~σ′ |= γi implies ~σ |= γi.

On this basis, we also define the concept of Nash equilibrium [5]: given a game
G = (A, γ1, . . . , γn), a strategy profile ~σ is said to be a Nash equilibrium of G if for all
players i and all strategies σ′, we have

~σ %i (~σ−i, σ
′
i ),

where (~σ−i, σ
′
i ) denotes (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn), the strategy profile where the

strategy of player i in ~σ is replaced by σ′i . Hereafter, let NE(G) be the set of Nash
equilibria of G.
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module Casino controls {turn, coinh}
under VisCasino
init
:: >; turn := >; coinc := ⊥
:: >; turn := >; coinc := >
update
:: turn ; coinc := >; turn := ⊥
:: turn ; coinc := ⊥; turn := ⊥
:: ¬turn ; turn := >

module Player controls {coinp}
under VisPlayer
init
:: >; coinp := >
:: >; coinp := ⊥
update
:: ¬turn ; coinp := >
:: ¬turn ; coinp := ⊥

Figure 1: Modules for the Casino example.

We now describe a system which demonstrates two important facts about game-like
system specifications: that imperfect information provides a more realistic framework
(when compared with perfect information games); and that imperfect information can
be used as a tool to eliminate undesirable rational behaviours (given by Nash equilibria).
This second point is formally studied in Section 9.

Note that the following example is intended to illustrate the concepts introduced so
far rather than to constitute a real-life specification.

Example 1. Consider a system with two agents, Casino and Player, who interact with
each other at a casino in Las Vegas. The two agents are playing the following game.
The game is played in two rounds, where in the first round Casino chooses one side of a
1 dollar coin (and keeps its choice hidden from Player) and in the second round Player
tries to guess what side of the coin was chosen by Casino. If Player guesses correctly,
Player wins; otherwise, Casino wins. In principle, the two agents can interact for as
long as they want since there is no a priori bound on the amount of money or time they
have to play the game. Moreover, the goals of the agents are to win the game infinitely
often. Note that under normal circumstances, neither Casino nor Player should always
win, as that outcome would be both unnatural and rather suspicious. Of course, they
do not want to always lose the game either! We model this game, using the specific
notation of SRMLI, with the modules in Figure 1 and following goals.

• γCasino = GF(¬turn→ ¬(coinc ↔ Xcoinp)) and

• γPlayer = GF(¬turn→ coinc ↔ Xcoinp)).

If the game is with perfect information then VisCasino = Φ = VisPlayer. This model
has two kinds of Nash equilibria: one where Player always wins (using the strategy
above), and another one where both agents satisfy their goals. Clearly, the former is an
undesirable modelling scenario. But, if the game has imperfect information, e.g., with
VisPlayer = {turn}, then such “bad” equilibria disappear and only scenarios where
both agents satisfy their goals remain as rational outcomes.
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coinp := > coinp := ⊥

¬coinc, ∗

coinc, ∗

coinc, ∗

¬coinc, ∗

Figure 2: A winning strategy for Player if VisPlayer = Φ. Symbol ∗ is ¬turn. Edges if turn = > are loops
(for skip).

4. Undecidability of SRMLI Games

As in many game-theoretic scenarios, the main problem related to the solution of a
game is the existence of Nash equilibria. In our setting, the problem is stated as follows:

Given: SRMLI G.
NONEMPTINESS: Is it the case that NE(G) 6= ∅?

We say that SRMLI games are undecidable if their non-emptiness problem is undecidable.
In this section we will show that SRMLI games are undecidable when considering goals
given by LTL formulae. In order to do so let us first provide some preliminary results.

We will reduce the uniform distributed synthesis problem [24] for LTL formulae,
which is known to be undecidable, to NONEMPTINESS with three modules and goals
given by LTL formulae. In order to define such a reduction we need to introduce some
behaviour preserving transformations, in particular, one that deals with the preservation
of LTL properties, which is presented next. More specifically, we need to deal with the
fact that, in uniform distributed synthesis, the assignment of truth-values for variables is
asynchronous, i.e., the agents evaluate their variables in turn, while in SRMLI games is
synchronous. Thus, in the next sections, we show some preliminary results that will be
used to emulate the asynchrony of uniform distributed synthesis into our setting.

First, we introduce a notion of path inflation, in which an infinite sequence of vari-
ables evaluations is interleaved with intermediate states. Intuitively, such intermediate
states are used to update the variables in the asynchronous process. After this, we
provide a transformation of a generic LTL formula ϕ that is invariant under inflation, i.e.,
the formula ϕ is satisfied by a run ρ if, and only if, its transformation is satisfied by the
inflation of ρ. Finally, after introducing the uniform distributed synthesis problem, we
show how to build an SRMLI game, whose associated strategy profiles produce exactly
the inflated runs of the synthesis problem. We then derive a reduction from the uniform
distributed synthesis problem to (the existence of Nash equilibria in) SRMLI games.

4.1. LTL formula transformation

Let us start this subsection by giving some useful definitions and notations. For
ρ : N → 2Φ a run and d ≥ 1 an integer, we say that ρ′ : N → 2Φ is a d-fold inflation
of ρ if ρ′[d · t] = ρ[t] for every t ≥ 0. For a set Ψ of propositional variables with Φ ⊆ Ψ,
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also say that a run ρ′ : N → 2Ψ a d-fold inflation of ρ if ρ′[d · t] ∩ Φ = ρ[t] for every
t ≥ 0. Moreover, for q ∈ Ψ \ Φ, we say that a d-fold inflation ρ′ of ρ is q-labelled if
for all t ≥ 0, q ∈ ρ′[t] if and only if t is a multiple of d, i.e. there is some t′ ∈ N with
t = d · t′. Thus, in a q-labelled, d-fold inflation ρ′ of ρ we have that ρ′[t] |= q if and
only if t is a multiple of d.

Clearly, from a run ρ′ : N → 2Ψ, we can define the d-fold deflation ρ over Φ to
be the run ρ : N → 2Φ which satisfies that ρ[t] = ρ′[d · t] ∩ Φ for every t ≥ 0. Note
that, for a given run ρ′, there is a unique d-fold deflation ρ over Φ. Clearly, the d-fold
inflation and deflation can be extended to partial runs. Moreover, for purposes that
will be clear later in the paper, for a given partial run h : {0, . . . , n} → Ψ, by hd we
denote the partial run such that |hd| = k = quot(|h|, d)—where quot(x, y) denotes the
quotient of the Euclidean division of x by y—and defined as hd[j] = h[j · d] ∩ Ψ, for
each j < |hd|, and hd[k] = lst(h) ∩Ψ.

We now define, for each d ≥ 1, a translation function τd which maps LTL formulae
ϕ over Φ to LTL formulae τd(ϕ) over Φ ∪ {q}, where q /∈ Φ. Moreover, we omit the
argument d when it is clear from the context.

• τd(p) = p;

• τd(¬ϕ) = ¬τd(ϕ);

• τd(ϕ ∨ ψ) = τd(ϕ) ∨ τd(ψ);

• τd(Xϕ) = Xdτd(ϕ);

• τd(ϕUψ) = (q → τd(ϕ))U (q ∧ τd(ψ)).

Finally, to prove the Lemma 1, we use the standard semantics of LTL formulae on
infinite runs [21], which can be extended to Kripke structures just as defined before.

Lemma 1 (Inflation). Let Φ and Φ′ be two disjoint sets of propositional variables with
q ∈ Φ′, ρ : N → 2Φ a run, d ≥ 1, and ρ′ : N → 2Φ∪Φ′

a q-labelled, d-fold inflation
of ρ. Then, for all LTL formulae ϕ over Φ, it holds that ρ |= ϕ if and only if ρ′ |= τd(ϕ).

Proof. We prove by structural induction on ϕ that, for all t ≥ 0 and ϕ ∈ LTL(Φ), we
have ρ[t] |= ϕ if and only if ρ′[d · t] |= τd(ϕ).

The basis, i.e., if ϕ = p, is immediate by the definition of a d-fold inflation. For
the induction step, the cases in which ϕ = ¬ψ or ϕ = ψ ∨ χ, follow by an immediate
application of the induction hypothesis. Then, it remains to prove the lemma for the
temporal operator cases.

• Assume that ϕ = Xψ and so that ρ[t] |= Xψ. Then, by the definition of
semantics, we have that ρ[t + 1] |= ψ. Now, by the induction hypothesis, we have
that ρ′[d · (t + 1)] |= τd(ψ), which is equivalent to ρ′[d · t + d] |= τd(ψ). Then,
again by the definition of semantics, we have that ρ′[d · t] |= Xdτd(ψ), which,
from the definition of τd, implies that ρ′[d · t] |= τd(Xψ)

• Finally, assume that ρ[t] |= ψ1 Uψ2. Then, by the definition of semantics, ρ[t′] |=
ψ2 and ρ[t′′] |= ψ1, for some t′ ≥ t and for all t ≤ t′′ < t′. Which is equivalent, by
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induction hypothesis, to the fact that ρ′[d · t′] |= τd(ψ2) and ρ′[d · t′′] |= τd(ψ1).
Now, remind that, by the definition of ρ′, we have that q ∈ ρ′[d · t′′], for all
t′′ ≤ t and q /∈ ρ′[h], if h 6= d · t′′, for all t ≤ t′′ < t′. This means that
ρ′[d · t′] |= q ∧ τd(ψ1) and ρ′[h] |= q → τd(ψ2), for all t ≤ h < t′, which, by
definition of semantics, is equivalent to ρ′[t] |= (q → τd(ψ2))U (q ∧ τd(ψ1)).
Hence, we have that |= τd(ψ2 Uψ1).

4.2. Architectures and synthesis

An architecture is a tuple A =〈P, p0, pidle,E,O〉 where:

• P is a set of processes, with p0 and pidle being the environment and idle processes,
respectively;

• (P,E) is a directed acyclic graph with p0 having no incoming edges and pidle
being the unique vertex having no outcoming edges;

• O = {Oe : e ∈ E} is a set of nonempty sets of output variables where O(p,p) ∩
O(p′,p

′
) 6= ∅ implies p = p

′

.

By Vr =
⋃
e∈O Oe we denote the set of all variables. Moreover, Ip =

⋃
p′∈P O(p′,p)

denotes the set of input variables for process p. Finally, Op =
⋃
p′∈P O(p,p′) denotes

the set of output variables for player. To let the reader be familiar with architectures, we
now present an example.

p

P P

pidle

a b

c d

Figure 3: The architectureA.

Example 2. Consider the architecture represented in Figure 3, in which the process p
controls the variables a and b, distributing them to processes p and p, respectively.
Moreover, processes p and p output variables c and d, respectively, to the idle process.
Such an architecture is known in the literature as A and it has been used to show the
undecidability of several problems related to that.

A strategy for a process p is a function sp : (2Ip)∗ → 2Op mapping each history of
visible truth-assignments to a truth-assignment of the output variables. A profile strategy
~s is a tuple of strategies, one for each non-idle process. A strategy profile generates a
run ρ(~s) over the set of variables Vr. An implementation S is a set of strategies one for
each process in P− , P \ {p0, pidle}. We say that a profile strategy ~s is consistent with
an implementation S if the strategy in S corresponds to the one associated in ~s, for each
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process p in P−. Finally, for a given LTL formula ϕ, we say that an implementation
S realizes ϕ if ρ(~s) |= ϕ for all strategy profiles ~s that are consistent with S. The
definition of the Uniform Distributed Synthesis problem follows.

Definition 1. For a given architecture A and an LTL specification ϕ, the synthesis
problem for A and ϕ consists of finding an implementation S in A that realizes ϕ.

In [24] it has been shown the undecidability of this problem. Formally, we have:

Theorem 1 ([24]). The uniform distributed synthesis problem for a generic architecture
A with three players and an LTL formula ϕ is undecidable.

4.3. Undecidability

In this section, we show that the uniform distributed synthesis problem [24] for LTL
formulae can be reduced to the NONEMPTINESS problem for SRMLI games with LTL
goals. To do this, we first need to introduce some auxiliary definitions and notations.

First of all, note that the fact that an architecture A is acyclic provides a partial
order among processes, which can be extended to a total order <P in a consistent way.
Moreover, starting from <P, we can totally order the set of variables in a way that, for
each x, y ∈ Φ, if x ∈ Φp , y ∈ Φp , and p <P p, then x <Φ y. Thus, every variable
x can be associated to a different natural number i ∈ {1, . . . , d = |Φ|}, denoting its
position in the ordering <Φ, and renamed with xi. Note that, if xi is in a variable
depending on some variable xj in the architecture, then it holds that j < i and so that
xj <Φ xi. Now, for a given process p, we define module mp as follows.

module mp controls O(p) under I(p) ∪ {1, . . . , d}
init
:: i ; x′i := ⊥ for xi ∈ O(p)
:: i ; x′i := > for xi ∈ O(p)
update
:: i ; x′i := ⊥ for xi ∈ O(p)
:: i ; x′i := > for xi ∈ O(p)

We also have to keep track of the turn of which variable has to be set. To simplify
our presentation, we do this with the use of an additional module, var, defined below.

module vard controls {1, . . . , d} under ∅
init
:: >; 1′ := >; 2′ := ⊥; . . . ; d′ := ⊥
update
:: i ; i′ := ⊥; (i + 1)′ := > for i 6= d
:: d; d′ := ⊥; 1′ := >;

We can now define the arena having all the modules defined above, one per each
process plus the auxiliary module var to give turns to the variables:

AA =〈n + 2,Φ, var, mp0 , mp , . . . , mpn〉.
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At this point, we describe a fundamental translation Γ of strategies, making a suitable
bridge between an architecture A and the corresponding arena AA. The translation
shows that a strategy for a process of an architecture, A, can be represented in our
framework, AA. Let s : (2Ip)∗ → 2Op be a strategy for process p. Then, we define the
strategy Γ(s) = σ : (2Vis(mp))∗ → 2Vr(mp) such that, for any given variable xi ∈ O(p)
and history h ∈ (2Vis(mp))∗ we have:

Γ(s)(h)(xi) =

{
s(hm)(xi), if |h| ≡d i
skip, otherwise

where hd is the partial run defined from h. It is not hard to see that, for a given strategy σ,
for a module m corresponding to process p, there is a unique strategy s with Γ(s) = σ.
So, the function Γ is bijective. Moreover, for a given implementation ~s, by overlapping
of the notation, by Γ(~s) we denote the strategy profile assigning Γ(s) to the module m
corresponding to the process p. We can now prove the following lemma, which gives a
further characterisation of strategy profiles in the uniform distributed synthesis problem.

Lemma 2. Let A be an architecture with d = |Φ| variables and AA be the correspond-
ing SRMLI arena. Then:

1. For each profile ~s it holds that ρ(~s) = ρ(Γ(~s))d;

2. For each profile ~σ it holds that ρ(~σ) = ρ(Γ−1(~σ))d.

Proof. We only show the proof for Item 1, as the proof of Item 2 is similar.
Let ~s be a strategy profile and consider the corresponding ~σ = Γ(~s). Moreover,

consider the runs ρs = ρ(~s) and ρσ = ρ(~σ). We need to prove show that, for all
t ∈ N, it holds that ρs[t] = ρσ[d · t] ∩ Φ. We proceed by induction on t. As base
case, for t = 0, we have that ρs[0] = ∅ = {0} ∩ ϕ = ρσ[0] ∩ Φ. As inductive case,
assume that ρs[t′] = ρσ[d · t′] ∩ Φ, for all t′ ≤ t. Then, in particular, we have that
ρs[0, t] = (ρσ[0, d · t])d. At this point, let p be a process and m its corresponding
module. By the construction of Γ, we know that, for all xi ∈ O(p), we have that
xi ∈ ρs[t + 1] iff xi ∈ ρσ[d · t + i + 1] and, since m can only perform a skip up to
d · (t + 1), we have that xi ∈ ρs[t + 1] iff xi ∈ ρσ[d · (t + 1)]. And since xi ∈ Φ, we
obtain xi ∈ ρs[t + 1] iff xi ∈ ρσ[d · (t + 1)]∩Φ. Finally, since this reasoning applies on
all processes p and variables xi ∈ Vr(p), we can conclude that ρs[t] = ρσ[d · t]∩Φ.

We now introduce two additional modules to AA, named mA and mB, which will
be used to make an easy connection between the solution of NONEMPTINESS and the
uniform distributed synthesis problem. These two additional modules, as well as var,
can be removed in a more general construction. However, we prefer to have them here,
again, to simplify our presentation. Modules mA and mB simply control one Boolean
variable each, namely a and b respectively, which they can set to any Boolean value they
want at initialisation, and cannot modify thereafter. Call AA

′ such an SRMLI system.
Observe that whereas module var has only one possible strategy, modules mA and

mB have only two possible strategies, namely, set a to true or to false, and similarly
for b. Because of this reason, we often can reason about strategy profiles where we
simply consider the other modules, mp0 , mp , . . . , mpn , and the cases given by the possible
Boolean values, and therefore strategies, for a and b.

14



Theorem 2. LetA be an architecture with d = |Φ| variables and ϕ an LTL specification.
Moreover, consider the SRMLI G =〈AA′, γvar, γ0, γ1, . . . , γn, γA, γB〉 such that AA

′ is
the arena derived by A,

• γvar = >,

• γ0 = ¬τd(ϕ),

• γ1 = · · · = γn = τd(ϕ),

• γA = τd(ϕ) ∨ (a↔ b) and

• γB = τd(ϕ) ∨ ¬(a↔ b).

Then, A realizes the LTL formula ϕ if and only if G has a Nash equilibrium.

Proof. We prove the theorem by double implication.

(⇒) AssumeA realizesϕ. Then, there is a winning strategy ~s− for p, . . . , pn,mA,mB, var
such that ρ(s, ~s−) |= ϕ, for all possible strategies s for the environment p0.
Consider the strategy Γ( ~s−) given for the modules m, . . .mn,mA,mB, var,
and consider a strategy σ for module m. By Lemma 2, we have that

ρ(Γ−1(σ), ~s−) = ρ(σ,Γ( ~s−))|Φ |= τd(ϕ).

Then, by Lemma 1, we have that ρ(σ,Γ( ~s−)) |= τd(ϕ). Moreover, the strategy
profile (σ,Γ( ~s−)) is a Nash equilibrium. Indeed, m, . . . ,mn,mA,mB, var
have their goal satisfied and so have no incentive to deviate. On the other
hand, assume by contradiction that module m has a strategy σ

′

 such that
ρ(σ

′

,Γ( ~s−)) |= ¬τd(ϕ). Due to Lemmas 1 and 2, we have ρ(σ
′

,Γ( ~s−)) |=
¬τd(ϕ) and therefore ~s− is not winning, which is a contradiction.

(⇐) Let (σ, ~σ−) ∈ NE(G). Because of modules mA and mB, it must be the case that
ρ(σ, ~σ−) |= τd(ϕ). Then, consider the strategy profile Γ−1( ~σ−). We have that
it is a winning strategy. Indeed, assume by contradiction that ρ(s,Γ

−1( ~σ−)) |=
¬τd(ϕ) for some environment strategy s. Then, by Lemmas 1 and 2, we obtain
that ρ(Γ(s), ~σ−) |= ¬τd(ϕ) and so the strategy Γ(s) incentives module m

to deviate from the strategy profile (σ, ~σ−), which is a contradiction.

Because the uniform distributed synthesis problem is undecidable with three pro-
cesses, we can restrict ourselves to that setting, where m can be extended to take care
of turns (to eliminate var) and the behaviour of mA and mB can be encoded into that of
m and m respectively (to eliminate mA and mB), to obtain a 3-player SRMLI.

Corollary 1. NONEMPTINESS for SRMLI games with LTL goals is undecidable for
games with more than two players.
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In fact, the uniform synthesis problem is undecidable for logics even weaker than
full LTL. However, the main construction heavily relies on the existence of at least three
players. Because of this, in a later section, we will study the case where we still allow
LTL goals, but restrict to systems with only two players. Before we do that, we will first
show that our undecidability result holds for an even simpler model of games, namely,
for iterated Boolean games [18].

4.4. Undecidability of Iterated Boolean Games

In this section, we show that the same undecidability result can be obtained for Iter-
ated Boolean Games with imperfect information (iBGi), a special class of SRMLI games
in which agents can assign values to the variable under control without any guard re-
striction. Formally, an iBGi is a tuple H = (N,Φ,Φ1, . . . ,Φn,Vis, . . .Visn, γ1, . . . , γn)
where, N is the (finite) set of players, Φi ⊆ Φ is the set of variables under the control of
player i, Visi ⊆ Φ is the set of variables that are visible to player i, and γi is the LTL
objective of player i in the game. Since every player can set the truth-value of his own
variables with no restrictions, at any round of the game, an iBGi can be represented
as an SRMLI game in which every module mi has exactly |2Φi | guards, each of them
having a tautology as a condition part and allowing one of the possible evaluations of
the variables as an action part. However, the reader might note that the representation of
an iBG in terms of SRMLI games involves an exponential blow-up.

As in SRMLI games, a strategy σ for a player in an iBGi is a finite state machine,
with the difference that in this case it does not have to comply with any module’s
specification. However, this additional power of strategies can be constrained from
a goal specification point of view. Indeed, given the propositional logic nature of
guards, we can enforce the same level of restrictions in an iBGi by injecting an LTL
encoding of a guard in players objectives. This allows us to show that the problem of
finding a Nash equilibrium is undecidable also in iBGis. To show this, consider the
SRMLI game G defined in Theorem 2, and a corresponding iBGi H = 〈N,Φ,Φvard =
{1, . . . d},Φ0,Φ1, . . .Φ2,ΦA = {a},ΦB = {b}, , γ′vard

γ′0, γ
′
1, . . . , γ

′
n, γ
′
A, γ
′
B〉 having

the same set of players, variables, and visibility as G. We need to adjust the LTL goals
of the player to simulate the guards in G. For module vard, observe that the formula

TH(vard) = 1 ∧
d∧

h=2

¬h ∧G((

d−1∧
h=1

h↔ X(h + 1)) ∧ d ↔ X1),

is true only if and only if player vard in H follows the only strategy allowed by its
module, that starts by setting the only variable 1 to be true and keeps updating the
d-module counter round-by-round.

Analogously, for each module mi in the game, the formula

TH(mi) =
∧

x6=1;x∈Φi

¬x ∧G((

d∧
h=1

h→
∧

xj 6=xh;xj∈Φi

xj ↔ Xxj),

is true if and only if player i in H follows a strategy that complies with the guards of mi.
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Finally, the formula

TH(G) = TH(vard) ∧
∧
i∈N

TH(mi)

is true if and only if every player follows a strategy that complies with the corresponding
module in the SRMLI game G.

Now, we can define the goals of the players in H. We have the following:

• γ′vard
= TH(vard);

• γ0 = ¬τd(ϕ);

• γ′i = τd(ϕ) ∧ TH(mi), for all i ∈ {1, . . . , n}

• γ′A = (TH(G) ∧ τd(ϕ)) ∨ (a↔ b);

• γ′A = (TH(G) ∧ τd(ϕ)) ∨ ¬(a↔ b).

And the following theorem holds.

Theorem 3. For every SRMLI game G defined in Theorem 2 and its corresponding iBGi
H, it holds that

NE(G) = ∅ if and only if NE(H) = ∅.

Proof. The proof proceed by double implication, showing that a strategy profile ~σ is
a Nash equilibrium in G if and only if it is so in H and vice-versa. First, assume that
~σ is a Nash equilibrium in G. Observe that, due to the construction, it necessarily
holds that ~σ |= τd(ϕ). Moreover, ~σ is consistent with the guards in G. This means
that ~σ |= TH(G). This implies that all the players but 0 get their goal achieved in H.
Moreover, for what regards player 0, every strategy for 0 in H is also a strategy in G,
meaning that a beneficial deviation in H would be so also in G, in contradiction with the
fact that ~σ is a Nash equilibrium in G.

Now assume that ~σ is a Nash equilibrium in H. Then, it necessarily holds that
~σ |= TH(G) ∧ τd(ϕ). Indeed, otherwise players A and B would be involved in a
“matching pennies” game, which does not have any Nash equilibria. Thus, the strategy
profile ~σ complies with all the module guards in G and then it is a possible strategy
profile in G as well. Moreover, as ~σ |= τd(ϕ), this means that every player but 0 achieves
his goal in G. For what regards player 0, observe again that a beneficial deviation from ~σ
in G would be so also in H, in contradiction with ~σ being a Nash equilibrium in H.

5. Decidability of Two-Player SRMLI Games

In [24], the authors identify in the notion of information fork the source of undecid-
ability for the uniform distributed synthesis problem. More precisely, they show that
restricting to architectures without information forks, the problem becomes decidable,
and of complexity 2EXPTIME-complete. Also in logics for strategic reasoning, assum-
ing that the information known by players is arranged in a hierarchical manner brings
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back the decidability of the model-checking problem [25, 26]. It is not clear yet if such
decidability results transfer to the case of finding Nash equilibria in SRMLI games.

In this section we show that SRMLI games with two players are decidable. More
importantly, we show that this class of games can be solved using an intuitively simple
logic-based approach: as we will show next, NONEMPTINESS for games with two
players and LTL goals can be reduced to a series of temporal logic synthesis problems.
In particular, this solution immediately implies the existence of a mechanical solution
using already known automata-theoretic techniques originally developed for LTL and
CTL? synthesis with imperfect information. Let us first, in the next two subsections,
present some useful technical results and notations.

It is important to observe that the solution techniques for the two-player case strongly
rely on the synthesis problem, in which the agents goals are opposite. Therefore, it would
not be possible to extend them to achieve results for decidable multi-agent settings, such
as (we conjecture) the ones without information forks.

5.1. On the power of myopic strategies
Myopic strategies are strategies whose transition function do not depend on the

values of the Boolean variables it reads, but only on the states where they are evaluated
at. Formally, we have that a strategy σi = (Qi, q0

i , δi, τi) is myopic if, for every q ∈ Qi

and Ψ,Ψ′ ⊆ Visi, we have δi(q,Ψ) = δi(q,Ψ′).
Intuitively, myopic strategies are “zero-knowledge” processes, as they are defined

so that no dependency on the variables in the game is defined. This observation will be
useful later in the paper, since myopic strategies will be used represent deviations of a
player in a game. It is known that myopic strategies are powerful enough to describe
any ω-regular run—an ultimately periodic run [27]. This is stated in the next lemma.

Lemma 3. For every ω-regular run ρ, if ρ = ρ(~σ) for some profile ~σ = (σ1, . . . , σn),
then for every i ∈ {1, . . . , n} there is a myopic strategy σ′i such that ρ = ρ(~σ−i, σ

′
i ).

Proof. Let ρ(~σ) = ρ = αββ . . ., such that α is a finite word of size k and βω = ββ . . .
is an infinite word built from the concatenation of a finite word β of size p. Since
ρ is a word over (2Φ)ω, it can be written as the superposition/union of n words over
(2Φ1 × . . . × 2Φn)ω, that is, a word whose projection ρ|Φi with respect to Φi is the
ω-regular Φi-word

ρ|Φi = αi[0], αi[1], . . . , αi[k − 1],
βi[0], βi[1], . . . , βi[p− 1], βi[0], βi[1], . . .

because of the definition of ρ, and where each αi and βi is, respectively, the restriction
of α and β with respect to Φi.

We can then define the myopic machine strategy σi = (Qi, q0
i , δi, τi), where

• Qi = {qs
i : 0 ≤ s < k + p},

• (qs
i , v, q

t
i) ∈ δi if either

– s + 1 = t or

– s = k + p− 1 and t = k,
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• τi(qs
i ) = ρ[s]|Φi .

Note that the correctness of the construction—that in fact σi is a myopic machine
strategy—lies in the fact that there is a unique qt

i for each qs
i . As a consequence, the

valuation in the transition function δi becomes irrelevant. It, then, immediately follows
that ρ = ρ(~σ) = ρ(~σ−i, σ

′
i ) for each i.

What is important to observe about myopic strategies is that once they are defined
for a given module, the same myopic strategies can be defined for all modules with (at
least) the same guarded commands. This observation is used to show the following
result about the preservation of myopic strategies in games with imperfect information.

Lemma 4. Let mi =〈Φi,Visi, Ii,Ui〉 be an SRMLI module of a game with variable set
Φ. If σi is a myopic strategy of module mi then σi is also a strategy of m′i =〈Φi,Visi′, Ii,
Ui〉, for every set Visi ⊆ Visi′ ⊆ Φ.

Proof. Since by definition a myopic strategy is independent of the visibility set—that
is, for every state q of the strategy and Ψ,Ψ′ ⊆ Visi, we have δi(q,Ψ) = δi(q,Ψ′)—it
follows that σi is also a strategy of m′i for every set Visi ⊆ Visi′ ⊆ Φ. We observe that
since Visi ⊆ Visi′ the module m′i is well defined. Note that the lemma may not hold for
sets ∅ ⊆ Visi′ ⊂ Visi as in such a case mi may not be a well defined module.

In particular, in this section, the following result, whose proof relies on Lemmas 3
and 4, is key to obtain the decidability result for two-player games presented later on.

Lemma 5. Let G be an SRMLI game with two modules, m1 = 〈Φ1,Vis, I1,U1〉 and
m2 =〈Φ2,Vis, I2,U2〉, and i, j ∈ {1, 2}. Then, σi is a winning strategy of player i for
ϕ if and only if σi is a winning strategy for ϕ in the game G′ where m′j =〈Φj,Φ, Ij,Uj〉,
with i 6= j.

Proof. The (⇐) direction is trivial. For the other direction, (⇒), suppose that σi is
a winning strategy of player i for ϕ in G and, for a contradiction, that there is some
strategy σj of player j in the game G′ such that ρ(σi, σ

′
j ) 6|= ϕ, that is, such that σi

is not a winning strategy for ϕ in G′. Due to Lemma 3 we know that there is also a
strategy profile (σi, σ

′′
j ) such that both σ′′j is myopic and ρ(σi, σ

′′
j ) 6|= ϕ. And, because

of Lemma 4 we also know that σ′′j is a strategy of player j in G. But, if this was the
case, then σi would not be a winning strategy in G; contradiction. Then, such a myopic
strategy cannot exist and σi must be a winning strategy for ϕ in both G and G′.

5.2. From synthesis to Nash equilibria

It is also known that the behaviour of reactive modules can be characterised in LTL
using formulae that are polynomial in the size of the modules. Then, given a module mi,
we will write TH(mi) for such an LTL formula, which satisfies, for all runs ρ, that ρ is a
run of mi iff it is a run satisfying TH(mi). Observe that TH(mi) is a satisfiable formula
and, in particular, it is satisfied by any module or Kripke structure whose runs are exactly
those of mi. Moreover, we use the following notation. For a synthesis problem with
imperfect information, where ϕ is the formula to be synthesised, I is the set of input
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Nonemptiness(G2)
1. if coop is satisfiable then

return “yes”
2. if SYN(block1, Φ2, Vis, Φ1) and

SYN(block2, Φ1, Vis, Φ2) then
return “yes”

3. if SYN(nodev1, Φ2, Vis, Φ1) or
SYN(nodev2, Φ1, Vis, Φ2) then
return “yes”

4. return “no”
Figure 4: NONEMPTINESS in two-player games.

variables, E ⊆ I is the set of visible input variables, and O is the set of output variables,
we write SYN(ϕ, O, E, I).

We consider synthesis problems where ϕ is an LTL or a CTL? formula. In particular,
in case ϕ is a CTL? formula, we use the standard notation and semantics in the literature
[21]: informally, the CTL? formula Eψ means “there is a path where formula ψ holds”
whereas the CTL? formula Aψ means “on all paths, formula ψ holds.”

Having the above in mind, consider the algorithm in Figure 4, which can be used to
solve NONEMPTINESS in the setting we are considering, where the input SRMLI game is

G2 = ({1, 2},Φ1,Φ2,m1,m2, γ1, γ2)

and the following abbreviations are used

• coop = γ1 ∧ γ2 ∧ TH(m1) ∧ TH(m2)

• block1 = TH(m1)→ (¬γ1 ∧ TH(m2))

• block2 = TH(m2)→ (¬γ2 ∧ TH(m1))

• nodev1 = ATH(m1)→ (E γ2 ∧A¬γ1 ∧ATH(m2))

• nodev2 = ATH(m2)→ (E γ1 ∧A¬γ2 ∧ATH(m1))

where each formula characterises the following situations: for coop, the case where
both γ1 and γ2 are satisfied while respecting the behaviour of both modules, m1 and m2;
for block1/block2, the case where ¬γ1/¬γ2 is satisfied while respecting the behaviour
of module m2/m1, provided that the behaviour of m1/m2 is respected too—i.e., a
case where module 2/1 “blocks” or prevents module 1/2 from achieving its goal; for
nodev1/nodev2, the case where ¬γ1/¬γ2 is satisfied in all possible runs, with at least
one satisfying γ2/γ1, while respecting the behaviour of module m2/m1, provided that
the behaviour of module m1/m2 is respected too—i.e., a case where module 2/1 ensures
that module 1/2 has no incentive to deviate from any run satisfying nodev1/nodev2 to
another run that also satisfies such a formula. The following result can be shown:

Theorem 4. NONEMPTINESS for two-player SRMLI games with LTL goals is 2EXPTIME-
complete.
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Sketch of the proof. To prove the correctness (soundness and completeness) of the
algorithm we first assume that there is a Nash equilibrium and check that at least one
of the three possible cases that deliver a positive answer is successfully executed. In
particular, for steps 2 and 3, we use the fact that, because of Lemma 5, we can assume
that when checking block1/nodev1 (resp. block2/nodev2) only player 2 (resp. 1) has
imperfect information—the “verifier” in the associated synthesis game—whereas the
other player—the “falsifier” in the associated synthesis game—has perfect information.
In addition, we also check that if a game does not have a Nash equilibrium, then steps
1–3 fail, and therefore step 4 is executed, thus delivering again the correct answer.

Proof. Using the algorithm Nonemptiness(G2), which in turn makes use of algorithms
for LTL satisfiability as well as CTL? and LTL synthesis with imperfect information,
we will show that if in a two-player SRMLI game there is a Nash equilibrium, then one
of the following three cases holds:

1. both players have their goals satisfied; or

2. both players have winning strategies for the negation of the other player’s goal; or

3. some player, say i, has a winning strategy for the negation of the other player’s
goal, while at least one of the runs allowed by such a winning strategy satisfies
player i’s goal.

First, we will show that Nonemptiness(G2) correctly checks the existence of a
Nash equilibrium. We assume that G2 has a Nash equilibrium and show that in such
a case one of the three “if” cases of the algorithm must hold. We do so by analysing
each case given in the algorithm, and therefore showing that the decision procedure is
sound. After that, we will show that if a two-player SRMLI with LTL goals does not
have a Nash equilibrium, then none of the three “if” cases of the algorithm holds—i.e.,
that the decision procedure is complete. This part of the proof shows membership
of NONEMPTINESS in 2EXPTIME. For hardness, we provide a reduction from LTL
synthesis to a two-player perfect-information game with five Boolean variables.

We simplify reasoning by showing at the same time both that each case is an instance
of a game with a Nash equilibrium and that if a Nash equilibrium exists, then one of the
three cases will succeed, delivering the correct answer.

1. Case 1: trivial. In this case both players get their goal achieved and their behaviour
is consistent with their own module’s specification. Then, if coop is satisfiable
there is a Nash equilibrium where both players achieve their goals. Because coop
is an LTL formula, step 1 can be done in PSPACE using an algorithm for LTL
satisfiability. Now, note that this case will always succeed when [[γ1]] ∩ [[γ2]] 6=
∅. Therefore, if this step is not successfully executed we may assume that
[[γ1]] ∩ [[γ2]] = ∅ (as we do in the remaining cases).

2. Case 2: if both players have winning strategies for the negation of the other
player’s goal, by playing such strategies they can make sure that the other player
does not get its goal achieved and, moreover, that it has no way to deviate in a
beneficial way. Therefore, this case checks for the existence of a Nash equilibrium
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where no player gets its goal achieved. Because both block1 and block2 are LTL
formulae, step 2 can be done in 2EXPTIME using an algorithm for LTL synthesis
with imperfect information. Observe that because of Lemma 5 we can assume
that when checking block1/block2 only player 2/1 has imperfect information
(the “verifier” in the associated synthesis game), whereas the other player (the
“falsifier” in the synthesis game) has perfect information. Now, note that this
case will not succeed if at least one of the players does not have a winning
strategy for the negation of the goal of the other player. We can, therefore, make
such an assumption in the remaining cases. Moreover, since we are assuming
that the game has a Nash equilibrium, that at least one of the players does not
have a winning strategy for the negation of the goal of the other player, and that
[[γ1]] ∩ [[γ2]] = ∅, then it follows that one of the players has a winning strategy for
the negation of the goal of the other players, as otherwise a beneficial deviation
would be possible. Thus, we also make this assumption hereafter.

3. Case 3: let player i be the player who has a winning strategy for the negation
of the goal of the other player, that is, the player who wins the CTL? synthesis
problem. For instance, player 1 in SYN(nodev2, Φ1, Vis, Φ2); let player j be the
other player. Since player i has a winning strategy, say σi, to synthesise nodevj,
player j cannot get its goal satisfied and has no beneficial deviation, provided that
j plays consistently with its module’s specification. However, player i may deviate
if its own goal, γi, is not satisfied. However, since there is a run ρ, allowed by σi,
such that ρ |= γi ∧ ¬γj ∧ TH(mi) while TH(mj) is also satisfied, then we know
that there is a strategy σj of player j (which due to Lemma 5 can be chosen to
be myopic) such that ρ = ρ(σi, σj). Then, the strategy profile (σi, σj) is a Nash
equilibrium where player i gets its goal achieved and player j does not. Also,
because nodev1/nodev2 is a CTL? formula, step 3 can be done in 2EXPTIME
using an algorithm for CTL? synthesis with imperfect information. By noting
that this case also covers the case where a player has a winning strategy for its
own goal, then we observe that no remaining possible cases can arise with respect
to the existence of winning strategies, for each player, either for their own goals
or for the negation of the goal of the other player. As a consequence, the only
remaining cases will always admit deviations from at least one of the players,
which contradicts the assumption of the existence of a Nash equilibrium in G2.

Then, the algorithm Nonemptiness(G2) is sound. To show that it is also complete, now
let us show that if a game does not have a Nash equilibrium, then all of lines 1–3 in
Nonemptiness(G2) must fail, and hence that line 4 must be reached/executed.

A few observations first. Note that if a game does not have a Nash equilibrium then,
necessarily, no run satisfying γ1 ∧ γ2, if any, is consistent with the specifications of
the two modules. Then, line 1 will fail. Moreover, if there is no Nash equilibrium, at
least one player must deviate from any strategy profile (σ1, σ2) and, in particular, due
to Lemmas 3 and 4, it can do so using a myopic strategy. Therefore, if a player, say
j, can deviate in a beneficial way is because, necessarily, the other player, say i, is not
using a winning strategy for ¬γj—otherwise, such a beneficial deviation from j would
not be possible so long its behaviour is consistent with its module’s specification; hence,
line 2 will fail too. Then, we are left with only one case, one where [[γ1]] ∩ [[γ2]] = ∅
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with at least one of the players not having its goal achieved, while the other player is not
playing a winning strategy against the goal of the former player.

In other words, we have in this final case that for every strategy profile ~σ = (σ1, σ2),
there is some j ∈ {1, 2} and some (myopic) σ′j such that ρ(~σ) 6|= γj and ρ(~σ−j, σ

′
j ) |= γj,

that is, such that the strategy σi = ~σ−j is not winning for ¬γj. By contradiction, let
us assume that line 3 of the algorithm does not fail, even though there is no Nash
equilibrium in G2. If line 3 does not fail there are three possibilities, namely that either
both synthesis problems succeed, or only the first synthesis problem succeeds, or only
the second synthesis problem succeeds. Let us analyse each case separately.

If both synthesis problems succeed then we know that each player has a winning
strategy for the negation of the goal of the other player. But, in such a case, there would
be a Nash equilibrium, which leads to a contradiction—in fact, in this case, line 2 would
not fail. If only the first synthesis problem succeeds then we know that player 2 has
a winning strategy for ¬γ1. Let σ2 be such a strategy. Moreover, we also know that
for some strategy σ1 of player 1, it is the case that ρ(σ1, σ2) |= γ2. But, if this was
possible then ~σ = (σ1, σ2) would be a Nash equilibrium (player 1 cannot beneficially
deviate because σ2 is a winning strategy for ¬γ1 and player 2 will not deviate because
ρ(~σ) satisfies γ2), which leads to contradiction with the hypothesis. The remaining case
is analogous to the former one. Then, if there is no Nash equilibrium, line 3 of the
algorithm will necessarily fail too. Therefore, line 4 is necessarily executed, delivering
the correct answer. Thus, the algorithm is complete.

Now, for hardness, one can reduce LTL synthesis with two variables, say x and y to
a two-player perfect-information game with five Boolean variables. More specifically,
we reduce the version of LTL synthesis/realisability where both players in the synthe-
sis/realisability game play concurrently, as in our framework. (An explicit proof of the
equivalence between these two problems is given, for instance, in [18].) The reduction
takes as input an LTL synthesis game with two players, 1 and 2, and an LTL formula ϕ
such that player 1 has a winning strategy in the synthesis game iff ϕ can be synthesised;
otherwise, player 2 has a winning strategy to show that ¬ϕ can be synthesised—because
it is a zero-sum game. Based on this input game, the reduction uses the two modules
below and following LTL goals:

• γ1 = (¬ϕ→ (p↔ q)) ∧ (ϕ→ r)

• γ2 = (¬ϕ→ ¬(p↔ q)) ∧ (ϕ→ (ϕ↔ ¬r))

where ϕ is an LTL formula over Boolean variables x and y.
Given this two-player perfect-information reactive modules game, G, it is not hard

to check that player 1 has a winning strategy to synthesise ϕ if and only if G has a Nash
equilibrium, from which 2EXPTIME-hardness follows.

(⇒) Assume that player 1 has a winning strategy to synthesise ϕ. Then, module m1

can use such a winning strategy to ensure that ϕ holds, while setting r to >. Then,
γ1 is satisfied and m1 will not deviate. On the other hand, in this case, m2 will not
have its goal γ2 satisfied, but cannot beneficially deviate since (ϕ→ (ϕ↔ ¬r))
will still be false in every unilateral deviation of m2.
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module m1 controls {x, p, r} under Φ
init
:: >; x := ⊥; p := ⊥; r := ⊥
:: >; x := ⊥; p := ⊥; r := >
:: >; x := ⊥; p := >; r := ⊥
:: >; x := ⊥; p := >; r := >
:: >; x := >; p := ⊥; r := ⊥
:: . . .
update
:: >; x := ⊥; p := ⊥; r := ⊥
:: >; x := ⊥; p := ⊥; r := >
:: >; x := ⊥; p := >; r := ⊥
:: >; x := ⊥; p := >; r := >
:: >; x := ⊥; p := ⊥; r := ⊥
:: . . .

module m2 controls {y, q} under Φ
init
:: >; y := ⊥; q := ⊥
:: >; y := ⊥; q := >
:: . . .
update
:: >; y := ⊥; q := ⊥
:: >; y := ⊥; q := >
:: . . .

(⇐) We prove the contrapositive: assume that player 1 does not have a winning
strategy to synthesise ϕ and show that in such a case G does not have a Nash
equilibrium. Since the game for LTL synthesis is determined and player 1 does
not have a winning strategy to synthesise ϕ then we know that player 2 has a
winning strategy for ¬ϕ. We will analyse all possible cases and show that in each
instance at least one of the players has a beneficial deviation. Let ~σ = (σ1, σ2) be
an arbitrary strategy profile and assume first that ~σ |= ¬ϕ. Then, if ~σ |= (p↔ q)
player m2 will have a beneficial deviation. If, on the other hand, ~σ |= ¬(p↔ q)
then player m1 will have a beneficial deviation. Now, suppose that ~σ |= ϕ. Then,
if ~σ |= ¬r player m1 will have a beneficial deviation. If, on the other hand, ~σ |= r
then player m2 will have a beneficial deviation: in case ~σ |= ¬(p↔ q), player m2

simply has to deviate to a strategy σ′2 that is winning for ¬ϕ and keep the same
value for q; in case ~σ |= (p↔ q), player m2 can deviate to a strategy σ′2 that is
winning for ¬ϕ and change the value of q with respect to the one given by σ2.
This analysis covers all possible cases w.r.t. ϕ, r, and p, q.

Then, the problem is 2EXPTIME-hard with two players, perfect information, and
five Boolean variables.
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5.3. From Nash to strong Nash equilibria
Even though Nash equilibrium is the best-known solution concept in non-cooperative

game theory [5], it has been criticised on various grounds—most importantly, because
it is not in fact a very stable solution concept. In order to address this problem, other
solution concepts have been proposed, among them being the notion of strong Nash
equilibrium. Strong Nash equilibrium considers the possibility of players forming
coalitions in order to deviate from a strategy profile. Formally, a strategy profile
~σ = (σ1, . . . , σn), with N = {1, . . . , n}, is a strong Nash equilibrium if for each C ⊆ N
and set of strategies σ′C of C, there is i ∈ C such that

~σ %i (~σ−C, σ
′
C).

Then, in a strong Nash equilibrium a coalition of players C has an incentive to deviate if
and only if every player i in such a coalition has an incentive to deviate. Strong Nash
Equilibria are a refinement of Nash Equilibria, meaning that every sNE is also NE.
Indeed, as also the singleton coalitions deviations correspond to individual deviations.
The converse, instead, do not hold, as we can show by the following example.

Example 3. Consider a perfect information iBG 1 given by four player 1 , 2, 3, and 4,
controlling variables p, p, p, and p, respectively. Morover, the goals are γ1 = γ2 =
(p ↔ p)∧ (p ↔ p), and γ3 = γ4 = (¬p ↔ p)∧ (¬p ↔ p). Such a game has
a NE, that is, for example, the strategy profile assigning true to all the variables in the
first round. Indeed, player 1 and 2 satisfy their goal, while player 3 cannot deviate to
make the conjunct (¬p ↔ p) to be true, and, symmetrically player 4 cannot deviate
to make the conjunct (¬p ↔ p) to be true. However, there is no sNE in this game, as
in every strategy profile, either the coalition {1, 2} or {3, 4} has a beneficial deviation.

The concept of sNE can be also used to filter the stable outcomes from undesired
ones. For instance, we have the following example.

Example 4. Consider a two-player game in which agent 1 controls p, agent 2 controls
q, and they have the common objective p ∧ q. Clearly, the strategy profile assigning
false to both p and q is a NE, as no player can beneficially deviate from it. However,
this is not a sNE, as the two player can collaborate in order to achieve their goal.

Let sNE(G) be the set of strong Nash equilibria of G and let S-NONEMPTINESS be
NONEMPTINESS, but with respect to sNE(G). Then, we can prove the following.

Theorem 5. S-NONEMPTINESS for two-player SRMLI games with LTL goals is
2EXPTIME-complete.

Proof. A two-player SRMLI game G has a strong Nash equilibrium if and only if G
has a Nash equilibrium. The (⇒) direction is trivial. For the other direction, (⇐), we
only need to check the case where |C| = 2 and neither player has its goal achieved. In
such a case, if there is a beneficial deviation where both players get their goals achieved,

1The reader might note that perfect information games are special cases of imperfect information games,
as well as iBGs are special cases of SRML games.
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say to a strategy profile σ′C = (σ′1, σ
′
2), then we obtain a profile that is, in particular,

both a Nash equilibrium and a strong Nash equilibrium—as both players get their goals
achieved. For hardness, one can use essentially the same reduction used in the Nash
equilibrium case since in such a reactive modules game there is no strategy profile
where both m1 and m2 get their goals achieved—making impossible a joint beneficial
deviation, i.e., all possible beneficial deviations are one-player deviations as in the Nash
equilibrium case.

What we can learn from (the proof of) Theorem 5 is that cooperation in this setting
does not help from the point of view of the existence of equilibria. Instead, it may
help to obtain better equilibria. This is because if there is a profile that is not a strong
Nash equilibrium but it is a Nash equilibrium, necessarily, it is one where neither player
achieves its goal. However, as such a profile is not a strong Nash equilibrium, there
must be another one where both achieve their goals.

6. Games with Memoryless Nash Equilibria

Another way of obtaining a class of SRMLI games that is decidable is by restricting
the kind of strategies the players in the game are allowed to use, rather than by restricting
the number of players in the game. This is the issue that we study in this section. We
consider the class of games where a Nash equilibrium strategy profile can be defined
only in terms of memoryless strategies. We say that a strategy σi = (Qi, q


i , δi, τi)

for a module mi is memoryless if Q = 2Visi and, for all q ∈ Q and v ∈ Visi, it holds
that δi(q, v) = v. As one might expect, since we restrict the set of strategies to the
memoryless, the set of NE in the game might change. This is the case for a class of
games we introduce in the following. For a given natural number n ∈ N, consider the
LTL formula for the n-delayed matching pennies game:

MPn = (p → (Xnp ∧
∧

1≤k<n

Xk¬p)) ∧ (¬p → (Xn¬p ∧
∧

1≤k<n

Xkp)).

Then consider a two-player game in which agent 1 controls p and player 2 controls p.
Moreover, Vis = {p} and Vis = {p} and the goals are γ1 = MP2 and γ2 = ¬MP2,
respectively. It is easy to see that, in the general case, there is no NE, as in every
outcome, the non satisfied player can beneficially deviate. Indeed, observe that, since
player 1 cannot see the values of p, he can only guess it at the first round and play
accordingly. This gives player 2 the possibility to deviate from a non satisfying outcome.
However, observe that, since the visibility set of players is given by the variables under
their control, the only two possible memoryless strategies for player 1 are the one setting
p constantly to true and the one setting p constantly to false, which can clearly never
satisfy MP2. Hence, in the memoryless strategies assumption, all the outcomes satisfy
¬MP2 and there is no beneficial deviation for player 1, that is, every outcome is a NE.
In the paper, however, we restrict to memoryless the strategies that players use in the
strategy profile, but not the ones that a player may use to beneficially deviate.

In this section, we show that the NONEMPTINESS problem for this class of SRMLI
games is NEXPTIME-complete. The solution to this variant of the general problem is
given by the non-deterministic algorithm presented in Figure 5.
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Nonemptiness(G)
1. Guess ~σ
2. If ~σ ∈ NE(G) then return “yes”
3. return “no”

Figure 5: Algorithm to solve NONEMPTINESS in SRMLI games with Nash equilibria in memoryless strategies.

Whereas step 1 can be done in NEXPTIME, step 2 can be done in EXPTIME leading
to an NEXPTIME algorithm. Moreover, hardness in NEXPTIME follows from the fact
that the satisfiability problem for Dependency Quantified Boolean Formulae (DQBF)
can be reduced to NONEMPTINESS for this class of games. The non-deterministic
algorithm in Figure 5 relies on the following intermediate results.

Lemma 6. For a game G with memoryless Nash equilibria, if ~σ ∈ NE(G), for some
~σ = (σ1, . . . , σi, . . . , σn), then σi is at most exponential in |G|, for every σi ∈ ~σ.

Proof. First, construct the Kripke structure induced by G. Such a structure, denoted
by KG, is at most exponential in the size of G. Because we only consider (equilibria
in) memoryless strategies, such strategies cannot be bigger than |KG|, thus at most
exponential in the size of G, i.e., each σi is also at most exponential in the size of G.

Memoryless Membership(G, ~σ)
1. For all i ∈ N
2. If ~σ |= ¬γi then
3. For all σ∗i
4. If (~σ−i, σ

∗
i ) |= γi then

5. return “no”
6. return “yes”

Figure 6: Algorithm to solve MEMBERSHIP in SRMLI games with Nash equilibria in memoryless strategies.

Lemma 6 is used to do step 1 of the algorithm in Figure 5. In addition, the lemma
below—which relies on the fact that LTL model checking, say for an instance K |= ϕ
where K is a model and ϕ an LTL formula, is polynomial in |K| and exponential in
|ϕ|—is used to do step 2 of the algorithm.

Lemma 7. Let G = (A, γ1, . . . , γn) be a game with memoryless Nash equilibria and ~σ
a strategy profile in G. Checking whether ~σ ∈ NE(G) can be done in time exponential
in |A| and exponential in |γ1|+ . . .+ |γn|.

Proof. First of all, observe that checking whether ~σ |= ψ, for some LTL formula ψ,
can be done in time polynomial with respect to |KA|, the Kripke structure induced by
A, and exponential with respect to |ψ|. Moreover, recall that, for a fixed player i, the
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set of memoryless strategies is finite and every single strategy σi : 2Φ → 2Φi is of size
exponential with respect to the set of variables in the game, i.e., with respect to the size
of A. Then, we can adapt the usual algorithm to check membership of a strategy profile
in the set of Nash equilibria of a game as follows; see Figure 6 for the algorithm. The
cycle on line 3 runs an LTL model-checking procedure for a number of times that is
exponential in the size of the arena. Moreover, the cycle starting on line 1 bounds the
number of executions of line 3 to be linear in the number of agents. In addition to this,
the procedure on line 2 is again done using an LTL model-checking procedure, which
is executed n times. Then, it follows that the overall complexity of the algorithm is
exponential in both |A| and |γ1|+ . . .+ |γn|.

Then, Lemmas 6 and 7 can be used to show:

Theorem 6. NONEMPTINESS for SRMLI games with memoryless Nash equilibria is
NEXPTIME-complete.

Proof. This NONEMPTINESS problem is solved using the non-deterministic algorithm
in Figure 5. That the algorithm runs in NEXPTIME follows from the fact that if a
Nash equilibrium exists, due to Lemma 6, such a strategy profile can be guessed in
NEXPTIME and verified to be a Nash equilibrium in EXPTIME, using Lemma 7.

For hardness, we reduce from the satisfiability problem for DQBF, which is known
to be NEXPTIME-complete. The reduction is as follows. The DQBF satisfiability
problem relates to a 3 player game, containing players B (Black) and W1,W2 (White 1,
White 2). The white players form a team, attempting to beat the black player. The game
is played on a Boolean formula ϕ over variables X1 ∪ X2 ∪ Y1 ∪ Y2. Whereas the black
player has perfect information, Player Wi has visibility only of variables Xi ∪ Yi. The
game is played as follows:

• Player B chooses an assignment for the variables X1 ∪ X2;

• Player W1 chooses an assignment for variables Y1;

• Player W2 chooses an assignment for variables Y2;

• If the overall assignment for X1 ∪ X2 ∪ Y1 ∪ Y2 satisfies ϕ then black wins,
otherwise team white wins.

The question is then whether there is a winning strategy for team white in this game.
An important feature of this game, relevant to the reduction we want to produce, is
that it is that if team white has a winning strategy, then it has a memoryless winning
strategy which simply associates with each valuation for the variables in Xi a valuation
for the variables in Yi. Likewise, if team white does not have a winning strategy, the
black player has a memoryless winning strategy which simply assigns a valuation for
the variables in X1 ∪ X2.

Our reduction produces an SRMLI game with 3 players, N = {B,W1,W2}; as might
be guessed, each player corresponds to the player with the same name in the DQBF
instance. We let Φ = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ {p1, p2} ∪ Z where {p1, p2} is a set of new
Boolean variables as well as Z, which contains some variables that are used to define the
behaviour of the modules in the SRMLI game. Players are modelled with the modules
below, and goals are as follows:
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• γB = FGϕ;

• γW1
= (FG¬ϕ) ∨ (p1 ↔ p2);

• γW2
= (FG¬ϕ) ∨ ¬(p1 ↔ p2).

module B controls X1 ∪ X2 ∪ ZX1∪X2
∪ {doneB} under Φ

init
:: >; x := ⊥; . . . ; zx := >; . . . ; doneB := ⊥
update
:: zx ; x := ⊥; zx := ⊥
:: zx ; x := >; zx := ⊥
:: . . .
::
∧

x∈X1∪X2
¬zx ; doneB := >

such that (ZX1∪X2
∪ {doneB}) ⊆ Z. Moreover, the construction for players in the white

team is as follows.

module Wi controls Yi ∪ Zi ∪ {pi} under Φi ∪ Xi ∪ {doneB}
init
:: >; y := ⊥; . . . ; zy := >; . . . ; pi := ⊥
:: >; y := ⊥; . . . ; zy := >; . . . ; pi := >
update
:: (doneB ∧ zy) ; y := ⊥; zy := ⊥
:: (doneB ∧ zy) ; y := >; zy := ⊥
:: . . .

such that Zi ⊆ Z.
Clearly, the size of the modules is linear in the size of the input DQBF game. In

the above SRMLI system, module B starts, round by round, giving Boolean values to
the variables it controls until a final valuation with respect to X1 ∪ X2 is produced (in
whose case doneB is set to true). After that, the white team can start giving values to the
Boolean variables they control, under the visibility restrictions of the game. As with
the black module, a final valuation with respect to the variables in Y1 ∪ Y2 is reached.
The overall valuation can no longer be modified by any player. Such a valuation, which
either satisfies or not formula ϕ determines the outcome of the game. It is easy to
see that any (winning) memoryless strategy for the DQBF game, which we already
described, defines a memoryless strategy in our SRMLI game.

Given the above construction, it is not hard to check that the white team has a winning
strategy in the input game iff the constructed SRMLI game has a Nash equilibrium.

(⇒) Assume that team white has a winning strategy for ¬ϕ. Then, team white can use
that information to built a winning strategy for FG¬ϕ, that is, a profile (σW1

, σW2
)

such that the strategy profile ~σ = (σB, σW1
, σW2

) satisfies both γW1
and γW2

for
every strategy σB of the black player. Then, since γW1 and γW2 will be satisfied,
no white player will have an incentive to deviate. On the other hand, in this case,
the black player will not have its goal γB satisfied, but cannot beneficially deviate
since team white is playing a winning strategy for FG¬ϕ.
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(⇐) We prove the contrapositive statement: assume that team white does not have
a winning strategy for ϕ and show that in such a case the SRMLI game does
not have a Nash equilibrium. We will analyse all possible cases and show that
in each instance at least one of the players has a beneficial deviation. Let ~σ =
(σB, σW1

, σW2
) be an arbitrary strategy profile and assume first that ~σ |= FGϕ.

Then, exactly one of the two white players will not have its goal achieved and
a beneficial deviation but changing the value assigned to the variable pi that
it controls. If, on the other hand, ~σ |= FG¬ϕ, then the black player will not
have its goal γB satisfied, but can beneficially deviate to a strategy σ′B such that
(~σ−B, σ

′
B) |= γB since we know that team white does not have a winning strategy

for FG¬ϕ. This analysis covers all possible cases w.r.t. ϕ and p, q.

Then, the game is NEXPTIME-hard with three players and memoryless strategies.
Whether the game is NEXPTIME-hard even with two players is an open question.

7. Bounded Rationality

Another interesting game-theoretic setting, which is commonly found in the liter-
ature, is the one where we assume that the agents in the system have only “bounded
rationality”. This is modelled, for instance, by assuming that the number of rounds of the
game is finite or that strategies are of some bounded size. From the computational point
of view, a natural assumption is that strategies are at most polynomial in the size of the
module specifications they are associated with, i.e., that the set Qi is of size polynomial
with respect to the size of the module mi. As in the case of memoryless strategies, also
for polynomially bounded strategies, we have that the n-delayed matching pennies game
can have more Nash equilibria for a sufficiently large n. Indeed, assuming n ≥ 2m , we
have that player 1 is not capable of keep track of the game from the beginning up to the
n-th round, in which he has to switch the value of p accordingly. This makes every
outcome generated by polynomially bounded strategies to satisfy ¬MPn and not having
beneficial deviations for player 1, i.e., to be a Nash equilibrium.

Under the polynomially bounded strategies assumption, we can use the algorithm in
Figure 5 to show that these games can be solved in PSPACE. Indeed, we have:

Theorem 7. NONEMPTINESS for SRMLI games G with strategies polynomially bounded
by |G| is PSPACE-complete.

Proof. Since strategies are polynomially bounded, step 1 can be done in NPSPACE by
guessing ~σ. Furthermore, step 2 can also be done in NPSPACE: whenever a goal γj is
not satisfied by ~σ, we can check in NSPACE if there is a polynomially bounded strategy
σ′j such that ρ(~σ−j, σ

′
j ) |= γj.

For hardness, we use a reduction from the LTL model checking problem for com-
pressed words [16]. We first recall that a compressed word

w = wi
1 . . .w

j
m−1(wk

m)ω

represents the “uncompressed” infinite word

w1
1 . . .w

i
1 . . .w

1
m−1 . . .w

j
m−1w1

m . . .w
k
mw1

m . . .w
k
m . . .
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where wx
y is the yth finite subword of w which is repeated x times. Then, an infinite word

w is built using m finite subwords from which the mth subword is repeated infinitely
often. We can assume that the “counters” i, . . . , j, k are given in binary and that the
word w is over the alphabet of symbols {⊥,>}. The LTL model checking problem for
an LTL formula ϕ and a compressed word w asks whether w |= ϕ. Such a problem is
PSPACE-complete. A reduction of this problem to the existence of Nash equilibria in
an SRMLI game with polynomially bounded strategies is as follows.

We build a game where we define two modules, namely mx and my for each wx
y. The

first module will implement a counter for x and the second module will implement the
yth subword of w. We also define three additional modules, namely mw, mp, mq, which
will be used to build w and to ensure that a Nash equilibrium exists if, and only if, w
satisfies ϕ in the input problem. The definition of such modules is as given below and
the goals of the modules are as follows:

• γmx = >, for each module mx with x ∈ {i, . . . , j, k};

• γmy = >, for each module my with y ∈ {1, . . . ,m};

• γw = Xϕ;

• γp = γw ∨ (p↔ q);

• γq = γw ∨ ¬(p↔ q).

module mp controls {p} under Φ
init
:: >; p := ⊥
:: >; p := >
update
:: >; skip

module mq controls {q} under Φ
init
:: >; q := ⊥
:: >; q := >
update
:: >; skip

module mw controls {b} under Φ
init
:: >; b := ⊥
update
:: subw1 ; b := b1

...
:: subwm ; b := bm
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module mx controls {x|x|, . . . , x1} under Φ
init
:: >; x|x| := ⊥; . . . ; x1 := ⊥
update
:: subwy ∧ ¬ψx ∧ ¬xt ∧

∧
c<t xc ;

xt := >; xt−1 := ⊥; xt−2 := ⊥; . . .
...
:: subwy ∧ ψx ; x|x| := ⊥; . . . ; x1 := ⊥

where t ∈ {1, . . . , |x|} and formula ψx is an abbreviation of the representation in binary
of counter x using variables in {x|x|, . . . , x1}. For instance, if x is a counter to 4, then
ψx = x3 ∧ ¬x2 ∧ ¬x1 since the natural number 4 is written 100 in binary.

module my controls {by, subwy, doney, bit|wy|, . . . , bit1} under Φ
init
:: >; by := wx

y[1]; subwy = bool; doney = ⊥;
bit|wy| := ⊥; . . . ; bit1 := >

update
:: subwy ∧ ¬ψx ∧ bit1 := >;

by := wx
y[1]; bit1 := ⊥; bit2 := >

...
:: subwy ∧ ¬ψx ∧ bitwy := >;

by := wx
y[|wy|]; bit|wy| := ⊥; bit1 := >

::
∧

c<y donec ∧ ¬subwy ; subwy = >
:: ψx ; doney = >; subwy = ⊥

where wx
y[l] is the lth symbol of the finite sequence wx

y and bool ∈ {⊥,>} is a Boolean
value that depends on w. In particular, it is > for m1 and ⊥ for all other “subword”
modules my. Also, the module my does not contain the last update rule since the subword
generated by such a module must be repeated infinitely often, i.e., such a module “is
never done” which is modelled by the fact that once the Boolean variable subwm

becomes true, it remains true forever after.
The SRMLI system is designed so that each module my outputs, using by, the symbols,

either ⊥ or >, in wx
y and it does so x number of times, which are counted using mx.

Moreover, the module mw outputs, using b, the symbol corresponding to the right
subword at each time point, which is known to mw via the variables subwy. Indeed, the
goal γw of mw is over b. The final key observation is that in every round of the game up
to one update rule of each module is enabled for execution, which can be used to define
polynomially bounded strategies.

Since all components of the game are now in place, the remainder of the proof
simply checks that w |= ϕ if and only if the game has a Nash equilibrium. We prove the
statement by checking that both directions hold.

(⇒) We assume that w |= ϕ. Then, the only infinite run with respect to b, which
we denote by ρw, induced by the game is ρw = ⊥w[1]w[2] . . .. Therefore, since
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w |= ϕ we know that ρw |= Xϕ and that ρ|Φ\{p,q}, the unique run restricted to
Φ \ {p, q} and induced by the game also satisfies Xϕ, that is, we also know that
any of the four possible different runs ρ of the game satisfy that ρ |= γw. Then,
all modules have their goals achieved and we know that every strategy profile ~σ
such that ρ = ρ(~σ) is a Nash equilibrium, and more importantly must exist.

(⇐) We prove the contrapositive, that is we assume w 6|= ϕ and show that in such
a case the game does not have a Nash equilibrium. Reasoning as in the (⇒)
direction, we find that if w 6|= ϕ then ρ 6|= γw, for every run of the game. Then,
player mw does not get its goal achieved. As a consequence, in every outcome
of the game, either mp or mq does not get its goal achieved either and have a
beneficial deviation; hence, the game does not have a Nash equilibrium.

Note that the problem is already PSPACE-hard for games with perfect information.

8. Local Reasoning

Another decidable, and simple, class of SRMLI games with LTL goals where the
reasoning power of the players is also restricted is the class of games where only myopic
strategies are allowed. Such games, which we call myopic SRMLI games, can be solved
in EXPSPACE. A particular feature of this class of games is that in this setting players
cannot be informed by the behaviour of other players in the game. As a consequence, all
reasoning must be done in a purely local way. Indeed, these are “zero-knowledge” games
with respect to the information that could be obtained from each module’s environment,
that is, from the other modules in the system.

Firstly, given a myopic SRMLI game G = (A, γ1, . . . , γn), let ϕA =
∧

i∈N TH(mi)
be the LTL formula characterising the behaviour of the modules in A. Now, to check if
there is a strategy profile in myopic strategies we check if the following Quantified LTL
(QPTL) formula is satisfiable:

∨
W⊆N

(
ϕA ∧ ∃Φ1, . . . ,Φn.

( ∧
i∈W

γi ∧
∧

j∈N\W

(
∀Φj.¬γj

)))

such that ∃Φi stands for ∃p1
i , . . . , p

|Φi|
i , where Φi is the set of Boolean variables

{p1
i , . . . , p

|Φi|
i }, and similarly for ∀Φi. Such a formula is in ΣQPTL

2 . Therefore, by [17],
its satisfiability problem is in EXPSPACE and has an ω-regular (ultimately periodic)
model. Moreover, the formula is satisfied by all runs satisfying the modules’ specifica-
tions (given by ϕA) where a set of “winners” (given by W) get their goals achieved and
a set of “losers” (given by N \W) cannot deviate. The semantics of QPTL [17] ensures
that models of such a formula have a game interpretation using the definition of myopic
strategies. Finally, for hardness, we use a reduction from the satisfiability problem of
ΣQPTL

2 formulae. Formally, we have:

Theorem 8. NONEMPTINESS for myopic SRMLI games is EXPSPACE-complete.
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Proof. Membership in EXPSPACE is proved as follows. Firstly, given a myopic SRMLI
game G = (A, γ1, . . . , γn), let ϕA =

∧
i∈N TH(mi) be the LTL formula characterising

the behaviour of the modules in A. Now, to check if there is a strategy profile in myopic
strategies we check if the following Quantified LTL (QPTL) formula is satisfiable:

∨
W⊆N

(
ϕA ∧ ∃Φ1, . . . ,Φn.

( ∧
i∈W

γi ∧
∧

j∈N\W

(
∀Φj.¬γj

)))

such that ∃Φi stands for ∃p1
i , . . . , p

|Φi|
i , where Φi is the set of Boolean variables

{p1
i , . . . , p

|Φi|
i }, and similarly for ∀Φi. Such a formula is in ΣQPTL

2 . Then, by [17],
its satisfiability problem is in EXPSPACE and has an ω-regular (ultimately periodic)
model. Moreover, the formula is satisfied by all runs satisfying the modules’ specifica-
tions (given by ϕA) where a set of “winners” (given by W) get their goals achieved and
a set of “losers” (given by N \W) cannot deviate. The semantics of QPTL [17] ensures
that models of such a formula have a game interpretation using myopic strategies.

Now, for hardness, we provide a reduction from the satisfiability problem of ΣQPTL
2

formulae. Let ϕ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ be a ΣQPTL
2 formula with~x = {x1, . . . , xn}

being the existentially quantified variables and~y = {y1, . . . , ym} being the universally
quantified ones, and ψ being an LTL formula over those variables.

Then, consider the 4-player game G in which Player 1 controls~x, Player 2 controls
~y, while Player 3 and Player 4 control two additional variables p and q, respectively.
Moreover, the respective goals are as follows: γ1 = ψ, γ2 = ¬ψ, γ3 = ψ ∨ (p ↔ q),
and γ4 = ψ ∨ (¬p ↔ q). We now show by double implication that ϕ is satisfiable if
and only if G admits a myopic Nash Equilibrium.

(⇒) First, assume that ϕ is satisfiable. Then, there exists an infinite sequence ρ~x of
evaluations on~x satisfying ∀y1 . . . ∀ymψ, i.e., such that every induced history ρ satisfies
ψ. Moreover, we can assume that ρ~x is generated by a Moore machine A~x. Observe that
the output produced by such a machine does not depend on the evaluations of ρ~y. Thus,
A~x is a myopic strategy for Player 1 in G. At this point, consider a myopic strategy
profile ~σ in G such that σ1 = A~x. It holds that ~σ |= ψ. This proves that Player 1, 3, and
4 do not have any incentive to deviate from ~σ. In addition to this, since Player 2 is not
satisfied, assume by contradiction that a deviation σ∗2 is such that (~σ−2, σ

∗
2) |= ¬ψ. This

implies that the same run ρ∗ does not satisfy ψ and so A~x does not satisfy ∀y1 . . . ∀ymψ,
which is a contradiction.

(⇐) On the other hand, assume that G has a myopic Nash equilibrium ~σ. Then, it
holds that ~σ |= ψ. Indeed, otherwise either Player 3 or Player 4 would deviate on the
associated/internal “matching pennies” game played with variables p and q. Now, since
~σ is myopic, then in particular σ1 is so. Then, the evaluation sequence ρ~x generated by
σ1 is such that ρ~x |= ∀y1 . . . ∀ymψ. Indeed, assume by contradiction that there exists ρ~y
such that the joint run ρ = (ρ~x, ρ~y) is such that ρ |= ¬ψ. Then, the myopic strategy σ2

generating ρ~y is a beneficial deviation from ~σ for Player 2, which contradicts the fact
that ~σ is a Nash equilibrium.

34



9. Refinement and Preservation of Equilibria

In this section, we show that the monotonic increase of players’ knowledge may
only induce an increase in the number of strategy profiles in the set of Nash equilibria
of a game with imperfect information, if any. For instance, this situation is illustrated
with the following example.

Example 5. Consider the two-player SRMLI game G = (Φ = {p, q},m1,m2, γ1 =
p ↔ Xq, γ2 = p ↔ X¬q) such that module m1/m2 controls variable p/q and has
visibility set Φ1/Φ2 and can set p/q to any Boolean value at all rounds in the game.
Moreover, consider the game G′, defined just as G save that m2 has visibility set Φ. It is
easy to see that whereas NE(G) = ∅, we have that NE(G′) 6= ∅.

More specifically, in this section, we present a general result about the preservation
of Nash equilibria, provided that no player’s knowledge about the overall system is
decreased. A key technical result to prove this is that a player’s deviation is a “zero-
knowledge” process, which can be implemented in our game-theoretic framework using
only myopic strategies, as stated by the following lemma.

Lemma 8. Let G be an SRMLI game and ~σ /∈ NE(G). Then, there is a player j and a
myopic strategy σ′j for player j such that ρ(~σ) 6|= γj and ρ(~σ−j, σ

′
j ) |= γj.

Proof. Since ~σ 6∈ NE(G), because of the definition of Nash equilibrium, we know
that there is a player j which has a strategy σ∗j such that ρ(~σ−j, σ

∗
j ) |= γj, while

ρ(~σ) 6|= γj. And because ρ(~σ−j, σ
∗
j ) is an ω-word, due to Lemma 3, we know that

there is also a myopic strategy, say σ′j such that ρ(~σ−j, σ
∗
j ) = ρ(~σ−j, σ

′
j ), that is, with

ρ(~σ−j, σ
′
j ) |= γj.

Lemma 8 shows that the power that a module mj has to beneficially deviate from a
strategy profile is not due to the knowledge that such a module has about the variables
in the system, as such a deviation can always be turned into a myopic (zero-knowledge)
strategy. On the other hand, the ability of players to correctly account for other players’
deviations strongly relies on their visibility of the actions performed by deviating agents.
For a deeper discussion about this latter property, we refer the interested reader to [14].

This result has an effect on the preservation of Nash Equilibria. Indeed, the lack of
visibility, on one hand, does not affect the ability of a player to beneficially deviate, but,
on the other hand, gives agents less power to successfully prevent beneficial deviations.

Formally, the next theorem about the preservation of Nash equilibria holds.

Theorem 9. Let G and G′ be two SRMLI games, with

• G = ((N,Φ,m1, . . . ,mn), γ1, . . . , γn) and

• G′ = ((N,Φ,m′1, . . . ,m
′
n), γ1, . . . , γn),

such that for each i ∈ N we have mi =〈Φi,Visi, Ii,Ui〉, and m′i =〈Φi,Visi′, Ii,Ui〉, and
Visi ⊆ Visi′. Then,

NE(G) ⊆ NE(G′).
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Proof. We prove that, under the assumptions of the theorem, if ~σ ∈ NE(G) then
~σ ∈ NE(G′). First, observe that if ~σ is a strategy profile in G, then so is in G′, since
for each player j and strategy σj of j in G, such a strategy σj is also available to j in G′.
Now, suppose, for a contradiction, that ~σ ∈ NE(G) and ~σ /∈ NE(G′). Then, because
of Lemma 8, we know that there is a player j and a myopic strategy σ′j of j such that
ρ(~σ) 6|= γj and ρ(~σ−j, σ

′
j ) |= γj. And, due to Lemma 4, we know that σ′j is a myopic

strategy that is available to player j in both G and G′. However, this means that player j
could also beneficially deviate in G and therefore that ~σ is not a Nash equilibrium of G,
which is a contradiction.

Since we know that NONEMPTINESS with LTL goals is decidable in 2EXPTIME
for perfect-information games, but undecidable for imperfect-information games, one
can also show that, in general, the other direction, namely in which NE(G′) ⊆ NE(G),
does not hold, as otherwise we would have NE(G) = NE(G′) under the assumptions
of the theorem. NONEMPTINESS problem using Theorem 9 and letting each Visi be Φ,
with i ∈ N, which is not possible. Alternatively, a counter-example to such an equality
can be shown, e.g., as the one given by Example 5 above.

10. Rational Verification

So far we have studied the decidability and complexity of NONEMPTINESS in various
scenarios, including general SRMLI games, iterated Boolean games with imperfect
information, and games with memoryless, myopic, and polynomially bounded strategies.
These results give a very comprehensive picture of how hard is to solve the main problem
related to rational verification [19], which is concerned with the game-theoretic analysis
and verification of concurrent and multi-agent systems modelled as multi-player games.

More specifically, rational verification consists three problems: NONEMPTINESS,
and the following two, which are formally stated for general SRMLI:

Given: SRMLI game G, LTL formula ϕ.
E-NASH: Does ∃~σ ∈ NE(G). ρ(~σ) |= ϕ hold?

Given: SRMLI game G, LTL formula ϕ.
A-NASH: Does ∀~σ ∈ NE(G). ρ(~σ) |= ϕ hold?

We now show that E-NASH can be reduced to NON-EMPTINESS, regardless of
whether the question is asked for SRMLI games or iterated Boolean games with imperfect
information. It should be noted that a reduction in the other direction is trivial, and
already known for games with perfect information [18]: NON-EMPTINESS is E-NASH
in case ϕ = >. Such a reduction takes constant time, as it does the one presented next.

Theorem 10. Let G be a game (either an iBGi or an SRMLI game) and ϕ be an LTL
formula. There is a game H (an iterated Boolean game with imperfect information or
an SRMLI game, correspondingly), of constant size in G, such that

NE(H) 6= ∅ if and only if ∃~σ ∈ NE(G) . ρ(~σ) |= ϕ
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Proof. Since the statement, and proof, uniformly applies to both iterated Boolean
games with imperfect information and SRMLI games, let us call G simply a game of
an iterated Boolean game with imperfect information or an SRMLI game. Now, let
H be the game G which in addition has two more agents, say n + 1 and n + 2, with
goals γn+1 = ϕ ∨ (p ↔ q) and γn+2 = ϕ ∨ ¬(p ↔ q), where Φn+1 = {p} and
Φn+2 = {q}, for two fresh Boolean variables p and q, and who have perfect information.
Also, for a given strategy profile ~σ, say in G/H, let ~σ′ be the strategy profile in H/G
that can be constructed from ~σ as follows. Let every agent j in H/G, with i = j, use
a strategy σ∗j that plays consistently with σi = (Qi, q0

i , δi, τi) in ~σ. Formally, such a
strategy σ∗j = (Qj, q0

j , δj, τj) is defined as follows: Qj = Qi; q0
j = q0

i ; τj = τi; and
δj(q, v ∪ v′) = δi(q, v), for every v ∈ V(Φ) and v′ ∈ V({p, q}). Moreover, let agents
n + 1 and n + 2 use any available strategy, say σn+1 and σn+2. Let ~σH be the strategy
profile (σ∗1 , . . . , σ

∗
n , σn+1, σn+2). Informally, ~σ′ adds/removes two agents to/from ~σ.

Now, we prove the statement by showing both implications.

For the right-to-left direction, suppose that, for some ~σ in G, we have ~σ ∈ NE(G)
and ρ(~σ) |= ϕ. Then,

ρ(~σ′) |= γn+1

and
ρ(~σ′) |= γn+2

for all strategies σn+1 and σn+2 in H. Obviously, if ~σ ∈ NE(G) then ~σ′ ∈ NE(H)
because no player can beneficially deviate and n + 1 and n + 2 will get their goals
satisfied since, in particular, ϕ must be satisfied.

Now, for the left-to-right direction, suppose that ~σ ∈ NE(H), for some ~σ in H.
Because of players n + 1 and n + 2, we know that

ρ(~σ) |= ϕ

in H. Then, it follows that
ρ(~σ′) |= ϕ

in G. Agents who get their goal achieved in H will necessarily get their goal achieved in
G. Moreover, agents who do not get their goal achieved in H do not have a beneficial
deviation in G. If they did such a beneficial deviation would also be possible in H, which
is impossible since ~σ ∈ NE(H). Therefore, ~σ′ ∈ NE(G) and ~σ′ |= ϕ in G, as required.
Finally, that H is of constant size in the size of the game G immediately follows from
the construction of H.

The other reduction, namely from A-NASH to NONEMPTINESS, goes via E-NASH.
This reduction is simple, and relies on the fact that A-NASH and E-NASH are (logically)
dual problems. Let G be a game and ϕ an LTL formula. To solve A-NASH with respect
to G and ϕ, we can simply ask if E-NASH for G and ¬ϕ can be answered negatively. If
it does, then, for all ~σ in NE(G) we have ρ(~σ) |= ϕ, either because NE(G) is empty or
because every ~σ in NE(G) satisfies ϕ, from which the claim follows.

Corollary 2. E-NASH and A-NASH for SRMLI and iBGi are undecidable.
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11. Related Work, Conclusions, and Future Work

Imperfect information in logic-based games. There is a long tradition in theoretical
computer science of using logic-based games to characterise complexity classes. For
example, [28] introduced a class of games called “PEEK” which are closely related
to Boolean satisfiability problems, for example showing that the existence of winning
strategies in a game called PEEK-G4, (which can be understood as a natural generalisa-
tion of Quantified Boolean Formulae), is EXPTIME-complete. Later [29] generalised
some of these PEEK games to handle imperfect information, and established complex-
ity and (un)decidability results for these games. A summary of our decidability and
complexity results from this viewpoint is given in Table 1.

General case Memoryless Poly. Bound. Myopic

n-Pl Undecidable NEXPTIME-c PSPACE-c EXPSPACE-c

2-Pl 2EXPTIME-c NEXPTIME PSPACE EXPSPACE

Table 1: Summary of results for n-player games (n-Pl) and 2-player games (2-Pl). Abbreviations, with X a
complexity class: X-c means X-complete and X means in X.

Imperfect information and Nash equilibrium in logics for strategic reasoning. Although
logics for games have been studied since at least the 1980s [30], recent interest in the area
was prompted by the development of Alternating-time Temporal Logic (ATL), a CTL-
like language for reasoning about cooperative strategic ability [31]. Variations of ATL
for imperfect information settings have subsequently been extensively studied [32, 33].

However, ATL provides no mechanism for naming strategies in the object language,
which limits its usefulness for reasoning about equilibria. Strategy Logic (SL) was
developed to rectify this omission: SL is closely related to ATL, but explicitly makes
it possible to name strategies in the object language, and to bind these strategies to
players [34, 35]. Using SL, for example, it is possible to express the existence of
Nash equilibria for games in which players have LTL goals. SL with incomplete
information was recently studied in [26] where a decidability result is given for games
with a “hierarchical” structure of information. As expected, SL formulae expressing the
existence of Nash equilibria in multi-player games do not possess such a hierarchical
structure of information since, as shown in this paper, the problem is undecidable.

Another logic with enough power to reason about Nash equilibrium in the presence
of imperfect information is ATL with strategy contexts [36]. The model checking
problem for this logic is non-elementary for games with perfect information and becomes
undecidable for games with imperfect information. However, in [36], a class of decidable
games has been identified: imperfect information games where all players have a
“uniform” amount of information. In other words, players in the game may have partial
information about the system under consideration, but all players must be able to
make the same observations on the system. Thus, as in the case of SL with imperfect
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information, it is not possible to reason about Nash equilibrium in all cases—as it should
be the case—but only in situations where the semantic constraint above mention holds.

In terms of the specific model that we use here (where the state of the system is
characterised via a set of Boolean variables, and imperfect information is defined by
assuming agents have access to only some subset of these variables), the closest work we
are aware of is by Van Der Hoek et al. [37]. They developed an extension to epistemic
logic with Kripke semantics, in which epistemic accessibility relations were defined
with respect to the variables that are visible to an agent. The same model was then used
with a dynamic component, making it possible to characterise the effects of revealing or
concealing variables [38].

Model/Module checking vs. equilibrium checking. Imperfect information is also studied
with respect to the model and module checking problems. These two problems can be
characterised by a two-player zero-sum game and as a consequence are decidable even
with imperfect information. However, checking the existence of a Nash equilibrium
is dramatically different if we consider three or more players instead of only two, as
in a model/module checking problem. Extensions of ATL, and other logics to reason
about strategic abilities in an imperfect information setting, with which module and
model checking problems can be studied can be found in [13, 39, 40]. In these papers,
a number of decidability results are provided. However, such decidability results are
not about the existence of Nash equilibria nor about multi-player games with imperfect
information in the general setting. For instance, the decidability result in [39], which
appears to be a particular case of our decidability result, is for two-player games, namely,
the case where one considers a zero-sum game and asks for the existence of a winning
strategy for one of the two players taking part in a module/model checking game.

Imperfect information in multi-player games. A great deal of work has been done
for two-player games with perfect information; see, e.g., [8]. In most cases these are
games on graphs where stochastic information is also allowed. However, results for
multi-player games are more scarce. A recent study detailing the difference between
two-player and multi-player games for games on graphs can be found in [41]. In this
paper, the authors study the decidability of checking whether a coalition of players
have a joint strategy to achieve some ω-regular goal. As in [26, 36, 13], it is shown
that the problem is decidable only if a particular pattern of partial information holds
between the players involved in the game, usually with some coalitions of players not
having incomparable amounts of information in the game. These results give insights
into how imperfect information affects the decidability of computing strategies in a
multi-player game, but are some distance from giving a conclusive indications as to
when checking the existence of a Nash equilibrium in a game can be decided, which
is the main problem we studied in the present paper. Also, as mentioned above, some
of these results hold in fact for games with infinite or randomized strategies, which are
different models from the one we used here.

Solving games with imperfect information. There is much work in the multi-agent
systems community on solving incomplete information games (e.g., poker), although
this work does not use logic [42]. The main challenge in this work is dealing with
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large search spaces: naive approaches fail even on the most trivial cases. It would be
interesting to explore if such problems can be addressed using logic-based methods—we
note that a great deal of techniques developed for verification, e.g., model checking,
have been usefully applied in similar settings. Other issues for future work on this
direction include more work on mapping out the complexity landscape of our games
(see Table 1), and on practical implementations; see, e.g., [43, 44, 45].

Models preceding SRMLI games. Two similar models of games were studied before
SRMLI games, namely, iterated Boolean games [18] and SRML games with perfect infor-
mation [12]. In both cases, checking the existence of Nash equilibria is a 2EXPTIME-
complete problem, as it is the case for two-player SRMLI games. In fact, the 2EXPTIME
lower bound holds even for two-player zero-sum games with LTL goals, i.e., even for
LTL synthesis [46]. The work presented in this paper differs from [18] and [12] in
a number of ways, not only in the fact that imperfect rather than perfect information
is studied. Firstly, the (positive) results obtained in [18, 12] rely on reductions to the
rational synthesis problem as studied in [47]. Contrarily, the (negative) results obtained
in this paper rely on the distributed synthesis problem as studied in [24]. Secondly,
the positive decidability results presented here for two-player games (with imperfect
information) rely on CTL∗ synthesis, and not in the automata constructions used for
SRML games with perfect information or for iterated Boolean games in [18, 12]. Thus,
the results presented in [18, 12] and those reported here are technically quite different.
Finally, in this paper, as we were interested in finding decidable cases when checking
for the existence of Nash equilibria, we studied games with simpler models of strategies,
namely, memoryless, myopic, and polynomially bounded. Instead, in [12], we focused
on the model theory underlying reactive modules games and explored goals given as
branching-time temporal specifications, in particular, expressing goals in CTL.
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