
Multi-Player Games with LDL Goals over Finite Traces

Julian Gutierrez1 , Giuseppe Perelli2† , Michael Wooldridge1

1Department of Computer Science, University of Oxford
2Department of Informatics, University of Leicester

Abstract

Linear Dynamic Logic on finite traces (LDLF) is a powerful logic for reasoning about
the behaviour of concurrent and multi-agent systems. In this paper, we investigate
techniques for both the characterisation and verification of equilibria in multi-player
games with goals/objectives expressed using logics based on LDLF. This study builds
upon a generalisation of Boolean games, a logic-based game model of multi-agent
systems where players have goals succinctly represented in a logical way. Because
LDLF goals are considered, in the settings we study—Reactive Modules games and
iterated Boolean games with goals over finite traces—players’ goals can be defined to
be regular properties while achieved in a finite, but arbitrarily large, trace. In particular,
using alternating automata, the paper investigates automata-theoretic approaches to the
characterisation and verification of (pure strategy Nash) equilibria, shows that the set of
Nash equilibria in multi-player games with LDLF objectives is regular, and provides
complexity results for the associated automata constructions.

Keywords: Games, Temporal Logic, Multi-Agent Systems, Formal Verification.

1. Introduction

Boolean games (BG [1]) are a logic-based model of multi-agent systems where
each agent/player i is associated with a goal, represented as a propositional logic (PL)
formula γi, and player i’s main purpose is to ensure that γi is satisfied. The strategies
and choices for each player i are defined with respect to a set of Boolean variables Φi,
drawn from an overall set of variables Φ. Player i is assumed to have unique control
over the variables in Φi, in that it can assign truth values to these variables in any way it
chooses. Strategic concerns arise in Boolean games as the satisfaction of player i’s goal
γi can depend on the variables controlled by other players.

Reactive Modules games (RMG [2]) and iterated Boolean games (iBG [3]) gener-
alise Boolean games by making players interact with each other for infinitely many
rounds. As in the standard (one-shot or one-round) setting described above, there are
n players each of whom uniquely controls a subset of Boolean variables and defines
the achievement of a particular goal formula γi satisfied. However, in RMGs and iBGs,

†This work has been done while being affiliated to the University of Oxford.

Preprint submitted to Elsevier March 5, 2019

players’ goals γi are Linear Temporal Logic formulae (LTL [4]), rather than PL formu-
lae, which are naturally interpreted over infinite sequences of valuations of the variables
in Φ; thus, in both RMGs and iBGs, such infinite sequences of valuations represent the
plays of these games.1

Even though RMGs, iBGs, and conventional Boolean games are logic-based models
of multi-agent systems, they capture players’ goals—and therefore the desired behaviour
of the underlying multi-agent systems—in radically different ways: whereas Boolean
games have PL goals (which are naturally evaluated over one-round games), RMGs
and iBGs have LTL goals (which are naturally evaluated over games with infinitely
many rounds), encompassing two extremes of the landscape when considering repeated
games. However, there are games, systems, or situations where goals evaluated after an
unbounded, but certainly finite, number of rounds should, or must, be considered [5, 6].

In this paper we fill this gap and define and investigate multi-player games with
goals over finite traces, which are games where players’ goals can be satisfied/achieved
after a finite, but arbitrarily large, number of rounds. More specifically, the goals in
these games are given by Linear Dynamic Logic formulae (LDLF) which are evaluated
over finite sequences of valuations of the variables in Φ, that is, over finite traces of
valuations, instead of PL formulae (as in BGs) or LTL formulae (as in RMGs and
iBGs). Thus, while in game with goals over finite traces a play still is an infinite trace of
valuations, the satisfaction of a player’s goal may occur after an unbounded but finite
number of rounds. This sharply contrasts with the case of goals given by LTL formulae
(e.g., as in iBGs and RMGs), where it may be that a player’s objective is satisfied only
after considering the full infinite trace of valuations. This simple feature has significant
implications, since rather complex automata constructions for the analysis of logics and
games over infinite traces may become conceptually simpler under this new semantic
(logic-based) framework. More importantly, this key observation allows one to define
an automata model that exactly characterises the set of Nash equilibria in games with
goals given by regular objectives.

There are several reasons to consider LDLF goals. LDLF offers great expressive
power to our logic-based framework, which is indeed equivalent to monadic second-
order logic (MSO). On the other hand, LTL interpreted on finite traces (LTLF) is
as expressive as first-order logic (FOL) over finite traces [7]. This, in turn, implies
that, over finite traces, while with LTLF we can only describe star-free regular lan-
guages/properties, with LDLF we can describe all regular languages/properties—that
is, the properties and languages that can be described by regular expressions or finite
state automata. Nevertheless, the automata-theoretic approach and complexity results
for solving their related decision problems are equivalent, showing that the gain in
expressiveness is achieved for free. In this paper, we first define multi-player games
with LDLF goals and then investigate their main game-theoretic properties using a
new automata-theoretic approach to reasoning about Nash equilibria. Our technique to
reason about equilibria builds on automata constructions originally defined to reason
about LDLF formulae [7, 8]. Using this automata-theoretic technique we show a number
of subsequent verification and characterisation results, as follows.

1Although similar, iBGs and RMGs have a number of differences that will be discussed later in the paper.

2

Firstly, we show that checking whether some strategy profile is a Nash equilibrium
of a game is a PSPACE-complete problem, thus no harder than LDLF satisfiability [7].
Secondly, we focus on the NE-NONEMPTINESS problem—which asks for the existence
of a Nash equilibrium in a multi-player game succinctly specified by a set of Boolean
variables and LDLF formulae—and show that deciding if a multi-player game with
LDLF goals (whether RMG or iBG) has a Nash equilibrium can be solved in 2EXP-
TIME, thus no harder than solving LDLF synthesis [8]. The automata technique we use
for this problem also shows that the set of Nash equilibria in these games is ω-regular
and can therefore be characterised using alternating automata. Thirdly, we also provide
complexity results for the main decision problems related to the equilibrium analysis of
these games with respect to extensions and restrictions of the initially studied frame-
work. In particular, we show that a small extension of the goal language, which we call
Quantified-Prefix Linear Dynamic Logic (QPLDLF), has the same automata-theoretic
characteristics as LDLF, and so it can be studied using the same techniques. Moreover,
LDLF synthesis can be expressed in QPLDLF, ensuring 2EXPTIME-completeness.

Regarding restrictions on the general framework, we first focus on the problem of
reasoning with memoryless strategies. We show, using an automata construction, that
the set of Nash equilibria for this games is also ω-regular. However, an alternative
procedure for this problem, not based on automata, shows that improved complexity
can be obtained when compared with the standard automata techniques to reason about
LDLF. Another restriction on strategies considered in the paper is the one of myopic
strategies (which can be used to define all beneficial deviations in a game), in which
players perform actions that are independent of the current state of the game execution.
We show that games with such a restriction can be solved in EXPSPACE. We also
consider the much more stable solution concept of strong Nash equilibrium, where
sets of players in the game are allowed to jointly deviate, and provide an adaptation of
the automata-based approach that retains the language characterisation and complexity
properties of Nash equilibrium.

A key contribution of this work is that our automata-theoretic approach features two
novel properties, within the same reasoning framework. Firstly, it shows that checking
the existence of Nash equilibria can be reduced to a number of LDLF synthesis and
satisfiability problems—generalising ideas initially used to reason about LTL objec-
tives [9]. Secondly, our automata constructions provide reductions where not only
non-emptiness but also language equivalence is preserved. This additionally shows that
the set of Nash equilibria in infinite games with regular goals is an ω-regular set, to the
best of our knowledge, a semantic characterisation not previously known, and which
do not immediately follows from other representations of Nash equilibria—see, e.g.,
[10, 11, 12, 13, 14].

Motivation and Previous Work
While studying either multi-player games or LDLF is interesting in itself, from an

AI perspective, our main motivation comes from applications to multi-agent systems.
In particular, it has been shown that in many scenarios, for instance in the context of
planning AI systems [7, 8], while logics like LTL, or even LTL over finite traces (LTLF),
can be used to reason about the behaviour of agents in such AI systems, these logics
are not powerful enough to express in a satisfactory way the main features of agents

3

in such a context. In order to illustrate the use of LDLF, and motivate even further our
work, we will present an example in the next section, where some of the goals either
are not expressible in LTL2 or have a more intuitive specification in LDLF than in LTL.
Together with applications to planning AI systems (see [7, 8]), this is an example of
another instance where one can see an advantage of using a game with LDLF goals over
a game with LTL goals, instead.

Moreover, regarding previous work, while our model builds on RMGs [2] and
iBGs [3], where goals are given by LTL formulae, there are at least two main differences
with such work. Firstly, we study scenarios that consider memoryless and myopic
strategies, for which results on iBGs have not been investigated3. Secondly, and most
importantly, the tools developed in this paper to obtain most of our complexity and
characterisation results, are technically remarkably different from those used for RMGs
and iBGs, specifically, with respect to the techniques used in [16, 9, 2]. To be more
precise, for RMGs and iBGs the main question is reduced to rational synthesis [11],
whose solution goes via a parity automaton characterising formulae of an extension of
Chatterjee et al’s Strategy Logic [10], which leads to an automata construction that can
be further optimised if computing Nash equilibria is the only concern. Instead, in our
case, we reduce the problem directly to a question of automata constructed in a different
way. As a consequence, we provide a new set of automata constructions which do not
rely on nor relate to those used in rational synthesis, i.e., those used to solve RMGs and
iBGs. Our automata constructions are also different from those used by De Giacomo
and Vardi in [7, 8, 17], as described next.

In [7, 8, 17], De Giacomo and Vardi study the satisfiability and synthesis problems
for LDLF, with and without imperfect information. Because of the (game-theoretic)
nature of these two problems, their automata constructions deal with two-player zero-
sum turn-based scenarios only. Instead, in our case, we deal with multi-player general-
sum concurrent scenarios. This difference leads to a completely different technical
treatment/manipulation of the automata that can be initially constructed from LDLF

formulae. In fact, their automata constructions and ours are the same only up to the
point where LDLF formulae are translated into automata—that is, the very first step in a
long chain of constructions. Moreover, since De Giacomo and Vardi study synthesis
and satisfiability problems (represented by two-player games), whereas we study Nash
equilibria (in the context of multi-player games), we are required to have a different
technical treatment of the automata involved in the solution of the problems investigated
in this paper.

2. Formal Framework

2.1. Linear Dynamic Logic on Finite Traces

In this paper, we consider Linear Dynamic Logic on Finite Traces (LDLF), a
temporal logic introduced in [7] in order to reason about systems whose behaviour can

2This fact can be proved from the result that LDLF is equivalent to Monadic-Second Order logic, while
LTL is equivalent to First-Order Logic [7]

3Memoryless and myopic strategies were already studied for RMGs in [15].

4

be characterised by sets of finite traces, that is, finite sequences of valuation for the
variables of the system.

Definition 1 (Syntax). The syntax of LDLF is as follows:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈ρ〉ϕ | [ρ]ϕ
ρ := ψ | ϕ? | ρ+ ρ | ρ; ρ | ρ∗,

where p is an atomic proposition in Φ; ψ denotes a propositional formula over the
atomic propositions in Φ.

The symbol ρ denotes path expressions, which are regular expressions over proposi-
tional formulae ψ, with the addition of the test construct ϕ? from propositional dynamic
logic (PDL); and ϕ stands for LDLF formulae built by applying Boolean connectives
and the modal connectives. Tests are used to insert checks for satisfaction of additional
LDLF formulae.

The classic LTLF operators can be defined as follows: Xϕ ≡ 〈>〉ϕ; Fϕ ≡ 〈>∗〉ϕ;
Gϕ ≡ [>∗]ϕ; ϕ1 Uϕ2 ≡ 〈(ϕ1?)∗〉ϕ2.

LDLF formulae are interpreted over finite traces of the form π : {0, . . . , t} → 2Φ

and an integer i ∈ {0, . . . , t}.

Definition 2 (Semantics). The semantics of LDLF formulae is as follows:

• π, i |= ¬ϕ if π, i 6|= ϕ;

• π, i |= ϕ1 ∧ ϕ2 if π, i |= ϕ1 and π, i |= ϕ2;

• π, i |= ϕ1 ∨ ϕ2 if π, i |= ϕ1 or π, i |= ϕ2;

• π, i |= 〈α〉ϕ if there exists j ∈ {i, . . . , t} such that (i, j) ∈ R(α, π) and π, j |= ϕ;

• π, i |= [α]ϕ if for all j ∈ {i, . . . , t}, if (i, j) ∈ R(α, π) then π, j |= ϕ;

whereR(α, π) ⊆ N× N is recursively defined by

• R(ψ, π) = {(i, i + 1) : π(i) |= ψ};

• R(ϕ?, π) = {(i, i) : π, i |= ϕ};

• R(α1 + α2, π) = R(α1, π) ∪R(α2, π);

• R(α1;α2, π) = {(i, j) : ∃k ∈ {i, . . . , j}.(i, k) ∈ R(α1, π) ∧ (k, j) ∈ R(α2, π)};

• R(α∗, π) = {(i, i)} ∪ {(i, j) : ∃k ∈ {i, . . . , j}.(i, k) ∈ R(α, π) ∧ (k, j) ∈
R(α∗, π)}.

By π |= ϕ, we denote the fact that π, 0 |= ϕ.

5

2.2. Iterated Boolean Games

We now introduce iterated Boolean games with goals over finite traces (iBGF),
which build upon the framework of iBGs [3]. In an iBGF, players’ goals are given by
LDLF formulae interpreted on infinite paths of valuations over a given set of Boolean
variables.

An iBGF is a tuple G =〈N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn〉, where N = {1, . . . , n} is a
set of players, Φ is a set of Boolean variables, partitioned into n sets Φ1, . . . ,Φn, and
the goals γ1, . . . , γn of the game are LDLF formulae over Φ. In an iBGF each player i
is assumed to control a set of propositional variables Φi, in the sense that player i has
the power to set the values (true “>” or false “⊥”) of each of the variables in Φi. An
action for player i is a possible valuation vi ∈ 2Φi . An action vector ~v =〈v1, . . . vn〉 is a
collection of actions, one for each player in the game. Every action vector determines
an overall valuation for the variables in Φ =

⋃n
i=1 Φi of the game. An iBGF is played

for an infinite number of rounds, as an iBG, but the goals of the game, which are LDLF

formulae, are interpreted on finite traces of such an infinite run. As a consequence, the
satisfaction of a player’s goal in the game must occur after a finite, yet arbitrarily large,
number of rounds. Due to this, we need to define how an LDLF formula is satisfied on
an iBGF. The most natural way to do so, also implicitly followed in [8], is to say that
an infinite play π∞4 satisfies an LDLF formula ϕ if and only if there exists k ∈ N such
that the prefix up to k of π∞, denoted by π∞<k, satisfies ϕ, i.e., π∞<k |= ϕ. We also write
π∞ |= ϕ if there is k ∈ N such that π∞<k |= ϕ.

Observe that this definition allows a formula and its negation to be satisfied on the
same infinite play. Consider, for example, the LDLF formula ϕ = 〈>∗〉p, which is
satisfied by all and only finite traces ending with a state labelled by p, and the infinite
play π∞ = (p̄p)ω which toggles the value of p infinitely often. Clearly, ϕ is satisfied
on every prefix of π∞ of even length, while ¬ϕ is satisfied on every prefix of π∞ of
odd length. Thus, we obtain that π∞ |= ϕ and π∞ |= ¬ϕ. This means that the notion
of satisfaction given by π∞ |= ¬ϕ cannot be used in place of π∞ 6|= ϕ, as they are not
equivalent. We discuss this later in the paper, and show that a small extension of LDLF,
which allows one to quantify over finite plays in a game, can be used to write formulae
ψ that equals to the non-satisfaction of ϕ, i.e., where π∞ |= ψ if and only if π∞ 6|= ϕ.

Observe that the set of models of an LDLF formula ϕ is of the form α · (2Φ)ω , with
α representing the set of finite traces satisfying ϕ. In [7] it has been proven that α can be
represented by a regular expression. This implies, as shown later, that the set of infinite
plays satisfying an LDLF formula can be described in terms of an nondeterministic
Büchi word automaton (NBW) built upon the nondeterministic finite word automaton
(NFW) accepting α, in which accepting states are constructed so that they are sinks with
a self-loop. This makes the expressive power of LDLF be incomparable with that of
LTL when considering infinite words—i.e., infinite plays. Indeed, on the one hand, it is
known that LTL cannot express the ω-regular expression (p · 2Φ)∗ · (2Φ)ω [18], and,
on the other hand, LDLF cannot express the LTL formula GFp (“always eventually”
p), for which every NBW accepting the set of models cannot be of the form described

4In this paper, we denote the infinite plays by π∞ in order to distinguish them from the finite plays,
simply denoted by π.

6

above. Now, in order to illustrate the concepts introduced so far, and further motivate
the iBGF framework, we present an example where the need for LDLF goals plays an
essential role.

Example 1. Consider a file-sharing network composed by a protocol manager and 2
clients who want to share file1 of size n1 packets and file2 of size n2 packets, respectively.
The clients want to eventually download the other client’s file, while the protocol
manager wants this transfer of information to happen in a fair way. For instance,
the manager wants client 1 to always upload in odd time-steps of the communication,
while client 2 to always upload in the even time-steps of the communication protocol.
Moreover, the download of a given file can be marked as completed only after the whole
number of its packets has been uploaded by the other party.

We can represent this protocol by means of a three agent game with N = {0, 1, 2}
in which Φ0 = {d1, d2}, Φ1 = {u1}, and Φ2 = {u2}. Variable ui being true means
that a single packet of filei has been uploaded by agent i, while variable di being
true means that the download of filei has been completed. Regarding the goals of
the agents, we have the following (LDLF) formulae. The two clients 1 and 2 want
to eventually download file2 and file1, respectively. Thus, we have γ1 = 〈>∗〉d2 and
γ2 = 〈>∗〉d1. Regarding the goal γ0 of the protocol manager, this has to include
several requirements. First of all, it requires that client 1 always uploads in odd
time-steps until the download of file1 has been completed, while client 2 does the
same on even time-steps. We can represent these properties with the following LDLF

formulae: γupl1 = 〈(u1;>)∗〉d1 and γupl2 = 〈(>; u2)∗〉d2. Note that client 1 has no
requirement on the even time-steps, as neither client 2 on odd time-steps. The reader
might notice that the properties γupl1 and γupl2 can be represented neither in LTL
nor in LTLF, which is the finite trace version of LTL [18]. In addition to this, the
protocol manager is in charge of marking the files as completely downloaded at the
right time of the execution. This means that variable di has to be set to true once the
whole amount of packets of filei has been uploaded and not before. We can specify
this requirement with the following LDLF formulae: γcom1

= [((¬u1)∗; u1)n1]d1 and
γcom2 = [((¬u2)∗; u2)n2]d2. In order to avoid that the protocol manager wrongly marks
the download of a file as completed, we also have the following requirements: γincom1 =∧

n<n1 ¬〈((¬u1)∗; u1; (¬u1)∗)n〉d1 and γincom2
=
∧

n<n2 ¬〈((¬u2)∗; u2; (¬u2)∗)n〉d2.
The goal of the protocol manager is therefore given by the conjunction of all these
conditions: γ0 = γupl1 ∧ γupl2 ∧ γcom1

∧ γcom2
∧ γincom1

∧ γincom2
. To see that the system

we have just described/designed has a stable behaviour, from a game-theoretic point of
view, we need the concepts of strategies and Nash equilibria, which are introduced next.
Then, we will review this example again later on.

2.3. Simple Reactive Modules Language Games

Simple Reactive Modules [19] is a model specification language that is based on
Reactive Modules [20] and has been used to describe multi-player games with LTL
goals [15, 2]. Reactive Modules games (RMG) are an extension of iBGs in which one
can specify constraints on the power that a player has over the variables that such a

7

player controls5. In addition, one can specify multi-player games directly in a high-
level description language (which one can then use as the input of a verification tool
– Reactive Modules are used, e.g., in MOCHA [21] and PRISM [22]), which is more
convenient from a user point of view for modelling purposes.

In an RMG, an agent is mapped to a reactive module, a machinery that dynamically
specifies the choices that are available to the associated agent. Formally, a reactive
module consists of:

(i) an interface, which defines the module’s name and the set of Boolean variables
under the control of the module; and

(ii) a number of guarded commands, which define the choices available to the module
at every state.

Guarded commands are of two kinds: those used for initialising the variables under
the module’s control (init guarded commands), and those for updating these variables
subsequently (update guarded commands). A guarded command has two parts: a
condition part (the “guard”) and an action part, which defines how to update the value of
(some of) the variables under the control of a module. The intuitive reading of a guarded
command ϕ -> a is “if the condition ϕ is satisfied, then one of the choices available
to the module is to execute the action a”. We note that the truth of the guard ϕ does not
mean that a will be executed: only that such a command is enabled for execution—it
may be chosen.

Formally, a guarded command g over the set of Boolean variables Φ is an expression

ϕ -> x1 := ψ1; · · · ; xk := ψk

where ϕ (the guard) is a propositional logic formula over Φ, each xi is a controlled
variable, and each ψi is a propositional logic formula over Φ. Let guard(g) denote the
guard of g. Thus, in the above rule, guard(g) = ϕ. We require that no variable appears
on the left hand side of two assignment statements in the same guarded command. We
say that x1, . . . , xk are the controlled variables of g, and denote this set by ctr(g). If no
guarded command of a module is enabled, the values of all variables in ctr(g) are left
unchanged; in SRML notation, if needed, skip will refer to this particular case.

Formally, an SRML module, mi, is defined as a triple:

mi =〈Φi, Ii,Ui〉,

where:

• Φi ⊆ Φ is the (finite) set of variables controlled by mi;

• Ii is a (finite) set of initialisation guarded commands, such that for all g ∈ Ii, we
have ctr(g) ⊆ Φi; and

5Iterated Boolean Games result in the special case of a RMG in which no constraint is specified for every
agent.

8

• Ui is a (finite) set of update guarded commands, such that for all g ∈ Ui, we have
ctr(g) ⊆ Φi.

Modules can be composed in an intersection manner as follows. For two modules
m1 = (Φ1, I1,U1) and m2 = (Φ2, I2,U2) with Φ1 ∩ Φ2 = ∅, the product module is
m1 ⊗ m2 = (Φ1 ∪ Φ2, I1 ⊗ I2,U1 ⊗ U2) where the ⊗-operator over sets of guards G1

and G2 is defined as the set of guards g such that there exist g1 ∈ G1 and g2 ∈ G2

of the form ϕ1 -> x1
1 := ψ1

1 ; · · · ; x1
k := ψ1

k1 and ϕ2 -> x2
1 := ψ2

1 ; · · · ; x2
k := ψ2

k1 ,
respectively, such that g is of the form:

ϕ1 ∧ ϕ2 -> x1
1 := ψ1

1 ; · · · ; x1
k := ψ1

k1 ; x2
1 := ψ2

1 ; · · · ; x2
k := ψ2

k1

An SRML game over LDLF goals (RMGF) is then defined to be a tuple:

G =〈N,Φ,M, η, γ1, . . . , γn〉

where N = {1, . . . , n} is a set of agents, Φ is a set of Boolean variables, M =
{m1, . . .mM} is a set of modules such that Φm1 , . . .ΦmM forms a partition of Φ (so
every variable in Φ is controlled by some module, and no variable is controlled by more
than one module), and η : M → N is a function assigning a module to an agent. Finally
γi is an LDLF formula associated to agent i.

SRML games can be seen as an extension of iBGs in which the strategic power of
agents is not apriori fixed but flexibly allocated according to the evolution of the game.
Typically, modules can be used to enforce or prevent agents to adopt a desired/undesired
behaviour. As an example, consider the module toggle described below:

module toggle controls {p}
init
[] > -> p := >;
[] > -> p := >;
update
[] p -> p := ⊥;
[] ¬p -> p := >

A player associated to this module is left free to set the value of p on the first round,
but then is forced to toggle its value at every round. This kind of constraint on the
strategic power of the player associated with agent toggle cannot be specified in iBGs.

When an agent i is associated to the set of modules η−1(i), then, it can control all
the variables that are associated to some module in η−1(i). Moreover, at every step
of the execution and for every module, it can use one and only one active guarded
command. Therefore, every game G is equivalent to a game G′ where every agent i is
associated to the module

⊗
mi∈η−1(i) mi. Such translation from G to G′ might produce

an exponential blow-up in the representation. However, it is not hard to see that all the
techniques used in this paper can be easily applied to a RMGF game with more than a
module associated to an agent, thus avoiding this representation expansion and blow-up
in the complexity. For simplicity, we focus on games of this special form and denote
them by G =〈N,Φ,m1, . . . ,mn, γ1, . . . , γn〉 where mi =〈Φi, Ii,Ui〉 is the single module
associated to agent i, specifying the variable control for the whole set Φi.

9

In this paper, we provide results for both iBGs and RMGs. In particular, we show
that, for all the problems addressed here, they have the same computational complexity.
Therefore, given that RMGs are a proper extension of iBGs, we show the upper-bound
complexity results for RMGs and lower-bound complexity results for iBGs.

2.4. Strategies and Nash Equilibria

Strategies in iBGF and RMGF are modelled as deterministic finite state machines.
Formally a deterministic finite state machine for player i is a tuple σi = (Si, s0

i , δi, τi)
where, Si is a finite set of internal states, s0

i is the initial state, δi : Si × 2Φ → Si is a
transition function, and τi : Si → 2Φi is the action function. By Stri we denote the set
of possible strategies for player i.

In a RMGF, a strategy σi might not comply with module mi’s specification. Hence,
for this case we need to define a consistency condition between the module and the
strategy. We say that σi is compatible with module mi if:

1. τi(s0
i) = execi(g, ∅), for some g ∈ Ii; and,

2. for all v ∈ 2Φ and s, s′ ∈ Si, if s′ = δi(s, v) then τi(s′) = (τi(s) \ ctr(g)) ∪
execi(g, v), for some g ∈ Ui that is enabled by v, i.e., such that v |= guard(g),

where execi : (Ii ∪ Ui) × 2Φ ⇀ 2Φi is the partial function that determines the value
of the Boolean variables at the right-hand side of a guarded command when such a
guarded command is enabled by a valuation. Formally, execi is defined, for a guarded
command g = ϕ -> x′i1 := ψi

1; · · · ; x′ik := ψi
k and a valuation v, as execi(g, v) =

{xi
j ∈ {xi

1, . . . , x
i
k} : v |= ψi

j}. Intuitively, the compatibility ensures the agent to
comply with the module’s specification. On the one hand, Item 1 states that the guarded
command that can be executed on the first state must be an initial command that is
enabled on the empty evaluation, that is the evaluation in place before the execution
starts. On the other hand, Item 2 deals with the fact that, at every iteration, a strategy
must execute a guarded command that is enabled in the current state.

From now on, for the case of RMGF and when it is clear from the context, we will
refer to compatible strategies simply as strategies.

A (total) strategy profile is a tuple ~σ = (σ1, . . . , σn) of strategies, one for each
player. We also consider partial strategy profiles. For a given set of players A ⊆ N, we
use the notation σA to denote a tuple of strategies, one for each player in A. Moreover,
we use the notation σ−A to denote a tuple of strategies, one for each player in N \ A. We
also use σi in place of σ{i} and ~σ−i in place of ~σN\{i}. Finally, for two strategy profiles
~σ and ~σ′, by (~σA, ~σ

′
−A) we denote the strategy profile given by associating the strategies

in ~σ to players in A and strategies in ~σ′ to players in N \ A.
Since strategies are deterministic, each profile ~σ determines a unique infinite play,

denoted by π∞(~σ), which consists of an infinite sequence of valuations, one for each
round of the game. Each player i has a preference relation over plays π∞ ∈ (2Φ)ω,
which is determined by its goal γi. We say that π∞ is preferred over π∞′ by agent i,
and write π∞ �i π

∞′, if and only if π∞′ |= γi implies that π∞ |= γi. Using this notion
of preference, one can introduce the concept of Nash Equilibrium. We say that ~σ is a
Nash Equilibrium strategy profile if, for each agent i and a strategy σ′i ∈ Stri, it holds

10

that π∞(~σ) �i π
∞(~σ−i, σ

′
i). In addition, by NE(G) ⊆ Str1 × . . .× Strn we denote the

set of Nash Equilibria of the game G.

Example 2. Consider again the system in Example 1. A possible strategy σ1 for player
1 is a finite-state machine that sets variable u1 to true on odd rounds of the execution,
while a strategy σ2 for player 2 might set u2 to true on even rounds of the execution. In
addition, a possible strategy for player 0, say σ0, might be a finite-state machine that
sets variable di to true only after ui has been set to true exactly ni times in the execution.
Then, the strategy profile ~σ = (σ0, σ1, σ2) will be such that the execution π∞ = π∞(~σ)
satisfies γ0, γ1, and γ2, and therefore is a Nash equilibrium. Indeed, checking that a
strategy profile is a Nash equilibrium of a game is one of the main concerns of this
paper, as formalised next.

Equilibrium Checking. We are interested in a number of questions related to the equi-
librium analysis of logic-based multi-player games [3, 23].

NE MEMBERSHIP. Given a game G and a strategy profile ~σ:

Is it the case that ~σ ∈ NE(G)?

which asks if a strategy profile is a Nash equilibrium of a game.
The second decision problem we are interested in is the following:

NE NON-EMPTINESS. Given a game G:

Is it the case that NE(G) 6= ∅?

which asks if a given game has at least one Nash equilibrium.
Finally, we also consider two decision problems, that are known in the literature as

equilibrium checking [23], formally stated as follows:

E/A-NASH. Given a game G and LDLF formula ϕ:

Does π∞(~σ) |= ϕ hold, for some/all ~σ ∈ NE(G)?

which asks if ϕ is satisfied by some/every Nash equilibrium of G.
In the following sections, we study the above questions for both iBGF and RMGF,

in particular using an automata-theoretic approach.

3. NE Membership

In order to address the NE MEMBERSHIP problem, we first provide some preliminary
results on automata. An interested reader can find definitions and more details in [24].

Consider a nondeterministic finite word automaton (NFW) A = 〈Σ, S, s0, %,F〉,
recognizing a regular language L(A). Then consider the nondeterministic Büchi word
automaton (NBW)A∞ =〈Σ, S, s0, %

′,F〉, where, for all σ and s, we have that %′(σ, s) =
%(σ, s), if s /∈ F, and %′(σ, s) = {s}, otherwise.

Intuitively, the automaton A∞ mimics the operations of the automaton A until an
accepting state s is reached. From that point on, the automaton disregards mimicking

11

A and starts looping indefinitely over s. Thus, on the one hand, for every finite word
π ∈ L(A), every infinite extension π∞, that is, an infinite word such that π is a prefix
of it, is accepted by A∞. On the other hand, for an infinite word π∞ accepted by A∞,
there must be a prefix π accepted by A. This fact can be shown formally with the
following theorem.

Theorem 1. Let A be a NFW. Then, for all π∞ ∈ Σω, we have that π∞ ∈ L(A∞)
iff there exists k ∈ N such that π = (π∞)≤k ∈ L(A). In particular, we have that
L(A∞ϕ) = {π∞ ∈ (2Φ)ω : π∞ |= ϕ}

Proof. The proof proceeds by double implication.

• Assume π∞ ∈ L(A∞) and let ρ∞ ∈ (2S)ω be an accepting run. Then, since
%′(σ, s) = {s} for every s ∈ F, we have that ρ∞ is of the form s0 ·s1 · . . . ·sk−1 ·sωk ,
with sk ∈ F and sj /∈ F for all j < k. Then, consider the prefix π = (π∞)≤k. By
the definition of %′, it follows that s0 · s1 · . . . · sk−1 · sk is an accepting run for π
in A, and so π ∈ L(A).

• Let k ∈ N such that π = (π∞)≤k ∈ L(A) and let s0 · s1 · . . . · sk be an accepting
run in A. Moreover, let j ∈ {0, . . . , k} be such that sj ∈ F and sh /∈ F for all
h < j6 Then, the infinite sequence s0 · s1 · . . . · sj−1 · sωj is an accepting run of π∞

in A∞. Thus, we have that π∞ ∈ L(A∞).

To solve the NE MEMBERSHIP problem for RMGF, we need to account for the fact
that strategies adopted by agents must comply with their module specification. In terms
of automata, we need to make sure that the accepted language is restricted to the infinite
play that can be generated by such complying strategies.

Let G = 〈N,Φ,m1, . . . ,mn, γ1, . . . , γn〉 be a RMGF and consider the automaton
AG =〈2Φ, SG , s0

G ,FG , %G〉 defined as:

• S = 2Φ ∪ {ε};

• s0
G = ε;

• FG = SG ;

• %G(ε, v) =

{
v, if ∃g1 ∈ I1, . . . gn ∈ In∅ |= guard(gi)v =

⋃
i∈N execi(gi, ∅)

∅, otherwise
;

• %G(s, v) =

{
v, if ∃g1 ∈ U1, . . . gn ∈ Un∅ |= guard(gi)v =

⋃
i∈N execi(gi, ∅)

∅, otherwise

6Such a j exists because sk is accepting.

12

Intuitively, at every round of its execution, the automaton stores the current evalua-
tion of the game in its state s. Then, when an evaluation v is sent to it, the automaton
moves to the state v itself if, and only if, there exists a tuple of commands g1, . . . , gn

that are enabled in s and whose combined executions leads the game from s to v. For
the case no sets of enabled commands can lead to v, the automaton rejects the path, as it
has found an illegal move in it. More formally, we have the following result.

Lemma 1. Let G be a RMGF and AG its corresponding automaton. Then, it holds that
L(AG) is exactly the set of possible executions in G.

Proof. We prove the lemma by double inclusion. First, assume that π∞ is a play in G and
show that it is accepted by AG . Let s0, s1, . . . be the run of AG over π∞. By induction
on h, we prove that sh+1 = π∞h , for every h ∈ N and so that the run is accepting. As
base case, for h = 0, we have that s1 = %G(s0, π

∞
0) = %G(ε, π∞0) and, since π∞ is

a legal execution in G, there exist g1 ∈ I1, . . . , gn ∈ In, with ∅ |= guard(gi), for all
i ∈ N, such that π∞1 =

⋃
i∈N execi(gi, ∅), this implying %G(ε, π∞0) = π∞0 , proving the

statement for the base case. For the induction case, let h ≥ 0 and assume sh+1 = π∞h .
We have to prove that sh+2 = π∞h+1. We have that sh+2 = %G(sh+1, π

∞
h+1). Moreover,

since π∞ is an execution in G, there exist g1 ∈ U1, . . . , gn ∈ Un, with π∞h |= guard(gi),
for all i ∈ N, such that π∞h+1 =

⋃
i∈N execi(gi, ∅). Now, observe that by induction

hypothesis, we have that sh+1 = π∞h , and so it follows that sh+2 = %G(sh+1, π
∞
h+1) =

%G(π∞h , π∞h+1) = π∞h+1, the last equality following from the definition of %G .
For the other direction, let us assume π∞ ∈ L(AG) and prove that π∞ is an

execution in G. We have to show prove that there exist g1 ∈ I1, . . . , gn ∈ In such that
∅ |= guard(gi), for all i ∈ N and π∞0 =

⋃
i∈N execi(gi, ∅) and that, for all h ∈ N,

there exist gh
1 ∈ U1, . . . , gh

n ∈ Un such that π∞h |= guard(gh
i), for all i ∈ N and

π∞h+1 =
⋃

i∈N execi(gh
i , π
∞
h). But this clearly follows from the definition of %G and the

fact that the run of AG over π∞ is accepting.

We can now address NE MEMBERSHIP. We show that this problem is PSPACE-
complete; for the membership argument, we employ an automata-based algorithm
for checking membership. We first introduce, for a given (machine) strategy σi =
〈Si, s0

i , δi, τi〉 for a player i, a corresponding DFW A(σi) = 〈Σ,Qi, q0
i , %i,Fi〉 where:

Σ = 2Φ is the alphabet set, Qi = (Si×2Φ)∪{sink} is the state set, where sink /∈ Si×2Φ

is a fresh state, q0
i = (s0

i , ∅) is the initial state, Fi = Si × 2Φ is the final state set, and %i

is the transition relation such that, for all (s, v) ∈ Si × 2Φ and v′ ∈ Σ,

• %i((s, v), v′) =

{
δi(s, v), if τi(s) = v′|Φi

sink, otherwise , and

• %i(sink, v′) = sink

Let L(A(σi)) denote the set of infinite words in (2Φ)ω accepted by A(σi). It is
easy to see that such a set is exactly the same set of plays that are possible outcomes
in a game where player i uses strategy σi. Similarly, for a given set of players A ⊆ N
and a partial strategy profile ~σA, we have that, for A(~σA) =

⊗
i∈AA(σi), the product

of these automata, the language L(A(~σA)) contains exactly those infinite plays in
a game where players in A play according to the strategies given in ~σA. Moreover,

13

in [8] it is shown, for every LDLF formula ϕ, how to build and check on-the-fly a
NFW Aϕ = 〈S, 2Φ, {s0}, δ, {sf }〉, such that, for every finite trace π ∈ (2Φ)∗, we have
π |= ϕ if and only if π ∈ L(Aϕ), where by L(Aϕ) we denote the language of finite
words (that is, the language of finite traces over 2Φ) accepted by the automaton Aϕ.
Such a construction makes use of a function δ simulating the transition relation of the
corresponding alternating finite word automaton (AFW), which takes a subformula
ψ of ϕ and a valuation of variables Π ⊆ Φ, and recursively returns a combination of
subformulae. A suitable modification of such an algorithm allows one to construct the
NBW A∞ϕ . As a matter of fact, observe that the only final state sf of the automaton Aϕ
built in [8] does not have any outgoing transition. Then, given the construction of A∞ϕ ,
we only need to add a loop to it, for every possible valuation.

Input: an LDLF formula ϕ and an NBW A =〈2Φ,Q, q0, %, F〉.
Output: NBW A∞ϕ ×A =〈2Φ, S′, {s′0}, F′, %′〉.
s′0 ← {(ϕ, q0, 1)} F′ ← {∅} × Q× {1}
S ← {s0} ∪ F′ % ← {((∅, q, 1),Π, (∅, q′, 2)) : Π ∈ 2Φ ∧ q′ ∈ %(q,Π)} ∪
{((∅, q, 2),Π, (∅, q′, 2)) : Π ∈ 2Φ∧q′ ∈ %(q,Π)∧q ∈ Q\F′}∪{((∅, q, 2),Π, (∅, q′, 1))
: Π ∈ 2Φ ∧ q′ ∈ %(q,Π) ∧ q ∈ F′}
while (S′ or %′ change) do

for s ∈ S′, q ∈ Q and Π ∈ 2Φ do
for q′ ⊆ CL(ϕ) and q′ ∈ %(q,Π) do

if s′ |=
∧
ψ∈q δ(ψ,Π) then

if q ∈ F′ then
S′ ← S′ ∪ {(s, q, 2), (s′, q′, 1)} %′ ← %′ ∪
{((s, q, 2),Π, (s′, q′, 1))}

else
S′ ← S′ ∪ {(s′, q′, 1), (s′, q′, 2), (s, q, 2)} %′ ← %′ ∪
{((s, q, 2),Π, (s′, q′, 1))}

Algorithm 1: Intersection contruction.

However, it cannot be used as it is to obtain the PSPACE complexity for the NE
MEMBERSHIP problem. Indeed, we need to combine the NBW A∞ϕ with the automata
A~σ andA~σ−i

provided by the NE MEMBERSHIP problem instance. To do this, we need
to adapt the construction in order to handle these products. Note that both A~σ and A~σ−i

can be considered as NBW. Thus, it is enough to deliver an algorithm that builds an
automaton intersection between A∞ϕ and a generic NBW A.

14

Input: a RMGF G and a strategy profile ~σ.
Output: “Yes” if ~σ ∈ NE(G); “No” otherwise.
if L(A(~σ)) 6⊆ L(AG) then

return “Error”
for i ∈ N do

if L(A(~σ)⊗A∞γi) = ∅ then
if L(A(~σ−i)⊗AG ⊗A∞γi) 6= ∅ then

return “No”

return “Yes”
Algorithm 2: NE Membership for RMGF.

When one of the two NBW involved in the product derives from an LDLF formula
ϕ, we can adapt the on-the-fly construction provided in [8], as described in Algorithm 1.

With this construction in place, one can show that Algorithm 2 runs in PSPACE
and solves NE MEMBERSHIP for RMGF. In particular, the algorithm checks, using the
automata constructions presented before, whether a strategy profile is a Nash equilibrium
by checking for beneficial deviations in the game for every player.

Theorem 2. The NE MEMBERSHIP problems for iBGF and RMGF are PSPACE-
complete.

Proof. To show that Algorithm 2 is correct, assume that the algorithm returns “Yes”
on a given instance (G, ~σ). This means that it does not return the “Error” message in
the initial conditional check. This means that the outcome of ~σ is in the language of
AG and so the strategies are complying with their modules specifications. Moreover,
the algorithm does not return “NO”, which means that, for every agent i, either the
innermost or the outermost conditional checks are false. In case the outermost is false,
then we have that L(A(~σ)) ∩ L(Aγi) 6= ∅, meaning that the play π∞(~σ) is such that
π∞(~σ) |= γi. Thus, player i is satisfied in the context ~σ and so it does not have any
incentive to deviate from it. On the other hand, if the outermost returns true but the
innermost returns false, then we have that L(A(~σ−i)) ∩ L(Aγi) ∩ L(AG) = ∅, which
means that the satisfaction of γi is incompatible with the partial strategy profile ~σ−i,
no matter how player i behaves compatibly with its modules specification. This, in
terms of strategies, implies that there is no beneficial deviation for player i to get its
goal achieved. Hence, the strategy profile ~σ is a Nash equilibrium of the game.

On the other hand, assume ~σ is a Nash equilibrium. Then, no player i has an
incentive to deviate. This can be the case for two reasons: either π∞(~σ) |= γi, or there
is no compatible strategy σ′i such that π∞(~σ−i, σ

′
i) |= γi. If the former, then we have

that L(A(~σ)) ∩ L(Aγi) 6= ∅ and so the check on the outermost conditional is false. If
the latter, then it follows that L(A(~σ−i)) ∩ L(Aγi) ∩ L(AG) = ∅, making the check
on innermost conditional is false. Since this reasoning holds for every player i, it can
be concluded that Algorithm 2 ends by returning “Yes”, which concludes the proof of
correctness.

Regarding the complexity, note that all the conditional checks involve a nonempti-
ness test of NFW built by means of the Algorithm 1, whose complexity is PSPACE.

15

Since this procedure is called n times, where n is the number of agents, we obtain a
PSPACE upper bound.

We now show hardness on iBGF by providing a reduction from the satisfiability
problem of LDLF formulae, which is known to be PSPACE-complete [7]. Consider an
LDLF formula ϕ and then define the one-player game G, with player set {1}, in which
player 1 controls all the variables in ϕ plus an additional variable {p} that does not
appear in ϕ, and whose goal is γ1 = ϕ ∧ p. Moreover, let σ be the strategy for player 1
that myopically plays ∅ in all rounds. Then, such a strategy, which clearly is linear in
the size of ϕ since it has constant size, is such that σ |= ¬γ1. Now, we will show based
on this reduction that ϕ is satisfiable if and only if σ 6∈ NE(G). Firstly, if ϕ is satisfiable
then player 1 can (beneficially) deviate to a myopic strategy, say σ′, that generates an
infinite play with p in the first round and such that one of its prefixes satisfies ϕ—in
which case σ′ |= γ1. Then, σ 6∈ NE(G). On the other hand, if ϕ is not satisfiable, then
γ1 is not satisfiable either. Then, it is clear that there is no strategy σ′ to which player 1
can beneficially deviate to achieve its goal; hence σ is a Nash equilibrium of G. Because
PSPACE is closed under complement, PSPACE-hardness follows.

4. NE Non-Emptiness and Equilibrium Checking Problems

Now, let us study NE NON-EMPTINESS for both iBGF and RMGF. We first prove
a result for iBGF and then how to adapt it for the case of RMGF. Also in this case we
use an automata-theoretic approach. We show how, given a game G, it is possible to
construct an alternating automaton ANE(G) such that ANE(G) accepts precisely the set
of plays that are generated by the Nash equilibria of G. A distinguishing feature of our
automata technique is that it is language preserving, that is, ANE(G) recognizes exactly
the set of plays that are obtained by some Nash equilibrium in the game. Hereafter, we
call Nash runs the elements in such a set of runs. This property of our construction is
the key to show that the set of Nash runs is, in fact, ω-regular. Also, note that as we now
have to find (and not simply check) a strategy profile, we cannot use the automata of the
form A(σi) provided above, as there is no known strategy σi, for each player i, that can
be used here.

First, we recall the characterisation of Nash equilibria provided in [9]. For a given
RMGF G =〈N,Φ,m1, . . . ,mn, γ1, . . . , γn〉 and a designated player j ∈ N, we say that
~σ−j is a punishment profile against j if, for every strategy σ′j , it holds that (~σ−j, σ

′
j) 6|= γj.

In [9], it has been proven that ~σ ∈ NE(G) if and only if there exists W ⊆ N such that
σ |= γi for every i ∈ W and, for every j ∈ L = N \W, the profile ~σ−j is a punishment
strategy against j, that is, a winning strategy profile of the coalition of players N−j for
the negation of the goal of player j.

Thus, we can think of finding punishment strategies in terms of synthesizing a finite
state machine controlling Φ−j. To do this, we apply an automata-theoretic approach.
First of all, we build the alternating Rabin word automaton (ARW) Aγj , used to
recognize the models of γj, and then the product AGγj = Aγj ⊕AG , filtering the models
that are compatible with an execution of the RMGF G. Analogously, the automaton
AGγi

= Aγi⊗AG recognizes the plays that both are compatible with the RMGF G and do
not satisfy γi. At this point, by means of Theorem 2 in [25], we build a nondeterministic

16

Rabin automaton on trees (NRT) AGγj
′ that recognizes exactly those trees T that are

obtained from an execution of a compatible winning strategy of the coalition N−j when
the goal is to avoid the satisfaction of γj. Now, following Corollary 17 in [26], we can
build a NRW AGγj

′′ such that L(AGγj
′′
) = {π∞ ∈ (2Φ)ω : ∃T ∈ L(AGγj

′
). π∞ ⊆ T},

where by π∞ ⊆ T we denote the fact that π∞ is a branch of the tree T starting at its
root.

Now, let us fix W ⊆ N for a moment, and consider the product automaton AL =⊗
j∈LAGγj

′′. By the semantics of the product operation we obtain that AG
L

accepts those
paths that are generated by some punishment profile, compatible with G, for each j ∈ L.
Moreover, consider the automaton AW =

⊗
i∈W AGγi , recognizing the paths that satisfy

every γi, for i ∈ W. Thus, we have that the product automaton AW ⊗ AL accepts
exactly those paths for which every γi, with i ∈ W, is satisfied while, for each j ∈ L
the coalition N−j is using a punishment strategy against j. Now, in order to exploit the
characterisation given in [9], we only need to quantify over W ⊆ N. This, in terms of
automata, corresponds to the union operation. Then, we get the following automata
characterisation:

ANE(G) =
⊕

W⊆N(AW ⊗AL).

Theorem 3 (RMGF Expressiveness). For a RMGF game G, the automaton ANE(G)
recognizes the set of Nash runs of G. Therefore, the set of Nash runs of G is ω-regular.

Proof. We prove the theorem by double implication. From left to right, assume that
π∞ ∈ L(ANE(G)). Then, there is W ⊆ N such that π∞ ∈ L(AW ⊗ AL). Observe
that, w.l.o.g. we can assume that π∞ is an ultimately periodic play [27] and so that
there exists a finite-state machine ∆π∞ = (Qπ∞ , q0

π∞ , δπ∞ , τπ∞), controlling all the
variables in Φ, i.e., τπ∞ : Qπ∞ → 2Φ, that generates π∞. Moreover, observe that, for
each j ∈ L, π∞ ∈ L(AGγj

′′
) implies that there exists Tj ∈ L(AGγj

′
) such that π∞ ⊆ Tj.

This implies that, for each j ∈ L, there is a finite-state machine ∆j = (Qj, q0
j , δj, τj),

controlling all the variables but Φj, i.e., τj : Qj → 2Φ−j , that generates the branches of
Tj, according to the output of variables in Φj, including π∞. Now, for each i ∈ N, define
the strategy σi = (Si, s0

i , δi, τi) as follows:

• Si = Qπ∞ ××j∈L Qj × (L ∪ {>}) is the product of the state-space of ∆π∞

together with the state-space of each ∆j, for each j ∈ L, plus a flag component
given by L ∪ {>};

• s0
i = (q0

π∞ , q
0
j1 , . . . , q

0
j|L| ,>), collecting all the initial states of the finite state

machines, ∆π∞ and ∆j, for each j ∈ L, flagged with the symbol >;

• δi is defined as follows: for each (q, qj1 , . . . , q|L|,>) and v ∈ 2Φ, δi((q, qj1 ,
. . . , q|L|,>), v) = (δπ∞(q, v), δj1(qj1 , v), . . . , δj|L|(q|L|, v), flag), where flat = >
if v = τπ∞(q) and flat = j if v−j = (τπ∞(q))−j and vj 6= (τπ∞(q))j.

• τi((q, qj1 , . . . , q|L|,>)) = (τπ∞(q))i and τi((q, qj1 , . . . , q|L|, j)) = (τj(q))i, for
each j ∈ L.

17

Intuitively, a strategy σi for player i runs in parallel the i-th component of the finite-
state machine ∆π∞ together with the i-th components of the finite-state machines ∆j

that win against the deviating players in L. Note that, by construction, as long as nobody
deviates, the outcome of every single ∆j corresponds to the one of ∆π∞ . We have
that the strategy profile ~σ, given by the union of the strategies defined above, generates
π∞, and, as soon as a unilateral deviation occurs from player j ∈ L, the partial strategy
profile ~σ−j starts following the finite-state machine ∆j, which is by definition winning
against j. Thus, ~σ is a Nash equilibrium.

From right to left, assume that π∞ is a Nash run and let ~σ be a Nash equilibrium
such that π∞(~σ) = π∞. Moreover, let W = {i ∈ N : π∞ |= γi}. We show that
π∞ ∈ L(AW ⊗ AL). Since π∞ |= γi, for each i ∈ W, we have that π∞ ∈ L(AW).
Moreover, let j ∈ L. It holds that j does not have a beneficial deviation from ~σ and so
we have that ~σ−j is a winning strategy against j. From the definition of AGγj

′ we have

that the tree-execution Tj generated by ~σ−j is in L(AGγj
′
). Now, since π∞ ⊆ T−j, we

have that π∞ ∈ L(AGγj
′′
), for each j ∈ L, implying that π∞ ∈ L(AL). Hence, we have

that π∞ ∈ L(AW) ∩ L(AL) = L(AW ⊗AL), as required.

Using Theorem 3 we can address the problem of deciding if a game admits a Nash
equilibrium by checking ANE(G) for emptiness. Regarding the complexity of building
ANE(G), observe that the construction of each automaton AGγj

′, provided in [25], is
of size doubly exponential with respect to |γj|. Moreover, all the other operations
used to build ANE(G) involve union and intersection of Rabin automata, which can
be performed in time polynomial in the size of the constituting components. This
shows that ANE(G) is a nondeterministic Rabin automaton on words of size doubly
exponential with respect to the game G. Since checking emptiness of a NRW can be
done in NLOGSPACE, we obtain the following result.

Theorem 4. NE NON-EMPTINESS of RMGF can be solved in 2EXPTIME.

Now, to show that E-NASH and A-NASH are in 2EXPTIME, we can also apply
an automata-theoretic approach. Indeed, for the E-NASH case, consider a game G and
an LDLF formula ϕ. Then, the automaton Aϕ ⊗ANE(G) recognizes all the plays that
both satisfy ϕ and are a Nash run. Thus, checking the E-NASH problem corresponds
to checking the nonemptiness of such automaton. On the other hand, for the A-NASH
problem, consider the automaton Aϕ ⊗ANE(G). This product automaton recognizes
all plays that do not satisfy the formula ϕ and are a Nash run. Thus, checking the A-
NASH problem corresponds to checking the emptiness of such an automaton. The two
constructions above show that both E-NASH and A-NASH can be solved in 2EXPTIME.
Formally, combining the results above, we also obtain the following theorem:

Theorem 5. E-NASH and A-NASH for RMGF can be solved in 2EXPTIME.

5. Extensions and Restrictions

We now investigate on some extensions and restrictions on the problems studied in
the previous section. As a first result, we show that an extension of the LDLF language

18

used to represent players’ goals can be used to encode LDLF synthesis, studied in [8], as
a NE NON-EMPTINESS problem. Subsequently, we restrict to two classes of strategies,
namely memoryless and myopic strategies. With respect to memoryless strategies, we
show that our automata-based techniques can be used to show that the set of Nash runs
for games of this kind is also ω-regular, as in the original problem. An EXPSPACE
brute-force approach can be used to show that the induced automata are suboptimal
from a complexity point of view.7 However, the construction is still based on a simple
extension of automata on finite words, making it potentially useful in practice. The case
of myopic strategies, instead, is studied using a reduction to the satisfiability problem
for the 1-alternation fragment of QPTL, known to be solvable in EXPSPACE [28].

Games with Quantified prefix LDLF Goals. The results obtained so far show that
checking whether a game has a Nash equilibrium can be solved in 2EXPTIME. We
now show that an extension of the logic LDLF, which we call quantified prefix LDLF

(QPLDLF) can also be solved using the same automata-theoretic technique, with the
same complexity, and can be used to represent the LDLF synthesis problem, which is
2EXPTIME-complete. Then, NE NON-EMPTINESS with respect to such an extension
is 2EXPTIME-complete.

Syntactically, a QPLDLF formula ϕ is obtained from an LDLF formula ψ by simply
adding either an existential ∃ or a universal ∀ quantifier in front of it, i.e., ϕ = ∃ψ or
ϕ = ∀ψ. Such a quantification ranges over the set of prefixes of a given infinite path
of valuations. Formally, we have that, for a given QPLDLF formula of the form ∃ψ
and an infinite path π∞, we have that π∞ |= ∃ψ if there is k ∈ N such that π∞<k |= ψ.
Analogously, for a QPLDLF formula of the form ∀ψ, we have π∞ |= ∀ψ if π∞<k |= ψ,
for all k ∈ N.

The reader might note that ∃ψ is equivalent to ψ on infinite plays. This means
that the set of models for ∃ψ corresponds to the set of infinite models of ψ and so the
automaton A∃ψ = Aψ recognizes the models of ∃ψ. Moreover, observe that, for every
LDLF formula ψ and an infinite play π∞, we have that π∞ |= ∀ψ iff π∞ 6|= ∃¬ψ. This
means that, in order to build the automaton A∀ψ for a formula of the form ∀ψ, one can
first consider the formula ¬ψ and build the corresponding automaton A∃¬ψ . It follows
that L(A∃¬ψ) is the set of infinite plays that satisfy ∃¬ψ, which is the complement of
the set of plays satisfying ∀ψ. Thus, A∀ψ = A∃¬ψ. Using these constructions one can
solve NE NON-EMPTINESS, E-NASH, and A-NASH with QPLDLF goals by applying
the same automata-theoretic technique used for LDLF. Then, we have the following
result.

Theorem 6. NE NON-EMPTINESS, E-NASH, and A-NASH with QPLDLF goals, for
both iBG and RMG can be solved in 2EXPTIME. Moreover, the sets of Nash equilibria
for these classes of games is ω-regular.

To obtain a matching lower bound, observe that, given the interpretation of QPLDLF

formulae, it is possible to encode the synthesis problem for LDLF formulae as presented
in [8]. Indeed, in such a case we only have to set a two-player game G in which, say

7Of course, with respect to EXPRESSIVENESS this is an irrelevant feature of the automata construction.

19

Player 1, controls the same variable as the system for the synthesis problem, and Player 2
controls the environment variables. At this point, by setting γ1 = ∃ψ and γ2 = ∀¬ψ,
one ensures that Player 1 and Player 2 have exactly the same behaviours of system and
environment in the synthesis problem, respectively. In addition to Player 1 and Player 2,
to ensure a reduction to NE NON-EMPTINESS one can add two players that trigger a
“matching pennies” game in case ψ is not synthesised. With this reduction it follows
that NE NON-EMPTINESS is 2EXPTIME-complete.

Formally, consider an LDLF formula ϕ and the synthesis problem for it, in which
the system controls a set of (output) variables X while the environment controls a set of
(input) variables Y . Then, consider the four-player iBGF Gϕ with QPLDLF goals such
that:

• Player 1 controls X and has γ1 = ∃ϕ as goal;

• Player 2 controls Y and has γ2 = ∀¬ϕ as goal;

• Player 3 controls a fresh Boolean variable p and has γ3 = ∃ϕ ∨ (p↔ q) as goal;
and

• Player 4 controls a fresh Boolean variable q and has γ4 = ∃ϕ ∨ ¬(p ↔ q) as
goal.

Using the above construction, we can show that the synthesis problem for an LDLF

formula ϕ can be solved by addressing the NE NON-EMPTINESS problem for Gϕ, from
which we derive the following theorem.

Theorem 7. NE NON-EMPTINESS, E-NASH, and A-NASH are 2EXPTIME-complete
for both iBGF and RMGF.

In fact, Theorem 7 is proved using the lemma given below.

Lemma 2. The synthesis problem for an LDLF formula ϕ over a set of Boolean
variables X ∪ Y, where the system controls the variables in X and the environment the
variables in Y has a positive answer if and only if the game Gϕ has a Nash equilibrium.

Proof. We prove the lemma for iBGF by double implication. From left to right, assume
that the system has a winning strategy σ1 against the environment in the synthesis
problem. Then every strategy profile ~σ in Gϕ in which Player 1 uses σ1 is a Nash
equilibrium. Indeed, as σ1 is a winning strategy for the synthesis problem, we have
that ~σ |= ϕ and so ~σ |= ∃ϕ. Then, Players 1, 3, and 4 have their goals satisfied and,
therefore, do not have an incentive to deviate. On the contrary, Player 2 does not have its
goal γ2 satisfied. However, there is no beneficial deviation σ′2 such that (~σ−2, σ

′
2) |= γ2,

otherwise, σ1 would not be a winning strategy in the synthesis problem.
From right to left, assume there exists a strategy profile ~σ that is a Nash equilibrium.

It is not hard to see that we have that ~σ |= ∃ϕ, otherwise either Player 3 or Player 4 has a
beneficial deviation. Moreover, the corresponding strategy σ1 for Player 1 is winning for
the system in the synthesis problem. Indeed, if by contradiction there exists a strategy
σ′2 for the environment in the synthesis problem, then we have that (~σ−2, σ

′
2) |= γ2, and

20

so σ′2 is a beneficial deviation for Player 2 in Gϕ, which contradicts the fact that ~σ is a
Nash equilibrium.

For the RMGF case, we can just regard the iBGF Gϕ as a RMGF in which every
agent i is associated with |Φi| modules, each of them allowing a single variable xi ∈ Φi

to be freely set at every iteration of the game execution. Thus, we obtain the assert.

Theorem 7 is a direct consequence of Lemma 2.

Games with Memoryless Strategies. In this subsection, we study games with memo-
ryless strategies. We say that a strategy σi = (Si, s0

i , δi, τi) for Player i is memoryless
if Si = 2Φ and δi is deterministic. Intuitively, a strategy is memoryless if, for each
state of the game, it always chooses the same action at such state. Moreover, a play
π∞ ∈ (2Φ)ω is said to be memoryless if, for all v,w ∈ 2Φ, if π∞k = v and π∞k+1 = w,
for some k ∈ N, then, for all h ∈ N, if π∞h = v then π∞h+1 = w. A profile ~σ made by
memoryless strategies can only generate memoryless plays and vice-versa.

Moreover, it is not hard to build a polynomial size NBW Amless accepting all
and only the memoryless plays. This turns out to be useful in addressing the case
of memoryless strategies. Indeed, to solve the NE NON-EMPTINESS problem with
memoryless strategies, we only need to adjust the general procedure by pairing the
automatonAmless to every single component of the automatonANE(G). This operation
then adds the memoryless requirement to the goal of a player and to the punishment
strategies.

Now, although this solution technique allows one to prove that the set of Nash
Equilibria in memoryless games is ω-regular, this is not optimal from a computational
complexity point of view, which is still 2EXPTIME. For instance, a brute-force proce-
dure can solve the problem in EXPSPACE. Indeed, given the definition of strategies, we
know that a memoryless strategy for a player in the game has (at most) 2Φ states. Then,
a memoryless strategy, as well as a strategy profile, can be guessed in time exponential
in the size of Φ and saved using exponential space. In addition, using NE MEMBERSHIP
we can check in PSPACE whether such a strategy profile is a Nash equilibrium of the
game. Moreover, for some RMGF the problem can be solved even with a better com-
plexity. Indeed, if the overall number of guards in the modules is polynomial w.r.t the
number of variables, we only have a polynomial number of states, and thus memoryless
strategies can be polynomially represented, leading to a PSPACE complexity for the
NE NON-EMPTINESS problem. Formally, we have:

Theorem 8. The sets of memoryless Nash equilibria for iBGF and RMGF with both
LDLF and QPLDLF are ω-regular. Moreover, the NE NON-EMPTINESS problem for
iBGF and RMGF with both LDLF and QPLDLF with memoryless strategies can be
solved in EXPSPACE. For the case of RMGF with an overall number of guards that is
polynomial w.r.t. the number of variables, the problem can be solved in PSPACE.

Games with Myopic Strategies. Another important game-theoretic setting is the one
given by myopic strategies as they can be used to define all beneficial deviations. A game
with myopic strategies is called a myopic iBGF. We say that a strategy σi = (Si, s0

i , δi, τi)
for Player i is myopic if its transition function does not depend on the input variables,
i.e., such that for each s ∈ Si and v, v′ ∈ 2Φ, we have δi(s, v) = δi(s, v′). In a myopic

21

iBGF, players are only allowed to use myopic strategies. In [15] it is shown how to
reduce NE NON-EMPTINESS for myopic iBG to the satisfiability of the QPTL formula

ϕ =
∨

W⊆N

(∃Φ1, . . . ,Φn.(
∧
i∈W

γi ∧
∧

j∈N\W

(∀Φj.¬γj)))

where the formulae γi are the LTL goals of the players in the myopic iBG instance
and the quantifier alternation is 1 (an alternation fragment for which the complexity is
known to be EXPSPACE [28]).

To apply the solution provided in [28] to check the satisfiability of ϕ, one first has
to transform each γi into the NBW automata recognizing their models. In the case of
iBGF, these LTL formulae are replaced by LDLF formulae. However, as shown in the
previous section, the infinite models of an LDLF formula γi can also be recognized by
NBW automata that are equivalent to some ω-regular expression of the form α · (2Φ)ω .
Thus, in order to solve NE NON-EMPTINESS for myopic iBGF, we can first transform
every LDLF goal γi into the corresponding NBW Aγi and then follow the technique
used in [28]. Note that the same reasoning applies also for the case of QPLDLF goals.

Moreover, for the case of RMGF, we just have to replace the automaton Aγi for
γi with the automaton Aγi ⊗ AG , to force every player to comply with the modules
specification.

We then obtain the following result for games with myopic strategies:

Theorem 9. The NE NON-EMPTINESS problem for myopic iBGF and RMGF with
LDLF or QPLDLF goals can be solved in EXPSPACE.

At this point it is important to note that a key observation behind this result is the
fact that when playing with myopic strategies the strategies that are used to construct a
run that is sustained by a Nash equilibrium (a Nash run) must be oblivious to players’
deviations.

Games with Strong Nash equilibria. Despite being the most used solution concept
in non-cooperative game theory [29], Nash equilibrium still has some limitations, for
instance, it is not always stable and also it includes non desirable equilibria. As an
example, consider a two-player game in which Player 1 controls a variable p and has the
LDLF goal γ1 = q, while Player 2 controls a variable q and has the LDLF goal γ2 = p8.
It is clear that every strategy profile ~σ is a Nash equilibrium. Indeed, even in case a goal
γi is not satisfied, the corresponding player cannot deviate from it, as the satisfaction of
each player’s goal is fully controlled by the other one. However, the desired outcome for
both players is to satisfy both goals. Then, if we allow the two players to collaboratively
deviate, the only stable outcomes are the ones making true both p and q at the first round
of the computation.

A strong Nash equilibrium considers not only a single player’s deviation, but also
every possible coalition of players having a collective deviation incentive. Formally, for
a given strategy profile ~σ, we say that it is a strong Nash equilibrium if there is no subset

8Observe that γ1 and γ2 are propositional logic formulae, i.e., special cases of LDLF .

22

C ⊆ N and partial strategy profile ~σ′C such that, for all i ∈ C, π∞(~σ−C, ~σ
′
C) �i π

∞(~σ).
Then, in a strong Nash equilibrium a coalition of players C has an incentive to deviate if
and only if every player i in such a coalition has an incentive to deviate. By sNE(G) we
denote the set of strong Nash equilibria in G. To check whether there exists a strong
Nash equilibrium in a game using an automata-theoretic approach, we need to be able
to express this notion of beneficial collective deviation with an appropriate automaton.

To do this, we just need to adjust the automaton AGγj
′′ given in the previous section,

used to recognize all the plays that can be generated by a punishment strategy of the
coalition N−j against j, having goal γj. Indeed, the concept of punishment can be
easily lifted to punishing a group of players. To do this, for a set C ⊆ N, consider
the automaton AC =

⊗
j∈CAGγj recognizing all the models that satisfy every γj, for

j ∈ C. Then, as in the previous section, we can build the automaton A′′C that recognizes
the plays generated by a punishment strategy for the coalition N \ C against the goal
being the conjunction of goals of coalition C. At this point, as in the case of Nash
equilibrium, let us fix a set of “winners” W ⊆ N in the game and then consider the
product automaton A

L
=
⊗

C∈2L A′′C. By the semantics of the product operation
we obtain that the automaton A

L
accepts those paths that are generated by some

punishment profile, for each coalition of players C ∈ 2L.
Thus, we have that the product automaton AW ⊗AL accepts exactly those paths

for which every γi, with i ∈ W, is satisfied while, for each coalition C ∈ 2L the coalition
N−C is using a punishment strategy against C. Now, as for Nash equilibria, we need to
quantify over W ⊆ N to obtain an automata characterisation:

AsNE(G) =
⊕
W⊆N

AW ⊗AL .

The proof of correctness of this construction and its complexity is as for Theorem 4.
Moreover, the same result can be obtained also with QPLDLF objectives, as well as
RMGF games. Also, observe that the reduction from LDLF synthesis provided for NE
NON-EMPTINESS with QPLDLF goals can be reused with the same construction for
the case of SNE NON-EMPTINESS. Formally, we have the following result.

Theorem 10. SNE NON-EMPTINESS is in 2EXPTIME for both iBGF and RMGF, by
using either LDLF or QPLDLF goals. In particular, for games with QPLDLF goals,
the problem is 2EXPTIME-complete. In addition, the set of strong Nash equilibria for
games with either kind of goals is ω-regular.

Remark 1. The reader might notice that the automata product in the definition of
AsNE(G) contains a number of factors that is exponential in the number of agents.
However, this blow-up does not affect the complexity of its emptiness problem. Indeed,
every single factor is already of size double exponential. Therefore, a multiplication
of an exponential number of doubly exponential sized automata is still of size doubly
exponential.

6. Concluding Remarks

Logic-based Multi-player Games Revisited. In the introduction section it was pointed
out that the RMG/iBG and iBGF frameworks rely on different automata techniques, and

23

that RMGF/iBGF is better suited in certain scenarios. However, it is not the case that
the RMGF/iBGF frameworks generalise iBGs. Indeed, it should be noted that they are
incomparable models. For instance, while iBG cannot be used to reason about games
with goals over finite traces, RMGF/iBGF cannot be used to reason about games with
goals over infinite traces only, that is, regardless of the satisfaction of players’ goals
in the associated finite traces; from a logical point of view, while RMG/iBG considers
LTL, RMGF/iBGF can handle goals in LDLF, which on finite traces is strictly more
expressive than LTLF [7], and also than LTL over finite traces. However, as shown here
using new automata techniques, the complexities of some problems in each game model
coincide in the worst case for many variants of these different kinds of games.

Automata for Linear Dynamic Logic. Logic, games, and automata are intimately related;
see, e.g., [30, 31] and references therein for examples. We build upon the automata
constructions for Linear Dynamic Logic (LDLF [7, 8]), which were introduced to
solve the satisfiability and synthesis problems for LDLF over finite traces. Specifically,
we have initially used such constructions to translate LDLF formulae to alternating
automata on finite words (AFW) and, based on them, we have defined new and optimal
automata constructions that characterise the existence of (strong) Nash equilibria on
top of the standard Boolean games framework.

However, even though most, but not all, of the automata constructions we have
presented in this paper are optimal, they still enjoy two useful properties. Firstly, that
they are strongly based on automata on finite words, with only an extension to deal with
infinite runs, a feature that could be used a lot further. Secondly, that such automata
constructions recognise the sets of Nash runs, which, as shown in this paper, makes
them extremely useful from a semantic point of view. Indeed, using other automata
approaches, e.g., for iBGs, our expressiveness results do not easily follow.

In addition, the automata constructions defined in this paper can be modified to
reason about other game settings, making it a rather widely adaptable reasoning tech-
nique. For instance, we believe it is also possible to extend some of the results we have
obtained to two-player games with imperfect information. This should be possible, in
some cases, using recent automata constructions to reason about LDLF formulae under
partial observation [17].

Imperfect Information. Following the research line delineated in [7, 8, 17], one might
wonder about the complexity of solving RMGF/iBGF in the context of imperfect infor-
mation. It is important to notice that the synthesis problems for LTL for both perfect and
imperfect information is decidable [25, 32]. On the other hand, the NE-NONEMPTINESS
problems for games having LTL goals is decidable for the perfect information case [3],
but undecidable for the imperfect information case [15]. Similarly, regarding LDLF

goals, the synthesis problem is decidable for both perfect [8] and imperfect [17] infor-
mation, while we here prove that the NE-NONEMPTINESS problem is decidable. This
suggests that the same problem might be undecidable under the imperfect information
assumption, as it is for conventional iBGs. However, as the expressive power of LDLF

is incomparable with the one of LTL, it is not clear whether the undecidability proof
(which strongly relies on the expressiveness of LTL) can be retained in this case. More-
over, it has been shown that for specific cases of imperfect information in games with

24

LTL objectives, the problem might be decidable [33, 34]. For this reason, we plan to
address this question in future work.

Verification and Equilibria in Logical Form. Here we have addressed the “rational
verification” problem [23] of multi-agent systems using an automata-theoretic approach.
We believe that these automata constructions may be used as the underlying models of a
variant of strategy logic [13] (SL) based on LDLF over finite traces. We will do so in
future work. SL is not the only option to investigate. Many other logics for strategic
reasoning can be found in the literature; see, e.g., [35]. We believe this is a promising
research direction, which would allow us to reason about the behaviour of games over
finite traces using other solution concepts in a uniform logical framework. A step toward
this direction has been recently taken by the formal methods community [36, 37].

Expressiveness and Automata Characterisations. Nash equilibrium, and other solution
concepts, have been characterised in other works using a range of automata and logical
approaches. See, for instance, [10, 11, 13, 14] for some examples. Although delivering
optimal constructions, it is not clear that using such techniques one can characterise
the sets of Nash runs in a game. A key feature and contribution of our automata
constructions is that they can be used to characterise such sets of equilibrium runs in a
uniform way.

Acknowledgments
This paper is an extended version of [38]. We acknowledge with gratitude the

financial support of the ERC Advanced Investigator grant 291528 (“RACE”) at Oxford.

References

[1] P. Harrenstein, W. van der Hoek, J. Meyer, C. Witteveen, Boolean Games, in:
TARK, 2001, pp. 287–298.

[2] J. Gutierrez, P. Harrenstein, M. Wooldridge, From model checking to equilibrium
checking: Reactive modules for rational verification, Artif. Intell. 248 (2017)
123–157.

[3] J. Gutierrez, P. Harrenstein, M. Wooldridge, Iterated Boolean games, Information
and Computation 242 (2015) 53–79.

[4] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE Computer Society,
1977, pp. 46–57.

[5] N. Markey, P. Schnoebelen, Model checking a path, in: CONCUR’03, 2003, pp.
248–262.

[6] L. Sorrentino and S. Rubin and A. Murano, Graded CTL* over Finite Paths, in:
ICTCS’18, 2018, pp. 152–161.

[7] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on
finite traces, in: IJCAI, IJCAI/AAAI, 2013, pp. 854–860.

25

[8] G. De Giacomo, M. Vardi, Synthesis for LTL and LDL on finite traces, in: IJCAI,
2015, pp. 1558–1564.

[9] J. Gutierrez, P. Harrenstein, M. Wooldridge, Expresiveness and complexity results
for strategic reasoning, in: CONCUR, Vol. 42 of LIPIcs, Schloss Dagstuhl, 2015,
pp. 268–282.

[10] K. Chatterjee, T. Henzinger, N. Piterman, Strategy logic, Information and Compu-
tation 208 (6) (2010) 677–693.

[11] D. Fisman, O. Kupferman, Y. Lustig, Rational synthesis, in: TACAS, Vol. 6015 of
LNCS, Springer, 2010, pp. 190–204.

[12] O. Kupferman, G. Perelli, M. Y. Vardi, Synthesis with rational environments, in:
EUMAS, Vol. 8953 of LNCS, Springer, 2014, pp. 219–235.

[13] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strategies: On
the model-checking problem, ACM Transaction on Computational Logic 15 (4)
(2014) 34:1–34:47.

[14] O. Kupferman, G. Perelli, M. Y. Vardi, Synthesis with rational environments,
Annals of Mathematics and Artificial Intelligence 78 (1) (2016) 3–20.

[15] J. Gutierrez, G. Perelli, M. Wooldridge, Imperfect information in reactive modules
games, in: KR, 2016, pp. 390–400.

[16] J. Gutierrez, P. Harrenstein, M. Wooldridge, Iterated boolean games, in: F. Rossi
(Ed.), IJCAI, IJCAI/AAAI, 2013, pp. 932–938.

[17] G. De Giacomo, M. Y. Vardi, Ltlf and ldlf synthesis under partial observability, in:
IJCAI, IJCAI/AAAI Press, 2016, pp. 1044–1050.

[18] A. Kučera, J. Strejček, The Stuttering Principle Revisited, Acta Informatica 41 (7–
8) (2005) 415–434.

[19] W. van der Hoek, A. Lomuscio, M. Wooldridge, On the Complexity of Practical
ATL Model Checking., in: AAMAS, 2006, pp. 201–208.

[20] R. Alur, T. A. Henzinger, Reactive Modules, Formal Methods in System Design
15 (1) (1999) 7–48.

[21] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, S. Tasiran,
MOCHA: Modularity in Model Checking., in: CAV’98, 1998, pp. 521–525.

[22] M. Kwiatkowska, G. Norman, D. Parker, Prism: Probabilistic model checking for
performance and reliability analysis, ACM SIGMETRICS Performance Evaluation
Review 36 (4) (2009) 40–45.

[23] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, A. Toumi,
Rational verification: From model checking to equilibrium checking, in: AAAI,
AAAI Press, 2016, pp. 4184–4191.

26

[24] M. Vardi, An Automata-Theoretic Approach to Linear Temporal Logic, in: Logics
for Concurrency - Structure versus Automata, 1995, pp. 238–266.

[25] A. Pnueli, R. Rosner, On the Synthesis of a Reactive Module., in: POPL, ACM,
1989, pp. 179–190.

[26] D. Niwinski, I. Walukiewicz, Relating hierarchies of word and tree automata, in:
STACS, Vol. 1373 of LNCS, Springer, 1998, pp. 320–331.

[27] A. P. Sistla, E. M. Clarke, The Complexity of Propositional Linear Temporal
Logics, Journal of the ACM 32 (3) (1985) 733–749.

[28] A. Sistla, M. Vardi, P. Wolper, The Complementation Problem for Büchi Automata
with Applications to Temporal Logic., Theoretical Computer Science 49 (1987)
217–237.

[29] M. Osborne, A. Rubinstein, A Course in Game Theory., MIT Press, 1994.

[30] L. Bozzelli, B. Maubert, S. Pinchinat, Uniform strategies, rational relations and
jumping automata, Information and Computation 242 (2015) 80–107.

[31] N. Fijalkow, S. Pinchinat, O. Serre, Emptiness of alternating tree automata using
games with imperfect information, in: FSTTCS, Vol. 24 of LIPIcs, Dagstuhl, 2013,
pp. 299–311.

[32] O. Kupferman, M. Y. Vardi, Synthesis with Incomplete Information, in: Advances
in Temporal Logic, Springer, 2000, pp. 109–127.

[33] R. Berthon, B. Maubert, A. Murano, Decidability Results for ATL* with Imperfect
Information and Perfect Recall, in: AAMAS’17, 2017, pp. 1250–1258.

[34] R. Berthon, B. Maubert, A. Murano, S. Rubin, M. Y. Vardi, Strategy Logic with
Imperfect Information, in: LICS’17, 2017, pp. 1–12.

[35] N. Bulling, V. Goranko, W. Jamroga, Modeling Strategic Reasoning, Springer,
2014, Ch. Logics for reasoning about strategic abilities in multi-player games, pp.
93–136.

[36] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Alternating-time temporal
logic on finite traces, in: IJCAI’18, 2018, pp. 77–83.

[37] F. Belardinelli and A. Lomuscio and A. Murano and S. Rubin, Decidable Verifica-
tion of Multi-agent Systems with Bounded Private Actions, in: AAMAS’18, 2018,
pp. 1865–1867.

[38] J. Gutierrez, G. Perelli, M. Wooldridge, Iterated games with LDL goals over finite
traces, in: AAMAS, 2017, pp. 696–704.

27

	Introduction
	Formal Framework
	Linear Dynamic Logic on Finite Traces
	Iterated Boolean Games
	Simple Reactive Modules Language Games
	Strategies and Nash Equilibria

	NE Membership
	NE Non-Emptiness and Equilibrium Checking Problems
	Extensions and Restrictions
	Concluding Remarks

