
On the Determinacy of Concurrent Games on

Event Structures with Infinite Winning Sets

Julian Gutierreza, Glynn Winskelb

aComputer Science Dept., University of Oxford
bComputer Laboratory, University of Cambridge

Abstract

We consider nondeterministic concurrent games played on event structures and
study their determinacy problem—the existence of winning strategies. It is
known that when the winning conditions of the games are characterized by a
collection of finite winning sets/plays, a restriction (called race-freedom) on the
boards where the games are played guarantees determinacy. However the games
may no longer be determined when the winning sets are infinite. This paper
provides a study of concurrent games and nondeterministic winning strategies
by analysing conditions that ensure determinacy when infinitely many events
are played, that is, when the winning sets are infinite. The main result is a
determinacy theorem for a class of games with a bounded concurrency property
and infinite winning sets shown to be finitely decidable.

Keywords: Mathematical logic, Concurrency theory, Games

1. Introduction

One of the most fundamental questions when studying games with winning
conditions is determinacy, that is, the existence of winning strategies (see [8, 12,
11, 15] for some examples particularly relevant in informatics). It is well known
that even the simplest setting where two players, which we call Eve (∃) and
Adam (∀) hereafter, play against each other (possibly concurrently) without
taking turns leads to games where determinacy fails.

Here we study conditions for which nondeterministic concurrent games, i.e.
games where the players are allowed to use nondeterministic concurrent strate-
gies, are determined. We consider concurrent games played on event structures,
a model of concurrent computation where the causal dependencies between the
events of a system are modelled as partially ordered structures. This paper,
in particular, studies concurrent games on event structures where the winning
conditions allow winning sets/plays that are infinite.

Concurrent games [13] form a model of interactive behaviour where nonde-
terministic strategies are formalized as certain maps of event structures. This
games model, as first introduced in [13], did not allow for the definition of

Preprint submitted to Journal of Computer and System Sciences 2013

winning conditions. In order to overcome this limitation, in [7], the initial con-
current games model was extended with winning conditions and a determinacy
result was given for games that satisfy two properties: firstly, a structural con-
dition, race-freedom, which prevents a player from interfering with the moves
available to the other; secondly, a restriction to winning conditions where only
finite winning sets are allowed. This paper extends the work on concurrent
games, mainly, by providing a new determinacy result.

The paper starts with a very general study of properties of concurrent games
and strategies; in particular, operations on concurrent games which preserve the
existence of nondeterministic winning strategies and a study relating strategies
seen as maps of events structures to strategies seen as certain kinds of closure
operators on the boards where the games are played.

Then, the main result of the paper is presented, namely a determinacy the-
orem for concurrent games where the winning conditions allow infinite winning
sets. The theorem holds on a class of games which satisfies two properties:
firstly, a structural property called bounded concurrency which ensures that no
event (or move) of either player is concurrent with infinitely many events of the
other player; and secondly, a restriction to concurrent games where the winning
conditions determine infinite winning sets/plays (or winning configurations in
the terminology of event structures) which can be regarded as the elements of
a class of concurrent open sets. Such sets, which due to bounded concurrency
can be shown to be finitely decidable, are a characteristic feature of the winning
conditions of our concurrent games.

Structure of the paper: Sections 2 and 3 introduce event structures and
concurrent games on event structures with winning conditions.1 Sections 4 to
6 contain the main contributions of the paper, as described above. Finally,
Section 7 presents related work, conclusions, and ideas for future work.

2. Preliminaries

Here we introduce event structures and concurrent games on them. The
material in this preliminary section can be found in [7, 13].

2.1. Event structures
An event structure (E,≤,Con) comprises a set E of events which are par-

tially ordered by ≤, the causal dependency relation, and a nonempty consistency
relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X Ô⇒ X ∪ {e} ∈ Con.

1Some of the notations used in this paper differ from the ones used in [7, 13], where
concurrent games are also studied. Instead, we sometimes use the terminology used in [9]; the
differences are insubstantial with respect to the work being presented.

2

The configurations, C(E), of E consist of those subsets x ⊆ E that are

Consistent: ∀X ⊆ x. X is finite Ô⇒ X ∈ Con,and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

Write Cω(E) for the set of finite configurations of E and C∞(E) for the set of
infinite configurations of E. Two events which are both consistent and incom-
parable with respect to ≤ are regarded as concurrent.

Notation 1. We use _ for the relation of immediate dependency e _ e′, mean-
ing e and e′ are distinct with e ≤ e′ and no event in between; also, we write ecoe′

when e and e′ are concurrent. ForX ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈ X. e ≤ e′},
the down-closure of X ; note that if X ∈ Con then [X] is a configuration; in par-
ticular, for singletons we write [e] instead of [{e}]. We also write [e) for the
configuration [e] ∖ {e} which contains the finite set of events that e depends

on. Moreover, we write x
e
−Ð⊂x′ if x ∪ {e} = x′ or simply x−⊂x′ if e is irrelevant.

Finally we often refer to an event structure (E,≤,Con) by referring to its set of
events E and may use subscripts, e.g. as in ≤E or ConE , when necessary. ◻

Maps of event structures. Let E and E′ be event structures. A (partial) map
of event structures f ∶ E → E′ is a partial function on events f ∶ E → E′ such
that for all x ∈ C(E) its direct image fx is in C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

Partial maps of event structures compose as partial functions, with identity
maps given by identity functions. For any event e a map f ∶ E → E′ must
send the configuration [e] to the configuration f[e]. A map is total if f is
total. A total map f is locally injective in the sense that with respect to any
configuration x of the domain the restriction of f to a function from x is injective;
the restriction of f to a function from x to fx is thus bijective.

Event structures are rich in useful constructions. For instance, the category
of event structures has products and pullbacks (both forms of synchronised
composition) and coproducts (nondeterministic sums). Also, event structures
support a restriction operation and a simple form of hiding, called projection,
associated with a factorization system. Both such operations are defined next.
Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V , to be E↓V =def (V,≤V ,ConV), where v ≤V
v′ if v ≤ v′ & v, v′ ∈ V and X ∈ ConV if X ∈ Con & X ⊆ V . Consider a partial
map of event structures f ∶ E → E′. Let V =def {e ∈ E ∣ f(e) is defined} . Then

f clearly factors into the composition E
f0 // E↓V

f1 // E′ of f0, a partial
map of event structures taking e ∈ E to itself if e ∈ V and undefined otherwise,
and f1, a total map of event structures acting like f on V . On the other hand,
the restriction of (E,≤,Con) to a set of events R ⊆ E, written E ↾ R, is the
event structure with events the set {e ∈ E ∣ [e] ⊆ R} and causal dependency and
consistency relations induced by E. More about event structures operations can
be found in [7, 13].

3

2.2. Concurrent games and strategies

A game (also known as board or arena) and a strategy in a game are both
represented using event structures with polarity, which are defined next.

An event structure with polarity comprises (E,pol) where E is an event
structure and pol ∶ E → {+,−} is a function ascribing a polarity + (Eve) or
− (Adam) to events in E; the events correspond to moves. Maps of event
structures with polarity are maps of event structures which preserve polarity.
Hereafter, by event structures we mean event structures with polarity.

Event structures support two key operations: the dual E⊥ of an event struc-
ture E is a copy of E where the polarities are reversed. Write e ∈ E⊥ for the event
complementary to e ∈ E and vice-versa. The simple parallel composition E∥E′

forms the disjoint juxtaposition of E,E′, two event structures; a finite subset of
events is consistent if its intersection with each component is consistent. The
empty event structure ∅ is the unit with respect to ∥.

2.2.1. Pre-strategies, strategies, and composition

Let A be an event structure representing a game; its events are possible moves
of Eve and Adam and its causal dependency and consistency relations are the
constraints imposed by the game. A pre-strategy in A is a total map σ ∶ S → A

from an event structure S. All moves in S are mapped to moves allowed in A

and obey the constraints of the game (e.g. causality, choices, concurrency, etc.).
A strategy is a pre-strategy that satisfies:
Receptivity. A pre-strategy σ is receptive if and only if

σx
a
−Ð⊂ & polA(a) = −⇒ ∃!s ∈ S. x

s
−Ð⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent if and only if
s _ s′ & (pol(s) = + ∨ pol(s′) = −)Ô⇒ σ(s)_ σ(s′).

From Eve’s viewpoint, receptivity ensures an openness to all possible moves
of Adam. Innocence restricts the behaviour of Eve; she may only introduce new
relations of immediate causality of the form ⊖_ ⊕ in S beyond those imposed
by the game A. Thus, innocence gives Eve the freedom to await Adam’s moves
before making her moves, but prevents her from having any influence on Adam’s
moves beyond those already in A.

Example 2. Consider the event structure A comprising three consistent and
concurrent events ⊕a, ⊕b, and ⊖c with the obvious polarities. The maps of
event structures σ1, σ2, σ3, and σ4 (depicted below) fail to be strategies.

S1

σ1

��

sc

��

/o/o/o s′c

��
A ⊕a ⊕b ⊖c

S2

σ2

��
A ⊕a ⊕b ⊖c

S3

σ3

��

sa

��

sb
✤llr

��

sc

��
A ⊕a ⊕b ⊖c

S4

σ4

��

sb
✤ ,,2

��

sc

��
A ⊕a ⊕b ⊖c

4

The _ arrow denotes immediate causal dependency and the wiggly line between
sc and s′c denotes binary conflict. The dotted arrows between the events in each
Si and the events in A are the maps under σi, e.g. σ3(sb) = ⊕b.

The reasons for which each σi fails to be a strategy are as follows: on the
one hand, σ1 and σ2 are not receptive; whereas σ1 fails to have a unique event
in S which maps to ⊖c, the map σ2 does not have an negative event sc ∈ S such
that σ(sc) = ⊖c. On the other hand, σ3 and σ4 are not innocent; the map σ3

introduces a forbidden ⊕b _ ⊕a causal dependency and the map σ4 introduces
a forbidden ⊕b _ ⊖c causal dependency. Note that if permitted the former
would allow Eve to wait for own moves, and the latter would allow Eve to make
Adam wait for her moves—two situations that are not permitted in S unless
such causal dependencies were already in A.

On thing Eve can actually do is, for instance, to wait until Adam plays his
event—in case he decided to do so. The strategy σ5 is one such map.

S5

σ5

��

sb

��

sc
✤llr

��
A ⊕a ⊕b ⊖c

Then, σ5 is a strategy (σ5 ∶ S5 → A is receptive and innocent) which does not
play ⊕a and waits until Adam plays ⊕c; if he does so, then Eve plays ⊕b. ◻

An important concept in this games framework is that of nondeterministic
strategies σ ∶ S → A, whose definition depends on whether S is deterministic or
not. Say an event structure E is deterministic if and only if

∀X ⊆fin E. Neg[X] ∈ ConE Ô⇒ X ∈ ConE ,

where Neg[X] =def {e
′ ∈ E ∣ pol(e′) = − & ∃e ∈ E. e′ ≤ e}. Naturally, E is non-

deterministic if it fails to be deterministic. Thus, a strategy σ ∶ S → A is
deterministic (resp. nondeterministic) if the event structure S is deterministic
(resp. nondeterministic). Roughly, a strategy (for Eve) is deterministic if it does
not contain choices—necessarily between positive events—in S.

Example 3. Let A be the event structure in Example 2 but where the events ⊕a

and ⊕b are in conflict, i.e. represent a choice for Eve to make. The two maps of
event structures depicted below illustrate two strategies for Eve: a deterministic
one (on the left) and a nondeterministic one (on the right).

S

σ

��

sa

��

sc

��
A ⊕a

/o/o/o ⊕b ⊖c

S′

σ′

��

sa

��

/o/o/o sb

��

sc

��
A ⊕a

/o/o/o ⊕b ⊖c

The strategy on the left plays ⊕a only. On the other hand, the strategy on
the right nondeterministically chooses between playing ⊕a and playing ⊕b. In
both cases, the strategies play the positive events regardless of the behaviour of
Adam as no causal dependencies with respect to ⊖c were introduced. ◻

5

Composition via pullbacks. We can define strategy composition via pullbacks.
Given two (pre-)strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C and ignoring
polarities, we can consider the maps on the underlying event structures, viz.
σ ∶ S → A∥B and τ ∶ T → B∥C. Viewed this way we can form their pullback as
shown below

P

Π1

yyttt
tt
tt
tt
t
❄⑧ Π2

%%❏❏
❏❏

❏❏
❏❏

❏❏

S∥C

σ∥idC $$❏
❏❏

❏❏
❏❏

❏❏
A∥T

idA∥τzztt
tt
tt
tt
t

A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C which
acts as identity on A and C and is undefined on B. The partial map from P to
A∥C given by the diagram above (either way round the pullback square) factors
as the composition of the partial map P → P ↓ V , where V is the set of events
of P at which the map P → A∥C is defined, and a total map P ↓ V → A∥C.
The resulting total map gives us the desired composition of (pre-)strategies
τ⊙σ ∶ P ↓ V → A⊥∥C once we reinstate polarities.

Very often, however, one is interested in the results of the interaction between
σ and τ in the game B, for instance, when playing, morally, in the “same” board,
i.e. when A = ∅ = C. In such a case we would have a strategy σ ∶ S → B for Eve
and a (counter-)strategy τ ∶ T → B⊥ for Adam.2

In order to define the results of playing two strategies against each other,
suppose that σ ∶ S → A is a strategy in a game A. A counter-strategy is a
strategy of Adam, so a strategy τ ∶ T → A⊥ in the dual game. Then (ignoring
polarities) we have total maps σ ∶ S → A and τ ∶ T → A whose pullback,

P

Π1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥❄⑧ Π2

 ❆
❆❆

❆❆
❆❆

❆

S

σ
 ❅

❅❅
❅❅

❅❅
❅ T

τ
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

A,

produces P , the event structure resulting from the interaction τ⊙σ of σ and τ .
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C(P). A configuration z images to a configuration σΠ1z =

τΠ2z in C(A). Define the set of results of playing σ against τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C(P)} .

2We say ‘morally, in the “same” board’ since in fact when playing a game, say in a board
B, formally it is Eve who plays in B whereas Adam plays in its dual, B⊥.

6

The results of a game are the complete plays of the game. Plays are, there-
fore, configurations of A; a subconfiguration of a result is a partial play.

Example 4 (Composition). Let σi ∶ Si → A be a strategy in A = ⊕ co ⊖

S0

σ0

��

⊖

��
A ⊖ ⊕

S1

σ1

��

⊖

��

⊕

��
A ⊖ ⊕

S2

σ2

��

⊖ ✤ ,,2

��

⊕

��
A ⊖ ⊕

Similarly, there are three counter-strategies τj for Adam—the duals of Eve. The
results of playing each σi against each τj are as follows:

⟨σi, τj⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{∅} if i ∈ {0,2} & j ∈ {0,2},

{{⊕}} if i = 1 & j = 0,

{{⊖}} if i = 0 & j = 1,

{{⊕,⊖}} otherwise.

Note that Eve/Adam can try to force some plays to happen sequentially by
adding causal dependencies, e.g. when using σ2/τ2. This situation may lead to a
deadlock since, when using σ2/τ2, Eve/Adam would stay waiting for Adam/Eve
to play first—something that may never happen. ◻

3. Concurrent games with winning conditions

We now introduce the concurrent games model that will be used in the
reminder of this document. This section is based on [7].

A game with winning conditions comprises (A,W), where A is an event
structure and W ⊆ C(A) consists of the winning configurations or winning sets
for Eve. Let L = C(A)∖W be the losing conditions for Eve; then, W and L are,
respectively, the losing and winning conditions for Adam.

Notation 5. Let x and x′ be configurations. Write x ⊆− x′ to mean x ⊆ x′

and pol(x′ ∖ x) ⊆ {−}, i.e. x′ extends x solely by events of negative polarity,
which we call ⊖-events. Similarly we call ⊕-events such moves with the dual
polarity property. We often write ∃-strategy to mean a strategy for Eve and
∀-strategy to mean one for Adam. Moreover, a configuration x is ⊕-maximal

if x
s
−Ð⊂ implies pol(s) = −. Moreover, a configuration x is ⊕-maximal within

a configuration z, with x ⊆ z, if x
s
−Ð⊂ and pol(s) = + implies (x ∪ {s}) /⊆ z.

Finally, define ⊖-maximality by changing the polarity of the event s. ◻

The concept of strategy is further refined. A ∃-strategy σ ∶ S → A in a game
(A,W) is winning for Eve if σx ∈W , for all ⊕-maximal configurations of S. A
winning strategy for Adam, i.e. a ∀-strategy, is defined dually.

One can also define a winning strategy as a strategy that ensures winning
the game regardless of the counter-strategy it is played against. Let σ ∶ S → A

be a ∃-strategy and τ ∶ T → A⊥ a ∀-strategy it is played against. It can be

7

shown [7], that a ∃-strategy σ of Eve is a winning if and only if all the results
of the interaction ⟨σ, τ⟩ lie within W , for any ∀-strategy τ ∶ T → A⊥ of Adam.
We say that a ∃-strategy σ ∶ S → A dominates a ∀-strategy τ ∶ T → A⊥ if and
only if ⟨σ, τ⟩ ⊆W . Similarly, τ dominates σ if and only if ⟨σ, τ⟩ ⊆ L. Write σ>>τ

whenever σ dominates τ . Note that given two strategies σ and τ it may be the
case that none of them dominates the other.

Example 6. Consider the event structure A with two inconsistent events ⊕ and
⊖ with the obvious polarities and winning conditions W = {{⊕}}. In the game
(A,W) no strategy for either player dominates all other counter-strategies of
the other player. In particular, let σ be the unique map of event structures that
contains ⊕ and τ a particular counter-strategy for Adam:

Eve: S

σ

��

⊕ /o/o/o

��

⊖

��
A ⊕ /o/o/o ⊖

Adam: T

τ

��

⊖ /o/o/o

��

⊕

��
A⊥ ⊖ /o/o/o ⊕

Then, neither ⟨σ, τ⟩ ⊆W nor ⟨σ, τ⟩ ⊆ L since {{⊕},{⊖}} ⊆ ⟨σ, τ⟩. ◻

Then, in a game (A,W) a strategy σ is winning if σ dominates all counter-
strategies it can be played against. This statement provides the usual intuition
of what a winning strategy is and leads to the definition of determinacy of a
class of games. A game is determined if either Eve or Adam has a winning
strategy, i.e. if there is a strategy that dominates all counter-strategies.

Before we study the determinacy problem for concurrent games with winning
conditions it is useful to state some facts about concurrent games.

4. Operational properties

Often, it is useful to think “operationally” of a strategy σ ∶ S → A as an
operator that associates to a configuration of A another configuration of A

that can, potentially, be played next. Since, in general, a concurrent strategy
can be nondeterministic then that operator may not be a function between the
configurations of A, but rather a relation between them. Nevertheless, when one
is restricted to deterministic concurrent strategies, as it was first shown in [13]
(and presented summarily here) a concurrent strategy σ ∶ S → A corresponds to
a closure operator on the configurations of A.

Notation 7. Recall that given a set of events x we write [x] for the down-closure
of x, i.e. for {e ∈ E ∣ ∃e′ ∈ x. e ≤ e′}. Then, write Pos[x] for the set of ⊕-events
in [x] (as Neg[x] is used for the set of ⊖-events in [x]). ◻

A deterministic concurrent strategy σ ∶ S → A determines a closure operator
ϕ on possibly infinite configurations C(S): for x ∈ C(S), define

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[s] ⊆ x} .

The closure operator ϕ on C(S) induces a partial closure operator ϕp on C(A).
This in turn determines a closure operator ϕ⊺p on C(A)⊺, where configurations

8

are extended with a top element ⊺: take y ∈ C(A)⊺ to the least fixpoint of ϕp

above y, if such exists, and ⊺ otherwise. An earlier definition of concurrent
strategies as closure operators was studied in [1]. Also, closure operators on
partial orders were used as concurrent strategies in [9]; however, the concurrent
games model in this paper generalizes the one in [9], amongst other reasons,
because nondeterministic strategies are considered instead.

Finally, the following structural property, called race-freedom—which first
appeared in [13] for the definition of the deterministic concurrent copy-cat
strategy—will be used again, this time, in order to define classes of determined
concurrent games. Formally, we say that a game A is race-free if

∀y ∈ C(A).

y
a
−Ð⊂ & y

a′

−Ð⊂ & pol(a) ≠ pol(a′) Ô⇒ y ∪ {a, a′} ∈ C(A) .
(Race-free)

Informally speaking, race-freedom is a structural condition that prevents one
player from interfering with the moves available to the other player.

Properties of games with winning conditions. We shall present a number
of simple but useful properties of games with winning conditions. Hereafter by
a game we mean a concurrent game with winning conditions (A,W).

Proposition 8 (Existence of a winner). Every play of a game has a winner.

Proof. Given any pair of strategies σ ∶ S → A and τ ∶ T → A⊥, the set of results
of plays ⟨σ, τ⟩ is not empty. And, since every configuration in A has assigned a
(uniquely defined) winner, then every play must have a winner. ◻

Definition 9 (Dual games). The dual of a game (A,W), denoted by (A,W)⊥

is the game (A⊥, L).

Proposition 10 (Closure under dual games). If there is a winning strategy in
(A,W) for one of the players, then there is a winning strategy in (A,W)⊥ for
the other player.

Proof. Suppose Eve has a winning strategy σ ∶ S → A and recall that Adam’s
strategies are in A⊥. Then, in the dual game (A,W)⊥ the strategy σ becomes a
∀-strategy and only maps to losing configurations by the definition of the dual
game. Then, it is a winning strategy for Adam in (A,W)⊥. By duality the
argument also applies when Adam has a winning strategy in (A,W). ◻

Definition 11 (Subgames). Let (A,W) be a game. Then for every y ∈ C(A)
define a residual subgame (A,W)y =def (Ay,Wy) where:

Ay = {a ∈ A ∖ y ∣ ∃y′ ∈ C(A). y ⊆ y′ & a ∈ y′}
Wy = {y′ ⊆ Ay ∣ y ∪ y′ ∈W}

with ≤Ay
the restriction of ≤A to Ay and ConAy

= {Y ⊆fin Ay ∣ Y ∈ ConA}.

9

The notion of residual subgames is key to analyse concurrent games as well
as their determinacy problem. Intuitively, a residual subgame is the remainder
of a concurrent game once a certain position (or configuration) has been reached.
Thus, they can be understood as the residual of a concurrent game with respect
to a particular configuration, whether finite or infinite.

Residual subgames are well behaved with respect to winning strategies in
the sense that they preserve the winner of the games they belong to—because
winning (sub-)strategies can always be constructed. More precisely:

Proposition 12 (Closure under residual subgames). For each game (A,W), if
σ ∶ S → A is a winning strategy then for every configuration y ∈ C(A) such that
y = σx for some x ∈ C(S), there is a winning strategy in (A,W)y.

Proof. Firstly, note that in the strategy σSx
defined by the event structure

Sx =def {s ∈ S ∖ x ∣ ∃x′ ∈ C(S). x ⊆ x′ & s ∈ x′}

with ≤Sx
the restriction of ≤S to Sx and ConSx

= {X ⊆fin Sx ∣ X ∈ ConS}, if xm

is a ⊕-maximal configuration in Sx then x∪xm is a ⊕-maximal configuration in
S. And since all ⊕-maximal configurations in S map under σ to configurations
in W , then, because of the definition of Wy , all ⊕-maximal configurations in Sx

map under σSx
to configurations in Wy.

Therefore σSx
is winning in (A,W)y. ◻

We are now ready to study the determinacy of concurrent games.

5. On undetermined games

In general a concurrent game is undetermined, as shown in Example 6. The
issue illustrated in the example is that there is a race between Eve and Adam
when trying to play their own moves as they are inconsistent with one another
(or in conflict) in A and therefore cannot be played together. Although being
race-free is not sufficient to ensure that a game is determined, whenever the
configurations of A are finite a determinacy result holds:

Theorem 13 (from [7]). Let A be a well-founded game, i.e. all configurations
in C(A) are finite. Then (A,W) is determined for all W iff A is race-free.

However, if the game is not well founded then determinacy cannot be guar-
anteed. For instance, as shown in the following example.

Example 14. Let A be the event structure consisting of one positive event ⊕
which is concurrent with an infinite chain of alternating negative and positive
events (and let i ∈ N), i.e. for each i we have both ⊕ co ⊕i and ⊕ co ⊖i:

A = ⊕ ⊖1

✤ ,,2⊕1

✤ ,,2⊖2

✤ ,,2⊕2

✤ ,,2⋯

and winning conditions (for Eve) given by

W = {∅,{⊖1,⊕1},{⊖1,⊕1,⊖2,⊕2}, ...,{⊖1,⊕1, ...,⊖i,⊕i}, ...,A}.

10

Intuitively, Eve wins if (i) no event is played, or (ii) the event ⊕ is not played
and the play is finite and finishes in some ⊕i, or (iii) all of the events in A are
played. Otherwise, Adam wins the game—recall that L = C(A) ∖W .

First, Eve does not have a winning strategy because Adam has an infinite
family of ∀-strategies which cannot all be dominated by a single ∃-strategy. Let
τ∞ ∶ T∞ → A⊥ and τi ∶ Ti → A⊥ be ∀-strategies, with i ∈ N, such that

T ⊥∞ =def A , and
T ⊥i =def A ∖ {e′ ∈ A ∣ ⊖i ≤ e

′ for some finite i}.

Any ∃-strategy that plays ⊕ is dominated by some ∀-strategy τi; likewise, any
∃-strategy that does not play ⊕ and plays only finitely many positive events ⊕i

is also dominated by some ∀-strategy τi. Moreover, a ∃-strategy that does not
play ⊕ and plays all of the events ⊕i in A is dominated by τ∞. Then, Eve does
not have a winning strategy in this game.

Similarly, Adam does not have a winning strategy in A because Eve has two
∃-strategies that cannot be both dominated by any ∀-strategy. Let σ⊕ ∶ S⊕ → A

and σ⊕ ∶ S⊕ → A be ∃-strategies such that

S⊕ =def A ∖ {⊕} , and
S⊕ =def A

On the one hand, any ∀-strategy that plays only finitely many (possibly zero)
negative events ⊖i is dominated by σ⊕; on the other hand, any ∀-strategy that
plays all of the negative events ⊖i in A is dominated by σ⊕. Thus, neither Eve
nor Adam has a winning strategy in this game! ◻

Notation 15. Note that in order to define a ∀-strategy τ ∶ T → A⊥ we actually
describe the dual of T , as if Adam was to play in A instead of A⊥. We will also
say that Adam plays a ⊖-event in A to mean that using τ he plays the dual
event in A⊥, so that we can use τ and avoid referring to A⊥. ◻

Note that the main issue in order to build a winning strategy for Eve is
that ⊕ cannot causally depend on infinitely many events. Then, one could
try to achieve determinacy in the infinite case—i.e. when the games are not
well founded—by requiring a structural condition to be satisfied by the boards
where the games are played; for instance, a structural condition that disallows
configurations where an event is concurrent with infinitely many events of the
opposite polarity. Such a property is called bounded-concurrency:

∀y ∈ C∞(A). ∀e ∈ y. {e′ ∈ y ∣ e co e′ & pol(e) ≠ pol(e′)} is finite.
(Bounded-concurrency)

Bounded-concurrency is a key property to achieve determinacy. In fact, as
shown by Lemma 17, whenever A fails to satisfy bounded-concurrency, one can
define winning conditions W that make a game (A,W) not determined.

Notation 16. We write max+(y′, y) if and only if y′ is ⊕-maximal in y, i.e.

y′
e
−Ð⊂ & pol(e) = + Ô⇒ e ∉ y; in a dual way, we write max+(y′, y) if and only if

y′ is not ⊕-maximal in y. We also use max− when pol(e) = − instead. ◻

11

In order to show that if a race-free event structure A fails to have bounded-
concurrency, then there are winning conditions W so that the game (A,W) is
not determined, we shall use the following general schema (a set of rules) for
defining the winning conditions/sets of the game.

Suppose A fails to satisfy bounded-concurrency. Then, we know that there
is y ∈ C∞(A) and e ∈ y such that e is concurrent with infinitely many events
ei ∈ y of opposite polarity. Without loss of generality, assume that pol(e) = +
and based on y define W using the following rules (let y′ ∈ C(A)):

1. y′ ⊇ yÔ⇒ y′ ∈W ;

2. y′ ⊂ y & e ∈ y′ Ô⇒ y′ ∈ L;

3. y′ ⊂ y & e ∉ y′ &
max+(y

′, y ∖ {e}) & max−(y
′, y ∖ {e})Ô⇒ y′ ∈W ;

4. y′ ⊂ y & e ∉ y′ &
max+(y

′, y ∖ {e}) or max−(y
′, y ∖ {e})Ô⇒ y′ ∈ L;

5. y′ ⊄ y & y′ ⊉ y & (y′ ∩ y) ⊂− y′ Ô⇒ y′ ∈W ;

6. y′ ⊄ y & y′ ⊉ y & (y′ ∩ y) ⊂+ y′ Ô⇒ y′ ∈ L;

7. otherwise assign (arbitrarily) y′ to W .

The rules assign a winner to every configuration (because of rule 7). In addi-
tion, no configuration y′ is assigned as winning to both Eve and Adam: the
antecedents of all implications are pair-wise mutually exclusive.3

Lemma 17. Let (A,W) be a race-free game. If A does not have bounded-
concurrency, then there is W such that the game (A,W) is not determined.

Proof. Define the winning conditions W using the general schema (set of rules)
given above. Without loss of generality, assume that y ∖ {e} is a configuration
and that y = [e] ∪ [{ei ∈ y ∣ pol(ei) = −}].

First, let us show that Eve does not have a winning strategy. Consider the
following infinite family of ∀-strategies, namely τ∞ ∶ T∞ → A⊥ and τi ∶ Ti → A⊥

(for i ∈ N and recall that for each ei ∈ y we have that e co ei), such that:

T ⊥∞ =def {e′ ∈ A ∣ e′ ∈ y ∨ pol(e) = +} , and
T ⊥i =def {e′ ∈ A ∣ e′ ∈ y ∖ {ei} ∨ pol(e′) = +}.

Then each ∀-strategy only plays ⊖-events contained in y; moreover, each ∀-
strategy τi does not play a ⊖-event ei which is concurrent with e.

To get a contradiction, suppose Eve has a winning strategy σ ∶ S → A.
Since σ is a winning strategy then σ>>τ∞, i.e. y

′ ∈ ⟨σ, τ∞⟩Ô⇒ y′ ∈W . Note
that because of the definition of τ∞ we know that for all y′ ∈ ⟨σ, τ∞⟩, we have
that y′ ⊇ y (Eve only wins using rule 1); rules 3 and 5 cannot be used to win the
game, respectively, because (for 3) τ∞ always plays ⊖-maximally in y—hence in
y ∖ {e} too—and (for 5) τ∞ never plays ⊖-events not in y. Then:

Pos[y] ⊆ σS.

3Note that W in Example 14 is an instance of the use of this set of winning rules.

12

We also have that σ>>τi, for every i ∈ N. As every τi does not play some
⊖-event in y then Eve cannot win using rule 1 when playing against every τi.
And, as for τ∞, each τi never plays ⊖-events not in y; then Eve cannot win using
rule 5 either. As a consequence, Eve can only win using rule 3.

Winning with rule 3 requires that

∀τi. y
′ ∈ ⟨σ, τi⟩Ô⇒ e ∉ y′.

But we know that there is se ∈ S such that σ(se) = e (because Pos[y] ⊆ σS).
Since [e] is finite then [se] is finite too—hence Neg[se] is also finite. And
because Neg[y] is infinite, then there are infinitely many τi such that

∃y′ ∈ ⟨σ, τi⟩. y
′ ⊂ y & e ∈ y′,

i.e. infinitely many τi with which Adam wins using rule 2—which contradicts
that Eve wins using rule 3 when playing against every τi (formally, a contradic-
tion with the statement above, namely, that ∀τi. y′ ∈ ⟨σ, τi⟩Ô⇒ e ∉ y′).

Then, we conclude that σ ∶ S → A is not a winning strategy, i.e. that Eve
does not have a winning strategy in the concurrent game (A,W).

Now, we show that Adam does not have a winning strategy either. Consider
the following two ∃-strategies, σ⊕ ∶ S⊕ → A and σ⊕ ∶ S⊕ → A, where:

S⊕ =def {e′ ∈ A ∣ e′ ∈ y ∨ pol(e) = −} , and
S⊕ =def {e′ ∈ A ∣ e′ ∈ y ∖ {e} ∨ pol(e) = −}.

Thus, σ⊕ and σ⊕ only play ⊕-events in y; moreover, σ⊕ plays ⊕-maximally in
y—hence in y ∖ {e} too—and σ⊕ plays ⊕-maximally in y ∖ {e}. And, while σ⊕
plays e as long as Adam plays Neg[e], the strategy σ⊕ never plays e.

Again, in order to get a contradiction, suppose that Adam has a strategy
τ ∶ T → A⊥ which is winning; in particular, so that both τ>>σ⊕ and τ>>σ⊕.

Because of the definitions of σ⊕ and σ⊕ and the set of winning rules there
are two ways how τ can win (see rules 2 and 4), namely when:

(i) y′ ⊂ y & e ∈ y′, or
(ii) y′ ⊂ y & e ∉ y′ & max−(y′, y ∖ {e}),

for any result y′.
The first observation is that since both σ⊕ and σ⊕ play ⊕-maximally in

y ∖ {e}, then every result y′ of playing τ against either σ⊕ or σ⊕ satisfies that

max+(y
′, y ∖ {e}).

The second observation is that since y ∖ y′ ≠ ∅ and max+(y
′, y ∖ {e}), then

it follows that for all e′ ∈ y such that y′
e′

−Ð⊂ we have that

pol(e′) = + Ô⇒ e′ = e and e ∈ y′ Ô⇒ pol(e′) = −.

Let y′ ∈ ⟨σ⊕, τ⟩. Since max+(y
′, y) holds (because σ⊕ plays ⊕-maximally in

y—rather than only in y ∖ {e}) then it follows that pol(y ∖ y′) ⊆ {−}, i.e. all
events in the non-empty set y ∖ y′ have negative polarity. Formally, that

∀e′ ∈ y. y′
e′

−Ð⊂ Ô⇒ pol(e′) = −.

13

Thus, there are two options: either e ∉ y′ or e ∈ y′. The former is impossible
because in such a case Adam would have to win using rule 4, and hence y′

would satisfy (ii), but y′ fails to satisfy max−(y′, y ∖ {e}). Therefore, we have
that e ∈ y′ and hence Adam wins using rule 2, i.e. y′ satisfies (i). Since y′ is
⊕-maximal in y, we know, in particular, that τ does not play all negative events
in A, that is, we have that

Neg[y] ⊈ (τT)⊥,

as otherwise there would be a result where Eve would win using rule 1.
Now, let y′ ∈ ⟨σ⊕, τ⟩. In this case, max+(y

′, y ∖ {e}) holds (as σ⊕ plays

⊕-maximally in y ∖ {e}) and hence ∀e′ ∈ y. y′
e′

−Ð⊂ & pol(e′) = + Ô⇒ e′ = e.
Necessarily e ∉ y′ (because σ⊕ does not play e) and Adam can only win using

rule 4, that is, so that y′ satisfies (ii) above. This implies that max−(y
′, y∖{e})

must hold and we know that max+(y
′, y ∖ {e}) holds too. As y′ is both ⊕-

maximal and ⊖-maximal in y ∖ {e} and y ∖ y′ ≠ ∅, then there is only one event

that y′ enables, namely e; formally ∃e′ ∈ y. y′
e′

−Ð⊂ & ∀e′ ∈ y. y′
e′

−Ð⊂ Ô⇒ e′ = e.

Thus, it necessarily is the case that y ∖ y′ = {e} and hence that

Neg[y] ⊆ (τT)⊥,

which leads to a contradiction.
As a consequence, Adam does not have a strategy that dominates both σ⊕

and σ⊕, i.e., Adam does not have a winning strategy either.
Thus, we finally conclude that neither player has a winning strategy. ◻

Remark 18. Note that the reason why Adam does not have a winning strategy
has nothing to do with the fact that y is infinite. Indeed, if one restricts to a
setting where y is finite, then a winning strategy for Eve can be defined: simply
use σ⊕ but make e causally depend on all ⊖-events in y. ◻

6. Determinacy and infinite winning sets

In a seminal paper on (sequential, two-player, and perfect information) infi-
nite games by Gale and Stewart [8] it was shown that when the pay-off sets of
the game—the winning conditions—are open sets, then the game is determined.
Playing in an open set implied the following property:

Property 19. Given an infinite play p = < m1,m2,m3, ... >, seen as an infinite
sequence of moves, if Adam (resp. Eve) does not have a winning strategy in any
sub-game p(i) = <mi,mi+1,mi+2, ... >, for all i in N, then it follows that Adam
(resp. Eve) does not win in such a particular play p. ◻

Important pay-off sets for sequential games in logic and computer science
are open, e.g. some ω-regular winning sets studied in formal verification.

Definition 20 (concurrent open games). Let (A,W) be a concurrent game.
We say that (A,W) is open when for all y ∈ C∞(A) the following holds: If
Adam (Eve) does not have a winning strategy in any subgame (A,W)y′ , for all
y′ ⊆fin y, then Adam (Eve) does not have a winning strategy in (A,W)y.

14

Then, instead of defining open sets in our framework, we will require that
concurrent games satisfy what sequential games on open sets satisfy.

In the reminder of this section we show that if a concurrent game (A,W)
has winning conditions whose winning sets (i.e. configurations) are allowed to
be infinite but (A,W) is open and has bounded-concurrency, then the game is
determined. Note that well-founded games (as in [7]) trivially satisfy bounded-
concurrency and openness since in that case C∞(A) = ∅.

Example 21. The game (A,W) in Example 14 is not open. Take the infinite
configuration y = {⊖1,⊕1,⊖2,⊕2, ...}; even though Eve does not have a winning
strategy in any subgame (A,W)y′ , with y′ ⊆fin y, she has a winning strategy in
the subgame (A,W)y, namely in the subgame ({⊕},{⊕}). The winning strategy
is obvious: σ ∶ {s⊕}→ {⊕}, i.e. where σ(s⊕) = ⊕. ◻

6.1. Concurrent defensive strategies

Another seminal idea introduced by Gale and Stewart in [8] was that the
class of defensive strategies—strategies which try to avoid losing—was complete
for (sequential perfect-information) open games in the sense that if a player has
a winning strategy, then it has a defensive winning strategy.

For our determinacy theorem we use strategies of a similar kind; we call
them concurrent defensive strategies, since they always try to avoid losing but
in a concurrent setting. The technique to build concurrent defensive strategies—
together with an example—is given in the appendix.

Not all concurrent defensive strategies are winning, since it is not always
possible to extend losing configurations to winning ones, e.g. when a player
does not have a winning strategy. However, all defensive strategies have the
following, intuitively simple, property: namely that if the strategy σ ∶ S → A in
an even structure A is in fact a concurrent defensive strategy, then

∀x ∈ C(S). σx ∈ L & (∃y ∈W. σx ⊂+ y)
Ô⇒
∃x′ ∈ C(S). x ⊂+ x′ & σx′ ∈W.

6.2. Determinacy of concurrent open games

We now prove the main result of the paper, namely the determinacy theorem
for concurrent open games on event structures. Hereafter we sometimes will
require that the games are race-free, open, or have bounded-concurrency.

Lemma 22. Let (A,W) be a race-free game with bounded-concurrency and y

a finite configuration in Cω(A). If y ⊆+ y′, and Eve does not have a winning
strategy in (A,W)y, and the set y′ ∖ y is infinite, then y′ ∈ L.

Proof. Since Eve does not have a winnings strategy in (A,W)y, then because
(A,W) is race-free

y′ ∈W Ô⇒ (∃y′′ ∈ L. y′ ⊆− y′′);

and since the set y′ ∖ y is infinite and the configuration y is finite, then y′ is
infinite and contains infinitely many ⊕-events (because y ⊆+ y′).

15

Now, in order to get a contradiction, suppose that y′ ∈ W . If y′ ∈ W∞,
and y′ contains infinitely many ⊕-events, and y′ ⊆− y′′, then there exists a
⊖-event e′′ ∈ y′′ ∖ y′ such that {e′ ∈ y′ ∣ e′′ co e′ & pol(e′′) ≠ pol(e′)} is infinite;
contradiction with A having bounded-concurrency. Then, y′ ∈ L.

Corollary 23. Let (A,W) be a race-free game with bounded-concurrency and
y a finite configuration in Cω(A). If y ⊆+ y′ and Eve does not have a winning
strategy in (A,W)y then

• y′ ∈W Ô⇒ y′ is finite, and

• y′ is infinite Ô⇒ y′ ∈ L.

Lemma 24. If y ∈ L∞, an infinite configuration of a race-free game with
bounded-concurrency (A,W), and y contains infinitely many ⊖-events, then
Adam has a winning strategy in (A,W)y.

Proof. If y contains infinitely many ⊖-events and the game (A,W) has bounded-
concurrency, then

y
e
−Ð⊂ Ô⇒ pol(e) = −,

as otherwise e would be concurrent with infinitely many events with opposite
polarity—i.e. the event structure A would fail to be bounded-concurrent. It then
immediately follows that the empty ∀-strategy on (A,W)y is winning. Thus,
not only has Adam a winning strategy but also such a strategy is the unique
(receptive) empty ∀-strategy on (A,W)y.

Informally speaking, the proof of Lemma 24 says that Adam does not need
to do anything, i.e. play any ⊖-move, to win the subgame (A,W)y .

Lemma 25. If y is an infinite configuration in a race-free game (A,W) with
bounded-concurrency and Eve does not have a winning strategy in (A,W)y then
Adam has a winning strategy in (A,W)y.

Proof. There are four cases depending on whether y is in W∞ or in L∞ and on
whether y has finitely many or infinitely many ⊖-events.

1. Suppose that y ∈W∞ has finitely many ⊖-events. Since Eve does not have
a winning strategy then there is y′ such that y ⊆− y′ ∈ L∞. And as (A,W)
has bounded-concurrency then no ⊖-event e ∈ y′ ∖ y is concurrent with
infinitely many ⊕-events in y. Then, y has finitely many ⊕-events and
infinitely many ⊖-events; contradiction. Then, this case cannot occur (as
if it could then Eve would have a winning strategy—the empty ∃-strategy
in (A,W)y as only ⊕-extensions of y would be possible).

2. Suppose that y ∈ W∞ has infinitely many ⊖-events. Then, we have that
only ⊖-extensions of y are possible. As before, since Eve does not have
a winning strategy then there is y′, with y ⊆− y′ ∈ L∞, where Adam
wins the game since no ⊕-extension of y′ is possible. Then Adam has a
winning strategy in (A,W)y′ , and therefore also in all games (A,W)y′′ ,
with y′′ ∈ {y′′ ∈ C∞(A) ∣ y′′ ⊆− y′}; in particular, Adam has a winning
strategy in the game (A,W)y, where y′′ = y.

16

3. Suppose that y ∈ L∞ has infinitely many ⊖-events. By Lemma 24, Adam
has a winning strategy in (A,W)y .

4. Suppose that y ∈ L∞ has finitely many ⊖-events. Then, y has infinitely
many ⊕-events and only ⊕-extensions of y are possible. As Eve does not
have a winning strategy then each ⊕-extension of y must be in L∞. Hence,
again, Adam has a winning strategy in (A,W)y .

Therefore, in all cases, Adam has a winning strategy in (A,W)y.

The next two lemmas are key to defining winning strategies, which are re-
alised as concurrent defensive strategies (see Appendix).

Lemma 26. Let (A,W) be a race-free game with bounded-concurrency and
y ∈ C(A). If Eve does not have a winning strategy in (A,W)y then

∀y′ ∈W. y ⊆+ y′

Ô⇒

∃y′′ ∈ L. y′ ⊆− y′′ & Eve does not have a winning strategy in (A,W)y′′

Proof. Consider two cases: either y is finite or y is infinite.
If y is infinite and Eve does not have a winning strategy in (A,W)y then,

due to Lemma 25, Adam has a winning strategy in (A,W)y and therefore also a
winning strategy in every ⊕-extension y′ of y, i.e. in every game (A,W)y′ . Now,
as (A,W) has bounded-concurrency, either y cannot be ⊕-extended to y′ ∈W∞

or y′ cannot be ⊖-extended to y′′ ∈ L∞. But, since Adam has a winning strategy
in both (A,W)y and (A,W)y′ then no ⊕-extension y′ of y can be inW∞. Hence,
the statement is trivially satisfied when y is infinite.

Now suppose that y is finite and that Eve does not have a winning strategy
in (A,W)y . If y is ⊕-extended to y′ and y′ is infinite then, due to Corollary 23,
y′ is in L; hence, if y is finite and ⊕-extended to y′ ∈W then y′ must be finite
too. Recall that as Eve does not have a winning strategy in (A,W)y then she
does not have a winning strategy in any (A,W)y′ either (with y ⊆+ y′).

Then, in order to get a contradiction, suppose that for some y′ ∈ W every
⊖-extension y′′ of y′ defines a game (A,W)y′′ where Eve has a winning strategy.
Suppose that y′′ in infinite. Since (A,W) has bounded-concurrency, y′ is finite,
y′′ is infinite, and y′′ extends y′ only with ⊖-events then y′′ contains infinitely
many ⊖-events. Then, due to Lemma 24, Adam has a winning strategy in
(A,W)y′′ ; contradiction. As a consequence, y′′ cannot be infinite. Note, in
particular, that since y′′ is finite then it has finitely many ⊖-events.

Now, let σy′′ be the winning strategies for Eve at each subgame (A,W)y′′ .
Also, let σy be the (sub)strategy that takes the game from y to y′. Define σ to
be the strategy that at y behaves as σy and has every ⊕-event of every strategy
σy′′ causally depending on the ⊖-events in y′′. Clearly, since all y′′ are finite
(and hence have finitely many ⊖-events) the strategy σ can be constructed. But,
then, σ is winning since the results of ⟨σ, τ⟩, for every τ , are all in W (because
it is so for each σy′′). Therefore, Eve has a winning strategy σ in (A,W)y;
contradiction. Thus we conclude that if y is finite, and Eve does not have a

17

winning strategy in (A,W)y , and y ⊆+ y′ ∈ W (for some finite y′), then there
exists finite y′′ ∈ L such that y′ ⊆− y′′ and a game (A,W)y′′ where Eve does not
have a winning strategy.

Note, in particular, that the previous lemma holds without the requirement
that A is well founded, i.e. that the configuration y is finite.

Lemma 27 (Finite decidability). Let (A,W) be a game such that the game
board A is race-free and has bounded-concurrency. Then we have that

∀y, y′ ∈ C∞(A). y ∈W∞ & y ⊂− y′ & y′ ∈ L∞Ô⇒ ∃y′′ ⊂fin y. y′′ ⊂− y′.

Proof. Since A has bounded-concurrency, then it follows that

y
e
−Ð⊂ & pol(e) = − Ô⇒ Pos[y] is finite,

as otherwise e would be concurrent with infinitely many events (in y) with
opposite polarity. Let y′′ be the necessarily finite configuration [Pos[y]]. Note
that since A is race-free, then [Pos[y]] is ⊕-maximal (as well as y), because
no ⊖-event in y′ ∖ [Pos[y]] can be in conflict with any ⊕-event in A. Then, it
follows that [Pos[y]] = y′′ ⊂−

fin
y ⊂− y′, i.e. that y′′ ⊂−

fin
y′.

The previous lemma states that the infinite sets/plays of our games can be
regarded as finitely decidable: if one can avoid a winning infinite configuration
(for Eve), then one only needs to avoid some previous finite configuration.

Now, the next lemma is used to construct a game board, i.e. an event struc-
ture, where Adam has a winning strategy. The lemma is based on the (re-
peated) construction of partial game boards which we call layers. Layers are
event structures in which no chain of events the polarities alternate more than
once. By the determinacy result in [7] we know that a winning strategy always
exists whenever layers are well founded. The issue may arise when they are not;
however, the next lemmas help us show that if the games are open and have
bounded-concurrency, then determinacy can be recovered.

Definition 28 ((∀/∃)-games). Let (A,W) be a game, S∀ a subset of ⊖-events
of A, and S∃ the set of ⊕-events of A. A ∀-game (A∀,W∀) is a game such that
A∀ = A ↾ (S∀ ∪ S∃), i.e. A∀ is the event structure A restricted to the events in
S∀ ∪ S∃, and W∀ =W ∩A∀. Define ∃-games analogously.

Note that Adam (resp. Eve) has a winning strategy in (A,W) only if they
have a winning strategy in some ∀-game (resp. ∃-game).

Lemma 29. Let (A,W) be a race-free, open game with bounded-concurrency. If
Eve does not have a winning strategy in (A,W) then there is a ∀-game (A∀,W∀)
where

1. for every finite y ∈W∀ there is y′ ∈ L∀ such that y ⊂− y′, and

2. for every infinite y′ ∈ C∞(A∀), if y
′ is ⊖-maximal then y′ ∈ L∀.

18

Proof. We shall construct A∀, i.e. an event structure A∀ ⊆ A, where every finite
configuration in W can be ⊖-extended to a configuration in L and all infinite
configurations are in L∞. We use Lemma 26 to do so.

Take the empty configuration ∅ as well as all ⊕-extensions of it, that is, all
y such that ∅ ⊆+ y. Then, for each finite y, if y ∈ W extend it to a configu-
ration y′ ∈ L where Eve does not have a winning strategy, i.e. which defines a
residual subgame (A,W)y′ where Eve does not have a winning strategy. Such a
configuration always exists: if Eve does not have a winning strategy in ∅ then
she cannot have a winning strategy in any ⊕-extension y of ∅ (otherwise, due
to race-freedom, she would have it in ∅ too); therefore

y ∈W Ô⇒ (∃y′ ∈ L. y ⊆− y′).

The process described above constructs one layer (say, layer 0), which may
not be well founded. Then, repeat the process of constructing layers for each y′

that is finite. Let A∀ be the event structure defined by the configurations y, y′

characterized by the recursive process described above.
The first statement to prove, namely that every finite configuration in W

can be ⊖-extended to a configuration in L, immediately follows from the fact
that every layer of A∀ is constructed using Lemma 26.

In order to show the second statement, namely that all infinite configurations
y′ are in L, let us consider the following four cases:

1. infinite ⊕-extension to y′ from finite y, or

2. infinite ⊖-extension to y′ from finite y, or

3. y′ is constructed by an infinite alternation of finite layers, or

4. extension to y′ from infinite y.

Case 1: y ⊆+ y′ and y is finite. Due to Corollary 23, it follows that y′ ∈ L∞.
Case 2: y ⊆− y′ and y is finite. Firstly, note that since y is finite, then

Pos[y] is finite too and, moreover, that y′ ∖ y is set of ⊖-events only. Now, due
to Lemmas 26 and 27, we know that either y′ is W∀ but it is not ⊖-maximal,
or it is ⊖-maximal and it is in L; thus, y′ ∈ L. And since Eve does not have a
winning strategy in (A,W)y′ , (A,W) is race-free and has bounded-concurrency
then, because of Lemma 24, it follows that Adam has a winning strategy in
(A,W)y′ . Moreover, since the set y′ ∖ y has infinitely many ⊖-events, due to
bounded-concurrency, there are no ⊕-extensions of y′.

Case 3: y′ is an infinite configuration and there is no finite configuration
y such that either y ⊆+ y′ or y ⊆− y′. Since (A∀,W∀) is constructed using
Lemma 26 and (A,W) is a concurrent open game, then Eve does not have a
winning strategy in (A,W)y′ . Suppose, in order to get a contradiction, that
y′ ∈ W∞. Since y′ contains infinitely many ⊖-events as well as infinitely many
⊕-events then it can be extended neither with ⊖-events nor with ⊕-events. Thus,
the property that y′ ∈W Ô⇒ (∃y′′ ∈ L. y′ ⊆− y′′) fails to be satisfied; contradic-
tion. As a consequence y′ must be in L∞.

Case 4: y is infinite. Note that the (sub)cases when y ⊆ y′, with y infinite,
need not be considered because when constructing A∀ only finite configurations

19

are extended to L at each layer. In particular, note that if y was in W , due to
Lemma 27 and the fact that all finite configurations in W are ⊖-extended to
configurations in L, then it follows (case 2) that y ∈W was not ⊖-maximal and
that y′ ∈ L.

Then, all infinite ⊖-maximal configurations of A∀ are in L.

The previous lemma implies that in a race-free open game with bounded-
concurrency, a strategy that does not win at any finite stage, does not win at
any infinite stage either (i.e. at any subgame). Now, we show that due to race-
freedom and bounded-concurrency—our two structural properties on games—
if Eve does not have a winning strategy in (A,W), not only can a ∀-game
(A∀,W∀) be constructed but also a winning ∀-strategy for Adam.

Lemma 30. Let (A,W) be a race-free, open game with bounded-concurrency.
If Eve does not have a winning strategy in (A,W) then Adam has a winning
strategy in (A,W).

Proof. By the definition of residual subgames, Eve does not have a winning
strategy in (A,W) if and only if she does not have a winning strategy in
(A,W)∅. Using Lemma 29 we shall construct a game board A∀, i.e. an event
structure A∀ ⊆ A, where Adam has a winning strategy.

Now, let us build a winning strategy τ ∶ T → A⊥∀ for Adam in the game board
A∀, and hence in A too since any winning strategy in A∀ does not disallow ⊕-
events already in A, that is, the receptivity of τ with respect to A makes it a
winning strategy also in A. We can use the same techniques to build winning
strategies for well-founded games because:

(i) all infinite ⊖-maximal configurations of A∀ are in L and
(ii) no ⊖-event in T ⊥ needs to depend on infinitely many ⊕-events in T ⊥.

Item (i) was shown in Lemma 29. Now, let us show item (ii). Without loss
of generality, take only ⊖-maximal configurations y of A∀. If y is finite then,
obviously, any ⊖-event e ∈ T ⊥ would be required to depend only on finitely
many ⊕-events. Now suppose that y is infinite. As before, there are four cases
to consider: (1) infinite ⊕-extension to y from some finite y′, or (2) infinite
⊖-extension to y from some finite y′, or (3) y is constructed by an infinite
alternation of finite layers, or (4) extension to y from infinite y′.

Case 1: Pos[y] is infinite and Neg[y] is finite. Since [Neg[y]] is finite and
⊖-maximal (because, due to bounded-concurrency, y cannot be ⊖-extended)
then because of Lemma 26 and the way (A∀,W∀) was constructed, we know
that [Neg[y]] ∈ L. As a consequence, any ⊕-extension of [Neg[y]] is in L too.
Then, for Adam, winning in [Neg[y]] is winning in y itself as well as in any
⊕-extension of it. Thus, a winning (sub)strategy that contains [Neg[y]] can be
constructed since the set of ⊕-events Pos[Neg[y]] is finite, i.e. the infinite set
of ⊕-events in y′ ∖Pos[Neg[y]] will be taken into account by the receptivity of
the ∀-strategy to be constructed for Adam.

Case 2: Pos[y] is finite and Neg[y] is infinite. Clearly, in this case a
winning (sub)strategy that contains y can easily be constructed since there are
only finitely many ⊕-events in y.

20

Case 3: both Pos[y] and Neg[y] are infinite. In this case y is, necessarily,
an infinite alternating sequence of the form

∅ ⊆+ y0∃ ⊆
− y0∀ ⊆

+ y1∃ ⊆
− y1∀ ⊆

+ ... ⊆ y

where every yi∃ ∖y
i−1
∀ is finite. Then, every event e ∈ T which is mapped by τ to

an event in yi∀ is required to depend (immediately) only on finitely many events
of opposite polarity, more precisely, on those events that are mapped to the set
of events in Neg[yi∃ ∖ y

i−1
∃], which is finite (⊕-events in layer k = i).

Case 4: both Pos[y] and Neg[y] are infinite. Already covered by one of the
three former cases since we are assuming that y′ itself is infinite.

Since (i) in any ∀-strategy no ⊖-event in required to depend on infinitely
many ⊕-events and (ii) at every finite stage of the game Adam can avoid losing,
because of Lemma 29, a winning strategy can be constructed in A∀.

Since concurrent games on event structures are closed under dual games, the
following result comes almost for free!

Lemma 31. Let (A,W) be a race-free, open game with bounded-concurrency.
If Adam does not have a winning strategy in (A,W) then Eve has a winning
strategy in (A,W).

Proof. Due to Proposition 10 and Lemma 30 there is a dual game (A⊥, L) where
Adam has a winning strategy. Since such a winning strategy τ is a strategy for
Adam, then it is a strategy in the game dual to A⊥, i.e. a strategy σ ∶ S → A (in
the game dual to A⊥), which is necessarily winning and can be used by Eve to
win every play of the game (A,W).

Thus, it immediately follows from Lemmas 30 and 31 that:

Theorem 32 (Determinacy). Let (A,W) be a race-free, open game with bounded-
concurrency. Then, Eve or Adam has a winning strategy in (A,W).

7. Related and future work

Determinacy has been a fundamental problem within the games traditionally
used in mathematics, especially in mathematical logic and set theory; in this
section we describe some related work on concurrent games and determinacy
results, and finish by suggesting some avenues for future work.

In mathematical logic and set theory, determinacy problems have been stud-
ied with respect to different kinds of games for more than a century: e.g. finite
games [15], open games [8], Borel games [11], or Blackwell games [12], just to
mention a few which are particularly relevant in computer science. Whereas the
determinacy theorem in [7] is a generalisation of Zermelo’s determinacy theorem
for finite sequential games [15] to a concurrent setting, the determinacy theorem
we have in this paper generalises the Gale–Stewart determinacy theorem for in-
finite, open games in [8]. In particular, a key ingredient of the Gale–Stewart

21

determinacy theorem for open games is the fact that the payoff winning sets
they consider are finitely decidable.

In computer science and formal verification games have also played an im-
portant role. Traditionally, most games found in the literature have been defined
to be played sequentially, where a great deal of determinacy results are known.
However, in order to address some problems in concurrency, logic, programming
semantics, and verification, in the last few years, some concurrent game mod-
els have been developed. With no intention of providing an exhaustive review
of the literature, we now present some games where determinacy theorems (or
results of a similar kind) have been studied.

For instance, in [6] a very complete survey of concurrent games as currently
used in formal verification can be found. The concurrent games described in [6]
are played on so-called ‘concurrent game structures’, which are graphs where
several players can interact concurrently in order to model the behaviour of
reactive systems regarded as open ones. These concurrent games, and variants
of them, have been used to study ω-regular properties of reactive systems [2, 3]
and to give semantics to some logics for multi-agent systems, e.g. [4]. In the
cases where winning strategies have been required to exist their solution is to
use profiles of mixed strategies, i.e. stochastic ones, for which winning strategies
exist up to some real value of accuracy. In the case of zero-sum two-player
games (as it also is our games model) determinacy follows from the determinacy
of Blackwell games [12].

There are two important differences between the games considered in [12] and
ours, which make the comparison of determinacy results between both frame-
works rather difficult. On the one hand, players do not take turns in our games,
i.e. in a concurrent game on an event structure neither player is actually forced
to play—as it is the case for (models based on) Blackwell games; moreover, to
achieve determinacy in a concurrent game on an event structure, the strategies
to be considered must be nondeterministic.

On the other hand, Blackwell games are of imperfect information4 and turn-
based in the following sense: at each turn of the game both players must make
their choices, independently of each other, and then share that information with
the other player in order to perform a join move and play the next turn of the
game. Our determinacy result does not directly apply to Blackwell games—and
hence to (some of) the games in [6]—because the games we have considered in
this paper are not of imperfect information.

Finally, in [9] a concurrent game on partial orders is defined and a deter-
minacy result is obtained. The present paper is an attempt to obtain similar
results but in the more general setting given by event structures. In particular,
the games in [9] have properties tailored to be used in verification. Indeed, the
main result in [9] was a determinacy theorem for a concurrent logic game (see [5]

4Concurrent games need extra structure to model imperfect information. It may be possible
that Blackwell games fit in our framework if, for instance, neutral configurations (which are
neither winning nor losing) and probabilistic strategies are allowed.

22

for a survey of logic games) to which various verification problems, including
bisimulation and model-checking, can be reduced. Those games provide a simple
generalization of previous game-theoretic approaches to verification [14].

Future work. A first avenue for future work is to fully understand which kinds
of winning sets/conditions—as used in computer science and formal verification—
fit within our games framework. Certainly, some ω-regular winning sets do fit,
but a detailed study of this question should be carried out.

Also, as mentioned before, computability issues should be addressed. Note
that given a game, a determinacy theorem answers positively only the question
‘can one of the players win the game?’. However, this has nothing to do with
the fact that the winning strategy is in fact effectively computable. Then, there
are a number of further questions to be answered, which amount to solving
the game in practice. They are: ‘is the winner of such a game computable?’;
and if so, ‘is there an algorithm to compute its winning strategy?’. As one is
interested in strategies (and infinite games) with finite representations then, in
the quest towards the answer of algorithmic questions, further research is needed
to better understand possible finite representations of event structures, e.g. as
those afforded by Petri nets.

Acknowledgement. We thank Julian Bradfield, Pierre Clairambault, and
Grant Passmore for helpful discussions. This article was written for the JCSS
special issue of selected papers presented in WoLLIC’11, where one of the au-
thors studied in [9] (as a part of [10]) determinacy issues for games on concurrent
systems. The authors acknowledge the support of the EPSRC Research Grant
‘Solving Parity Games and Mu-Calculi’ (at Edinburgh) and the ERC Advanced
Grants ECSYM (at Cambridge) and RACE (at Oxford).

References

[1] Abramsky, S., Melliès, P.A.: Concurrent games and full completeness. In: LICS.
pp. 431–442. IEEE Computer Society (1999)

[2] de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS. pp.
141–154. IEEE Computer Society (2000)

[3] de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games.
Theoretical Computer Science 386(3), 188–217 (2007)

[4] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

[5] van Benthem, J.: Logic games, from tools to models of interaction. In: Logic at
the Crossroads, pp. 283–317. Allied Publishers (2007)

[6] Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. Journal
of Computer and System Sciences 78(2), 394–413 (2012)

[7] Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent
games. In: LICS. pp. 235–244. IEEE Computer Society (2012)

23

[8] Gale, D., Stewart, F.: Infinite games with perfect information. Annals of Mathe-
matical Studies 28, 245–266 (1953)

[9] Gutierrez, J.: Concurrent logic games on partial orders. In: WoLLIC. LNCS, vol.
6642, pp. 146–160. Springer (2011)

[10] Gutierrez, J.: On Bisimulation and Model-Checking for Concurrent Games with
Partial Order Semantics. Ph.D. thesis, University of Edinburgh (2011)

[11] Martin, D.: Borel determinacy. Annals Mathematics 102(2), 363–371 (1975)

[12] Martin, D.: The determinacy of Blackwell games. Journal of Symbolic Logic
63(4), 1565–1581 (1998)

[13] Rideau, S., Winskel, G.: Concurrent strategies. In: LICS. pp. 409–418. IEEE
Computer Society (2011)

[14] Stirling, C.: Bisimulation, modal logic and model checking games. Logic J. of the
IGPL 7(1), 103–124 (1999)

[15] Zermelo, E.: On an application of set theory to the theory of the game of chess.
In: Congress of Mathematicians. pp. 501–504. CUP (1913)

Appendix A. Concurrent defensive strategies

We now will show how to construct a concurrent defensive strategy. A
concurrent defensive strategy, say σ ∶ S → A, can be constructed progressively,
starting from the empty configuration ∅ of A. The general construction has two
parts—detailed in Definitions 33 and 35 presented later on.

One of the parts (Definition 33) consists of adding ⊖-events to S so that
the resulting map is receptive. The other part of the construction (given by
Definition 35) consists of adding ⊕-events to S whenever a losing configuration
is to be extended to a winning one. In this case, one needs to make sure that
innocence is not violated, i.e. that causal dependencies in S that are not already
in A are always from ⊖-events to positive ones. Since for any event e the set
[e] is finite, then one also has to ensure that only finitely many extra causal
dependencies are introduced for any event e.

The technique for constructing strategies presented here is different from
the method presented in [7]. In particular, the method presented here is not
limited to the game A being well founded. An example illustrating how to use
Definitions 33 and 35 in order to build a (nondeterministic) concurrent defensive
strategy is given at the end.

Definition 33. Let σ ∶ G → A be a map of event structures with polarity such
that σ′ ∶ G → (A ↾ σG) is a strategy, i.e. a receptive and innocent map of event
structures. In this case, we say that σ is pre-receptive. The map σ− ∶ H → A

is the receptive-closed map of σ such that H is the event structure whose set of
events comprises the events in G and in the set

⋃
x∈C(G),y∈C(A)

{sxe ∣ x is maximal in G & σx ⊂− y & e ∈ y ∖ σx}

24

where
sx1

e1
= sx2

e2
⇔ (x1 = x2 & e1 = e2)

and such that
σ−(sxe) = e.

Moreover, H has causal dependency relation given by:

1. Case e1, e2 ∈ EG (causality inherited only from G):
if e1 ≤G e2 then e1 ≤H e2;

2. Case sx1

e1
, sx2

e2
/∈ EG (causality inherited only from A):

if (x1 = x2 & e1 ≤A e2) then sx1

e1
≤H sx2

e2
;

3. Case e1 ∈ EG & sxe /∈ EG (causality inherited from both A and G):
if ∃e3 ∈ EG. e1 ≤G e3 & σ(e3) ≤A e & e3 ∈ x then e1 ≤H sxe .

and consistency relation given by (again based on that of A and G):

X ∈ ConH iff

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ−X ∈ ConA &

([X] ∩EG) ∈ ConG &

∀sx1

e1
, sx2

e2
∈ (X ∖EG). s

x1

e1
≠ sx2

e2
Ô⇒ x1 = x2

Note that given (i) a pre-receptive map σ ∶ G → A where all ⊖-events have
been introduced in G as described in Definition 33, and (ii) its receptive-closed
map σ− ∶ H → A, if sxe ∈ EH and pol(e) = − then, because of the definition
of receptive-closed maps, every configuration σ−x is both ⊖-maximal and ⊕-
maximal in G as well as ⊕-maximal in H—a fact useful to show that:

Lemma 34. Let σ ∶ G → A be a pre-receptive map of event structures. The
receptive-closed map σ− ∶H → A of σ is a strategy.

Proof. Since σ′ ∶ G→ (A ↾ σG) is innocent, σ is innocent. And since ≤H does not
introduce causal dependencies nor inconsistencies (with respect to G) beyond
those already in G and those given by A then σ− is innocent.

More precisely, take any pair of events in EH . There are three possibilities
depending on whether they are in EG or EH ∖EG. If (i) both events belong to
EG then causal dependency is that given by ≤G; if (ii) both events belong to
EH ∖EG then causal dependency is that given by ≤A; finally, if (iii) they belong
to different sets, then ≤H is restricted either by that of ≤G or by that of ≤A. For
similar reasons, inconsistencies that violate innocence are not introduced either.

Now, see that σ− is receptive. Since EH ∖EG is

⋃
x∈C(G),y∈C(A)

{sxe ∣ x is maximal in G & σx ⊂− y & e ∈ y ∖ σx}

then it follows that

σ−x′
e
−Ð⊂ & pol(e) = − Ô⇒ ∃sxe ∈ EH . x′

sxe
−Ð⊂ & σ−(sxe) = e

for at least one sxe ∈ EH , with x ⊆− x′; note that the case when (x′ ∪{e}) ∈ C(G)
need not to be checked because σ′ is a strategy, thus a receptive map.

25

Suppose, in order to get a contradiction, that sxe is not unique. Then there
exist a configuration x′, a ⊖-event e, and (at least) two different ⊖-events sx1

e

and sx2

e such that σ−x′
e
−Ð⊂ , x′

s
x1
e

−Ð⊂ , x′
s
x2
e

−Ð⊂ , and σ−(sx1

e) = e = σ−(sx2

e), with
x1 ⊆

− x′ and x2 ⊆
− x′. Because the configurations x1 and x2 are maximal in G

then it follows that x′ = x1 = x2, otherwise x
′ would not be consistent. But then,

we have that sx1

e = s
x2

e , which leads to a contradiction; therefore the ⊖-event sxe
is unique and σ− is receptive too—thus a strategy.

Whereas Definition 33 (via Lemma 34) ensures that certain maps of event
structures are strategies, Definition 35 ensures that such maps are defensive.

Definition 35. Let σk ∶ G→ A be a strategy in an event structure A. The map
σk+1 ∶ H → A is a successor map of σk if H is an event structure whose set of
events comprises the events of G as well as those in the set

⋃x∈C(G){s
x
e ∣∃y ∈ C(A). x is ⊕-maximal in G &

σkx ∈ L & σkx ⊂+ y & y ∈W & e ∈ y ∖ σkx}

where
sx1

e1
= sx2

e2
⇔ (x1 = x2 & e1 = e2)

and such that
σk+1(sxe) = e.

Moreover, H has causal dependency relation given by:

1. Case e1, e2 ∈ EG (causality inherited only from G):
if e1 ≤G e2 then e1 ≤H e2;

2. Case sx1

e1
, sx2

e2
/∈ EG (causality inherited only from A):

if (x1 = x2 & e1 ≤A e2) then sx1

e1
≤H sx2

e2
;

3. Case e1 ∈ EG & sxe /∈ EG (causality inherited from both A and G):
if ((e1 ∈ x & σk(e1) ≤A e) or e1 ∈ [Neg[x]]) then e1 ≤H sxe

and consistency relation:

X ∈ ConH iff

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σk+1X ∈ ConA &

([X] ∩EG) ∈ ConG &

∀sx1

e1
, sx2

e2
∈ (X ∖EG). sx1

e1
≠ sx2

e2
Ô⇒ x1 = x2

Lemma 36. Let σk ∶ G → A be a strategy in an event structure A. Then, any
successor map σk+1 ∶H → A of σk is pre-receptive in A.

Proof. Observe that Neg[EG] = Neg[EH] and Pos[EG] ⊆ Pos[EH] because

⋃x∈C(G){s
x
e ∣∃y ∈ C(A). x is ⊕-maximal in G &

σkx ∈ L & σkx ⊂+ y & y ∈W &
e ∈ y ∖ σkx}

26

Since no ⊖-events are introduced and σk is a strategy then

σk+1 ∶H → A ↾ (σkG ∪ {e ∈ EA ∣ pol(e) = +})

is receptive.
Moreover, σk+1 is innocent too: no extra causal dependencies to events in

Neg[EG] are introduced, and any new inconsistencies between events with dif-
ferent polarity are those inherited from A; so σk+1 is ⊖-innocent, i.e.

∀e, e′ ∈ H. e _ e′ & pol(e′) = − Ô⇒ σk+1(e)_ σk+1(e′)

On the other hand, in order to show that σk+1 is ⊕-innocent, i.e. that

∀e, e′ ∈H. e _ e′ & pol(e) = + Ô⇒ σk+1(e)_ σk+1(e′),

take any pair of events e1, e2 ∈ EH such that e1 ≤H e2, with pol(e1) = +. Thus:

1. if e1, e2 ∈ EG then causal dependency is given by ≤G;

2. if e1, e2 ∈ EH ∖EG then causal dependency is given by ≤A;

3. if e1 ∈ EG and e2 ∈ EH ∖EG then e2 = s
x
e and either

(e1 ∈ x & σk(e1) ≤A e) or e1 ∈ [Neg[x]];

hence it must be the case that e1 ≤H sxe too.

Note, additionally, that the case when e1 ∈ EH and e2 ∈ EH ∖ EG cannot
happen since ≤H respects both ≤A and ≤G.

Then, σk+1 is innocent and therefore pre-receptive in A.

Note that for every A there is a map σ0 ∶ ∅ → A which is a pre-receptive
strategy in A, since σ′0 ∶ ∅ → ∅ (= σ′0 ∶ ∅ → (A ↾ σ0∅)) is a strategy, i.e. a trivially
innocent and receptive map of event structures. Then, due to Lemma 34, the
receptive-closed map σ−0 ∶ H → A of σ0 is a strategy. Let σ−0 be σ0. Note that
σ0 is the (necessarily unique) strategy which does nothing but be receptive to
⊖-moves reachable from ∅, the empty configuration of A.

Remark 37 (Construction of concurrent defensive strategies). Starting with ∅,
the empty configuration of A, and by a repeated use of Definitions 33 and 35,
one can build strategies in A which always try to avoid losing. In fact, they are
winning strategies provided that all newly introduced ⊕-maximal configurations
of H (when building the successor maps) are in W .

Definition 38 (Concurrent defensive maps). Let (A,W) be a concurrent game
and 0 ≤ n ≤ ω. Then, a map of event structures σk ∶ Sk → A is a concurrent
defensive map if k is the largest number such that

S0 = {s∅e ∣ ∅ ⊂
− [e]},

S2n+1 = H,with G = S2n according to Definition 35,
S2n+2 = H,with G = S2n+1 according to Definition 33.

27

Based on Definition 38 and Lemmas 34 and 36 about strategies, the next
result holds for the class of concurrent defensive maps just defined.

Theorem 39. A concurrent defensive map is a strategy.

Example 40 (Concurrent defensive strategies). Let (A,W) be a game with win-
ning conditions where A consists of three events ⊖1,⊕2,⊖3, all of them consis-
tent with each other, and W = {∅,{⊖1,⊕2},{⊕2,⊖3},{⊖1,⊕2,⊖3}}; therefore
L = {{⊖1},{⊖3},{⊖1,⊖3},{⊕2}}. In this game there is a winning strategy
σ ∶ S → A for Player which we can build as a concurrent defensive strategy
using Definitions 33 and 35. The strategy σ is nondeterministic because S,
depicted below, is a nondeterministic event structure:

sx1

⊕2

/o/o/o sx2

⊕2
sx3

⊕2

o/ o/ o/

s∅⊖1

❴
LLR ❂ 99D

⑥⑥⑥⑥⑥⑥⑥

s∅⊖3

OO✁
ZZe ❆❆❆❆❆❆❆

where x1 = {s
∅
⊖1
}, x3 = {s

∅
⊖3
}, x2 = {s

∅
⊖1
, s∅⊖3
}, and S is the only possible total

map of event structures; wavy lines are transitive inconsistency. ◻

28

