
Reasoning about Equilibria in Game-like Concurrent Systems

Julian Gutierrez and Paul Harrenstein and Michael Wooldridge
Department of Computer Science

University of Oxford

Abstract
Our aim is to develop techniques for reasoning about game-
like concurrent systems, where the components of the sys-
tem act rationally and strategically in pursuit of logically-
specified goals. We first present a computational model for
such systems, and investigate its properties. We then define
and investigate a branching-time logic for reasoning about
the equilibrium properties of such systems. The key opera-
tor in this logic is a path quantifier [NE]ϕ, which asserts that
ϕ holds on all Nash equilibrium computations of the system.

1 Introduction
Our goal is to develop a theory and techniques for reasoning
about game-like concurrent systems: concurrent systems in
which system components (agents) act strategically in pur-
suit of their own interests. Game theory is the mathematical
theory of strategic interaction, and as such is an obvious can-
didate to provide the analytical tools for this purpose (Os-
borne and Rubinstein 1994). However, since the systems we
are interested in modelling and reasoning about are inter-
acting computer programs, it seems appropriate to consider
how existing techniques for the analysis of computer sys-
tems might be combined with game theoretic concepts. Tem-
poral logics (Emerson 1990) and model checking (Clarke,
Grumberg, and Peled 2000) form the most important class
of techniques for reasoning about computer programs, and in
this paper we are concerned with extending such formalisms
and techniques to the strategic analysis of systems.

The AI/computer science literature is of course replete
with logics intended for reasoning about game-like systems:
Parikh’s Game Logic was an early example (Parikh 1985),
and more recently ATL (Alur, Henzinger, and Kupferman
2002) and Strategy Logic (Chatterjee, Henzinger, and Piter-
man 2010) have received much attention. However, these
formalisms are primarily intended for reasoning about the
strategies/choices of players and their effects, rather than
the preferences of players and the strategic choices they will
make arising from them. It is, of course, possible to use a
temporal logic like ATL or Strategy Logic (or indeed LTL,
CTL, . . .) to define the goals of agents, and hence their pref-
erences; but such languages don’t provide any direct mecha-
nism for reasoning about the behaviour of such agents under

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the assumption that they act rationally and strategically in
pursuit of their goals. In this paper, we present a branching
time logic that is explicitly intended for this purpose. Specif-
ically, we provide a logic for reasoning about the equilibrium
properties of game-like concurrent systems.

Equilibrium concepts are the best-known and most widely
applied analytical tools in the game theory literature, and of
these Nash equilibrium is the best-known (Osborne and Ru-
binstein 1994). A Nash equilibrium is an outcome that ob-
tains because no player has a rational incentive to deviate
from it. If we consider Nash equilibrium in the context of
game-like concurrent systems, then it is natural to ask which
computations (runs, histories, . . .) will be generated in equi-
librium? In (Gutierrez, Harrenstein, and Wooldridge 2013),
this question was investigated using the Iterated Boolean
Games (iBG) model. In this model, each player is assumed
to control a set of Boolean variables, and the game is played
over an infinite sequence of rounds, where at each round ev-
ery player chooses values for its variables. Each player has
a goal, expressed as an LTL formula, and acts strategically
in pursuit of this goal. Given this, some computations of a
game can be identified as being the result of Nash equilib-
rium strategies, and (Gutierrez, Harrenstein, and Wooldridge
2013) suggested that the key questions in the strategic anal-
ysis of the system are whether a given LTL formula holds in
some or all equilibrium computations.

While the iBG model of (Gutierrez, Harrenstein, and
Wooldridge 2013) is useful for the purposes of exposition,
it is not a realistic model of concurrent programs. Moreover,
(Gutierrez, Harrenstein, and Wooldridge 2013) provides no
language for reasoning about the equilibria of systems: such
reasoning must be carried out at the meta-level. This paper
fills those gaps. First, we present a computational model that
is more appropriate for modelling concurrent systems than
the iBG model. In this model, the goals (and thus prefer-
ences) of players are given as temporal logic formulae that
the respective player aspires to satisfy. After exploring some
properties of this model, we introduce Equilibrium Logic
(EL) as a formalism for reasoning about the equilibria of
such systems. EL is a branching time logic that provides a
new path quantifier [NE]ϕ, which asserts that ϕ holds on
all Nash equilibrium computations of the system. Thus, EL
supports reasoning about equilibria directly in the object lan-
guage. We then investigate some properties of this logic.

In particular in this paper we show that via a logical
characterisation of equilibria one can check useful proper-
ties of strategy profiles. We consider four logics for players’
goals: LTL (Pnueli 1977), CTL (Clarke and Emerson 1981),
the linear-time µ-calculus (Vardi 1988), and the branching-
time µ-calculus (Kozen 1983). Based on our logical char-
acterisation of equilibria in infinite games, three problems
are studied: STRATEGY-CHECKING, NE-CHECKING, and
EQUIVALENCE-CHECKING, all of which are shown to be in
PSPACE or in EXPTIME depending on the particular prob-
lem and temporal logic at hand. We also study the com-
putational complexity of checking equilibrium properties,
which can be expressed in EL. We show that the problem
is 2EXPTIME-hard, even for LTL or CTL goals. This re-
sult shows, in turn, that checking equilibrium properties is
equally hard in the linear-time and in the branching-time
spectra. A summary of key results is given at the end of the
paper. Note that most proofs are omitted due to lack of space.

2 Models
Before giving formal definitions, let us start by describing a
situation that can naturally be modelled as a game-like con-
current and multi-agent system.

Example 1. Consider a situation in which two agents can
request a resource from a dispatch centre infinitely often; as-
sume both agents will always eventually need the resource.
The centre’s behaviour is as follows:

1. if only one of the agents requests the resource, it gets it;
2. if both agents request the resource, neither agent gets it;
3. if one agent requested the resource twice in a row while

the other agent did not do so, the latter agent gets the re-
source for ever after (thus, punishing greedy behaviour).

Because of 2 and 3 it may be the case that an agent (or both)
fails to achieve its goal of being granted the resource in-
finitely often. But, of course, we can see a simple solution: if
both agents request the resource alternately, then both agents
get their goals achieved. Indeed, a game-theoretic analysis
reveals that in all equilibria of this system both agents get
the resource infinitely often.

In order to model this kind of situation, we will define
a model for concurrent strategic interactions. Using this
model, in Section 5 we present a formal model of the above
example, and we then formally analyse its equilibrium prop-
erties (Example 14).

The basic formal model for capturing strategic interac-
tions is a graph-based structure that is used for various dis-
tinct purposes. It will be used for both the model of game-
like concurrent systems we are interested in modelling and
the strategies of players in these systems. Depending on
how we use and instantiate our model to each of the above
applications they may acquire a particular name and have
a refined structure. As will be clear from their definition
(below), our basic model generalises both Kripke frames
and transition systems, among others, thus allowing them
to be used in very many different contexts. More impor-
tantly, compositions of these models naturally represent the

behaviour of synchronous, multi-agent, and concurrent sys-
tems with interleaving semantics as well as of asynchronous
systems (Nielsen and Winskel 1995). Formally, let

M = (V,E, v0,Ω,Λ, ω, λ)

be a Λ-labelled Ω-model M, where V is the set of vertices1

of M, v0 ∈ V is the initial vertex, E ∈ V × V is the set of
edges2, and ω : V → 2Ω and λ : E → 2Λ are two functions,
the former indicating the set of ‘properties’ of a vertex and
the latter the ways to go/move from one vertex to another.
Based on M, some sets can be defined. The set of transitions:

TM = {(v, a, v′) ∈ V × Λ× V | (v, v′) ∈ E ∧ a ∈ λ(v, v′)};
and the sets of sequences3 of adjacent vertices and transi-
tions starting at v0, which we denote by V∗M and T∗M .

A model is total if for every v ∈ V there is v′ ∈ V and
a ∈ Λ such that (v, a, v′) ∈ TM; it is, moreover, Λ-total if
for every v ∈ V and every a ∈ Λ there is v′ ∈ V such
that (v, a, v′) ∈ TM . Observe that if M is total the set T∗M
contains only infinite sequences. The sets T∗M and V∗M induce
two additional sets of sequences, one over the elements in Λ
(the action names labelling the transitions) and another one
over the elements in 2Ω (the properties that hold, or can be
observed, in the vertices of the model); namely the sets

A∗M = {a, a′, . . . | (v0, a, v′), (v′, a′, v′′) . . . ∈ T∗M}, and

P∗M = {ω(v0), ω(v′), ω(v′′), . . . | v0, v′, v′′, . . . ∈ V∗M}.
Hereafter, for all sets and in all cases, we may omit

their subscripts whenever clear from the context. Given a
sequence ρ (of any kind), we write ρ[0], ρ[1], . . . for the
first, second, ... element in the sequence; if ρ is finite, we
write last(ρ) to refer to its last element. We also write |ρ|
for the size of a sequence. The empty sequence is de-
noted by ρ[] = ε and has size 0. Restrictions to parts
of a sequence and operations on them are useful. Given
k, k′ ∈ N, with k ≤ k′, we write ρ[0 . . . k] for the sequence
ρ[0], ρ[1], . . . , ρ[k] (an initial segment of ρ), ρ[k . . . k′] for
the sequence ρ[k], . . . , ρ[k′], and ρ[k . . .∞] for the infinite
sequence ρ[k], ρ[k + 1], We also write, e.g., ρ[k . . . k′)
if the element ρ[k′] of the sequence is not included. Given
a finite sequence %, we write % ∈ ρ if %[k] = ρ[k] for
all 0 ≤ k ≤ |%|. We also write %; ρ for the binary operation
on sequences/words—and resulting run—of concatenating a
finite run % with a run ρ. When working with sequences, we
assume the standard laws on them, in particular, w.r.t. con-
catenation “;” with the empty sequence ε we have ε; ρ = ρ,
for any ρ, and ρ; ε = ρ, for any finite ρ.

We find it useful to associate input and output languages
with models. The input language Li(M) of M is defined to
be A∗M and the output language Lo(M) of M is defined to
be P∗M . Given a set of models ~M = {M1, . . . ,Mn}, the input
language of ~M is defined to be

Li(~M) =
⋂

1≤j≤n

Li(Mj).

1We may write ‘nodes’ or ‘states’ when talking about vertices.
2We also call them ‘events’ or ‘actions’.
3We also say ‘words’ or ‘strings’ when talking about sequences.

The set Li(~M) determines synchronised runs V∗~M for ~M, i.e.,
sequences (v0

1, . . . , v
0
n), (v′1, . . . , v

′
n), . . . ∈ (V1 × . . .× Vn)∗

such that ∧
1≤j≤n

(v0
j , a, v

′
j), (v′j , a

′, v′′j), . . . ∈ T∗Mj
,

for some a, a′, . . . ∈ Li(~M). The set V∗~M , in turn, determines
the output language Lo(~M) of ~M, defined to be all sequences⋃

1≤j≤n

ωj(ρ[0]),
⋃

1≤j≤n

ωj(ρ[1]), . . . ∈ (2Ω1∪···∪Ωn)∗

where ρ ∈ V∗~M and ωj(ρ[k]), with 0 ≤ k < |ρ|, is the appli-
cation of the ωj of Mj to the jth component of each ρ[k].

Let L function equally for an input or output language of
a model M or compound system ~M; moreover, letL[%] be the
(sub)language of (sub)words {ρ[|%| . . .∞] | % ∈ ρ ∈ L}.

There is an induced tree language TreeL(L) for every
(word) language L, defined as:

TreeL(L) = {T is a tree | ρ ∈ L, for each path ρ in T },
that is, the tree language of a word language L is the set of
all trees all of whose paths are in L.
Remark 2. Note that any non-empty word language in-
duces a tree language comprising infinitely many trees, if
such trees are allowed to be non-deterministic. For instance,
the (singleton) word language L = {a} induces the tree lan-
guage TreeL(L) containing the following trees: the empty
tree, the tree with one a-labelled branch, the tree with two
a-labelled branches, ..., and the infinite tree with infinitely
many a-labelled branches. However, if non-determinism is
not allowed (or at least restricted in some way) some finite
word languages may always induce finite tree languages. For
the sake of generality we impose no restrictions at this point.

Our models support two useful operations: restriction and
projection. The former selects a subset of the output lan-
guage; a restriction with respect to a subset of the input lan-
guage. We denote by Lo(M)|L, where L ⊆ Li(M), such a
subset of the output language. Projection, on the other hand,
takes the sequences in the output language and forgets the
elements in some subset of Ω. We write Lo(M)|Ω′ for such
an operation and resulting set, which is formally given by:

{ρ[0] ∩ Ω′, ρ[1] ∩ Ω′, . . . ∈ (2Ω′
)∗ | ρ ∈ Lo(M)}.

3 Games and Strategies
Games. Using the model given in Section 2, we will define
reactive games, a class of multi-player nonzero-sum games.
In a reactive game a finite set of players interact with each
other by assigning values to variables they have control over.
The game has a designated initial state and the values given
to the variables at each round determine the next state of the
game. The game is played for infinitely many rounds. Play-
ers in a reactive game have goals they wish to satisfy. Such
goals are expressed as temporal logic formulae. Formally, a
reactive game is defined as follows. A reactive game (some-
times just called a “game”) is a structure:

G = (N,C, (Ci)i∈N , (γi)i∈N ,X,A)

where N = {1, . . . , n} is a set of agents (the players of the
game), C = {p, q, r, . . .} is a set of controlled variables,
Ci ⊆ C is the set of variables under the unique control of
player i, and γi is a formula (of some logical system4) over a
set X = {x, y, . . .} of propositions; formula γi describes the
goal that player i wants to achieve. There is a requirement
on C: the sets of variables C1, . . . ,Cn form a partition of C,
that is, Ci ∩Cj = ∅ for all i 6= j ∈ N, and C = C1 ∪ · · · ∪Cn.
A choice ci for agent i ∈ N is an assignment of values for the
variables under its control. Let Chi be the set of choices for
agent i. A choice vector ~c = (c1, . . . , cn) is a collection of
choices, one for each player. Let Ch be the set of all choice
vectors. And A—the “arena” or “board” where the game is
played—is a Λ-total Ω-model such that Λ = Ch and Ω = X.

Note that Λ-totality ensures in a simple manner that a re-
active game is played for an infinite number of rounds with-
out imposing further consistency or validity conditions on
strategies. Moreover, it does not limit our modelling power.
Remark 3. Reactive games can be considered as a meta-
model of infinite games of control since their definition does
not specify the logic each γi belongs to, the kinds of strate-
gies used in the game, the types of variables the players have
control over, what the outcome of a game would be given a
set of players’ strategies, or when the outcome of a game
makes a player’s goal satisfied. As we will see, different
kinds of games and results will arise from different choices
with respect to these properties. All we know for now is that
(1) the games are played for infinitely many rounds, (2) the
players have unique control over some given set of variables,
and that (3) they have goals given in a logical form.

Strategies. Since in a reactive game a play is infinite, it
is natural to think of a strategy for a player i as a func-
tion fi : E∗ → Chi or as f ′i : V∗ → Chi, that is, as a function
from what has been played so far (or at least what a player
knows so far) to a choice ci for player i. To formalise this,
we use a strategy model that is finite, simple, and expressive
enough for most computational purposes. Our definition of
strategies is based on the model in Section 2. Similar repre-
sentations have been used to study, e.g., ‘repeated games’ in
game theory (Osborne and Rubinstein 1994, pp. 140-143).

Formally, we define a strategy σi for player i in a reactive
game G = (N,C, (Ci)i∈N , (γi)i∈N ,X,A) to be a structure

σi = (Qi, q0
i , δi, τi)

modelled as a structure Mi = (V,E, v0,Ω,Λ, ω, λ) in which
Qi = V is a finite and non-empty set of states, q0

i = v0 is
the initial state, δi : Qi × Λ → 2Qi , with Λ = 2XA , is the
transition function given by TMi , and τi = ω : Qi → Chi is
a choice function. As one requires that a strategy for player i
is able to react to any possible valid behaviour/strategy of
the others, we only consider as valid the strategies that are
based on structures Mi where δi is total.

4We will consider several logical temporal languages for γi,
e.g., LTL (Pnueli 1977), CTL (Clarke and Emerson 1981), or fix-
point linear-time and branching-time modal logics (Vardi 1988;
Kozen 1983). At this point all definitions can be made leaving this
choice open, which will make our framework more general.

x̄
v′′

x
v0

x̄
v′

p̄q pq̄

∗ pq, p̄q̄ ∗

Figure 1: An arena, where ∗ = {pq, p̄q, pq̄, p̄q̄}.

p

∗

q

∗

q q q̄x x

∗ x̄ ∗

Figure 2: Strategy σ1 for player 1 (left) and the strategies σ2

(middle) and σ′2 (right) for player 2. Here ∗ = {x, x̄}.

Henceforth, given a game G with n players in N and a set
of strategies ~σ = (σ1, . . . , σn), we call ~σ or any subset of it
a strategy profile. We write ~σ−S, with S ⊆ N, for ~σ without
the strategies σi such that i ∈ S; we omit brackets if S is a
singleton set. Also, we write (~σ−i, σ

′
i), with 1 ≤ i ≤ n, for

the strategy profile ~σ where σi is replaced with σ′i .

Example 4. Consider a game with N = {1, 2}, C1 = {p},
and C2 = {q} and arena as in Figure 1. There, we have
ωA(v0) = x, ωA(v′) = ωA(v′′) = x̄. Moreover, the symbol p̄
means p := ⊥, p means p := > (and likewise for q and x).
A possible strategy for player 1 would be to always play p
and is depicted in Figure 2 (left). The exact outcome(s) of
the game—to be defined next—can be determined only once
the strategy for player 2 is given.

Our strategy model is simple but powerful; in particular, it
can generate any word or tree ω-regular language. Formally:

Lemma 5. Let T be an ω-regular tree—i.e., the unfolding of
a finite, total graph. There is σ such that T ∈ TreeL(Lo(σ)).

It is important to point out that the strategy σ may be
non-deterministic. However, with respect to word languages,
only deterministic strategies are needed. Specifically, be-
cause ω-regular words are ω-regular trees that do not branch,
the following is an easy corollary of Lemma 5.

Corollary 6. Let w be an ω-regular word. There is σ such
that w = Lo(σ).

Lemma 5 and Corollary 6 will be used to ensure the exis-
tence of strategies in a reactive game with ω-regular goals.

Outcomes and composition of strategies. Given a set
of strategies (σi)i∈N , which hereafter we will denote by ~σ
whenever the set N is clear from the context, the histories
(of choices) when playing such a set of strategies in a game
G = (N,C, (Ci)i∈N , (γi)i∈N ,X,A) are the sequences in the
input language of A, denoted by L~σi (A), given by

L~σi (A) = Lo(~σ)|Li(~σ)∩Lo(A)[~q0],

where ~q0 = (τ1(q0
1), . . . , τn(q0

n)).

Informally, since Lo(~σ), and hence L~σi (A), is restricted
to Li(~σ) ∩ Lo(A)[~q0], we know that when playing a strat-
egy profile there is an alternation in the interaction between
strategies and the arena, with the strategies making transi-
tions only after a transition in the arena has been made.

The histories of a game with respect to a strategy profile ~σ
record the choices that the players make based on such a
given strategy profile ~σ. These choices, in turn, determine
the outcomes of the game, denoted by L~σo (A) and defined as

L~σo (A) = Lo(A)|L~σi (A).

Then, whereas histories are sequences in the input language
of A, outcomes are sequences in its output language.

As defined, the outcomes of a game form a set of words or
infinite sequences over (2ΩA)∗. However, they naturally de-
fine a set of trees with respect to the tree-unfolding of A. We
write unf (A, v) for the usual tree-unfolding of A—when A is
seen as a graph—with respect to a given vertex v ∈ V; we
simply write unf (A) whenever v = v0. Define the set

Tree(A) = {T | T is a subtree of unf (A)}.

Thus, given a strategy profile ~σ in a reactive game G, the
tree/branching outcomes of G are the trees in the set

TreeL(L~σo (A)) ∩ Tree(A).

Regardless of whether we are talking about word outcomes
or tree outcomes, we will uniformly denote by Out(G, ~σ) the
outcomes of a game G when playing the set of strategies ~σ.
Similarly we will denote by OutG the set of all outcomes of
the game G, that is, with respect to all valid sets of strategies,
and omit the subscript G whenever which game G we are
referring to is either clear or irrelevant. It is worth noting
that Out is Lo(A) in case of word outcomes and, therefore, is
TreeL(Lo(A))∩Tree(A) in case of tree outcomes. Also, note
that because we allow non-determinism, the set Out(G, ~σ) is
not necessarily a singleton, as illustrated next.
Example 7. Consider again the game in Example 4 and
the two strategies for player 2 depicted in Figure 2. The
strategy profile ~σ = (σ1, σ2) induces the unique (word)
outcome xω = x, x, . . . in Out; the strategy profile ~σ′ =
(σ1, σ

′
2), on the other hand, induces infinitely many out-

comes, namely those sequences given by the ω-regular ex-
pression xω ∪ x.x̄ω . The reason why ~σ′ induces more than
one outcome is because σ′2 is non-deterministic; thus, mul-
tiple outcomes are possible even when A is deterministic.

Also, given a set of deterministic strategies one can have
a reactive game where multiple outcomes are possible if A
is a non-deterministic arena, since the same players’ choice
can lead to different successor vertices in A. In this case the
next state of the game is selected non-deterministically in A,
i.e., it is not under the control of any of the players.
Remark 8. Observe that the reactive games model strictly
generalises the iBG model (Gutierrez, Harrenstein, and
Wooldridge 2013), which can be represented as a reactive
game where the arena is an implicitly defined clique whose
nodes are the valuations of the variables the players control,
goals are LTL formulae, and strategies are deterministic.

4 Equilibria in Logical Form
Because players have goals, which they wish to satisfy, and
their satisfaction depends on the outcomes—whether word
or tree outcomes—of the game, the players may prefer some
sets of outcomes over others. To formalise this situation we
define, for each player i, a preference relation ≤i over 2Out.
Even though ≤i can be any binary relation over 2Out, it is
natural to assume that it is a preorder, that is, a reflexive
and transitive relation. We write <i whenever ≤i is strict—
or asymmetric, i.e., X ≤i X′ implies that X′ ≤i X does not
hold. Because strategy profiles induce sets of outcomes, we
abuse notation by writing ~σ ≤i ~σ

′ to mean Out(G, ~σ) ≤i
Out(G, ~σ′), that is, that player i does not prefer the set of
outcomes Out(G, ~σ) over the set of outcomes Out(G, ~σ′).

Based on players’ preferences, a notion of equilibrium
can be defined. We provide the definition of the, arguably,
main concept of equilibrium—sometimes called solution
concept—in game theory, namely, Nash equilibrium. How-
ever, many solution concepts can be found in the literature,
e.g., dominant strategy, subgame perfect Nash, correlated,
amongst others. We say that a strategy profile ~σ is a Nash
equilibrium if for every player i and strategy σ′i we have

(~σ−i, σ
′
i) ≤i ~σ.

Intuitively, a Nash equilibrium formalises the idea that no
player can be better off (have a beneficial deviation) pro-
vided that all other players do not change their strategies.
Let NE(G) be the set of Nash equilibria of the game G.

Remark 9. Note that since strategies or arenas can be non-
deterministic—hence multiple outcomes can be induced,
our definition of Nash equilibrium is phrased in terms of sets
of outcomes, rather than in terms of single outcomes only.
Even though the definition of equilibrium is given w.r.t. pref-
erences over sets of outcomes, we can think of such a def-
inition as based on a preference relation over strategy pro-
files instead, since strategy profiles induce sets of outcomes.
Thus a preference relation allows one to define equilibria in
a general way, not only for binary goals as in this paper.

We can think of equilibria with respect to the goals the
players of the game wish to satisfy. To make this state-
ment precise, we need to know which logic the goals of the
players belong to and when a set of outcomes satisfy such
goals, that is, we need to define a semantics of players’ goals
w.r.t. 2Out—i.e., with respect to the outcomes of a game.

We can then abstractly think of the existence of a sat-
isfaction relation “|=” between sets of outcomes and logi-
cal formulae, that is, a binary relation indicating whether a
given goal γi for player i is satisfied or not by a set of out-
comes Out(G, ~σ) in a game G played with a strategy pro-
file ~σ. Assuming the existence of a denotation function [[·]]
from goals to sets of outcomes, we can then write

Out(G, ~σ) |= γi if and only if Out(G, ~σ) ⊆ [[γi]].

Again, as strategy profiles induce sets of outcomes, we abuse
notation and write ~σ |= γi if Out(G, ~σ) |= γi. And, in order
to simplify notations used in the paper, we will also write [[~σ]]
for either the set of outcomes or the associated set of infinite

sequences of vertices in V∗A induced by ~σ; which one we are
referring to will always be clear from the context.

Based on the definitions above one can now formally state
with respect to the goals (γi)i∈N of the game, when ~σ is a
Nash equilibrium. We say that ~σ is a Nash equilibrium if,
for every player i and for every strategy σ′i , we have that

(~σ−i, σ
′
i) |= γi =⇒ ~σ |= γi.

Remark 10. Since our model generalises Kripke structures
and Labelled Transition Systems (among other structures),
it can be used to give the standard semantics of all usual
linear-time and branching-time temporal logics. In this pa-
per, we will assume that players have ω-regular goals. In
particular, in case of linear-time goals we will let each γi be
either a linear-time µ-calculus or an LTL formula, strategies
be deterministic, and outcomes be word outcomes; in case
of branching-time goals, we will assume that the goals are
either CTL or µ-calculus formulae, that the strategies can be
non-deterministic, and that the outcomes are tree outcomes.

The details of the semantics of these logics need not be
given to obtain the results in this paper. All one needs to
know is the complexities of their satisfiability and model
checking problems, which are as follows: for satisfiability
CTL and the µ-calculus are EXPTIME, whereas LTL and
the linear-time µ-calculus are PSPACE; for model check-
ing w.r.t. a product of transition systems, the logics LTL,
CTL, and linear-time µ-calculus are PSPACE, while the µ-
calculus is EXPTIME. The next question becomes relevant:

Given: Game G, strategy profile ~σ, goal γ.
STRATEGY-CHECKING: Is it the case that ~σ |= γ?

Clearly, the answer to this question depends on the logic to
which the formula γ belongs. The following lemma answers
this question for various temporal logics.

Lemma 11. The STRATEGY-CHECKING problem for LTL,
CTL, and linear-time µ-calculus goals is PSPACE-complete.
For modal µ-calculus goals the problem is in EXPTIME.

Using STRATEGY-CHECKING we can, moreover, show
that the following problem, namely, membership of a strat-
egy profile in the set of Nash equilibria of a reactive game,
may be harder only in the branching-time case.

Given: Game G, strategy profile ~σ.
NE-CHECKING: Is it the case that ~σ ∈ NE(G)?

Formally, we have

Lemma 12. The NE-CHECKING problem for LTL and
linear-time µ-calculus goals is PSPACE-complete. For CTL
and µ-calculus goals the problem is EXPTIME-complete.

Equivalences of equilibria. The characterisation of equi-
librium with respect to the goals of the game given above
provides a natural way of comparing strategy profiles, and
hence of comparing equilibria, in a logical way. But first, we
provide a notion of equivalence of strategy profiles purely
based on the outcomes they induce and later on a weaker
definition with a more logical flavour. Given a game G, we
say that two strategy profiles ~σ and ~σ′ are equivalent, and

write ~σ ∼ ~σ′ in such a case, if and only if they induce the
same set of outcomes, that is, iff [[~σ]] = [[~σ′]].

Even though the definition of ∼ immediately provides a
definition for equivalence between equilibrium strategy pro-
files, such a definition is rather strong. Instead, one would
like a definition where only the satisfaction of goals was
taken into account. Having this in mind, we propose a
weaker, logically based definition of equivalence between
strategy profiles. Formally, given a game G, we say that two
strategy profiles ~σ and ~σ′ are logically equivalent, and write
~σ ∼γ ~σ′ in such a case, if and only if, they induce sets of
outcomes that satisfy the same set of goals of the game, that
is, iff for every goal in (γi)i∈N of G we have that

~σ |= γi ⇐⇒ ~σ′ |= γi.

Formally, the decision problem one wants to solve is:
Given: Game G, strategy profiles ~σ, ~σ′.
EQUIVALENCE-CHECKING: Does ~σ ∼γ ~σ′ hold?

An immediate consequence of Lemma 11 is:
Corollary 13. The EQUIVALENCE-CHECKING problem for
LTL, CTL, and linear-time µ-calculus goals is PSPACE-
complete. For µ-calculus goals the problem is in EXPTIME.

5 Equilibrium logics
We now introduce two logics for expressing equilibrium
properties of (reactive) games: these two logics are closely
related to the branching time logics CTL and CTL∗ (see,
e.g., (Emerson and Halpern 1986)). We refer to our basic
logical framework as Equilibrium Logic, (EL), and will refer
to the two versions of this logic as EL (roughly correspond-
ing to CTL) and EL∗ (roughly corresponding to CTL∗).
Since EL∗ will be defined as an extension of CTL∗, the logic
LTL will also appear as a syntactic fragment.

The basic idea of Equilibrium Logic is to extend the logic
CTL∗ by the addition of two modal quantifiers, which we
will write as “[NE]” and “〈NE〉”. In Equilibrium Logic,
the modalities [NE] and 〈NE〉 quantify over paths that
could arise as the consequence of processes (agents/players)
selecting strategies in equilibrium. For example, if we are
dealing with Nash equilibrium, then an EL formula [NE]Fp
(where F is the “eventually” LTL modality) means that on
all Nash equilibrium computations—i.e., on all computa-
tions (paths or trees) that correspond to runs or plays where
a set of agents/players use a strategy profile in equilibrium—
eventually p will hold. In this way, we can use Equilibrium
Logic to directly reason about the equilibrium properties of
game-like concurrent systems. Equilibrium Logic is param-
eterised by a solution concept, which determines the out-
comes over which the “equilibrium modalities” quantify. For
now, we consider Nash equilibrium as our by-default solu-
tion concept, but of course others can be considered too.

Syntax. The syntax of Equilibrium Logic is defined w.r.t.
a set X of propositions, by the following grammars:

Path Formulae: ϕ ::= ψ | θ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

State Formulae: ψ ::= x | Aϕ
Nash Formulae: θ ::= [NE]ϕ

where x ∈ X. Thus, as in CTL∗, path formulae ϕ express
properties of paths (cf. LTL), while state formulae ψ express
properties of states. In addition, Nash equilibrium formulae
also express properties of paths, but only if such paths are
induced by strategy profiles in equilibrium. We take the uni-
versal modalities A and [NE] as primitives, and define the
existential modalities E and 〈NE〉 as their duals as usual:5
Eϕ ≡ ¬A¬ϕ and 〈NE〉ϕ ≡ ¬[NE]¬ϕ.

Semantics. The semantics of EL formulae is given here
w.r.t. a reactive game G = (N,C, (Ci)i∈N , (γi)i∈N ,X,A),
where A = (VA,EA, v0

A,ΩA = X,ΛA = Ch, ωA, λA). The
semantics of path formulae (“|=P”) is essentially the same
for LTL, and so given with respect to paths π in A, with two
additional rules for state and equilibrium formulae, respec-
tively. The semantics of state formulae (“|=S”) is given with
respect to states/vertices v ∈ V of A. The semantics of equi-
librium formulae (“|=E”) is given with respect to the set of
Nash equilibria of G. Let % be a run of A, i.e., an infinite
sequence of states over V∗A starting at v0

A, and t ∈ N. Define

(G, %, t) |=P ψ iff (G, %, t) |=S ψ
for state formulae ψ.

(G, %, t) |=P θ iff (G, %, t) |=E θ
for equilibrium formulae θ.

(G, %, t) |=P ¬ϕ iff (G, %, t) |=P ϕ
does not hold.

(G, %, t) |=P ϕ ∨ ϕ′ iff (G, %, t) |=P ϕ or
(G, %, t) |=P ϕ′

(G, %, t) |=P Xϕ iff (G, %, t + 1) |=P ϕ
(G, %, t) |=P ϕUϕ′ iff (G, %, t′) |=P ϕ′

for some t′ ≥ t and
(G, %, k) |=P ϕ
for all t ≤ k < t′.

The satisfaction relation “|=S” for state formulae is defined
as follows:
(G, %, t) |=S x iff x ∈ ωA(%[t])
(G, %, t) |=S Aϕ iff (G, %′, t) |=P ϕ

for all %′ such that %[0 . . . t) ∈ %′.

And the satisfaction relation “|=E” for equilibrium formulae
is defined as follows:
(G, %, t) |=E [NE]ϕ iff (G, %′, t) |=P ϕ

for all %′ ∈ [[~σ]] with both
~σ ∈ NE(G) and %[0 . . . t) ∈ %′

We say that G is a model of ϕ (in symbols G |= ϕ) if and
only if (G, %, 0) |=P ϕ for all % of G, that is, for all paths or
sequences of states of A starting at v0

A—sequences in V∗A .
Example 14. The situation of Example 1 is modelled by the
game G = (N,C,C1,C2, γ1, γ2,X,A), where X = {x, y},
C1 = {p}, C2 = {q} and A is the arena as in Figure 3. Intu-
itively, x and y signify player 1 and player 2 get the resource,
respectively. Setting p to true corresponds to player 1 re-
questing the resource, while setting p to false means refrain-
ing from doing so. Similarly, for q and player 2. The goals

5All usual abbreviations for the Boolean operators not explicitly
given in the grammars above are also assumed to be defined.

x̄ȳ

xȳ x̄y

x̄y xȳ

pq̄

p̄q

pq, p̄q̄
pq, p̄q̄

pq, p̄q̄

p̄q pq̄

pq̄

p̄q

∗

∗

Figure 3: Formal model of the system in Example 1

p p̄

xȳ, xy

∗

x̄y, x̄ȳ

q̄ q q

x̄y, x̄ȳ

xȳ, xy

x̄y

xy, xȳ, x̄ȳ

∗

Figure 4: Strategies σ1 (left) and σ2 (right).

of the players are the LTL goals γ1 = GFx and γ2 = GFy.
The structures in Figure 4 are two strategies σ1 and σ2 for
player 1 and 2, respectively. Strategy σ1 requests the re-
source by playing p until it gets it, and then refrains from do-
ing so by playing p̄ once. Strategy σ2 toggles but between q̄
and q, beginning with the former, and additionally threatens
to set q to true for ever if p is true (at least) twice in a row,
which can be deduced from x being set to true or ȳ while hav-
ing set q to true previously. The strategy profile ~σ = (σ1, σ2)
yields L~σi (A) = {(pq̄; p̄q)ω} and L~σo (A) = {x̄ȳ; (xȳ; x̄y)ω}.
The run ρ = x̄ȳ, xȳ, x̄y, xȳ, x̄y, . . . in L~σo (A) satisfies both
players’ goals and as such ~σ is a Nash equilibrium. Thus,
we have G |= 〈NE〉(γ1 ∧ γ2). This is no coincidence, as we
have for this game that G |= [NE](γ1∧γ2): in all Nash equi-
libria both players’ goals are satisfied. This contrasts sharply
with A(γ1 ∧ γ2), which does not hold in the game G.

This example shows that even in small concurrent sys-
tems it is not obvious that a Nash equilibrium exists—let
alone that a temporal property holds in some or all equilib-
rium computations of the system. The example also shows
an important feature of game-like concurrent systems: that
even though a desirable property may not hold in general
(cf., A(γ1 ∧ γ2)), it may well be the case that one can de-
sign or automatically synthesise a communication protocol
or a synchronisation mechanism—directly from a logical
specification—so that the desirable property holds when re-
stricted to agents acting rationally (cf., [NE](γ1 ∧ γ2)).

Indeed, Equilibrium logics are specifically designed to
reason about what can be achieved in equilibrium and what
cannot, while abstracting away from the particular strategies
that the agents/players of the system/game may use.

Expressivity. Observe that apart from [NE] all other op-
erators are intended to have the same meaning as in CTL∗.
However, note that the semantics of Aϕ is not quite the same
as its counter-part in CTL∗ because of the additional condi-
tion “such that %[0 . . . t) ∈ %′.” In the standard semantics
of CTL∗ it should be “for all %′ starting at %[t]” instead. In
other words, in CTL∗ the path used to reach the state %[t] is
forgotten. This information is actually needed only for the

semantics of the equilibrium modality [NE], but must be
remembered throughout. Formally, we have
Proposition 15. Let G be a game and ϕ be a [NE]-free EL∗
formula. Then, for all runs % and t ∈ N, we have that

(G, %, t) |= Aϕ iff (G, %′, 0) |= ϕ,

for all %′ starting at %[t].
Thus, because of Proposition 15, we know that the seman-

tics of EL∗ conservatively extends that of CTL∗. To be more
precise, the fact that we must “remember” how we got to a
particular state when evaluating an equilibrium formula in
that state means that, technically, EL is a memoryfull exten-
sion of CTL∗; see, e.g., (Kupferman and Vardi 2006).

More interesting is the question as to whether EL∗ can
be translated into a logic for strategic reasoning already in
the literature. This is largely an open question. However,
a few observations can be made at this point. Firstly it is
known that neither ATL∗ (Alur, Henzinger, and Kupferman
2002) nor Strategy logic (Chatterjee, Henzinger, and Piter-
man 2010) can express the existence of a Nash equilibrium
in a multi-player game with deterministic strategies and LTL
players’ goals. This property is simply stated as 〈NE〉> in
EL, where we restrict ourselves to reactive games with deter-
ministic strategies and arenas and only LTL players’ goals.
Thus, we can conclude that both Strategy logic and ATL∗ are
not as expressive as Equilibrium logics.

On the other hand, the existence of Nash equilibria in
multi-player games and w.r.t. deterministic strategies and
LTL goals can be expressed in the Strategy logic developed
in (Mogavero, Murano, and Vardi 2010a). Using their logi-
cal specification of the existence of a Nash equilibrium, we
can encode the 〈NE〉 operator (and hence any 〈NE〉ψ, with
LTL ψ), again when restricted to LTL goals and determin-
istic games and strategies. This gives a 2EXPTIME upper
bound for the model checking problem of this fragment of
our logic. Note that the fragment is not only syntactic since
the underlying reactive games model is also being restricted.

Letting EL∗[LTL] be the fragment of EL∗ given above,
we can show (w.r.t. deterministic arenas and strategies):
Proposition 16. The model checking problem for EL∗[LTL]
formulae is in 2EXPTIME.

Together with the hardness result that we will give in the
next section, we obtain that model checking EL∗[LTL] for-
mulae is an 2EXPTIME-complete problem.

6 Complexity
In this section we show that the model checking problem
for Equilibrium logics is 2EXPTIME-hard, even for LTL
or CTL players’ goals. More precisely, the model checking
problem for Equilibrium logics is stated as follows:

Given: Game G, EL∗ formula ϕ.
EL∗ MODEL-CHECKING: Does G |= ϕ hold?

In fact, we will show a very strong claim: that the EL∗
MODEL-CHECKING problem is 2EXPTIME-hard, even for
the EL∗ formula ϕ = 〈NE〉> (the simplest equilibrium
logic formula one can write) and for either LTL or CTL goals
(two of the simplest temporal logics in the literature).

Hardness in the linear-time framework. In order to
show 2EXPTIME-hardness of checking equilibrium prop-
erties given that the players of the game have linear-time
goals, we provide a reduction from the LTL games in (Alur,
La Torre, and Madhusudan 2003). Formally, we have
Lemma 17. The EL∗ MODEL-CHECKING problem where
players’ goals are LTL formulae is 2EXPTIME-hard.

Proof. (Sketch) We reduce the LTL games studied in (Alur,
La Torre, and Madhusudan 2003), which are 2EXPTIME-
complete, to EL∗ model checking ϕ = 〈NE〉>.

LTL games. An LTL game (Alur, La Torre, and Madhusu-
dan 2003) is a two-player zero-sum game given by (G, ψ, u),
where ψ is an LTL formula over a set of properties Σ, and

G = (VG,V0,V1, γ : V → 2V , µ : V → Σ)

is a graph with vertices in VG which are partitioned in
player 0 vertices V0 and player 1 vertices V1. The transitions
of the graph are given by γ; if v′ ∈ γ(v), for some v, v′ ∈ VG,
then there is a transition from v to v′, which we may assume
is labelled by v′. Each vertex v has a set of properties p as-
sociated with it, which are given by µ; thus p ∈ Σ holds in
vertex v if p = µ(v). The graph G is assumed to be total, that
is, for every v ∈ VG, we have γ(v) 6= ∅.

The game is played for infinitely many rounds by each
player choosing a successor vertex whenever it is their turn:
player 0 plays in vertices in V0 and player 1 plays in vertices
in V1. The game starts in the initial vertex u ∈ VG. Playing
the game defines an infinite word/sequence of adjacent
vertices w = v0, v1, v2, . . ., such that v0 = u and for each vk,
with k ∈ N, we have vk+1 ∈ γ(vk). An LTL game is won by
player 0 if w |= ψ; otherwise player 1 wins. LTL games are
determined, that is, there is always a winning strategy either
for player 0 or for player 1. Checking whether player 0 has a
winning strategy in an LTL game is a 2EXPTIME-complete
problem (Alur, La Torre, and Madhusudan 2003).

We reduce the LTL game (G, ψ, u) to model checking the
EL∗ formula ϕ = 〈NE〉> in two stages. We first construct
a reactive game G1 that simulates the behaviour exhibited
in the LTL game (G, ψ, u), and then transform G1 into an-
other reactive game G2 with the property that player 0 has
a winning strategy in (G, ψ, u) if and only if there is a Nash
equilibrium in G2, that is, if and only if G2 |= ϕ.

Reactive games. The first construction (the one for G1)
comprises two players, 0 and 1, who control variables t0 and
t1, respectively, whose domain is the set of vertices in the
LTL with two additional actions, δ0 and δ1, to delay/skip
when it is not their turn to play in the corresponding LTL
game. Notice that in a reactive game they always must play,
at each round, concurrently and synchronously. Their goals
are γ0 = (ψ ∧G¬l0) ∨ Fl1 and γ1 = (¬ψ ∧G¬l1) ∨ Fl0,
respectively, where l0 and l1 are two fresh atomic proposi-
tions which hold only on two new states where, intuitively,
player 0 loses the LTL game (state l0) and player 1 loses the
LTL game (state l1). This translation from (G, ψ, u) to G1 is
polynomial. There are |VG|+ 2 vertices and |µ|+O(|VG|3)
transitions in the arena where G1 is played. This first trans-
lation, from (G, ψ, u) to G1, transforms a sequential zero-
sum LTL game into a non-zero sum reactive game (where

players make choices concurrently and synchronously) that
is able to simulate the original LTL game. Players in G1 are
not forced to play consistently with plays in (G, ψ, u), but
these players can be punished if they do not do so.

Then, we transform G1 into G2 in order to ensure that all
(and only the) Nash equilibria of the reactive game G2 corre-
spond to plays where player 0 wins. The game G2 comprises
four players. The two new players, 3 and 4, control two
Boolean variables t2 and t3, and have goals γ2 = ψ ∨ (Xe)
and γ3 = ψ ∨ (X¬e), where e is a new atomic proposition.
The arena of G2 is linear in the size of the arena of G1. It
contains a copy of the vertices in game G1 where the propo-
sition ¬e holds. In all other vertices—i.e., those in G1—the
proposition e holds. The choice of where the game proceeds
after the first round, namely, to the vertices already in G1 or
their copies, is ultimately controlled by the choices of play-
ers 2 and 3. In particular, in the former case, we have t2 = t3
(and move to a vertex where e holds) whereas, in the latter,
we have t2 6= t3 (and move to a vertex where ¬e holds). This
power allows these two players to deviate whenever ψ is not
satisfied. As a consequence, all Nash equilibria of G2 must
satisfy formula ψ and hence the goals of players 2 and 3.
Using this fact and Corollary 6, we build a winning strategy
in the LTL game iff there is a Nash equilibrium in G2.

Hardness in the branching-time framework. Now, in
order for us to show the 2EXPTIME-hardness of checking
equilibrium properties given that the players of the game
have branching-time goals, we use a reduction from the
control-synthesis problem with respect to reactive environ-
ments (Kupferman et al. 2000). The control-synthesis prob-
lem for reactive environments is similar to the LTL game.
However, in such a game player 1 may challenge player 0
with sets of successor vertices rather than with singletons,
as in the LTL game. As a consequence, a play of the game
can produce a tree instead of a word of vertices. In this game,
player 0 wins if such a tree satisfies formula ψ; otherwise,
player 1 wins. This game is also 2EXPTIME-complete and
can be reduced to a reactive game in a way similar to that for
LTL games. In particular, in this case, we can use Lemma 5
instead of Corollary 6 to ensure that strategies in these games
always exist. Formally, we have
Lemma 18. The EL∗ MODEL-CHECKING problem where
players’ goals are CTL formulae is 2EXPTIME-hard.

Since LTL and CTL are syntactic fragments of, respec-
tively, the linear-time µ-calculus and the modal µ-calculus,
the hardness results can be transferred, to obtain:
Corollary 19. The EL∗ MODEL-CHECKING problem, with
players’ goals given by linear-time µ-calculus or by modal
µ-calculus formulae, is 2EXPTIME-hard.

Notice that model checking the equilibrium operators of
EL∗ formulae may require the solution of a number of “in-
ternal” synthesis problems for (γi)i∈N so that ~σ ∈ NE(G)
can be checked and a run % ∈ [[~σ]] can be determined before
an EL∗ formula can be checked. This problem, known as re-
active synthesis, is 2EXPTIME-complete for both LTL and
CTL specifications, and seems to be the main source of the
high complexity of checking equilibrium properties.

7 Concluding Remarks and Related Work
Complexity. We have shown that checking the equilibrium
properties of a concurrent and multi-agent system is a com-
putationally very hard problem as any interesting property
is at least in PSPACE. On the positive side, we have also
shown that in most cases the difficulty of checking equilib-
rium properties is independent of whether the goals of the
players are given by linear-time or branching time temporal
formulae. A summary of our complexity results is in Table 1.

ST–CHECK NE–CHECK EQ–CHECK EL∗–MC

LTL PSPACE PSPACE PSPACE 2EXPT−h
CTL PSPACE EXPT PSPACE 2EXPT−h
TLµ PSPACE PSPACE PSPACE 2EXPT−h
Lµ iEXPT EXPT iEXPT 2EXPT−h

Table 1: Overview of computational complexity results.
In this table TLµ stands for the linear-time µ-calculus,
Lµ for the modal µ-calculus, ST–CHECK for STRATEGY-
CHECKING, NE–CHECK for NE-CHECKING, EQ–CHECK
for EQUIVALENCE-CHECKING, EL∗–MC for EL∗ MODEL
CHECKING, and iEXPT for in EXPTIME.

Logic. Our work relates to logics either that are to rea-
son about the behaviour of game-like systems or that are
memoryfull. In (Kupferman and Vardi 2006) a memory-
full branching-time logic, called mCTL∗, that extends CTL∗
was introduced. This logic has a special atomic proposition
(“present”) that allows one to reason about computations
starting in the present or computations starting somewhere in
the past (in CTL∗ all formulae are interpreted w.r.t. compu-
tations that start in the present). This logic is not more pow-
erful than CTL∗, but can be exponentially more succinct.
No equilibrium issues are addressed there. In the linear-
time framework, memoryfull logics have also been studied.
In (Laroussinie, Markey, and Schnoebelen 2002) and exten-
sion of LTL with past is extended with an operator (“Now”)
that allows one to “forget the past” when interpreting logi-
cal formulae. This logic is exponentially more succinct than
LTL with past, which in turn is exponentially more succinct
than LTL; all such logics are nevertheless equally expres-
sive. Thus, it seems that adding memory to temporal logics,
either in the linear-time or in the branching-time framework,
can make them more succinct but not any more powerful.
Another shared feature of memoryfull temporal logics is that
their verification problem is at least EXPSPACE. It follows
from our 2EXPTIME-hardness results that checking equi-
librium properties, which requires the use of a memoryfull
logic, is even a harder problem. Another memoryfull logic,
this time one designed to reason about game-like scenar-
ios, is Strategy logic (Chatterjee, Henzinger, and Piterman
2010). Strategy logic has strategies as first-class objects in
the language and based on this feature one can indirectly
reason about equilibrium computations of a system. In Equi-
librium logic reasoning is done the other way around: we can
directly refer to equilibrium computations of a system, and
based on them reason about the strategic power of the play-
ers in a game. Verification is extremely hard in Strategy logic

too: it is (d+1)EXPTIME-complete, where d is the alterna-
tion between universal and existential strategy quantifiers in
the logic, which has LTL as base language—a logic in the
linear-time framework. Strategy logic as defined in (Chat-
terjee, Henzinger, and Piterman 2010) is a logic with a two-
player semantic game. This logic was later on extended to
the multi-player setting in (Mogavero, Murano, and Vardi
2010a). Recent works, for instance (Mogavero et al. 2012;
Mogavero, Murano, and Sauro 2013), have focused on the
discovery of syntactic fragments of Strategy logic which are
expressive enough, e.g., to express the existence of equilib-
ria, and yet with decidable satisfiability and model check-
ing problems. As with Equilibrium logics, the exact com-
plexity upper bound of model checking a syntactic fragment
that is able to express Nash equilibria is, presently, an open
problem. Finally, in (Mogavero, Murano, and Vardi 2010b)
a memoryfull extension of ATL, called mATL∗, is studied.
Again, this logic identifies the need for memoryfull power
when reasoning about strategic interactions. Since mATL∗
extends ATL, it is an alternating-time temporal logic (Alur,
Henzinger, and Kupferman 2002). This logic, as mCTL∗,
extends ATL∗ with a “present” proposition to differentiate
between (and reason about) computations that start in the
present state of play and computations that start far in the
past—in a state previously visited. The verification problem
for this logic, as it is for ATL∗, is in 2EXPTIME.

Future work. It would be interesting to discover “easy”
classes of reactive games for which the decision problems
studied in the paper are computationally simpler. Because
of the nature of the problems at hand, all relevant questions
about equilibria are expected to be at least NP-hard. An-
other avenue for further work is the study of solution con-
cepts specifically designed for the analysis of dynamic sys-
tems, in particular, we would like to investigate the well-
known concept of subgame-perfect Nash equilibrium. We
also leave for future work the study of richer preference re-
lations as well as quantitative and imperfect information.
Certain decision problems slightly discussed in this paper
should also be studied in more detail. In this paper, we have
investigated the complexity of some questions about reac-
tive games and equilibrium computations in multi-agent and
concurrent systems, and would like to understand better the
expressivity of equililibrium logics. They certainly offer a
different paradigm for reasoning about equilibria in infinite
games, but whether they can be translated into one of the
logics already in the literature (or the other way around) is
an open and interesting question. Finally, our results natu-
rally lead to further algorithmic solutions and a tool imple-
mentation, for instance, as done using logics such as ATL
and probabilistic variants of CTL∗ in model checkers such
as PRISM (Chen et al. 2013), MCMAS (Lomuscio, Qu, and
Raimondi 2009), or MOCHA (Alur et al. 1998).

Acknowledgments. We thank the anonymous reviewers for
their helpful comments. We also acknowledge the support of
the ERC Advanced Investigator Grant 291528 (“RACE”).

References
Alur, R.; Henzinger, T. A.; Mang, F. Y. C.; Qadeer, S.; Raja-
mani, S. K.; and Tasiran, S. 1998. MOCHA: modularity in
model checking. In CAV, volume 1427 of LNCS, 521–525.
Springer.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Alur, R.; La Torre, S.; and Madhusudan, P. 2003. Playing
games with boxes and diamonds. In CONCUR, volume 2761
of LNCS, 127–141. Springer.
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Information and Computation 208(6):677–
693.
Chen, T.; Forejt, V.; Kwiatkowska, M. Z.; Parker, D.; and
Simaitis, A. 2013. PRISM-games: a model checker for
stochastic multi-player games. In TACAS, volume 7795 of
LNCS, 185–191. Springer.
Clarke, E. M., and Emerson, E. A. 1981. Design and synthe-
sis of synchronization skeletons using branching time tem-
poral logic. In Logics of Programs, volume 131 of LNCS,
52–71. Springer-Verlag: Berlin, Germany.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000. Model
Checking. The MIT Press: Cambridge, MA.
Emerson, E. A., and Halpern, J. Y. 1986. ‘Sometimes’ and
‘not never’ revisited: on branching time versus linear time
temporal logic. Journal of the ACM 33(1):151–178.
Emerson, E. A. 1990. Temporal and modal logic. In Hand-
book of Theoretical Computer Science Volume B: Formal
Models and Semantics. Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands. 996–1072.
Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. 2013. It-
erated boolean games. In IJCAI. IJCAI/AAAI Press.
Kozen, D. 1983. Results on the propositional mu-calculus.
Theoretical Computer Science 27:333–354.
Kupferman, O., and Vardi, M. Y. 2006. Memoryful
branching-time logic. In LICS, 265–274. IEEE Computer
Society.
Kupferman, O.; Madhusudan, P.; Thiagarajan, P. S.; and
Vardi, M. Y. 2000. Open systems in reactive environments:
Control and synthesis. In CONCUR, volume 1877 of LNCS,
92–107. Springer.
Laroussinie, F.; Markey, N.; and Schnoebelen, P. 2002. Tem-
poral logic with forgettable past. In LICS, 383–392. IEEE
Computer Society.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS:
a model checker for the verification of multi-agent systems.
In CAV, volume 5643 of LNCS, 682–688. Springer.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2012. What makes ATL∗ decidable? A decidable fragment
of strategy logic. In CONCUR, volume 7454 of LNCS, 193–
208. Springer.
Mogavero, F.; Murano, A.; and Sauro, L. 2013. On the
boundary of behavioral strategies. In LICS, 263–272. IEEE
Computer Society.

Mogavero, F.; Murano, A.; and Vardi, M. Y. 2010a. Rea-
soning about strategies. In FSTTCS, volume 8 of LIPIcs,
133–144. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik.
Mogavero, F.; Murano, A.; and Vardi, M. Y. 2010b. Relent-
ful strategic reasoning in alternating-time temporal logic. In
LPAR, volume 6355 of LNCS, 371–386. Springer.
Nielsen, M., and Winskel, G. 1995. Models for concur-
rency. In Handbook of Logic in Computer Science. Oxford
University Press. 1–148.
Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. The MIT Press: Cambridge, MA.
Parikh, R. 1985. The logic of games and its applications. In
Topics in the Theory of Computation. Elsevier.
Pnueli, A. 1977. The temporal logic of programs. In FOCS,
46–57. IEEE.
Vardi, M. Y. 1988. A temporal fixpoint calculus. In POPL,
250–259. ACM Press.

