
ON THE STRUCTURE OF EVENTS IN BOOLEAN GAMES

Julian Bradfield† Julian Gutierrez‡ Michael Wooldridge‡

†University of Edinburgh ‡University of Oxford

Abstract

Conventional Boolean games embody two important assumptions: (i) all events in the game
occur simultaneously; and (ii) assignments to variables must be made in complete ignorance of
the values assigned to other variables. For many settings, these assumptions represent gross sim-
plifications. In this paper, we show how Boolean games can be enriched by dependency graphs,
which allow us to generalise the conventional Boolean games framework. A dependency graph
specifies for every variable in the game what information will be available when a value is as-
signed to that variable. More precisely, a dependency graph is a directed acyclic graph over the
set of game variables, where an edge from p to q means that the value assigned to variable p
can be taken into account when choosing a value for variable q. We refer to games played with
dependency graphs as partial order Boolean games. In partial order Boolean games, players
simultaneously choose strategies that define how values will be assigned to variables; these strate-
gies must take into account information dependencies as specified in the dependency graph. Once
chosen, strategies are executed, and generate a run-time sequence of events corresponding to the
assignment of values to variables as defined by the strategies. The dependency graph induces a
partial order model of concurrency for run-time behaviour: if a variable q depends on p, then at
run-time the assignment of a value to p must precede the assignment of a value for q. Partial order
Boolean games thus distinguish between the event corresponding to the selection of a strategy
and the events that arise from executing that strategy (i.e., the assignment of values to variables).
They thus more closely resemble the reality of multi-agent systems, in which multiple programs
(representing player strategies) are concurrently executed to generate run-time behaviour. After
motivating and presenting the game model, we explore its properties. We show that while some
problems associated with our new games have the same complexity as in conventional Boolean
games, for others the complexity blows up dramatically. We also show that the concurrent be-
haviour of partial order Boolean games can be represented using a closure operator semantics,
and conclude by considering the relationship of our model to Independence Friendly (IF) logic.

1 Introduction

Boolean games are a compact and expressive family of logic-based games, which have a natural
interpretation with respect to multi-agent systems (see, e.g., [14, 22, 11, 9, 17]). A Boolean game is
played over a set of Boolean variables. Each player desires the satisfaction of a goal, specified as a
logical formula over the overall set of variables, and is assumed to control a subset of the variables: the
choices available to a player correspond to the assignments that can be made to the variables controlled
by that player. Players simultaneously choose valuations for the variables they control, and a player is
satisfied if their goal is made true by the resulting overall valuation. Apart from being an interesting
game theoretic model in their own right, it has been argued that Boolean games are a natural abstract
model for studying strategic behaviour in multi-agent systems: the use of logically-specified goals is

1

commonplace in the multi-agent systems community, and the fact that players act by assigning values
to Boolean variables models the execution of finite-state computer programs.

However, if we really aim to use Boolean games as an abstract model of multi-agent systems, then
existing Boolean game models embody some arguably rather extreme assumptions. First, in all studies
of Boolean games that we are aware of, it is assumed that all events in the game occur simultaneously.
There are two types of events in a Boolean game: the selection of strategies by players, and the
assignments of values to variables according to these strategies. If we consider a multi-agent system
setting, then it should be clear that assuming all such events occur simultaneously is unrealistic. In a
multi-agent system, participants select their strategies by writing a computer program (i.e., an agent)
to act on their behalf, and then these various agents are concurrently executed, generating a “run-time”
history of events. The actual computational histories that may be generated at run-time will depend
on the model of concurrency underpinning the run-time behaviour of the agents. Concurrency is of
course a huge research area, somewhat tangential to game theoretic concerns [19]; but nevertheless,
the assumption that all events occur simultaneously is perhaps an abstraction too far if we want to
interpret Boolean games as a model of multi-agent systems. A second difficulty in existing models
of Boolean games is that players act in ignorance of all the choices made by other players. In many
settings, players will have some information about the choices of others once the game progresses in
time, and to faithfully capture such settings, a more realistic game model should reflect this.

In this paper we develop partial order Boolean games, a new model for concurrent and multi-
agent systems which resolves these two difficulties. This model is somewhat closer to the concept of
multi-agent systems that we described above: partial order Boolean games are games of simultaneous
moves, but the moves that players make correspond to choosing a “program” (actually, a collection of
Boolean functions) to play the game on their behalf. The programs then interact to actually play the
game and generate run-time behaviour according to a partial-order model of concurrency. We thus
distinguish between the two types of events that we mentioned above: events corresponding to the
selection of strategies (these events occur simultaneously) and the run-time behaviour of these strate-
gies as they are executed. To capture incomplete information and concurrency, we use dependency
graphs. A dependency graph is a directed acyclic graph over the set of game variables: an edge from
variable p to variable q means that when the strategy that chooses a value for q makes its assignment
to this variable, it can take into account the value of p. The relationship between p and q is thus one of
functional dependence. The total set of variables upon which q depends represents all the information
that is available for a strategy assigning a value to q: if q is not dependent on a variable r, for example,
then the choice of value for q cannot be informed by the value of r. While strategies in conventional
Boolean games are very simple (simply an assignment of values to variables), in partial order Boolean
games, strategies are more complex: a strategy for a variable x is a Boolean function that assigns
a value to x for every possible valuation of variables on which x depends. We can think of such a
function as the program written by the player to play the game on their behalf. When these strategies
are executed, then they generate a run-time history of events, which correspond to the variables in the
game being assigned values according to the strategies. The possible set of run-time histories that may
be generated will be determined by the dependency graph, which implicitly defines a partial temporal
ordering of run-time events. That is, if q depends upon p, then the run-time event corresponding to
assigning a value to p must precede the run-time event corresponding to assigning a value for q.

Dependency in (Boolean) games. We would like to remark that we use the term “dependence” to
refer to the idea that the selection of a value for one variable can take into account the value that has
been assigned to another variable. The term “dependence” has been used in several other ways in

2

game theory, some of which are related to our usage, some of which are not. One usage is to say
that agent i is dependent on agent j if the choice made by j can potentially influence the utility that
agent i obtains. In the context of Boolean games, this idea was investigated by Bonzon et al [4].
This is clearly distinct from our usage of the term. Relatedly, our model of games is also somewhat
reminiscent of the idea of multi-agent influence diagrams (MAIDs) [15]. MAIDs are a compact
representation model for extensive form games, which exploit the idea that we can reduce the state
space required for representing a game by only recording information about the interactions between
players where one player’s choice affects another. Although partial order Boolean games are also
based on a graph representation, this graph captures informational dependencies between variables.
Moreover, as Bonzon et al point out, although MAIDs frequently provide a compact representation
for games, Boolean games are in some cases exponentially more succinct than MAIDs.

Structure of the paper. The remainder of this paper is structured as follows. We begin by defining
partial order Boolean games, developing a concrete model for player strategies, and investigating the
computational complexity of decision problems for such games. We show that, for some problems,
the complexity of the decision problem is essentially the same as the corresponding problem for
conventional Boolean games, but for others, the complexity is much higher. We then define a closure
operator semantics for partial order Boolean games, which more explicitly reflects the causal, temporal
dependencies in our games framework. We also show a natural connection between partial order
Boolean games and Independence-Friendly (IF) first-order logic—a logical formalism already studied
in the context of logics for concurrency, independence, and incomplete information.

2 Partial Order Boolean Games

We build upon the Boolean games framework; see, for instance, [14, 3, 22, 11, 9, 17] for discussions
and more details on Boolean games, as well as some of its applications in AI and multi-agent systems.

Let B = {>,⊥} be the set of Boolean truth values, with “>” being truth and “⊥” being falsity;
we use > and ⊥ to denote both the syntactic constants for truth and falsity, respectively, as well as
their semantic counterparts. Let Φ = {p, q, . . .} be a finite, fixed, non-empty vocabulary of Boolean
variables. For every subset Ψ ⊆ Φ of Boolean variables, we denote by LΨ the set of (well-formed)
formulae of propositional logic over the set Ψ, constructed using the conventional Boolean operators
(“∧”, “∨”, “→”, “↔”, and “¬”), as well as the truth constants “>” and “⊥”. For every subset of
Boolean variables Ψ, a Ψ-valuation is a total function v : Ψ → B, assigning truth or falsity to the
variables in Ψ; we let V(Ψ) denote the set of all Ψ-valuations. Also, given a formula ϕ ∈ LΨ and a
Ψ-valuation v : Ψ → B, we write v |= ϕ to mean that ϕ is true under the Ψ-valuation v, where the
satisfaction relation “|=” is defined in the conventional way.

Our games are populated by a set N = {1, . . . , n} of agents—the players. Each agent i is assumed
to have a goal, which is represented by an LΦ-formula γi that i desires to have satisfied. Each player
i ∈ N controls a (possibly empty) subset Φi of the overall set of Boolean variables Φ. By “control”, we
mean that i has the unique ability within the game to set the value (> or⊥) of each variable p ∈ Φi. We
require that each variable is controlled by exactly one agent, that is, i.e., we have Φ = (Φ1∪ · · · ∪Φn)
and Φi ∩ Φj = ∅, for all i 6= j. Then, a Boolean game is given by a structure 〈N,Φ, (Φi)i∈N(γi)i∈N〉,
where each component is formally defined as described above. Such a game is played by each player
i simultaneously choosing values for their variables Φi in an attempt to satisfy their goal γi; the
collection of choices made by all players defines a valuation for the variables Φ, and this valuation is
the outcome of the game: under this valuation, a player’s goal is either satisfied or not satisfied.

3

Notice that, in this model, all events in the game (the selection of strategies by players and the
execution of these strategies, i.e., the events corresponding to the assignment of values to variables)
are implicitly assumed to occur simultaneously. Also, note that each player must choose values for all
its variables in complete ignorance of the values selected by other players for their variables. We now
show how to extend the Boolean games model to overcome these two limitations.

The basic idea is to augment Boolean games with a graph that we refer to as a dependency graph.
This graph plays a dual role. First, it specifies the functional dependencies between variables in the
game: it specifies for each variable what information is available when a value for that is assigned.
Second, it implicitly specifies a partial temporal order for run-time events: if a variable q is dependent
upon variable p, as specified in the dependency graph, then this means that, at run-time, variable p
must be assigned a value before variable q is assigned a value.

Formally, a dependency graph over a set Φ is simply a directed acyclic graph D ⊆ Φ×Φ; we will
write D(p, q) to mean (p, q) ∈ D. We read D(p, q) as “q depends on p”; more precisely:

D(p, q) means that the choice of a value for the Boolean variable q by the player who
controls q can be informed by the value that was assigned to the Boolean variable p.

We denote the transitive closure of D by D∗, and where p ∈ Φ, we define D[p] = {q ∈ Φ | D(q, p)},
and D∗[p] similarly. Thus, D[p] is the total set of variables whose value can be taken into consideration
when choosing a value for variable p.

Note that the graph D induces a partial temporal ordering on run-time events in the game. That is,
if q ∈ D[p] then this implies that the assignment of a value to q must precede the run-time assignment
of a value to p. However, in general, the dependency graph does not totally order choices, as we will
see shortly. The motivation for the requirement that dependency graphs are acyclic should now be
clear: it ensures that we will not have situations in which a variable is “waiting” on itself (p ∈ D∗[p]).

The dependency graph structure makes it explicit which choices are, or can be regarded to be,
independent. Suppose D is a dependency graph such that p 6∈ D[q] and q 6∈ D[p]. That is, the choice
of p does not depend on q, and the choice of q does not depend on p. Then we say p and q are
independent. More generally, where we have two connected components in the dependency graph D
such that the components are not connected to each other, then these components are independent of
each other; we can interpret such independent structures as concurrent processes. The dependency
graph makes independence explicit and transparent, as desired in some models of concurrency [19].

Formally, a partial order Boolean game is simply a Boolean game together with a dependency
graph, i.e., a structure G = 〈N,Φ, (Φi)i∈N , (γi)i∈N ,D〉 where 〈N,Φ, (Φi)i∈N , (γi)i∈N〉 is a Boolean
game as defined earlier, and D ⊆ Φ× Φ is a dependency graph over the set of Boolean variables Φ.

We can now explain how these new games are played. In conventional Boolean games, a game is
played by every player i simultaneously picking a valuation vi : Φi → B for their Boolean variables
Φi. Clearly, the choices for players in partial order Boolean games are more complex: the value
chosen for a variable p can depend on the values assigned to the variables in the set D[p]. It therefore
makes sense to model a choice for a variable p as a function that maps a valuation for the variables
D[p] to a value for variable p, i.e., a function with the signature

f : V(D[p])→ B

or, making clear that f is a second-order function:

f : (D[p]→ B)→ B

(Recall that V(D[p]) = {f : D[p] → B} is the set of valuations over the variables D[p], and so such a
function maps a valuation to the variables on which p depends to a chosen value for p.)

4

We represent such individual choices as equations of the form:

p = f (q, . . . , r)

where f is a Boolean valued function, defining a value for p for every possible valuation to the variables
D[p] = {q, . . . , r}. We refer to p = f (q, . . . , r) as a choice equation.

To keep things mathematically simple, we will assume that the Boolean function f representing
the strategy for choosing a value for p is given as a propositional formula ϕ over the variables on
which p depends, that is, a formula ϕ ∈ LD[p]. Thus, the choice equations that we will consider take
the form p = ϕ, where p ∈ Φ and ϕ ∈ LD[p]. Note that when D[p] = ∅ (in other words, the value of
variable p does not depend on the value of any other variables), then the choice equation for p can be
assumed to take the form p = b where b ∈ B is a logical constant.

We emphasise that representing Boolean functions by propositional formulae is not a limitation:
any Boolean function f of k variables can be represented by a propositional formula over these vari-
ables, although in the worst case, the smallest formula representing f may be exponential in k [5].

A strategy for player i, denoted by σi, is then a set of choice equations, one for each variable
controlled by i. As usual, a strategy profile ~σ = (σ1, . . . , σn) is a collection of strategies, one for each
player in the game. Since we require that dependency graphs D are acyclic, we have the following:

Lemma 1 Let G = 〈N,Φ, (Φi)i∈N , (γi)i∈N ,D〉 be a game and let ~σ = (σ1, . . . , σn) be a strategy
profile for G. Then there is a unique solution to the set of equations σ1 ∪ · · · ∪ σn, which we denote
by v(~σ), (and thus we have that v(~σ) : Φ→ B), and which we refer to as the valuation induced by ~σ.
Moreover, v(~σ) can be computed in time polynomial in the size of ~σ.

We can define utility functions with respect to strategy profiles in essentially the same way for
conventional Boolean games:

ui(~σ) =

{
1 if v(~σ) |= γi

0 otherwise.

p q

r

1 2

Figure 1: Dependency
graph for Example 1.

Where ~σ = (σ1, . . . , σi, . . . , σn) is a strategy profile and σ′i is a strategy
for player i, we denote by (~σ−i, σ

′
i) the strategy profile obtained from ~σ by

replacing the i component with σ′i . We then say that ~σ is a (pure strategy)
Nash equilibrium if we have that there is no player i ∈ N and strategy σ′i
for player i such that ui(~σ−i, σ

′
i) > ui(~σ). Thus, the strategy profile ~σ is a

Nash equilibrium if no player could benefit by unilaterally deviating from ~σ
to another strategy. Let NE(G) denote the Nash equilibria of G.

Let us consider a small example, to further illustrate the notion of in-
dependence between variables. Imagine a captain who controls two army
platoons that must engage in two separate battles, where there is no way of
the platoons communicating with each other. Then, the captain has to design

strategies that will be executed by the platoons independently: that is, even though the captain can
choose strategies for both platoons, he must choose strategies so that no communication or coordi-
nation between the platoons takes place while they execute their respective strategies. The following
formal representation of this example makes this point explicit.

Example 1 Consider a partial order Boolean game where N = {1, 2}, Φ = {p, q, r}, Φ1 = {p},
Φ2 = {q, r}, γ1 = >, and γ2 = (p↔ q) ∧ (r ↔ ¬q). The dependency graph is as in Figure 1. Now,
player 2 has a choice for variable q that is guaranteed to make the left conjunct of his goal true—the
required choice equation is simply: q = p.

5

But although player 2 controls both r and q in the right conjunct of γ2, there is no strategy that
guarantees to make both conjuncts true simultaneously. This is precisely because r is independent
of q: a choice for this value must be made independently of q. As can be seen, the only two choice
equations available for variable r are as follows: r = > and r = ⊥.

Note that in the preceding example, player 2 is perfectly able to coordinate the selection of strategies
for variables q and r, but at run-time, these strategies cannot communicate with each other, and in
particular, the strategy for variable r must assign a value to this variable without knowing anything
about the values of p or q. We emphasise that this is not a “problem” in our model: it accurately
reflects real-world situations in which parts of a strategy must be executed even though those parts
of the strategy cannot communicate or coordinate with each other while they are being executed.
One might wonder whether it would be simpler in this case to treat independent variables as separate
players. We argue that this might not make sense. The next example hopefully illustrates why not.

Example 2 Suppose we have a game where N = {1, 2}, Φ1 = {p, q}, Φ2 = {r, s}, γ1 = >, and
γ2 = ((r ↔ p) ∧ (s ↔ q)) ∨ (¬(r ↔ p) ∧ ¬(s ↔ q)). Thus, player 1 is indifferent about how to
assign values to his variables, while player 2 will be satisfied if either:

• r takes the same value as p and s takes the same value as q; or else

• r takes the opposite value to p and q takes the opposite value of s.

The dependency graph for this example is illustrated in Figure 2. Now, player 2 clearly has choice
equations that will guarantee the achievement of his goal. Consider the choice equation set

σ1
2 = {r = p, s = q}

and the set
σ2

2 = {r = ¬p, s = ¬q}.
Since either of these strategy sets guarantees to achieve player 2’s goal, they each represent a dom-
inant strategy for player 2. Now, suppose we treated our current agent 2 as two separate agents,
say agents 3 and 4, the former controlling variable r and the latter controlling variable s, each new
agent with the same goal (γ2, above), and with the same dependency graph in Figure 2. Then, the two
strategy sets above induce Nash equilibria (for instance, letting σ1

3 = {r = p} and σ1
4 = {s = q}),

but such new strategy sets do not yield dominant strategies for the two new players of the game. Thus,
we argue, in attempting to treat the independent variables r and s as being controlled by different
players, we fundamentally change the character of the game.

p r

q s

Figure 2: Dependency graph for Example 2.

Let us now consider another example, to further
illustrate the distinction between our new model and
conventional Boolean games.

Example 3 We will explore some variations of the
non-cooperative game of matching pennies. Sup-
pose we have N = {1, 2}, Φ1 = {p}, Φ2 = {q},
γ1 = p ↔ q, and γ2 = ¬(p ↔ q). Thus, player 1
controls variable p, and player 2 controls variable q;
player 1 wants both variables to take the same value,

while player 2 wants them to take different values.

Now, consider the three different dependency graphs for this game shown in Figure 3:

6

• In the dependency graph shown in Figure 3(a), variables p and q are independent: the choice
for p is made in ignorance of the choice for q, and vice-versa.

• In Figure 3(b), q is dependent on p, and so the choice of value for q takes place after the choice
of value for p is made; moreover, the choice of value for q is informed by the choice for p.

• In Figure 3(c), p is dependent on q. Here, the choice of value for p takes place after the choice
of value for q, and the choice of value for p is informed by the choice of value for q.

Let us consider (a) first. It should be easy to see that there is no Nash equilibrium for the game with
dependency graph (a). Consider the following strategy profile: (σ1) p = ⊥ and (σ2) q = ⊥.

With this outcome, γ1 is satisfied, while γ2 is not. In this case, player 2 could deviate with strategy
q = >, resulting in the satisfaction of player 2’s goal. In fact, it is easy to see that, for every possible
strategy, one of the players will have a beneficial deviation, and so this game has no Nash equilibria.

Now consider the dependency graph in Figure 3(b). Player 2 can see the value of p before assign-
ing a value to q, and has four options available with respect to his strategy: q = >, q = ⊥, q = p,
and q = ¬p. With the final option, q = ¬p, player 2 guarantees to get his goal achieved (hence this
strategy weakly dominates all of the other strategies for player 2). Observe that any strategy profile in
which player 2 uses this strategy is a Nash equilibrium: as player 2 has his goal achieved, he cannot
beneficially deviate, and no deviation on the part of player 1 could improve his position.

For the dependency graph in Figure 3(c), the situation is reversed: p is dependent on q. In this
case, player 2 must choose a value for p, and player 1 is then able to choose a value for p while
knowing which value was assigned to q. In this case, 1 can guarantee to get his goal achieved by
using the strategy p = q.

(a) (b) (c)

p q p q p q

Figure 3: The only three possible dependency
graphs for Example 3.

As this example shows, partial order Boolean
games strictly generalise conventional Boolean
games: the implicit choice structure of a conven-
tional Boolean game (where every player simultane-
ously and independently chooses a valuation for their
variables) is obtained in a partial order Boolean game
in which all variables are made independent of each
other, that is, letting D[p] = ∅ for every p ∈ Φ.

The example above also illustrates a more useful
fact about the implications on the sets of equilibria when allowing dependencies. That is, that having at
hand the additional strategic power of using functional dependencies between variables may increase
the set of Nash equilibria of a game, an arguably desirable property from a game-theoretic perspective.

3 Complexity of Partial Order Boolean Games

Let us now consider some questions relating to the complexity of partial order Boolean games. The
most obvious question to ask relates to verifying whether a particular strategy profile is a Nash equi-
librium. The decision question is stated as follows.

VERIFICATION:
Given: Partial Order Boolean game G, strategy profile ~σ.
Question: Is it the case that ~σ ∈ NE(G)?

7

We emphasise that the representation of strategies we consider in this problem is that based on propo-
sitional formulae, as a set of choice equations as described in the preceding section.

The corresponding problem for conventional Boolean games is co-NP-complete [3], and it might
be natural to suppose that the problem would be harder for partial order Boolean games, particularly
given that strategies are more complex objects than in conventional Boolean games. In fact, this is not
the case: the complexity is no worse than that of conventional Boolean games. The key fact is:

Lemma 2 Let G be a partial order Boolean game containing a player i and let ~σ be a strategy profile
for this game. Then, if i has a beneficial deviation from ~σ, there is a beneficial deviation σ′i for player i
which is of size polynomial in |Φi|.

So, if player i has a beneficial deviation, then there is, in the terminology of computational complexity
theory, a small certificate to this effect. In light of results that will follow later, this result is perhaps
surprising; we will postpone discussion of this point for a moment. Returning to the VERIFICATION

problem, Lemma 2 allows us to prove the following complexity result.

Proposition 1 VERIFICATION is co-NP-complete; moreover, it can be solved in time exponential in
the number of Boolean variables Φ, but polynomial in the size of the given strategy profile.

The next problem to consider is whether a given game has any Nash equilibria. The decision
question is stated as follows.

NON-EMPTINESS:
Given: Partial Order Boolean game G.
Question: Is it the case that NE(G) 6= ∅?

The NON-EMPTINESS problem for conventional Boolean games is Σp
2-complete [3], and the fact

that VERIFICATION is no harder for partial order Boolean games might lead one to hypothesise that
the NON-EMPTINESS problem is also no harder. In fact, the complexity is dramatically different:

Proposition 2 NON-EMPTINESS is NEXPTIME-complete.

Now, in light of Lemma 2, which demonstrated that if a player has a beneficial deviation then
there is a small certificate to this effect, this result may seem surprising. However, there is a good
reason for the for the difference in complexity reported in Lemma 2 and Proposition 2. Whereas in
the former one can replace potentially large strategies with the values those strategies choose, in the
latter this cannot be done. The following example illustrates why not.

Example 4 Recall Example 3, and the dependency graphs in Figure 3. In particular, take the graph
in Figure 3(b). Given this dependency graph, the following strategy profile forms a Nash equilibrium:

(σ1) p = ⊥
(σ2) q = ¬p.

This is because, using σ2, player 2 guarantees to get his goal achieved, and there is no deviation for
player 1 that would achieve his goal: whatever choice player 1 makes for p, player 2 simply negates
it. Now, let us consider what happens if we try to apply this same trick (used in Lemma 2), namely,
replacing each strategy by the value that the strategy chooses. This would result in the strategy profile:

(σ1) p = ⊥
(σ′2) q = >.

8

However, this strategy profile does not form a Nash equilibrium: player 1 could now beneficially
deviate using p = >. In fact, there is no Nash equilibrium of this game in which both players use
strategies of the form x = b, where b is a logical constant. The trick works in Lemma 2 because
when considering whether a player has a beneficial deviation, we do not need to take into account
how other players would respond to our deviation: we only need to know whether such a beneficial
deviation is possible against a profile of strategies for other players that can be assumed to be fixed.

Even though the complexity of NON-EMPTINESS is NEXPTIME-complete w.r.t. unrestricted de-
pendency graphs, the problem is easier when restricted to some important classes of graphs:

Proposition 3

1. For games in which D = ∅, the NON-EMPTINESS problem is Σp
2-complete.

2. For partial order Boolean games of the following form, NON-EMPTINESS is PSPACE-complete:
We have N = {1, 2} with Φ1 = {x1, . . . , xk} and Φ2 = {y1, . . . , yk}. The dependency graph is
defined by D[xi] = {xj, yj | 1 ≤ j < i} and by D[yi] = {xi} ∪ {xj, yj | 1 ≤ j < i}.

Observe that in case (1), we obtain conventional Boolean games, for which the NON-EMPTINESS

problem is Σp
2-complete. The second case essentially corresponds to QBF, which is PSPACE-complete.

Let us now turn our attention to semantic features of partial order Boolean games. In particular,
we are now going to study how concurrent behaviour is modelled by our partial order Boolean games.

4 Concurrency in Partial Order Boolean Games

As discussed before, one important feature of partial order Boolean games is that they provide a game-
based model of concurrency. In this section, we study this feature in more detail, and show that the
kind of concurrency seen in partial order Boolean games can be mathematically represented using a
closure operator semantics for players’ strategies. This closure operator semantics, in turn, will give
a more explicit representation of the causal and temporal dependences in our games framework.

In particular, even though the temporal order in which events happen in partial order Boolean
games is not fully known only by knowing the strategies to be played—because unordered events may
happen in parallel, whereas ordered events must happen sequentially—it is, nonetheless, the case that
once each player chooses a strategy, regardless of how concurrent (unordered) events are executed,
the system (game) always progresses towards the same final outcome: the valuation v(~σ) induced by
the strategy profile ~σ under consideration. This kind of deterministic, yet concurrent, behaviour can
be mathematically represented by a closure operator semantics of the game, which we formalise next.

Let ≤ be the reflexive and transitive closure of D. Since D is a DAG, the structure (Φ,≤) is a
partial order. Where p, q ∈ Φ, let D[p] ≤D D[q] whenever p ≤ q. Thus, (2Φ,≤D) is also a partial
order, where ≤D is just the lifting of ≤ from elements in Φ to ≤-downclosed sets in 2Φ. Thus, if
X ≤D Y then X ⊆ Y .

Now, for each player i, define the function πi : 2Φ → 2Φ, where X ∈ 2Φ, as follows:

πi(X) = X ∪ {q ∈ Φi | (D[q] ∩ (Φ \ Φi)) ⊆ X}.

The function πi indicates, for each player i, which variables are to be played next, that is, to which
variables give values provided that the variables in X have been already set to some Boolean value.

The key observation in this section is that, in fact, over the partial order set (2Φ,≤D), the function
πi determines a stable closure operator, that is, a map being:

9

1. (Extensive): ∀X. X ≤D πi(X),

2. (Idempotent): ∀X. πi(X) = πi(πi(X)), and

3. (Monotone): ∀X,Y. X ≤D Y ⇒ πi(X) ≤D πi(Y).

We then can show:

Proposition 4 Let D be the dependency graph in a partial order Boolean game where N = {1, . . . , n}
and Φ = (Φi)i∈N . Then, each function πi for every player i, as defined above, is a closure operator.

Based on (πi)i∈N we can define a semantics which gives a more operationally informative ex-
planation of how concurrent behaviour in a multi-agent system is modelled in partial order Boolean
games. What we are to define next is a closure operator semantics of concurrency in our framework.

Let X ∈ 2Φ be a history of play if X is ≤D-downclosed, that is, X indicates which variables have
been set to a fixed Boolean value so far. Given a history of play X, each agent i knows what to play
next (using the map τi, defined below) based on both πi and the choice equations, denoted by fq, for
the variables q ∈ Φi they have control over, in the following way:

τi(X) = {q = fq | q ∈ πi(X)}.

Then, note that even though τi can also be regarded as a strategy for player i, semantically, the
map τi behaves differently from σi. The former takes histories of play and, based on that, gives only
a few necessary choice functions to be used next (a rather operational approach); the latter, instead,
provides a player with all choice equations that i has available at once, with no information as to when
exactly such equations should be used (a more denotational approach). Thus, we can think of τi as
being more operationally informative when compared with σi, since “time” is implicitly considered.
Due to the informal description given above, we say that the map τi is a temporal strategy for player i.
In fact, because each πi is a stable closure operator, a few simple observations also follow.

Firstly, since a strategy can only modify the state of play by setting a value for a variable not played
yet, and once such a value has been determined it cannot be modified, the strategy must naturally
be an extensive operator. Secondly, because the behaviour of different agents must be independent
on concurrent variables, such a kind of behaviour must be oblivious to superfluous or unnecessary
alternations between players’ moves. In other words, in the end, it has to be irrelevant who plays
first in concurrent (unordered) events—of course this is not the case for sequential (ordered) events;
thus, the strategy must also be idempotent to ensure this kind of behaviour. Finally, as dependency
graphs induce a temporal (and causal) dependency relation on events, playing at a later “time unit”
must provide at least as much information as playing at a previous one; in other words, a temporal
strategy must be monotone so that causal dependencies are preserved when playing the game.

The idea of using closure operators to model deterministic concurrency has been successfully used
in the past, e.g., see [2, 12, 21]. This representation is very appealing because it ensures—due to the
mathematical properties of closure operators—that the particular execution of unordered (concurrent,
independent, etc.) events does not affect the outcome of the game. Let us now see, with a simple
example, how a temporal strategy constructed with respect to a stable closure operator looks like.

Example 5 Take again the game in Example 1. There, the game can proceed in five different ways in
terms of how/when the events are played. We will write p ‖ r and q ‖ r for the parallel execution of
two concurrent/independent events. Then, one of the following behaviours can be observed (assuming
that executing atomic events takes no time and that “.” is sequential composition):

10

p.q.r; p.r.q; p.(q ‖ r); r.p.q; or (r ‖ p).q.

The temporal strategies τ1 and τ2 for players 1 and 2 must be defined for all those states of play when
each player is to make a move. Moreover, whenever both players are allowed to play simultaneously,
the result of playing their strategies must deliver the same result. This is the case since:

• τ1 = {(∅, {p = fp}), ({p}, ∅), ({r}, {p = fp}), ({p, q}, ∅), ({p, r}, ∅), ({p, q, r}, ∅)}; and

• τ2 = {(∅, {r = fr}), ({p}, {r = fr, q = fq}), ({r}, ∅), ({p, q}, {r = fr}), ({p, r}, {q = fq}),
({p, q, r}, ∅)}.

As we can see, the two strategies in Example 5 seem to be bigger than needed. For instance, a
more succinct representation could be:

• τ1 = {(∅, {p = fp}), ({r}, {p = fp})}; and

• τ2 = {(∅, {r = fr}), ({p}, {r = fr, q = fq}), ({p, q}, {r = fr}), ({p, r}, {q = fq})}.

as we know that in all other cases the strategies map to ∅. Clearly, this is a valid succinct representation
since it allows all possible five interleavings of events given before. In general, this kind of succinct
representation is always possible since any τi will always map to ∅ in those states of play X that
correspond to the closed sets (the fixed points) of the closure operators πi w.r.t. which they are defined.

5 A Logic with Structured Choice

The concurrency features of partial order Boolean games also find applications to logic. Specifically,
partial order Boolean games give a model for Sandu and Hintikka’s Independence-Friendly (IF) logic.
IF logic is an extension of first-order logic where quantifiers are partially instead of totally ordered.
This gives a considerable increase in expressivity. IF logic (without negation) is equivalent to exis-
tential second-order logic—in complexity terms captures NP properties of finite models. Well known
applications in, for instance, computer science, artificial intelligence, and multi-agent systems include
logics for social software [20] and logics for independence and concurrency [6].

The syntax and semantics of IF logic is as follows. The syntax of IF logic is that of classical first-
order logic with quantifiers extended to slashed quantifiers ∃x/y, z, . . . , ∀x/y, z, . . . , whose intended
interpretation is that when choosing the witness/counter-example x, we may not know the values of
y, z, . . . (which are presumed to be bound earlier in the formula). For example, in

∀x.∃y.∀u/x, y.∃v/x, y.ϕ(x, y, u, v)

variable v depends only on u, not on x or y (and y depends only on x as u, v have not been mentioned).
In other words, the semantics is given by a partial order Boolean game where {(x, y), (u, v)} ⊆ D.

In general, these dependencies define a partial order which, under our semantics, is interpreted with
the dependency graph D. We should note that our games are not quite IF, as we require dependency to
be transitive. The standard definition of IF allows for non-transitive dependencies between quantifiers,
which does not increase the expressive power of the logic, but does result in rather pathological prop-
erties of formulae. For this reason, some IF work imposes transitivity as an additional requirement.

Example 6 Recall Example 3. In the usual presentation of the game, the dependency graph is that in
Figure 3(a): the variables are independent. So, player 1 can achieve her goal p = q iff ∀q.∃p/q.p = q
and player 2 can achieve his goal p 6= q iff ∀p.∃q/p.p 6= q. Clearly, no player has a winning strategy.
In fact, no strategy profile forms a pure-strategy Nash equilibrium, as shown in Example 3.

11

IF logic has a prenex normal form, though it is substantially more complex to generate than for
first-order logic when non-transitive quantifier dependencies are allowed.

Proposition 5 Let ϕ = ∀ . . . ψ, where ψ is a Boolean formula, be a transitively-dependent IF for-
mula in prenex normal form where all existentially quantified variables are in Φ∃ and all universally
quantified variables are in Φ∀. Let G be the game G = ({∃,∀},Φ,Φ∃,Φ∀, ψ,¬ψ,D) with D given by
the variables and quantification order in ϕ. Then

• ϕ is true (in IF logic) iff ψ is true in every Nash equilibrium of game G, and such an equilibrium
exists (in which case ∃ has a winning strategy);

• ϕ is false (in IF logic) iff ψ is false in every Nash equilibrium of game G, and such an equilib-
rium exists (in which case ∀ has a winning strategy);

• ϕ is undetermined otherwise.

Partial Order Boolean games may have many players, not merely two. In coalition logics [20], a
team of players competes against the others to achieve a common goal. We can generalize the previous
result by considering the coalition as an ∃ team, and all other players as a ∀ team.

An IF formula may be expressed as a partial order Boolean game, but partial order Boolean games
may have many players with different goals, rather than just two players with complementary goals. In
the remainder of this section, we analyse further the relationship between IF and partial order Boolean
games. Consider first two-player games with variable ownerships Φ1,Φ2 and arbitrary goals γ1, γ2.
In the case that the ψi are contradictory, the game corresponds to an IF game, with one player taking
the role of ∀, the other being ∃, and quantifier dependencies given by dependency graph D.

However, if the ψi are equivalent, and there is a common goal, the best strategy for the players
is to cooperate, and they should both take the role of ∃ in an IF game, forming a single team of two
players. In such a game, there are no universal quantifiers, but there is still a role for ∀, as the goal ψ
may contain conjuncts—∀ is played by the malevolent environment (demonic non-determinacy in the
terminology of concurrency theory). Thus, the IF quantifier prefix is entirely existential, with slashes
given by D. As with classic coordination games, a pair of strategies is in equilibrium if it achieves
the common goal; but a pair of strategies that does not achieve the goal may also be in equilibrium, if
neither player can unilaterally change strategy to achieve the goal. An example of such a situation is:

Example 7 Let player 1 own variable p and player 2 own variable q, with empty dependency and let
both players have goal p ∧ q. In IF terms, this is expressed by the formula ∃p.∃x/p. p ∧ q. Consider
the strategy profile ((p = ⊥), (q = ⊥)). This strategy profile loses—that is, no player gets its goal
achieved—but neither player can unilaterally deviate to win the game.

The IF formulation points up an issue already mentioned before: the existential team has com-
munication barriers between its players, not just lack of knowledge of the opponents’ moves. In fact,
Hintikka’s original formulation of IF did not allow slashing with previous existential variables, only
with previous universal variables. The case where one goal is stronger, say γ1 → γ2, is more inter-
esting. If player 1 can win, then player 2 wins also; but player 2 may try to win while falsifying γ1.
A pair of strategies that achieves γ1 is in equilibrium; a pair of strategies that achieves γ2 \ γ1 is only
in equilibrium if there is no way for 1 to achieve γ1. If we move further to incomparable goals, then
the situation becomes more complex still, and the connection to IF logic becomes harder to establish.
This leads to the notion of extensions of IF logic, which we will discuss in the following section.

12

6 Related Work

Semantics. Partial order Boolean games form a game-based model of multi-agent and distributed
systems with the power to explicitly represent partial order concurrent behaviour—the sometimes
called “true concurrency” framework within the logic and semantics of concurrency communities.
This is a feature that has attracted much attention from a semantics viewpoint, in particular, because
it can be used to give semantically finer representations/models of concurrent behaviour.

Closer to our work are the mathematical presentations of player strategies using closure operators,
a semantic approach not usually associated with true concurrency concepts but which has very natural
connections to it. Specifically, from the different uses of closure operators in the literature of semantics
and concurrency theory, the following works are mathematically similar to the presentation we gave
in this paper: closure operator semantics used to provide models for fragments of linear logic [2],
processes in concurrent constraint programs [21], or agents in asynchronous systems [18].

Concurrency. Our model of partial order Boolean games has been partly inspired by a model of
concurrency, a relationship on which we expand next. The dependency graphs defined for our game
model are related to event structures, a canonical model of the partial order behaviour of concurrent
systems [19]. Event structures are certain partial orders of events which can explicitly model the causal
dependencies between the events that a computing system performs. In event structures, concurrency
(independence of events) and nondeterminism (conflicts between events) are naturally captured.

Our model of partial order Boolean games relates to a class of event structures called conflict-free.
Conflict-free event structures are the sub-model of event structures where incomparable events in the
partial order are necessarily concurrent. Such a sub-class of event structures contains all effective
computations of a system, that is, those that can actually happen as all conflicts between events are
avoided. These structures are also related to some, so-called, domains of information—certain ordered
structures where the notion of concurrent computation is naturally captured.

Game models of event structures [7, 8] are, however, different from partial order Boolean games.
Three main differences are: (i) whereas in the former game model the execution of events is asyn-
chronous, in the latter it is synchronous; (ii) moreover, players in games on event structures are al-
lowed, at any time, to stop playing the game, whereas in our game model all players must play until
every variable has been given a value; (iii) finally, games on event structures as in [7, 8] are two-player
zero-sum games, while the games in this paper are, in general, n-player non-zero-sum games. Only
recently [13], concurrent games on event structures have been extended to the non-zero-sum setting.

Logic. IF logic is inherently a two-player logic—the (partial order) games induced by IF logic for-
mulae are played by two players, ∃ and ∀. Partial order Boolean games suggest that we could define a
natural n-player logic of imperfect information, which would have IF as a two-player fragment. This
idea has also been explored using a categorical model [1]. However, there is not much we can posi-
tively say about a logic of imperfect information of this kind, given the limitations that IF imposes. In
particular, from a logical and proof theoretic viewpoint, the issue of providing a sound and complete
axiomatisation for validity. Basically, since IF does not contain classical negation, (bi-)implication
is not part of the logic, and so logical equivalence must be defined and axiomatised in its own right.
Owing to its partial second-order power, IF is too expressive for either equivalence or validity to have
a recursively complete axiomatisation. Thus, since IF logic is encodable into partial order Boolean
games, any logic fully capturing partial order Boolean games will not be completely axiomatisable.
However, as IF logic itself, may be equipped with rules adequate for practical reasoning—cf. [16].

13

7 Conclusions and Future Work

By extending Boolean games in a simple and intuitive way, i.e., by adding a dependency graph that
indicates the dependencies between variables in a game, we are able to dramatically increase the ex-
pressive power of conventional Boolean games. Of particular importance, we can now more easily
represent the behaviour of concurrent systems and provide to them a game semantics where concur-
rency can be modelled using a closure operator semantics. Our model is closely related to work on IF
logics, which are increasingly used in mathematical logic, game theory and the theory of concurrency.

It would be interesting to examine several aspects of partial order Boolean games in more detail.
First, it should be clear from our comments on event structures above that there are very close links
between partial order Boolean games and models of concurrency. It would be interesting to study
these manifest similarities in more detail, perhaps by looking at Boolean game-like refinements of
event structures and related models of, so-called, true concurrency. While event structures have been
studied from a game theoretic perspective before, our work may give a new perspective on this work.
Another aspect of our model that deserves further study is the link to games of incomplete infor-
mation, and, perhaps even more relevantly from a computer science perspective, work on epistemic
logics [10]. While the way in which our model captures the limited information available to players is
transparent, it would be interesting to try to link this more precisely to the standard models of knowl-
edge used in computer science (i.e., Kripke structures/possible worlds semantics). Finally, it would
be interesting to take a closer look at restrictions on dependency graphs, and the complexity classes
of the corresponding decision problems in partial order Boolean games.

Acknowledgements. Gutierrez and Wooldridge acknowledge with gratitude the financial support
of the ERC Advanced Investigator Grant 291528 (“RACE”) at Oxford.

References

[1] S. Abramsky. Socially responsive, environmentally friendly logic. Acta Philosophica Fennica,
78, 2006. Truth and Games: Essays in Honour of Gabriel Sandu.

[2] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In LICS, pages 431–
442. IEEE Computer Society, 1999.

[3] E. Bonzon, M. Lagasquie, J. Lang, and B. Zanuttini. Boolean games revisited. In ECAI, 2006.

[4] E. Bonzon, M.-C. Lagasquie-Schiex, and J. Lang. Dependencies between players in Boolean
games. International Journal of Approximate Reasoning, 50(6):899–914, 2009.

[5] R. B. Boppana and M. Sipser. The complexity of finite functions. In Handbook of Theoreti-
cal Computer Science Volume A: Algorithms and Complexity, pages 757–804. Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1990.

[6] J. C. Bradfield. Independence: logics and concurrency. Acta Philosophica Fennica, 78:47–70,
2006. Truth and Games: Essays in Honour of Gabriel Sandu.

[7] P. Clairambault, J. Gutierrez, and G. Winskel. The winning ways of concurrent games. In LICS,
pages 235–244. IEEE Computer Society, 2012.

14

[8] P. Clairambault, J. Gutierrez, and G. Winskel. Imperfect information in logic and concurrent
games. In Computation, Logic, Games, and Quantum Foundations, volume 7860 of LNCS,
pages 7–20. Springer, 2013.

[9] P. E. Dunne, S. Kraus, W. van der Hoek, and M. Wooldridge. Cooperative Boolean games. In
AAMAS, 2008.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT
Press: Cambridge, MA, 1995.

[11] J. Grant, S. Kraus, M. Wooldridge, and I. Zuckerman. Manipulating Boolean games through
communication. In IJCAI, 2011.

[12] J. Gutierrez. Concurrent logic games on partial orders. In WoLLIC, volume 6642 of LNCS, pages
146–160. Springer, 2011.

[13] J. Gutierrez and M. Wooldridge. Equilibria of concurrent games on event structures. In LICS.
ACM Press, 2014. To appear. DOI:10.1145/2603088.2603145.

[14] P. Harrenstein, W. van der Hoek, J.-J. Meyer, and C. Witteveen. Boolean games. In TARK, pages
287–298, 2001.

[15] D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games.
Games and Economic Behavior, 45(1):181–221, 2003.

[16] A. L. Mann, G. Sandu, and M. Sevenster. Independence-friendly logic. A game-theoretic ap-
proach., volume 386 of LMS Lecture Note Series. Cambridge University Press, 2011.

[17] M. Mavronicolas, B. Monien, and K. W. Wagner. Weighted Boolean formula games. In WINE,
pages 469–481, 2007.

[18] P.-A. Melliès and S. Mimram. Asynchronous games: Innocence without alternation. In CON-
CUR, volume 4703 of LNCS, pages 395–411. Springer, 2007.

[19] M. Nielsen and G. Winskel. Models for concurrency. In Handbook of Logic in Computer
Science. Oxford University Press: Oxford, England, 1995.

[20] M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, 2001.

[21] V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint
programming. In POPL, pages 333–352. ACM Press, 1991.

[22] M. Wooldridge, U. Endriss, S. Kraus, and J. Lang. Incentive engineering for Boolean games.
Artificial Intelligence, 195:418–439, 2013.

15

