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Abstract As they are conventionally formulated, Boolean games assume that players make their choices
in ignorance of the choices being made by other players – they are games of simultaneous moves. For
many settings, this is clearly unrealistic. In this paper, we show how Boolean games can be enriched
by dependency graphs which explicitly represent the informational dependencies between variables in a
game. More precisely, dependency graphs play two roles. First, when we say that variable x depends on
variable y, then we mean that when a strategy assigns a value to variable x, it can be informed by the
value that has been assigned to y. Second, and as a consequence of the first property, they capture a richer
and more plausible model of concurrency than the simultaneous-action model implicit in conventional
Boolean games. Dependency graphs implicitly define a partial ordering of the run-time events in a game:
if x is dependent on y, then the assignment of a value to y must precede the assignment of a value to x;
if x and y are independent, however, then we can say nothing about the ordering of assignments to these
variables—the assignments may occur concurrently. We refer to Boolean games with dependency graphs
as partial-order Boolean games. After motivating and presenting the partial-order Boolean games model,
we explore its properties. We show that while some problems associated with our new games have the
same complexity as in conventional Boolean games, for others the complexity blows up dramatically. We
also show that the concurrency in partial-order Boolean games can be modelled using a closure-operator
semantics, and conclude by considering the relationship of our model to Independence-Friendly (IF) logic.

Keywords Boolean games · Foundations of games · Concurrency theory · Logic

1 Introduction

Boolean games are a family of logic-based games which have a natural interpretation with respect to multi-
agent systems—see, e.g., [20,5,35,17,12,27]. A Boolean game is played over a set of Boolean variables.
Each player desires the satisfaction of a goal, specified as a logical formula over the overall set of variables,
and is assumed to control a subset of the variables: the choices available to a player correspond to the
assignments that can be made to the variables controlled by that player. Players simultaneously choose
valuations for the variables they control, and a player is satisfied if their goal is made true by the resulting
overall valuation. In addition to being an interesting game-theoretic model in their own right, it has been

Julian Bradfield
University of Edinburgh
E-mail: jcb@inf.ed.ac.uk

Julian Gutierrez
University of Oxford
E-mail: julian.gutierrez@cs.ox.ac.uk

Michael Wooldridge
University of Oxford
E-mail: mjw@cs.ox.ac.uk



2 J. Bradfield, J. Gutierrez, M. Wooldridge

argued that Boolean games are a natural abstract model for studying strategic behaviour in multi-agent
systems: the use of logical goals is commonplace in the multi-agent systems community, and the fact that
players act by assigning values to Boolean variables naturally models the execution of computer programs.

However, if one aims to use Boolean games as a model for multi-agent systems, then existing Boolean-
game models embody some arguably rather extreme assumptions. First, in all studies of Boolean games
that we are aware of, it is implicitly assumed that all events in the game occur simultaneously. There are
two types of events in a Boolean game: the selection of strategies by players; and the assignments of values
to variables according to these strategies. If we consider a multi-agent system setting, then it should be clear
that assuming all such events occur simultaneously is unrealistic. In a multi-agent system, participants se-
lect their strategies by writing a computer program (a software agent) to act on their behalf, and then these
various agents are concurrently executed, generating a “run-time” history of events. The actual computa-
tional histories that may be generated at run-time will depend on the model of concurrency underpinning
the run-time behaviour of the agents. Concurrency is of course a large research area, somewhat tangential
to game-theoretic concerns [29]; but nevertheless, the assumption that all events occur simultaneously is
perhaps an abstraction too far if we want to interpret Boolean games as a model of multi-agent systems.
A second difficulty in existing models of Boolean games is that players act in ignorance of all the choices
made by other players. In many settings, players will have some information about the choices of others
once the game progresses, and to faithfully capture such settings, a realistic model should reflect this.

In this paper we develop partial-order Boolean games, a new model for concurrent and multi-agent
systems which resolves these two difficulties. This model is somewhat closer to the concept of multi-agent
systems that we described above: partial-order Boolean games are games of simultaneous moves, but the
moves that players make correspond to choosing a “program” (actually, a collection of Boolean functions)
to play the game on their behalf. The programs then interact to actually play the game and generate run-time
behaviour according to a partial-order model of concurrency. We thus distinguish between the two types
of events that we mentioned above: events corresponding to the selection of strategies (these events occur
simultaneously) and the run-time behaviour of these strategies as they are executed. To capture incomplete
information and concurrency, we use dependency graphs. A dependency graph is a directed acyclic graph
over the set of game variables: an edge from variable p to variable q means that when the strategy that
chooses a value for q makes its assignment to this variable, it can take into account the value of p. The
relationship between p and q is thus one of functional dependence. The total set of variables upon which
q depends represents all the information that is available for a strategy assigning a value to q: if q is not
dependent on a variable r, for example, then the choice of value for q cannot be informed by the value of r.
While strategies in Boolean games are very simple (being an assignment of values to variables), in partial-
order Boolean games, strategies are more complex: a strategy for a variable x is a Boolean function that
assigns a value to x for every possible valuation of variables on which x depends. When these strategies are
executed, they generate a run-time history of events, which correspond to the variables in the game being
assigned values according to the strategies. The possible set of run-time histories that may be generated will
be determined by the dependency graph, which implicitly defines a partial temporal ordering of run-time
events. That is, if q depends on p, then the run-time event corresponding to assigning a value to p must
precede the run-time event corresponding to assigning a value for q. However, if p and q are independent,
then we can say nothing about the ordering of assignments to these variables: they may be concurrent.

Structure of the paper. The remainder of this paper is structured as follows.
– We begin by motivating our work, and discuss previous models of games and strategic behaviour.
– We then define the formal framework of partial-order Boolean games, developing a concrete model for

player strategies, and investigating the computational complexity of decision problems for such games.
We show that, for some problems, the complexity of the decision problem is essentially the same as the
corresponding problem for conventional Boolean games, but for others, the complexity is much higher.

– We then go on to discuss how our work relates to work in concurrency. We first define a closure-
operator semantics for partial-order Boolean games, which more explicitly reflects the causal, temporal
dependencies in our framework. We then show a natural connection between partial-order Boolean
games and Independence-Friendly (IF) first-order logic—a logical formalism already studied in the
context of logics for concurrency, independence, and incomplete information.

– We conclude with a discussion of related and future work.
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2 Motivation

To understand the motivation for our work, let us begin by recalling some standard game-theoretic ideas and
the assumptions underpinning them. Probably the most widely studied and widely applied game-theoretic
model is that of strategic games [30, p.11]. A strategic game is given by a structure 〈N, (Si)i∈N , (ui)i∈N〉,
where N = {1, . . . , n} is a finite set of players, Si is the set of strategies or actions for player i ∈ N,
and ui : S1 × · · · × Sn → R is the utility function for player i ∈ N, which defines the utility that player i
would obtain for every possible combination of strategies that might be chosen by players. Such a game
is played by each player i choosing a element of Si; the outcome of the game is then a strategy profile
s = 〈s1, . . . , sn〉, and each player i receives a payoff of ui(s). It is assumed that players will seek to choose
an element of Si so as to maximise the payoff they receive in the outcome s, and that they will take into
account the fact that other players are seeking to do likewise.

There are many assumptions implicit in this model and the description we give above, of which one
of the most important is that players make their choices in ignorance of the choices of other players.
This assumption is often called the assumption of simultaneous moves. This terminology suggests that the
assumption relates to the ordering of events in the game (i.e., that everything happens simultaneously), but
in fact it is an informational assumption, intended to capture the idea that players make their choices in
ignorance of the choices of others. This assumption is easily motivated in standard game-theoretic settings,
where the main issues of consideration relate to what decisions will be made by players in the game, rather
than on the temporal ordering of events within the game.

In many settings, of course, the assumption that players act in complete ignorance of the choices made
by others is not appropriate. The standard game-theoretic model used to capture such settings is that of
extensive form games of imperfect information [30, p.199]. These game models incorporate two key ele-
ments not found in strategic games: first, they consider games played over a period of time, with players
alternating their moves; and second, they make use of information sets to explicitly capture the information
available to players as they make their moves—in particular, they allow us to specify what each player
knows about the moves previously made in the game.

Extensive form games are of particular interest in computer science because they resemble labelled
transition systems, or Kripke structures, which are widely used to model concurrently executing computer
programs (see, e.g., [13]). A labelled transition system is a directed graph, in which edges correspond to
the execution of atomic program instructions, and nodes correspond to states of the concurrent system:
executing an instruction by a process within the system causes a transition from one state to another.
Edges are labelled, typically either with the instruction being executed, or with the name of the process
executing the instruction. However, it is important to note that although extensive games and concurrent
programs appear to bear a close resemblance to one another, extensive form games are not intended to
model concurrent programs, and have substantial limitations if we aim to use them for this purpose. To
better understand this point, let us now describe our main interest, which is to reason about the behaviour
of game-like concurrent computer programs, or multi-agent systems.

The key idea in the multi-agent systems domain is that we construct computer programs—software
agents—that will act on our behalf in strategic settings. The strategic settings under consideration are
usually assumed to involve interaction with other software agents, acting on behalf of other individuals,
with preferences that may not be aligned with our own. Thus, in multi-agent systems research, the strategies
selected by players are in fact computer programs, which are then executed concurrently with one another;
the result of this concurrent computation is the “outcome” of the strategic scenario.

Observe that this view permits us to distinguish between the selection of a strategy (i.e., a program
that will act on our behalf in the strategic scenario) and the “run-time behaviour” of the programs that
are selected by players to act on their behalf. While game theory is concerned with how to make choices
in strategic settings, it is not concerned with modelling and understanding the behaviour of concurrently
executing programs—this is, however, an important topic in computer science research, and seems an im-
portant issue if we are interested in understanding the behaviour of multi-agent systems (i.e., how those
systems will interact with and transform their environment as they operate on our behalf). Now, we might
naturally think of using extensive form games to model the run-time behaviour of agents, but from the
perspective of concurrency, extensive form games have an important limitation: they assume an ordering
of events in a game. In concurrency theory, this assumption corresponds to what is known as interleaving
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semantics, because the actions of each agent are interleaved with one another to generate a run-time be-
haviour. While for many purposes interleaving semantics are adequate, they are nevertheless accepted to be
a simplification of true concurrency, where events are partially ordered. Crudely, partial-order models of
concurrency allow us to explicitly represent the fact that events are, or are not, independent. Now, we can
always “flatten” a partial-order model of events into a sequential/interleaved model (or, in game-theoretic
terms, an extensive form game), by picking a total order of events that is consistent with the partial order.
However, any such flattening operation will represent a simplification of the partial order model, which
may imply an ordering of events that is not present in the partial-order model. One might consider the
complete set of total orders that are consistent with the partial order, but such a set represents the partial
order implicitly, while a partial order representation captures it explicitly.

In this sense, partial-order models provide a semantically more faithful representation of concurrency
and, therefore, allows one to study concurrency at a more fundamental semantic level. Partial-order seman-
tics are, however, more complex than interleaving ones. In fact, any nondeterministic sequential process or
concurrent system with an interleaving semantics can be understood as a special case of the partial-order
model. Then, one may expect to pay a price for having such a greater amount of information in partial-order
models, and indeed, several decision problems that are tractable (to some degree) in the interleaving world
can become rather difficult, or even algorithmically unsolvable, in a partial order setting. For example, a
system with n parallel k-state automata explodes to a kn-state automaton when it is converted into an in-
terleaving model, making most verification problems exponential in the original system size (although by
working directly on the concurrent model, some problems can be solved in polynomial time [16]). Even
more dramatically, a natural (albeit very strong) notion of equivalence on partial-order models, hereditary
history-preserving bisimulation, is undecidable even on the class of finite models [23].

In this paper, we follow a different modelling approach where we explicitly consider a dependence
relation (instead of an independence relation) to be able to express that the execution of different events in
a given system can be done in an independent way—that is, whenever, they are not related by the depen-
dence relation on events. Because we follow this approach to model dependence and independence in our
model, an empty dependency relation will represent full concurrency/independence rather than sequential
behaviour. The model we present, partial-order Boolean games, builds on the increasingly popular Boolean
games model [20,35,17,12,27]. A Boolean game is a game of simultaneous moves, in which each player
exercises unique control over a finite set of Boolean variables; the actions available to a player corresponds
to the set of all possible assignments of truth or falsity that can be made for these variables. In Boolean
games, preferences arise from the fact that each player has a goal, specified as a formula of propositional
logic over the total set of Boolean variables in the game. When all players have made their choices (i.e.,
selected an assignment of truth or falsity to the variables they control), then the result is an overall truth
assignment for the variables in the game, which will either satisfy or fail to satisfy each player’s goal. A
player will prefer outcomes that satisfy their goal over outcomes that do not satisfy it, but is indifferent
between two outcomes that satisfy their goal, and is indifferent between outcomes that do not satisfy it.

Boolean games are an important model for multi-agent systems research for several reasons:

– First, strategies for players in Boolean games can naturally be understood as non-deterministic com-
puter programs. All a strategy in a Boolean game does is assign values to a collection of Boolean
variables—and this is, of course, exactly what computer programs do as they execute.

– Second, the goals that players have can be understood as the specification of the program: the use of
logical specifications for the desirable behaviour of computer programs is standard in computer science
(see, e.g., [26]) and in AI planning research [15].

However, as they are conventionally formulated, Boolean games are strategic games, and hence games of
simultaneous moves, which poses a number of limitations from a semantic point of view. Now, it would
be technically straightforward to adapt the basic Boolean-games model to extensive form, but this would
result in an overly simplified model of concurrent behaviour, for the reasons set out above.

We address these issues in partial-order Boolean games by enriching the basic Boolean-games model
with a directed acyclic graph over the set of variables in the game, which we refer to as the game’s de-
pendency graph. This dependency graph captures both the information flow between events, and explicitly
represents concurrency in the game. In partial-order Boolean games, when we say that variable p is depen-
dent on variable q, then this means that:
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1. The strategy for the player controlling variable p can be informed by the value that was chosen for q.
2. As a consequence of (1), the assignment of a value to q must precede the assignment of a value for p.
3. Finally, the fact that two variables are not dependent upon each other means that the assignment of

values to these variables may take place concurrently.

Related (and unrelated) work.Using interleaving or partial-order semantics in games can have important
consequences—both from theoretical and practical viewpoints—as making such a choice can raise differ-
ent issues, some of which we investigate here. More specifically, we will present examples and complexity
results which show that games played directly on a structure with an explicit notion of (in)dependence are
radically different. For instance, checking their equilibrium properties is a computationally more complex
problem (e.g., checking the existence of pure Nash equilibria is NEXPTIME-complete for partial-order
Boolean games and only in ΣP

2 for conventional Boolean games); more importantly, disregarding the rela-
tions in the dependency graph of a game can lead to the construction of games—and hence of systems—
with different sets of equilibrium strategy profiles.

We would like to remark that we use the term “dependence” to refer to the idea that the selection of
a value for one variable can take into account the value that has been assigned to another variable. The
term “dependence” has been used in several other ways in game theory, some of which are related to our
usage, some of which are not. One usage is to say that agent i is dependent on agent j if the choice made
by j can potentially influence the utility that agent i obtains. In the context of Boolean games, this idea was
investigated by Bonzon et al [6]. This is clearly distinct from our usage of the term. Relatedly, our model of
games is also somewhat reminiscent of the idea of multi-agent influence diagrams (MAIDs) [24]. MAIDs
are a compact representation model for extensive form games, which exploit the idea that we can reduce the
state space required for representing a game by only recording information about the interactions between
players where one player’s choice affects another. Although partial-order Boolean games are also based
on a graph representation, this graph captures informational dependencies between variables. Moreover, as
Bonzon et al point out, although MAIDs frequently provide a compact representation for games, Boolean
games are in some cases exponentially more succinct than MAIDs.

3 Partial-Order Boolean Games

Let B = {>,⊥} be the set of Boolean truth values, with “>” being truth and “⊥” being falsity; we use
> and ⊥ to denote both the syntactic constants for truth and falsity, respectively, as well as their semantic
counterparts. Let Φ = {p, q, . . .} be a finite, fixed, non-empty vocabulary of Boolean variables. For every
subset Ψ ⊆ Φ of Boolean variables, we denote by LΨ the set of (well-formed) formulae of propositional
logic over the set Ψ , constructed using the conventional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”),
as well as the truth constants “>” and “⊥”. For every subset of Boolean variables Ψ , a Ψ -valuation is a
total function v : Ψ → B, assigning truth or falsity to the variables in Ψ ; we let V(Ψ) denote the set of all
Ψ -valuations. Given a formula ϕ ∈ LΨ and a Ψ -valuation v : Ψ → B, we write v |= ϕ to mean that ϕ
is true under the Ψ -valuation v, where the satisfaction relation “|=” is defined in the conventional way for
propositional logic (so, for example, v |= ϕ ∨ ψ iff either v |= ϕ or v |= ψ or both).

Our games are populated by a set N = {1, . . . , n} of agents—the players. Each agent i is assumed to
have a goal, which is represented by an LΦ-formula γi that i desires to have satisfied. Each player i ∈ N
controls a (possibly empty) subset Φi of the overall set of Boolean variables Φ. By “control”, we mean that
i has the unique ability within the game to set the value (> or ⊥) of each variable p ∈ Φi. We require that
each variable is controlled by exactly one agent, i.e., we have Φ = (Φ1 ∪ · · · ∪ Φn) and Φi ∩ Φj = ∅, for
all i 6= j. Then, a Boolean game is given by a structure 〈N, Φ, (Φi)i∈N , (γi)i∈N〉, where each component is
formally defined as described above.

Partial-order Boolean games augment conventional Boolean games with dependency graphs. Formally,
a dependency graph over a set Φ is simply a directed acyclic graph D ⊆ Φ × Φ; we will write D(p, q) to
mean (p, q) ∈ D. We read D(p, q) as “q depends on p”; more precisely:

D(p, q) means that the choice of a value for the Boolean variable q by the player who controls q
can be informed by the value that was assigned to the Boolean variable p.
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Notice that we do not require dependency graphs to be transitive. We denote the transitive closure of D by
D+, and where q ∈ Φ, we define D[q] = { p ∈ Φ | D(p, q)}, and D+[q] similarly. Thus, for any variable p,
D[p] is the total set of variables whose value can be taken into consideration when choosing a value for p.

The motivation for the requirement that dependency graphs are acyclic should be immediately obvious:
it ensures that we will not have situations in which a variable is “waiting” on itself (p ∈ D+[p]).

The dependency graph structure makes it explicit which choices are, or can be regarded to be, inde-
pendent. Suppose D is a dependency graph such that p 6∈ D[q] and q 6∈ D[p]. That is, the choice of p does
not depend on q, and the choice of q does not depend on p. Then we say p and q are independent. More
generally, where we have two connected components in the dependency graph D such that the components
are not connected to each other, then these components are independent of each other; we can interpret
such independent structures as independently executing concurrent processes. The use of the dependency
graph makes independence explicit and transparent (cf. [29]).

Formally, a partial-order Boolean game is simply a Boolean game together with a dependency graph,
i.e., a structure G = 〈N, Φ, (Φi)i∈N , (γi)i∈N ,D〉where 〈N, Φ, (Φi)i∈N , (γi)i∈N〉 is a Boolean game as defined
earlier, and D ⊆ Φ× Φ is a dependency graph over the set of Boolean variables Φ.

We can now explain how these new games are played. In conventional Boolean games, a game is played
by every player i simultaneously picking a valuation vi : Φi → B for their Boolean variables Φi. Clearly, the
choices for players in partial-order Boolean games are more complex: the value chosen for a variable p can
depend on the values assigned to the variables in the set D[p]. It therefore makes sense to model a choice
for a variable p as a function that maps a valuation for the variables D[p] to a value for variable p, i.e., a
function with the signature

f : V(D[p])→ B

or, making clear that f is a second-order function:

f : (D[p]→ B)→ B

(Recall that V(D[p]) is the set of valuations over the variables in D[p]; such a function tells the relevant
player what value to assign to p given the values of the variables upon which p depends.)

We represent such individual choices as equations of the form:

p = f (q, . . . , r)

where f is a Boolean-valued function, defining a value for p for every possible valuation to the variables
D[p] = {q, . . . , r}. We refer to p = f (q, . . . , r) as a choice equation.

To keep things mathematically simple, we will assume that the Boolean function f representing the
strategy for choosing a value for p is given as a propositional formula ϕ over the variables on which p
depends, that is, a formula ϕ ∈ LD[p]. Thus, the choice equations that we will consider take the form
p = ϕ, where p ∈ Φ and ϕ ∈ LD[p]. Note that when D[p] = ∅ (in other words, the value of variable p does
not depend on the value of any other variables), then the choice equation for p can be assumed to take the
form p = > or p = ⊥. This is because, if D[p] = ∅ then p does not depend on any variable. Hence, the
choice of a value for this variable is equivalent to simply assigning directly either > or ⊥ to p.

We emphasise that representing Boolean functions by propositional formulae is not a limitation: any
Boolean function f of k variables can be represented by a propositional formula over these variables, al-
though in the worst case, the smallest formula representing f may be exponential in k [7].

A strategy for player i, denoted by σi, is then a set of choice equations, one for each variable controlled
by i. As usual, a strategy profile σ = (σ1, . . . , σn) is a collection of strategies, one for each player in the
game. Since we require that dependency graphs D are acyclic, we have the following:

Lemma 1 Let G = 〈N, Φ, (Φi)i∈N , (γi)i∈N ,D〉 be a game and let σ = (σ1, . . . , σn) be a strategy profile
for G. Then there is a unique solution to the set of equations σ1 ∪ · · · ∪ σn, which we denote by v(σ), (and
thus we have that v(σ) : Φ → B), and which we refer to as the valuation induced by σ. Moreover, v(σ)
can be computed in time polynomial in the size of σ.
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Fig. 1 Dependency graph for Example 1.

p r

q s

Fig. 2 Dependency graph for Example 2.

Proof Let σ = σ1 ∪ · · · ∪ σn. Now, consider any ordering of the equations in σ which satisfies the require-
ment that all variables appearing in the right hand side of an equation must have previously appeared on
the left hand side of an equation. The requirement that D is acyclic ensures that such an ordering exists
(although it will not in general be unique). Then such an ordering defines a simple straight line program (in
fact, a greatly simplified form of straight line Boolean program [11]), which can be executed in polynomial
time; and the resulting assignments to variables in Φ is the valuation v(σ). Notice that any ordering of the
equations satisfying the above requirement will yield the same valuation. ut

We can define utility functions with respect to strategy profiles in essentially the same way as for
conventional Boolean games:

ui(σ) =

{
1 if v(σ) |= γi

0 otherwise.

Where σ = (σ1, . . . , σi, . . . , σn) is a strategy profile and σ′i is a strategy for player i, we denote by
(σ−i, σ

′
i ) the strategy profile obtained from σ by replacing the i component of σ with σ′i . We then say that

σ is a pure Nash equilibrium if we have that there is no player i ∈ N and strategy σ′i for player i such that
ui(σ−i, σ

′
i ) > ui(σ). Thus, the strategy profile σ is a pure Nash equilibrium if no player could benefit from

unilaterally deviating from σ to another strategy. Let NE(G) denote the set of pure Nash equilibria of G.
Let us consider an informal example, to further illustrate the notion of independence between variables.

Imagine a captain who controls two army platoons that must engage in two separate battles, where there is
no way of the platoons communicating with each other. Then, the captain has to design strategies that will
be executed by the platoons independently: that is, even though the captain can choose strategies for both
platoons, he must choose strategies so that no communication or coordination between the platoons takes
place while they execute their respective strategies. The following formal representation of this example
makes this point explicit. In particular, in the following example, player 2 will represent the captain, and
variables q, r will play the roles of the two platoons.

Example 1 Consider a partial-order Boolean game where

N = {1, 2},
Φ = {p, q, r},
Φ1 = {p},
Φ2 = {q, r},
γ1 = >, and
γ2 = (p↔ q) ∧ (r ↔ ¬q).

The dependency graph is given in Figure 1. Now, player 2 has a choice for variable q that is guaranteed to
make the left conjunct of his goal true—the required choice equation is simply: q = p.

But although player 2 controls both r and q in the right conjunct of γ2, there is no strategy that guaran-
tees to make both conjuncts true simultaneously. This is because r is independent of p and q: a choice for
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this value must be made independently of p and q. As can be seen, the only two choice equations available
for variable r are as follows: r = > and r = ⊥.

Note that since player 1 always gets its goal achieved, player 1 is happy (and free) to choose any value
for p, and so player 2 cannot rely on the selection of any particular values for p and q to satisfy γ2.

In summary, player 2 can choose the strategies that will select values for the variables q and r that he
or she controls; but because these variables are independent, the strategies that choose values for q and r
cannot communicate or coordinate with each other while they are being executed.

Note that player 2 is perfectly able to coordinate the selection of strategies for variables q and r, but at
run-time, these strategies cannot communicate with each other, and in particular, the strategy for variable
r must assign a value to this variable without knowing anything about the values of p or q. ut

We emphasise that this is not a “problem” in our model: it accurately reflects real-world situations in
which parts of a strategy must be executed even though those parts of the strategy cannot communicate or
coordinate with each other while they are being executed. One might wonder whether it would be simpler
in this case to treat independent variables as separate players. We argue that this might not make sense. The
next example illustrates why not.

Example 2 Suppose we have a game with:

N = {1, 2},
Φ1 = {p, q},
Φ2 = {r, s},
γ1 = >, and
γ2 = ((r ↔ p) ∧ (s↔ q)) ∨ (¬(r ↔ p) ∧ ¬(s↔ q)).

Thus, player 1 is indifferent about how to assign values to his variables, while player 2 is satisfied if either:

– r takes the same value as p and s takes the same value as q; or else
– r takes the opposite value to p and s takes the opposite value of q.

The dependency graph for this example is illustrated in Figure 2. Now, player 2 clearly has choice equations
that will guarantee the achievement of his goal. Consider the choice equation set

σ1
2 = {r = p, s = q}

and the set
σ2
2 = {r = ¬p, s = ¬q}.

Since either of these strategy sets guarantees to achieve player 2’s goal, they each represent a dominant
strategy for player 2. Now, suppose we treated our current agent 2 as two separate agents—call them agents
3 and 4—the former controlling variable r and the latter controlling variable s, each new agent having the
same goal (γ2, above), and with the same dependency graph in Figure 2. Then, the two strategy sets above
induce pure Nash equilibria (for instance, letting σ1

3 = {r = p} and σ1
4 = {s = q}), but such new strategy

sets do not yield dominant strategies for the two new players of the game. Thus, we argue, in attempting to
treat the independent variables r and s as being controlled by different players, we fundamentally change
the character of the game. ut

Let us now consider another example, to further illustrate the distinction between our new model and
conventional Boolean games.

Example 3 We will explore some variations of the non-cooperative game of matching pennies. Suppose
we have:

N = {1, 2},
Φ1 = {p},
Φ2 = {q},
γ1 = p↔ q, and
γ2 = ¬(p↔ q).
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(a) (b) (c)

p q p q p q

Fig. 3 The only three possible dependency graphs for Example 3.

Thus, player 1 controls variable p, and player 2 controls variable q; player 1 wants both variables to take
the same value, while player 2 wants them to take different values.

Now, consider the three different dependency graphs for this game shown in Figure 3:

– In the dependency graph shown in Figure 3(a), variables p and q are independent: the choice for p is
made in ignorance of the choice for q, and vice-versa.

– In Figure 3(b), q is dependent on p, and so the choice of value for q takes place after the choice of value
for p is made; moreover, the choice of value for q is informed by the choice for p.

– In Figure 3(c), p is dependent on q. Here, the choice of value for p takes place after the choice of value
for q, and the choice of value for p is informed by the choice of value for q.

We consider each possibility in turn.

– First consider (a). It should be easy to see that there is no pure Nash equilibrium for the game with
dependency graph (a). Consider the following strategy profile: (σ1) p = ⊥ and (σ2) q = ⊥.
With this outcome, γ1 is satisfied, while γ2 is not. In this case, player 2 could deviate with strategy
q = >, resulting in the satisfaction of his goal. In fact, it is easy to see that, for every possible strategy,
one of the players will have a beneficial deviation, and so this game has no pure Nash equilibria.

– Now consider the dependency graph in Figure 3(b). Player 2 can see the value of p before assigning
a value to q, and has four options available with respect to his strategy: q = >, q = ⊥, q = p, and
q = ¬p. With the final option, q = ¬p, player 2 guarantees to get his goal achieved (hence this strategy
weakly dominates all of the other strategies for player 2). Observe that any strategy profile in which
player 2 uses this strategy is a pure Nash equilibrium: as player 2 has his goal achieved, he cannot
beneficially deviate, and no deviation on the part of player 1 could improve her position.

– Finally, for the dependency graph in Figure 3(c), the situation is reversed: p is dependent on q. In
this case, player 2 must choose a value for q, and player 1 is then able to choose a value for p while
knowing which value was assigned to q. In this case, 1 can guarantee to get her goal achieved by using
the strategy p = q.

ut

As this example shows, partial-order Boolean games strictly generalise conventional Boolean games:
the implicit choice structure of a conventional Boolean game (where every player simultaneously and
independently chooses a valuation for their variables) is obtained in a partial-order Boolean game in which
all variables are made independent of each other, that is, letting D = ∅, and so D[p] = ∅ for every p ∈ Φ.

The example above also illustrates a more useful fact about the implications on the sets of equilibria
when allowing dependencies. That is, that having at hand the additional strategic power of using func-
tional dependencies between variables may increase the set of pure Nash equilibria of a game, an arguably
desirable property from a game-theoretic perspective.

4 Complexity of Partial-Order Boolean Games

Let us now consider some questions relating to the complexity of partial-order Boolean games. The most
obvious question to ask relates to verifying whether a particular strategy profile is a pure Nash equilibrium.
The decision question is stated as follows.

IS-NE:
Given: Partial-order Boolean game G, strategy profile σ.
Question: Is it the case that σ ∈ NE(G)?
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We emphasise that the representation of strategies we consider in this problem is formally given as a set of
choice equations, as described in the preceding section.

The corresponding problem for conventional Boolean games is co-NP-complete [5], and it might be
natural to suppose that the problem would be harder for partial-order Boolean games, particularly given
that strategies are more complex objects than in conventional Boolean games. In fact, this is not the case:
the complexity is no worse than that of conventional Boolean games. The key fact is:

Lemma 2 Let G be a partial-order Boolean game containing a player i and let σ be a strategy profile for
this game. Then, if i has a beneficial deviation from σ, there is a beneficial deviation σ′i for player i which
is of size polynomial in |Φi|.

Proof Suppose i has a beneficial deviation from σ; let σ′′i be this deviation. Let σ′i be the following strategy:

σ′i = {x = v(σ−i, σ
′′
i )(x) | x ∈ Φi}.

Clearly σ′i is of size polynomial in |Φi|, and since σ′i simply copies whatever σ′′i does, v(σ−i, σ
′′
i ) =

v(σ−i, σ
′
i ); as a consequence, the strategy σ′i is a beneficial deviation for player i. ut

So, if player i has a beneficial deviation, then there is a small certificate to this effect. Expressed in
different words, if a player can deviate, then it can deviate using a very simple kind of “uninformed”
strategy, which can be represented very succinctly. This is because when considering whether a player has a
beneficial deviation, we do not need to take into account how other players would respond to our deviation:
we only need to know whether such a beneficial deviation is possible against a profile of strategies for
other players that can be assumed to be fixed. In light of results that will follow later, this result is perhaps
surprising; we will postpone discussion of this point for a moment. Returning to the IS-NE problem,
Proposition 2 allows us to prove the following complexity result.

Proposition 1 IS-NE is co-NP-complete.

Proof Hardness can be demonstrated using a construction that is essentially the same as that used to show
co-NP-hardness of the corresponding problem for conventional Boolean games (see, for instance, [35,
Proposition 1]). Alternatively, it can also be shown by letting the dependency graph be empty, that is,
by considering the special case of conventional Boolean games. To establish that IS-NE is in co-NP, we
will show that the complement problem is in NP. The complement problem involves checking whether any
player has a beneficial deviation from a given strategy profile. See that, from Lemma 2, we can existentially
guess a player i and a “small” deviation σ′i for i, and then from Lemma 1, we can check in polynomial time
that v(σ) 6|= γi while v(σ−i, σ

′
i ) |= γi. ut

The next problem to consider is whether a given game has any pure Nash equilibria. The decision
question is stated as follows.

NON-EMPTINESS:
Given: Partial-order Boolean game G.
Question: Is it the case that NE(G) 6= ∅?

The NON-EMPTINESS problem for conventional Boolean games is ΣP
2 -complete [5], and the fact

that IS-NE is no harder for partial-order Boolean games might lead one to hypothesise that the NON-
EMPTINESS problem is also no harder. In fact, the complexity is dramatically different:

Proposition 2 NON-EMPTINESS is NEXPTIME-complete.

Proof The following NEXPTIME algorithm decides the problem:

1. guess a strategy profile σ;
2. verify that σ ∈ NE(G).
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Fig. 4 Dependency graph for Proposition 2 (X1 = {x11, . . . , x1d}, X2 = {x21, . . . , x2e }, Y1 = {y11, . . . , y1f }, and Y2 = {y21, . . . , y2g}).

Step (1) is in NEXPTIME because any Boolean function on variables Φ can be represented by a proposi-
tional formula of size at most exponential in |Φ|. For instance, for a Boolean function of k arguments, the
disjunction of all terms of k literals on which the function is true, makes up such a formula. Guessing a
strategy profile thus involves guessing at most |Φ| such formulae, one for each variable. Step (2) can then be
carried out in deterministic time exponential in the number of variables (Lemma 1). The overall algorithm
works in NEXPTIME.

For NEXPTIME hardness, we reduce the DEPENDENCY QUANTIFIER BOOLEAN FORMULA GAME
(DQBFG) [21, p.87]. This problem relates to a 3 player game, containing players B (Black) and W1,W2

(White 1, White 2). The white players form a team, attempting to beat the black player. The game is played
on a Boolean formula ϕ over variables X1 ∪ X2 ∪ Y1 ∪ Y2. Player Wi sees only variables Xi ∪ Yi. The game
is played as follows:

– Player B chooses an assignment for the variables X1 ∪ X2;
– Player W1 chooses an assignment for variables Y1;
– Player W2 chooses an assignment for variables Y2;
– If the overall assignment for X1 ∪ X2 ∪ Y1 ∪ Y2 satisfies ϕ then black wins, otherwise team white wins.

The question is then whether there is a winning strategy for team white in this game. Our reduction
produces a game with 3 players, N = {B,W1,W2}; as might be guessed, each player corresponds to the
player with the same name in the DQBFG instance. We let Φ = X1 ∪X2 ∪Y1 ∪Y2 ∪{z1, z2} where {z1, z2}
are new variables. Goals and controlled variables for each player are defined as follows:

– γB = ϕ; ΦB = X1 ∪ X2;
– γW1 = (¬ϕ) ∨ (z1 ↔ z2); ΦW1 = Y1 ∪ {z1};
– γW2 = (¬ϕ) ∨ ¬(z1 ↔ z2); ΦW2 = Y2 ∪ {z2}.

The dependency graph for the game is as shown in Figure 4. Thus for each yi ∈ Yi we have D[yi] = Xi.
Now, let G be the partial-order Boolean game defined by this reduction. We claim that team white has

a win in the given DQBFG instance if and only if NE(G) 6= ∅.

(⇒) In order to show this direction, suppose that team white has a win in the DQBFG instance. Consider the
winning strategies for the DQBFG instance: they immediately define strategies for players W1 and W2 in
our game (observe that the dependency graph ensures that the information dependencies are satisfied).
We claim that any strategy profile containing these strategies will be a pure Nash equilibrium. Since
they are winning strategies for team white, they ensure that ¬ϕ is satisfied, and therefore that players
W1 and W2 have their goals achieved. The only possible deviation would come from player B. But since
the strategies are winning for team white, then player B can have no such possible beneficial deviation.
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(⇐) In order to show this direction, suppose that NE(G) 6= ∅ and consider an arbitrary strategy profile
σ ∈ NE(G). We claim that σ defines a winning strategy for team white in the DQBFG instance.
Because σ is a pure Nash equilibrium no player wants to deviate. In particular, this means that ¬ϕ
must be satisfied as otherwise either W1 or W2 would have a beneficial deviation, no matter the values
of z1 and z2. Moreover, because σ ∈ NE(G), player B cannot deviate either. This immediately implies
that the strategies that W1 and W2 are using define a winning strategy for team white in the DQBFG
instance.

ut

Now, in light of Lemma 2, this result may seem surprising. However, there is a simple reason for the
substantial blowup in complexity. Whereas in the former one can replace potential deviations with the
values those strategies choose, in the latter this cannot be done. The following example illustrates why not.

Example 4 Recall Example 3, and the dependency graphs in Figure 3. In particular, take the graph in
Figure 3(b). Given this dependency graph, the following strategy profile forms a pure Nash equilibrium:

(σ1) p = ⊥
(σ2) q = ¬p.

This is because, using σ2, player 2 guarantees to get his goal achieved, and there is no deviation for player
1 that would achieve his goal: whatever choice player 1 makes for p, player 2 simply negates it. Now, let
us consider what happens if we try to apply this same trick (used in Lemma 2), namely, replacing each
strategy by the value that the strategy chooses. This would result in the strategy profile:

(σ1) p = ⊥
(σ′2) q = >.

However, this strategy profile does not form a pure Nash equilibrium: player 1 could now beneficially
deviate using p = >. In fact, there is no pure Nash equilibrium of this game in which both players use
strategies of the form x = b, where b is a logical constant. ut

4.1 Special Cases

Even though the complexity of NON-EMPTINESS is NEXPTIME-complete with respect to unrestricted
dependency graphs, the problem is easier when restricted to some important classes of graphs:

Proposition 3

1. For games in which D = ∅, the NON-EMPTINESS problem is ΣP
2 -complete.

2. For partial-order Boolean games of the following form, NON-EMPTINESS is PSPACE-complete:
We have N = {1, 2} with Φ1 = {x1, . . . , xk} and Φ2 = {y1, . . . , yk}. The dependency graph is defined
by D[xi] = {xj, yj | 1 ≤ j < i} and by D[yi] = {xi} ∪ {xj, yj | 1 ≤ j < i}.

Observe that in case (1), we obtain conventional Boolean games, for which the NON-EMPTINESS
problem is ΣP

2 -complete. The second case essentially corresponds to QBF, which is PSPACE-complete.
More informally, it corresponds to a sequential setting, a prominent special case that motivates the definition
of such a dependency graph. Because the complexity in the general case, where concurrency is allowed,
is NEXPTIME, and in the sequential case it goes down to PSPACE, it becomes clear that concurrent
behaviour in our setting does make things computationally harder.

Another interesting case, which closely related to the behaviour that is usually seen in concurrent and
distributed systems, is the one where a group of agents collaborate in order to achieve a common goal.
Such a situation is naturally captured by a solution concept called strong Nash equilibrium where multiple
players are allowed to deviate—and not only one as it is the case in the definition of pure Nash equilibria.
Formally, we say that σ is a strong Nash equilibrium if there is no coalition C ⊆ N satisfying that for every
player i ∈ C there is a strategy σ′i for player i, such that ui(σ−C, σ

′
C) > ui(σ), where σ′C is the collection of

strategies σ′i for all players i ∈ C. Thus, the strategy profile σ is a strong Nash equilibrium if no coalition



Partial-Order Boolean Games 13

of players could benefit by jointly deviating from σ to another collection of strategies σ′C. Let sNE(G)
denote the set of strong Nash equilibria of G. Based on this definition, we can show that checking whether
a strategy profile σ is a strong Nash equilibrium can be done in exponential time:

Lemma 3 Let G be a partial-order Boolean game and σ be a strategy profile. Then, checking whether
σ ∈ sNE(G) can be done in deterministic exponential time in the number of both the Boolean variables
and players in the game.

Proof The algorithm to check whether σ ∈ sNE(G) can be divided in two sub-steps, and solved in de-
terministic exponential time. First, using σ, we can compute the set of players L ⊆ N who do not get
their goals achieved. This step of the algorithm can be done, for each player in the game, in deterministic
exponential time in the number of variables—see the case for pure Nash equilibrium. We then check if any
subset of players C ⊆ L have a beneficial deviation. This can be done in deterministic exponential time in
the number of players in the game: for each C ⊆ L, we check whether there is a strategy profile for C such
that using this strategy profile, with other players using their component of σ would result in the achieve-
ment of all the goals of players in C. The overall algorithm therefore runs in deterministic exponential time
in both the number of Boolean variables and the number of players in the game. ut

Using Lemma 3 we can, in addition, show that NON-EMPTINESS for partial-order Boolean games and
strong Nash equilibrium is an NEXPTIME-complete problem, thus no harder than pure Nash equilibrium.

Proposition 4 NON-EMPTINESS for strong Nash equilibrium is NEXPTIME-complete.

Proof The proof, and algorithm, is very similar to the case for pure Nash equilibrium. We use the same
meta-algorithm, which decides the problem in NEXPTIME:
1. guess a strategy profile σ;
2. verify that σ ∈ sNE(G).

As before, step (1) is in NEXPTIME because any Boolean function can be represented by a propositional
formula of size at most exponential in |Φ|. Moreover, step (2) can then be carried out in deterministic
time exponential in both the number of variables and the number of players (Lemma 3). Then, the overall
algorithm works in NEXPTIME. For hardness, observe that the reduction from DQBFG games used in
Proposition 2 can be used here as well.1 That is, it is also true that team white has a win in the given
DQBFG instance if and only if sNE(G) 6= ∅. For the (⇒) direction note that the same reasoning applies
because in the game G only player B does not have its goal achieved. Then, the only coalition of players
who do not get their goal achieved is the singleton set {B}. On the other hand, for the (⇐) direction, note
that if σ ∈ sNE(G) then, in particular, it is also the case that σ ∈ NE(G), and again the same reasoning
can be used to show that team white has a winning strategy in the DQBFG instance. ut

Another special case to be formally analysed is the one illustrated in Example 3, that is, informally, the
case where a dependency graph is included in a more general one. As we show next, in such a case, the set
of pure Nash equilibria of the system can only be made bigger. Formally, we have the following result.

Proposition 5 Let G = 〈N, Φ, (Φi)i∈N , (γi)i∈N ,D〉 and G′ = 〈N, Φ, (Φi)i∈N , (γi)i∈N ,D′〉 be two games
differing only in D, such that D ⊆ D′. Then

NE(G) ⊆ NE(G′).

Proof Suppose σ ∈ NE(G). Since D ⊆ D′ all players who achieved their goals in G can use the same
strategies in G′. Then, the only players who will have an incentive to deviate are those whose goals were
not achieved in G.

Suppose for a contradiction that player i does not get is goal achieved in G, but can, in G′, unilaterally
deviate and achieve its goal γi. If that is the case, then, due to (the proof of) Lemma 2, there is a strategy
σ′i for i, which does not depend on D′, that is, a strategy that can be defined regardless of the dependencies
in D′, and which is such that (σ−i, σ

′
i ) |= γi. However, since σ′i depends neither on D′ nor on D, it is a

strategy that i could also use in D to unilaterally deviate and get its goal γi achieved. However, since σ is
a pure Nash equilibrium, such a strategy σ′i cannot exist, and hence if σ ∈ NE(G) then σ ∈ NE(G′) too,
which is a sufficient condition to show that NE(G) ⊆ NE(G′). ut

1 A key observation is that in our partial-order Boolean game every strategy profile always renders two winners and only one loser.



14 J. Bradfield, J. Gutierrez, M. Wooldridge

The strategy σ′i used in the proof of Lemma 2 and in the proof of the above proposition is a particular
kind of “uninformed” strategy, so called because it does not depend on what the other players in the game
may do, but rather on a fixed valuation for the variables controlled by player i. Note also that as illustrated
in Example 3 the inclusion in the other direction may not hold in the general case. As a consequence,
adding functional dependencies to the game can only either increase the number of pure Nash equilibria of
the game or leave it unchanged.

Let us now turn our attention to semantic features of partial-order Boolean games. In particular, we are
now going to study how concurrent behaviour is modelled by our partial-order Boolean games.

5 Concurrency in Partial-Order Boolean Games

As we noted earlier, in concurrency theory there are two main approaches to modelling concurrent be-
haviour: either using interleaving or using partial-order models for concurrency. Interleaving models rep-
resent concurrency as the nondeterministic combination of all possible sequential behaviours in the system.
On the other hand, partial-order models represent concurrency explicitly, by means of an (in)dependence
relation on the set of events in the system that can be executed concurrently.

Examples of interleaving models include Kripke structures, labelled transitions systems, infinite trees,
Hoare languages, Moore and Mealy machines, and many more. Examples of partial-order models include
Petri nets, event structures, asynchronous transition systems, Mazurkiewicz trace languages, Chu spaces,
transition systems with independence (TSI), amongst others. A good introduction to various models for
concurrency, both to interleaving and to partial-order ones, can be found in [29].

Because partial-order semantics represent concurrency explicitly (by means of an independence relation
on the set of events that the system can execute in parallel), independence/concurrency is a primitive notion
rather than a derived concept as is the case in the interleaving framework. In this sense, partial-order
models provide a semantically more faithful representation of concurrency and, therefore, allows one to
study concurrency at a more fundamental semantic level. In fact, any nondeterministic sequential process
or concurrent system with an interleaving semantics can be seen, trivially, as a partial-order model with an
empty independence relation.

However, because partial-order models may not be easy to deal with, much research has been done
to find restricted, yet interesting and useful, classes of models where different aspects of concurrency
can be captured. An approach that has delivered positive results from a semantic viewpoint is the one
where closure operators are used to model deterministic concurrent behaviour. Due to its mathematical
properties, this approach has found interesting applications and interpretations within games—cf., [1,3,18,
34]. In particular, in [34], strategies represented as closure operators are formally related to event structures
[29], the canonical model of concurrency that was the inspiration for our model of Boolean games.

In this section, we study the connections between our model of games and event structures. We do
so by investigating the relationship between the model of strategies associated with partial-order Boolean
games and the way that deterministic concurrency can be captured using closure operators. In particular, we
show that concurrency, as seen in partial-order Boolean games, can be mathematically represented using
a closure operator semantics for players’ strategies. This closure-operator semantics, in turn, gives a more
explicit representation of the causal and temporal dependencies in our games framework.

Even though the temporal order of events in partial-order Boolean games is not completely determined
by the strategies executed by the players (since independent events may occur in parallel, while dependent
events must occur sequentially), a given strategy profile completely determines the final outcome the game.
This kind of deterministic, yet concurrent, behaviour can be mathematically represented by a closure-
operator semantics of the game, which we formalise next.

Let≤ denote the reflexive and transitive closure of D. Since D is a DAG, the structure (Φ,≤) is a partial
order. Let D be the set of ≤-downclosed subsets of Φ. Thus (D,⊆) is a partial order. Moreover, for each
player i, let D−i[q], with q ∈ Φi, be defined to be the set (D+[q] \ Φi). Now, for each player i, define the
function πi : D → D by

πi(X) = X ∪ {q ∈ Φi | (D−i[q]) ⊆ X}.
The function πi adds to X the variables to be played next by player i, that is, it adds those variables in Φi

that can be given values provided that the variables in X have been already set to some Boolean value.
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Note that πi(X) is also ≤-downclosed. The key observation in this section is that, in fact, over the partially
ordered set (D,⊆), each function πi determines a stable closure operator, that is, a map being:

1. (Extensive): ∀X. X ⊆ πi(X),
2. (Idempotent): ∀X. πi(X) = πi(πi(X)), and
3. (Monotone): ∀X,Y. X ⊆ Y ⇒ πi(X) ⊆ πi(Y).

We then can show:

Proposition 6 Let D be the dependency graph in a partial-order Boolean game where N = {1, . . . , n} and
Φ = (Φi)i∈N . Then, each function πi for every player i, as defined above, is a closure operator.

Proof To show that each πi is a closure operator, we need to show that πi is extensive, idempotent, and
monotone.

(Extensive) Follows directly from the definition.

(Idempotent) Take any X ∈ D and let Y = πi(X). Then, Y = X ∪ {q ∈ Φi | (D−i[q]) ⊆ X} and, since
(Y \ X) ⊆ Φi, we know that D−i[q] ⊆ X if and only if D−i[q] ⊆ Y , for all q. Therefore,

πi(X) = X ∪ {q ∈ Φi | (D−i[q]) ⊆ X}
= Y ∪ {q ∈ Φi | (D−i[q]) ⊆ X}
= Y ∪ {q ∈ Φi | (D−i[q]) ⊆ Y}
= πi(Y)

Therefore, πi(X) = πi(πi(X)), to obtain:

∀X. πi(X) = πi(πi(X)).

(Monotone) Take any X,Y ∈ D and let X ⊆ Y . By definition, we have

πi(X) = X ∪ {q ∈ Φi | (D−i[q]) ⊆ X}

and
πi(Y) = Y ∪ {q ∈ Φi | (D−i[q]) ⊆ Y}.

Since X ⊆ Y then, for all q′ ∈ Φi,

if q′ ∈ {q ∈ Φi | (D−i[q]) ⊆ X}
then q′ ∈ {q ∈ Φi | (D−i[q]) ⊆ Y}

to obtain that
∀X,Y. X ⊆ Y ⇒ πi(X) ⊆ πi(Y)

—as required. ut

Based on (πi)i∈N we can define a semantics which gives a more operationally informative explanation
of how concurrent behaviour in a multi-agent system is modelled in partial-order Boolean games. What we
are to define next is a closure-operator semantics of concurrency in our framework.

Call X ∈ D a history of play: X indicates which variables have been set to a fixed Boolean value so far.
Given a history of play X, each agent i knows what to play next (using the map τi, defined below) based on
both πi and the choice equations, denoted by fq, for the variables q ∈ Φi they have control over, as follows:

τi(X) = {q = fq | q ∈ (πi(X) \ X)}.

The first observation to make is that the original semantics of partial-order Boolean games, that is, the
semantics given by (σi)i∈N representing sets of choice equations for each player i, can be easily recovered
from (τi)i∈N , as follows for each player strategy: σi =

⋃
p∈Φi

τi(D+[p]). The second observation is that
even though τi is a strategy for player i, semantically, the map τi behaves differently from σi. The former
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takes histories of play and, based on that information, gives only a few necessary choice functions to be
used next (a rather operational approach); the latter, instead, provides a player with all the choice equations
that i has available at once, with no information as to when during the game such equations should be
used (a more denotational approach). Thus, we can think of τi as being more operationally informative
when compared with σi, since some notion of “time” is implicitly considered. (However, in either case,
that is whether using (σi)i∈N or (τi)i∈N , one needs to have access to the dependency graph to know when a
particular choice function is going to be effectively used while playing the game.) Because of the informal
descriptions given above, we will say that the map τi is a temporal strategy for player i. In fact, because
each πi is a stable closure operator, a few useful additional observations also follow.

1. First, a temporal strategy can only modify the state of play by setting a value for a variable not played
yet, and once such a value has been determined it cannot be modified.

2. Second, the behaviour of different agents is independent on concurrent variables, i.e., such a kind of
behaviour is oblivious to superfluous or unnecessary alternations between players’ moves. Put another
way, in the end, it is irrelevant who plays first in concurrent (unordered) events—of course this is not
the case for sequential (ordered) events.

3. Finally, as dependency graphs induce a temporal (and causal) dependency relation on events, playing
at a later “time unit” provides at least as much information as playing at a previous one; indeed, a
temporal strategy preserves causal dependencies when playing the game.

Not all the above properties relate to concurrency. The first one simply ensures that a temporal strategy
behaves as expected: providing a player with the choice decisions that such a player has to make give
a particular state of play. The second one, on the other hand, is the most closely related to concepts in
concurrency. Because in a concurrent setting independent (unordered) events should be treated uniformly
regardless of the particular order in which they happen to be played, a strategy must formally capture such
a uniformity requirement. Closure operators, and in particular the second property above, ensure exactly
that. This, in turn, helps ensure that strategies can be composed in any order you like and the final result
of the game would be the same; in other words, the problem of how to compose strategies in a concurrent
setting vanishes once a closure-operator interpretation can be given. Extensive studies of this phenomena
can be found, for instance, in [33] for programming languages and in [1] for logical systems. Finally, the
third property above mentioned embodies an efficiency property from a concurrent viewpoint: it ensures
that no player will be allowed to play fewer events than those it is required to. As with the second property,
this property also relieves one from having to define how to interpret the execution of multiple events.
For a more comprehensive discussion on the natural relationship between closure-operator semantics and
concurrency, the reader is referred to [1,34], upon which our presentation builds.

One delicate point that should mentioned concerns dependencies between a player’s own variables.
The definition of D−i means that such dependencies are ignored in the computation of τi. Thus in setting
variables according to the choice functions in τi(X), it is still necessary to resolve any player-internal
dependencies to constrain the execution order. However, this process is invisible to other players. In general,
using player-internal dependencies can have rather counter-intuitive results, imposing a form of imperfect
recall; in most modelling situations, there should be no internal dependencies.

As mentioned above, the idea of using closure operators to model concurrency has been successfully
used in the past, e.g., see [1,3,18,33,34]. However, it is important to note that the closure-operators rep-
resentation can only deal with deterministic concurrency. In a non-deterministic setting, more care has
to be taken in order to ensure that the particular execution of unordered (concurrent, independent, etc.)
events does not affect the outcome of the game. Deterministic concurrency—and therefore closure-operator
semantics—is nevertheless a modelling framework powerful enough to represent the concurrent behaviour
of many interesting classes of systems. To conclude this section, let us now see, by way of a simple exam-
ple, what a temporal strategy constructed with respect to a stable closure operator looks like.

Example 5 Take again the game in Example 1. There, the game can proceed in five different ways in
terms of how/when the events are played. We will write p ‖ r and q ‖ r for the parallel execution of
two concurrent/independent events. Then, one of the following behaviours can be observed (assuming that
executing atomic events takes no time and that “.” is sequential composition):

p.q.r; p.r.q; p.(q ‖ r); r.p.q; or (r ‖ p).q.
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The temporal strategies τ1 and τ2 for players 1 and 2 must be defined for all those states of play when each
player is to make a move. Moreover, whenever both players are allowed to play simultaneously, the result
of playing their strategies must deliver the same result. This is the case with:

– τ1 =
{(∅, {p = fp}), ({p}, ∅), ({r}, {p = fp}), ({p, q}, ∅), ({p, r}, ∅), ({p, q, r}, ∅)}; and

– τ2 =
{(∅, {r = fr}), ({p}, {r = fr, q = fq}), ({r}, ∅), ({p, q}, {r = fr}), ({p, r}, {q = fq}), ({p, q, r}, ∅)},

where, as defined above for any τi, for each pair in τi, the first component of such a pair is the history of
play (that is, a set of Boolean variables) and the second component is what player i is to play next given
such a particular history of play (that is, a set of choice functions). ut

As we can see, the two strategies in Example 5 seem to be bigger than needed. For instance, a more
succinct representation could be:

– τ1 = {(∅, {p = fp}), ({r}, {p = fp})}; and
– τ2 = {(∅, {r = fr}), ({p}, {r = fr, q = fq}), ({p, q}, {r = fr}), ({p, r}, {q = fq})}.

as we know that in all other cases the strategies map to ∅. Clearly, this is a valid succinct representation
since it allows all possible five interleavings of events given before.

6 A Logic with Structured Choice

The concurrency features of partial order Boolean games also find applications to logic. Specifically,
partial-order Boolean games give a model for Sandu and Hintikka’s Independence-Friendly (IF) logic.
IF logic is an extension of first-order logic where quantifiers are partially instead of totally ordered. This
gives a considerable increase in expressivity. IF logic (without negation) is equivalent to existential second-
order logic—in complexity terms, it captures NP properties of finite models. Well known applications in,
for instance, computer science, artificial intelligence, and multi-agent systems include logics for social
software [31] and logics for independence and concurrency [8].

The syntax and semantics of IF logic is as follows. The syntax of IF logic is that of classical first-order
logic with quantifiers extended to slashed quantifiers ∃x/y, z, . . . , ∀x/y, z, . . . , whose intended interpreta-
tion is that when choosing the witness/counter-example x, we may not know the values of y, z, . . . (which
are presumed to be bound earlier in the formula). For example, in

∀x.∃y.∀u/x, y.∃v/x, y.ϕ(x, y, u, v)

variable v depends only on u, not on x or y (and y depends only on x as u, v have not been mentioned).
Because of this way that IF formulae are interpreted, a particular IF formula can be either true, false,

or undetermined. The first two cases have the same game-theoretic interpretation of first-order logic: using
the standard evaluation game of a given formula ϕ (with respect to a given model M), we would say that ϕ
is true if there is a winning strategy to show that ϕ holds in M, whereas we would say that ϕ is false if there
is a winning strategy to show that ϕ does not hold in M. However, since in general in IF evaluation games
winning strategies may not exist, an IF formula ϕ will be defined to be undetermined if it is neither true nor
false. Then, for instance, as shown by Proposition 7 below, the semantics of the formula shown above can
by given by a partial-order Boolean game with D = {(x, y), (u, v)}. In general, these dependencies define
a partial order which, under our semantics, is interpreted with the dependency graph D.

Example 6 Recall Example 3. In the usual presentation of the game, the dependency graph is that in Fig-
ure 3(a): the variables are independent. So, player 1 can achieve her goal p = q iff ∀q.∃p/q.p = q and
player 2 can achieve his goal p 6= q iff ∀p.∃q/p.p 6= q. Clearly, no player has a winning strategy. In fact,
no strategy profile forms a pure Nash equilibrium, as shown in Example 3. ut

IF logic has a prenex normal form, though it is substantially more complex to generate than for first-
order logic when non-transitive quantifier dependencies are allowed.
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Proposition 7 Let ϕ = ∀ . . . ψ, where ψ is a Boolean formula, be a transitively-dependent IF formula in
prenex normal form where all existentially quantified variables are in Φ∃ and all universally quantified
variables are in Φ∀. Let G be the game G = ({∃,∀}, Φ, Φ∃, Φ∀, ψ,¬ψ,D) with D given by the variables
and quantification order in ϕ. Then

– ϕ is true (in IF logic) iff ψ is true in every pure Nash equilibrium of game G, and such an equilibrium
exists (in which case ∃ has a winning strategy);

– ϕ is false (in IF logic) iff ψ is false in every pure Nash equilibrium of game G, and such an equilibrium
exists (in which case ∀ has a winning strategy);

– ϕ is undetermined otherwise.

Proof Note that if ϕ is IF-true, by the definition of the semantics of the logic, the pure Nash equilibria nec-
essarily contain winning ∃ strategies, making ψ true. Conversely, if a pure Nash equilibrium exists in which
ψ is true, the strategy in it is IF-winning, so ϕ is IF-true. The case where ϕ is IF-false is similar. Otherwise,
either (i) no pure Nash equilibrium exists or (ii) ϕ is not either true or false in all pure Nash equilibria of
G. In either case, (i) or (ii), it implies that no player has a winning strategy to ensure that ϕ is true/false
regardless of the behaviour of the other player—hence, necessarily, the formula is IF-undetermined. ut

Partial-order Boolean games may have many players, not merely two. In coalition logics [31], a team
of players competes against the others to achieve a common goal. We can generalize the previous result by
considering the coalition as an ∃ team, and all other players as a ∀ team.

An IF formula may be expressed as a partial-order Boolean game, but partial-order Boolean games
may have many players with different goals, rather than just two players with complementary goals. In the
remainder of this section, we analyse further the relationship between IF and partial-order Boolean games.
Consider first two-player games with variable ownerships Φ1, Φ2 and arbitrary goals γ1, γ2. In the case that
the ψi are contradictory, the game corresponds to an IF game, with one player taking the role of ∀, the other
being ∃, and quantifier dependencies given by dependency graph D.

However, if the ψi are equivalent, and there is a common goal, the best strategy for the players is to
cooperate, and they should both take the role of ∃ in an IF game, forming a single team of two players.
In such a game, there are no universal quantifiers, but there is still a role for ∀, as the goal ψ may contain
conjunctions ψ1∧ψ2, where ∀ player chooses the conjunct, acting as the malevolent environment (demonic
non-determinacy in the terminology of concurrency theory). Thus, the IF quantifier prefix is entirely exis-
tential, with slashes given by D. As with classic coordination games, a pair of strategies is in equilibrium if
it achieves the common goal; but a pair of strategies that does not achieve the goal may also be in equilib-
rium, if neither player can unilaterally change strategy to achieve the goal. An example of such a situation
is illustrated next:

Example 7 Let player 1 own variable p and player 2 own variable q, with empty dependency and let both
players have goal p∧ q. Consider the strategy profile ((p = ⊥), (q = ⊥)). This strategy profile loses—that
is, no player gets its goal achieved—but neither player can unilaterally deviate to win the game. ut

The IF formulation points up an issue already mentioned before: the existential team has communica-
tion barriers between its players, not just lack of knowledge of the opponents’ moves. In fact, Hintikka’s
original formulation of IF did not allow slashing with previous existential variables, only with previous uni-
versal variables. The case where one goal is stronger, say γ1 → γ2, is more interesting. If player 1 can win,
then player 2 wins also; but player 2 may try to win while falsifying γ1. A pair of strategies that achieves
γ1 is in equilibrium; a pair of strategies that achieves γ2 ∧ ¬γ1 is only in equilibrium if there is no way
for 1 to achieve γ1. If we move further to incomparable goals, then the situation becomes more complex
still, and the connection to IF logic becomes harder to establish. This leads to the notion of extensions of
IF logic, which we will discuss in the following section.

6.1 ‘Socially responsive’ logics

In Section 5, we outlined a closure operator approach for n-player concurrent games; and, in this section,
we encoded IF logic into our games. However, the Hintikka game understanding of IF logic is still a two
player game—only the team approach makes some use of the many agents.
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Abramsky [2] discusses a logic (call it AL) generalizing the ideas of IF logic to the multi-player case.
Given a set of n agents, he proposed using logical operators ⊕i and Qi, where ϕ ⊕i ψ represents agent i
making a choice between playing in ϕ or ψ, and Qix.ϕ represents agent i choosing a value for variable
x. Thus, in the two-player case, ⊕1,⊕2,Q1,Q2 would correspond to ∨,∧,∃,∀ in the normal FOL game.
Independence of choices is achieved by explicit ϕ‖ψ (parallel evaluation) and ϕ.ψ (sequential evaluation)
operations—and one can then sensibly view Qix as a ‘particle’ (a free-standing formula), rather than as a
prefixing operator. Thus, for example, the IF formula ∀x.∃y/x corresponds to (Q1x)‖(Q2y) (as also done
in [8]). As a consequence, in the general n-agent case, quantifier particles can be combined with ‖ and . to
describe the dependency of choices, exactly as we did in the previous section (see example 5)—and indeed,
Abramsky [2] also gives a semantics to its logic in terms of closure operators.

The ⊕ operators raise an interesting question about the formulation of partial-order Boolean games.
In our formulation, the agents make a set of partially dependent choices of Boolean variables, aiming to
achieve goals γi expressed as Boolean formulas over the variables. These goals are evaluated purely truth-
functionally at the end of the game. However, evaluation of a Boolean formula is also expressible in the
standard way as a game between two players, ‘verifier’ and ‘refuter’, with verifier making ∨ choices and
refuter the ∧ choices, and so we can continue the original game into a second stage in which player i
verifies that it has achieved its goal. Of course, the system has no agent corresponding to the ‘refuter’ in
the verification game, but we can encode ‘refuter of i’ as an additional agent ı, with control of no variables,
whose goal is ¬γi. This then allows the Boolean operators ∨ and ∧ in γi to be expressed as ⊕i and ⊕ı, so
integrating the goals into the AL formulation.

Such anAL style presentation allows a more refined view of shared and partially shared goals. Suppose
there are agents 1 and 2, controlling independent variables p and q respectively, with goals γ1 = γ2 = p∨q.
An obvious pure Nash equilibrium strategy profile is the one where each player sets its variable true. Now,
suppose instead that γ1 = p∨¬q, and γ2 = ¬p∨ q. There are two pure Nash equilibrium strategy profiles:
one where both set true, and one where both set false. The latter strategy profile is interesting: although
it is an equilibrium, with the same outcome as the ‘both true’ profile, it is clearly not one that a ‘rational’
player would adopt, as it relies on the other agent cooperating, whereas the ‘both true’ profile achieves
the goal without relying on the other agent. By making the choice in the goals explicit as γ1 = p ⊕1 ¬q
and γ2 = ¬p ⊕2 q, the ‘both true’ profile has the characteristic that each agent has a strategy that always
leads to a successful literal controlled by itself, or an autonomously successful strategy—a generalization
to n players of the notion of winning strategy in two-player games. On the other hand, by putting the other
agent’s choices into the goals, as in γ1 = p⊕2¬q and γ2 = ¬p⊕1q, neither player can attain its goal without
the cooperation of the other: the equilibrium strategy profiles are ({p = >,⊕1 = q}, {q = >,⊕2 = p})
and ({p = ⊥,⊕1 = ¬p}, {q = ⊥,⊕2 = ¬q}), but none of the strategies is autonomously successful.

Writing the final goal evaluation as a game also makes explicit the fact that it is really just an extension
of the original game: a binary⊕i is not morally different from a binary variable choice, but the dependency
structure is such that all ⊕ choices depend on all variables, or at least on all variables mentioned in the
relevant goal. Moreover, although AL does not have an analogue of (con/dis)-junctive normal form, our
Boolean goals of course do. This leads naturally to the idea of simple conjunctive games: games where the
final goals are simply conjunctions of literals, and the choice of variables is followed by disjunctive choices
⊕, all of which are dependent on the variable choices. Clearly any partial-order Boolean game can be put
into this form, as above; and if the ⊕s in γi are all ⊕i, then a simple conjunctive game is just a partial-order
Boolean game. Translating a game with other agents’ choices in the goals back to a partial-order Boolean
game simply requires introducing new variables.

More precisely, a simple conjunctive game comprises N agents controlling Boolean variables B with a
dependency order D as for partial-order Boolean games. Each agent has a goal γi which is a formula in the
following language: literals are variables or negated variables, terms are conjunctions of literals, which are
formulas, and if ϕ and ψ are formulas so is ϕ ⊕i ψ for each i. D is extended thus: each occurrence of a ⊕
operator is dependent upon all variables and upon any other ⊕ operators that enclose it. Choice functions
for agent i are extended accordingly to make choices for every ⊕i operator; strategies and strategy profiles
extend in the obvious way.
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Proposition 8 Every simple conjunctive game G has an isomorphic partial-order Boolean game G′, such
that each strategy (profile) in G has a strategy (profile) in G′ with the same resulting successes or failures
for each agent, and vice versa.

Proof Let G be a simple conjunctive game as above. Let G′ contain the variables of G, together with one
new variable rk

i for every occurrence ϕk ⊕k
i ψ

k of a choice operator. The control and dependencies of the
rk

i are inherited from those of their choice operators. The goal γ′i of agent i in G′ is obtained by recursively
applying the following operation to γi: map ϕk ⊕k

j ψ
k to (rk

j ∧ ϕk) ∨ (¬rk
j ∧ ψk). Then every choice in a G

strategy determines a choice in a G′ strategy, with the choice of ϕk corresponding to setting rk
j = >, and

by construction the outcomes correspond. ut

7 Related Work

Semantics. Partial-order Boolean games form a game-based model of multi-agent and distributed sys-
tems with the power to explicitly represent partial-order concurrent behaviour—i.e., a “true concurrency”
framework. This is a feature that has attracted much attention from a semantics viewpoint, in particular,
because it can be used to give semantically finer representations/models of concurrent behaviour.

Closer to our work are the mathematical presentations of player strategies using closure operators,
a semantic approach not usually associated with true concurrency concepts but which has very natural
connections to it. Specifically, from the different uses of closure operators in the literature of semantics
and concurrency theory, the following works are mathematically similar to the presentation we gave in this
paper: closure-operator semantics used to provide models for fragments of linear logic [3], processes in
concurrent constraint programs [33], or agents in asynchronous systems [28].

Concurrency. Our model of partial-order Boolean games has been partly inspired by a model of concur-
rency, a relationship on which we expand next. The dependency graphs defined for our game model are
related to event structures, a canonical model of the partial-order behaviour of concurrent systems [29].
Event structures are certain partial orders of events which can explicitly model the causal dependencies
between the events that a computing system performs. In event structures, concurrency (independence of
events) and nondeterminism (conflicts between events) are naturally captured.

Our model of partial-order Boolean games relates to a class of event structures called conflict-free.
Conflict-free event structures are the sub-model of event structures where incomparable events in the partial
order are necessarily concurrent. Such a sub-class of event structures contains all effective computations of
a system, that is, those that can actually happen as all conflicts between events are avoided. These structures
are also related to some, so-called, domains of information—certain ordered structures where the notion of
concurrent computation is naturally captured.

Game models of event structures [9,10] are, however, different from partial-order Boolean games.
Three main differences are: (i) whereas in the former game model the execution of events is asynchronous,
in the latter it is synchronous; (ii) moreover, players in games on event structures are allowed, at any time,
to stop playing the game, whereas in our game model all players must play until every variable has been
given a value; (iii) finally, games on event structures as in [9,10] are two-player zero-sum games, while the
games in this paper are, in general, n-player non-zero-sum games. Only recently [19], concurrent games on
event structures have been extended to the non-zero-sum setting.

Logic. IF logic is inherently a two-player logic—the (partial-order) games induced by IF logic formulae
are played by two players, ∃ and ∀. Partial-order Boolean games suggest that we could define a natural
n-player logic of imperfect information, with IF as a two-player fragment. This idea has also been explored
using a categorical model [2]. However, there is little we can positively say about a logic of imperfect
information of this kind, given the limitations that IF imposes. In particular, from a logical and proof
theoretic viewpoint, the issue of providing a sound and complete axiomatisation for validity is problematic.
Basically, since IF does not contain classical negation, (bi-)implication is not part of the logic, and so
logical equivalence must be defined and axiomatised in its own right. Owing to its partial second-order
power, IF is too expressive for either equivalence or validity to have a recursively complete axiomatisation.
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Thus, since IF logic is encodable into partial-order Boolean games, any logic fully capturing partial-order
Boolean games will not be completely axiomatisable. However, as with IF logic itself, our games may be
equipped with rules adequate for practical reasoning—cf. [25].

In this article, we have made use of the DQBF formalism. This was introduced, and its complexity
established, by [32] as a Henkin-quantifier [22] extension of QBF, independently of the earlier development
of independence-friendly logic. DQBF is a restriction of IF logic over a Boolean domain. More recently, [4]
have developed the links between DQBF and IF logic: their Skolem models and Herbrand counter-models
for DQBF correspond to the teams for ∃ and ∀ in the symmetrical team or trump semantics for IF logic
(see [25] for a survey of IF semantics). They then restrict the form of DQBFs to produce a class where
synthesis of the models is easier, by limiting the dependencies between variables. It may be that similar
techniques will apply to our more multi-player formalism. Finally, it is also worth noting that whereas in
[22] there is an argument to use Henkin quantifiers, and therefore IF logic too, to reason about “infinitely-
long” formulae, our setting only considers the finite case, both at the logical and game-theoretic level. As a
consequence, our framework can be seen as a special case from that viewpoint. On the other hand, both in
IF and in DQBF, the setting is naturally captured by a two-player strategic game, where we can allow for
multi-player interactions. Then, in that sense, the reasoning framework we develop here is more general.

8 Conclusions and Future Work

By extending Boolean games in a simple and intuitive way, i.e., by adding a dependency graph that indicates
the dependencies between variables in a game, we are able to dramatically increase the expressive power
of conventional Boolean games. Of particular importance, we can now more easily represent the behaviour
of concurrent systems and provide to them a game semantics where concurrency can be modelled using a
closure-operator semantics. Our model is closely related to work on IF logics, which are increasingly used
in mathematical logic, game theory and the theory of concurrency.

It would be interesting to examine several aspects of partial-order Boolean games in more detail. First,
it should be clear from our comments on event structures above that there are close links between partial-
order Boolean games and concurrency models. It would be interesting to study these manifest similarities
in more detail, perhaps by looking at Boolean game-like refinements of event structures and related models
of true concurrency. While event structures have been studied from a game-theoretic perspective before,
our work may give a new perspective on this work. Another aspect of our model that deserves further
study is the link to games of incomplete information, and, perhaps even more relevantly from a computer
science perspective, work on epistemic logics [14]. While the way in which our model captures the limited
information available to players is transparent, it would be interesting to try to link this more precisely
to the standard models of knowledge used in computer science (i.e., Kripke structures/possible-worlds
semantics). Finally, it would be interesting to take a closer look at restrictions on dependency graphs, and
the complexity classes of the corresponding decision problems in partial-order Boolean games.
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