
The µ-Calculus Alternation Hierarchy Collapses

over Structures with Restricted Connectivity

Julian Gutierreza, Felix Klaedtkeb, Martin Langec

aUniversity of Oxford, United Kingdom
bNEC Europe Ltd., Germany

cUniversity of Kassel, Germany

Abstract

The alternation hierarchy of least and greatest fixpoint operators in the µ-calculus is strict. However, the
strictness of the hierarchy does not necessarily carry over when considering restricted classes of structures.
For instance, over the class of infinite words the alternation-free fragment of the µ-calculus is already as
expressive as the full logic. Our current understanding of when and why the µ-calculus alternation hierarchy
is (and is not) strict is limited. This article makes progress in answering these questions by showing that
the alternation hierarchy of the µ-calculus collapses to the alternation-free fragment over some classes of
structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size.
Common to these classes is that the connectivity between the components in a structure from such a class
is restricted in the sense that the removal of certain vertices from the structure’s graph decomposes it into
graphs in which all paths are of finite length. The collapse results herein are obtained in an automata-
theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the
µ-calculus over restricted classes of structures.

Keywords: modal µ-calculus, fixpoints, alternation hierarchy, parity automata

1. Introduction

The µ-calculus [20], hereafter Lµ, extends modal logic with least and greatest fixpoint operators, which
act as monadic second-order (MSO) quantifiers within the logic. The possibility to arbitrarily mix and nest
fixpoint operators makes Lµ an expressive logic, which subsumes many dynamic, temporal, and description
logics such as PDL and CTL*. In fact, Lµ is essentially the most expressive logic of that kind because it
can express, up to bisimulation equivalence, all MSO-definable properties [18].

An important question about the expressivity of Lµ is whether more alternation—the nesting of mutually
dependent least and greatest fixpoint operators in formulas—gives more expressive power. Bradfield [8]
proved that indeed this is in general the case, that is, there is a hierarchy of properties that require unbounded
alternation of least and greatest fixpoint operators. Lenzi [24] independently showed a similar strictness
result—for a fragment of Lµ—with respect to an alternation hierarchy different from the one we consider in
this article. In both cases, their strictness results apply to the class of finite directed graphs and therefore
to all bigger classes of structures. However, the strictness of the alternation hierarchy need not necessarily
carry over when considering classes of structures that are either incomparable to or smaller than the class of
finite directed graphs. Trivial examples over which the alternation hierarchy is non-strict are, for example,
classes that only consist of a single graph. In that case, each formula is equivalent to either true or false,
depending on whether the graph satisfies the formula or not.

Overall, little is known about the expressivity of Lµ over restricted classes of structures. Since Lµ is
bisimulation-invariant and every finite graph, either directed or undirected, is bisimilar to a possibly infinite
tree, the strictness of the hierarchy also holds for the class of trees. In fact, as shown by Arnold [4] and
Bradfield [9], the hierarchy is strict even on the class of binary infinite trees. Alberucci and Facchini [1]
also strengthened the initial strictness result by showing that the hierarchy remains strict over the class of

Preprint submitted to Theoretical Computer Science March 18, 2014

reflexive finite directed graphs. D’Agostino and Lenzi [13] showed the strictness of the hierarchy over the
class of reflexive and symmetric finite graphs.

On the opposite side, there are a few classes of structures over which it is known that the alternation
hierarchy is not strict. For instance, the hierarchy collapses to its alternation-free fragment over the class of
finite directed acyclic graphs [27]: for every Lµ formula ϕ, there is an alternation-free Lµ formula ψ—that
is, a formula in which least and greatest fixpoint operators do not mutually depend on each other—such
that ϕ and ψ are satisfied by exactly the same set of finite acyclic graphs. This collapse result is not too
surprising since the denotation of the least and greatest fixpoint operators of Lµ differs only when considering
models which contain infinite paths—and finite directed acyclic graphs only contain finite paths. Thus, in
this case, every greatest fixpoint operator can be replaced by a least one, resulting in an alternation-free
formula. It is also known, when restricting Lµ to infinite words, that Lµ’s alternation hierarchy collapses to
its alternation-free fragment [19]. Moreover, over infinite nested words, as shown by Arenas et al. [3], the
hierarchy collapses to the fragment with at most one alternation between fixpoint operators. It is also known
that the Lµ’s alternation hierarchy collapses over the class of transitive finite directed graphs [1, 12, 14]. If
the graphs are transitive and undirected, then the hierarchy even collapses to the modal fragment [1, 14].

This article provides further classes of structures over which the alternation hierarchy of Lµ collapses to
its alternation-free fragment. Our collapse results subsume, generalize, and strengthen some of the collapse
results above mentioned. We show that the alternation hierarchy collapses over classes of finite directed
graphs with feedback vertex sets of a bounded size. Recall that removing the vertices in a feedback vertex
set decomposes the graph into finite directed acyclic graphs and thus the removal of these vertices eliminates
the infinite behavior in the original graph. For finite directed acyclic graphs, the empty set is already a
feedback vertex set. We also show that, as for infinite words, all Lµ properties of infinite nested words can
already be expressed within the alternation-free fragment. Our results are obtained in a uniform way by
looking at bounded classes of bottlenecked directed acyclic graphs. The vertices of such a kind of graphs
are grouped into layers and the infinite paths must visit infinitely often vertices in certain layers, which are
bounded in their size. Intuitively speaking, these bounded layers are the bottlenecks and the removal of
these vertices disconnects the graph into graphs in which all paths have finite length. Nested words and the
unfoldings of finite directed graphs with bounded feedback vertex sets are special instances of such graphs.

Our work is carried out in an automata-theoretic setting. Roughly speaking, the question of whether the
alternation hierarchy collapses to the alternation-free fragment over a class of structures U can be answered
positively by showing that alternating parity automata are as expressive as weak alternating automata over
U. Translations between automata and Lµ formulas are known, for instance, [15, 23, 30, 32]. Yet, the
translation from weak alternating automata to alternation-free formulas we provide here is more direct than
the known ones in the sense that it avoids the construction of formulas in vectorial form, cf. [5].

Another contribution of this paper is a generalization of the ranking construction by Kupferman and
Vardi [22], which can be used to translate alternating coBüchi word automata into language-equivalent weak
alternating word automata. We generalize it to the parity acceptance condition and to more complex classes
of structures, namely, to bounded bottlenecked graphs. Kupferman and Vardi [21] have already generalized
their ranking construction for word automata to solve the non-emptiness problem for nondeterministic parity
tree automata. However, our generalization of their ranking construction [22] is conceptually simpler: it
eliminates the odd colors of a parity automaton in a single step. An additional step is needed to obtain a
weak automaton from the resulting Büchi automaton. In contrast, Kupferman and Vardi’s generalization [21]
successively eliminates colors, alternating between odd and even ones. The acceptance conditions of the
intermediate word automata are a combination of a parity condition and a Büchi or coBüchi condition.

Structure of the paper. Preliminaries on Lµ and alternating automata are given in Section 2 and transla-
tions between Lµ and automata appear in Section 3. Section 4 presents our generalization of the ranking
construction. Section 5 contains the collapse results. Finally, in Section 6, we draw conclusions.

2

2. Preliminaries

In this section, we provide notation and terminology that we use throughout the article.

2.1. The µ-Calculus

Graphs. Let A be a non-empty finite set of actions and let Σ be an alphabet. A (Σ, A)-graph is a directed,
labeled, and pointed graph

(

V, (Ea)a∈A, vI, λ
)

, where V is a set of vertices, Ea ⊆ V × V is a set of edges
labeled by a ∈ A, vI ∈ V is the source, and λ : V → Σ a labeling function. We require in the following that
V is at most countable.

Syntax. We define the µ-calculus, Lµ for short, over (2P, A)-graphs, where P is a non-empty set of proposi-
tions. Let V = {X,Y, . . .} be a countable set of variables. The syntax of Lµ is given by the grammar

ϕ ::=X
∣

∣ p
∣

∣ ¬p
∣

∣ ϕ ∧ ϕ
∣

∣ ϕ ∨ ϕ
∣

∣ [a]ϕ
∣

∣ 〈a〉ϕ
∣

∣ µX.ϕ
∣

∣ νX. ϕ ,

where X ranges over V, p over P, and a over A.
The operators µ and ν act as binders for the respective variables. A free occurrence of a variable X in

a formula ϕ is one that is not under the scope of a binding operator for this variable in ϕ. A formula ϕ is a
sentence if no variable occurs free in ϕ.

The set of subformulas of a formula ψ is

sub(ψ) :=































{ψ} if ψ ∈ V or ψ ∈ P,

{p,¬p} if ψ = ¬p with p ∈ P,

{ψ} ∪ sub(ψ′) ∪ sub(ψ′′) if ψ = ψ′ ⋆ ψ′′ with ⋆ ∈ {∨,∧},

{ψ} ∪ sub(ψ′) if ψ = [a]ψ′ or ψ = 〈a〉ψ′ with a ∈ A, or

ψ = κX.ψ′ with κ ∈ {µ, ν} and X ∈ V.

We say that ψ is a subformula of ψ′ if sub(ψ) ⊆ sub(ψ′). The size of ψ, written |ψ|, is its number of
syntactically distinct subformulas, that is, the cardinality of sub(ψ).

We assume in the following, without loss of generality, that the free variables are disjoint from the bound
variables in a formula ψ and that each bound variable is uniquely bound by a fixpoint operator. Then we can
assume to have a function fpψ that associates a bound variable X ∈ sub(ψ) to its unique binding fixpoint
formula, that is, fpψ(X) is ψ’s subformula κX.ψ′ with ψ′ ∈ sub(ψ) and κ ∈ {µ, ν}.

Semantics. The semantics of Lµ is as follows. Let G =
(

V, (Ea)a∈A, vI, λ
)

be a (2P, A)-graph. A valuation
σ assigns each variable in V to a set of vertices. For X ∈ V and U ⊆ V , we write σ[X 7→ U] if we alter σ at

X , that is, σ[X 7→ U](Y) := U if Y = X and σ[X 7→ U](Y) := σ(Y), otherwise. The set [[ϕ]]
G

σ of vertices in
G that satisfy ϕ under σ is defined as follows:

[[X]]
G

σ := σ(X)

[[p]]Gσ :=
{

v ∈ V
∣

∣ p ∈ λ(v)
}

[[¬p]]Gσ :=
{

v ∈ V
∣

∣ p 6∈ λ(v)
}

[[ϕ ∧ ψ]]Gσ := [[ϕ]]
G

σ ∩ [[ψ]]
G

σ

[[ϕ ∨ ψ]]Gσ := [[ϕ]]
G

σ ∪ [[ψ]]
G

σ

[[[a]ϕ]]
G

σ :=
{

v ∈ V
∣

∣ if (v, v′) ∈ Ea then v′ ∈ [[ϕ]]
G

σ , for all v
′ ∈ V

}

[[〈a〉ϕ]]Gσ :=
{

v ∈ V
∣

∣ (v, v′) ∈ Ea and v′ ∈ [[ϕ]]
G

σ , for some v′ ∈ V
}

[[µX.ϕ]]
G

σ :=
⋂

{

U ∈ 2V
∣

∣ [[ϕ]]
G

σ[X 7→U] ⊆ U
}

[[νX. ϕ]]
G

σ :=
⋃

{

U ∈ 2V
∣

∣ [[ϕ]]
G

σ[X 7→U] ⊇ U
}

3

The grammar of Lµ guarantees that formulas are in negation normal form, that is, negations only occur
directly in front of propositions in P. This syntactic feature ensures monotonicity and thus existence of the
least and greatest fixpoints expressed by µ and ν, respectively.

For a sentence ϕ, [[ϕ]]
G

σ does not depend on σ and we omit it if it is clear from the context that ϕ is a
sentence. For a sentence ϕ and a set of (2P, A)-graphs U, we define

LU(ϕ) :=
{

G ∈ U
∣

∣ vI ∈ [[ϕ]]G, where vI is the source of G
}

.

Alternation Hierarchy. Lµ formulas determine an infinitely large hierarchy, which relies on the mutual inter-
dependencies between least and greatest fixpoint operators. To define this hierarchy, we follow Niwiński [29]:

– Σ0 = Π0 is the set of formulas without fixpoint operators, that is, modal logic formulas.

– For n ≥ 0, Σn+1 is the smallest set that contains the formulas in Σn∪Πn and is closed under the following
rules: (i) if ϕ, ψ ∈ Σn+1 then ϕ∧ψ ∈ Σn+1 and ϕ∨ψ ∈ Σn+1; (ii) if ϕ ∈ Σn+1 and a ∈ A then [a]ϕ ∈ Σn+1

and 〈a〉ϕ ∈ Σn+1; (iii) if ϕ ∈ Σn+1 and X ∈ V then µX.ϕ ∈ Σn+1; (iv) if ϕ, ψ ∈ Σn+1 and X ∈ V then
ϕ[ψ/X] ∈ Σn+1 provided that no free variable of ψ gets bound by a fixpoint operator in ϕ and where
ϕ[ψ/X] denotes the formula obtained from substituting the free occurrences of X by ψ in ϕ.

– For n ≥ 0, Πn+1 is analogously defined as Σn+1: instead of closure under the least fixpoint operator µ,
we require closure with respect to the greatest fixpoint operator ν.

– For n ≥ 0, we also define ∆n := Σn ∩Πn.

The alternation depth of ϕ, denoted by ad(ϕ), is the smallest n ≥ 0 such that ϕ ∈ ∆n+1. A formula ϕ is
alternation-free if ad(ϕ) ≤ 1, that is, it is in ∆2.

We remark that there are other definitions of alternation for Lµ in the literature, for instance, the
definition of Emerson and Lei [16]. Niwiński’s alternation hierarchy and Emersons and Lei’s hierarchy are
both based on the formulas’ syntax and not on the property a formula describes. The differences between the
different hierarchies are with respect to the undesirable sensitivity to vacuous fixpoints. For instance, the Lµ
formula µX. νZ. µU. νY. Y ∧X , which is taken from [8], is in Σ2 according to Niwiński and in Σ4 according to
Emerson and Lei. Niwiński’s hierarchy captures the actual dependency between least and greatest fixpoints
in Lµ more accurately. The differences of the two hierarchy are, however, inessential to our collapse results
as our focus is on the alternation-free fragment where these differences completely disappear.

Example 2.1. Consider the formulas ϕ = νX.
(

µY. p∨〈a〉 Y
)

∧[a]X and ψ = µX. νY.
(

[c]Y ∨〈a〉 Y ∨〈b〉X
)

.
The formula ϕ expresses that along all paths with a actions, there is a path on which p eventually holds.
The formula ψ is the Lµ representation of a satisfiability formula in µ-arithmetic; see [9] for details.

By the definition of the alternation hierarchy, it is easy to see that the formula ϕ is alternation-free because
it is in both Σ2 and Π2, and hence in ∆2. Since the subformula µY. p∨ 〈a〉 Y of ϕ has no free variables, the
subformula’s least fixpoint can be computed independently of ϕ’s greatest fixpoint. In contrast, the formula
ψ is not alternation-free. It is in Σ2 but not in Π2; ψ is also in Π3 and therefore in ∆3. In fact, ψ is a strict
formula [9] for ∆3 in the sense that it is not logically equivalent to any formula in ∆2. The least and greatest
fixpoints in ψ cannot be computed independently: The inner fixpoint formula νY.

(

[c]Y ∨ 〈a〉 Y ∨ 〈b〉X
)

has the free variable X of a different kind, that is, X is bound by the least fixpoint operator in ψ. Moreover,
the computation for the greatest fixpoint depends on the computation of the outer least fixpoint.

In addition to the alternation hierarchy, we measure the dependencies of fixpoint formulas within a
sentence ψ by assigning to each variable X occurring in ψ a non-negative integer aiψ(X), called its priority.
For a variable X occurring in ψ, aiψ(X) is defined to be the smallest natural number that satisfies:

1. aiψ(X) is odd if fpψ(X) = µX.ψ′ with ψ′ ∈ sub(ψ).

2. aiψ(X) is even if fpψ(X) = νX. ψ′ with ψ′ ∈ sub(ψ).

3. For all Y ∈ sub(ψ), with X 6= Y , if there is a free occurrence of Y in fpψ(X) then aiψ(X) ≥ aiψ(Y).

4

For instance, in Example 2.1, we have aiϕ(X) = 0 and aiϕ(Y) = 1, and aiψ(X) = 1 and aiψ(Y) = 2.
Note that the priority of a fixpoint variable Z that appears in a formula ϕ can be smaller than the index
of the set, either Σn or Πn, to which a subformula in sub(fpϕ(Z)) belongs. For instance, in Example 2.1,
observe that aiϕ(X) = 0 whereas fpϕ(Y) is in Σ1. Informally, the situation we have in this case is that
although fpϕ(Y) is a subformula of fpϕ(X), the computation of the least fixpoint formula for Y is not
dependent on the computation of the outer greatest fixpoint formula for X—since X does not appear free
in fpϕ(Y). In fact, we could replace fpϕ(Y) in ϕ by any sentence and X would still have priority 0.

2.2. Alternating Automata

Propositional Logic. We denote the set of positive Boolean formulas over the proposition set P by B+(P),
that is, B+(P) consists of the formulas that are inductively built from the Boolean constants tt and ff, the
propositions in P, and the Boolean connectives ∨ and ∧. For M ⊆ P and ϕ ∈ B+(P), write M |= ϕ if ϕ
holds when assigning true to the propositions in M and false to those in P \M.

Words and Trees. We denote the set of finite words over the alphabet Σ by Σ∗, the set of infinite words
over Σ by Σω, and the empty word by ε. We denote the symbol at position i + 1 in a word w by wi. We
write v � w if v is a prefix of w.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N
∗ satisfies that: (i) T is prefix-closed, that

is, v ∈ T and u � v implies u ∈ T , and (ii) if vi ∈ T and i > 0 then v(i − 1) ∈ T . The elements in
T are called the nodes of t and the empty word ε is called the root of t. A node vi ∈ T with i ∈ N is
called a child of the node v ∈ T . A branch in t is a word π ∈ N

∗ ∪ N
ω such that either π ∈ T and π

does not have any children, or π is infinite and every finite prefix of π is in T . We write t̄(π) for the word
t(ε)t(π0)t(π0π1) . . . t(π0π1 . . . πn−1) ∈ Σ∗ if π has finite length n and t(ε)t(π0)t(π0π1) . . . ∈ Σω if π is infinite.

Automata. In the following, we define alternating automata where the inputs are (2P, A)-graphs, where P

is a non-empty finite set of propositions and A is a non-empty finite set of actions. Such automata are
essentially alternating parity tree automata that operate over the tree unfolding of the given input. The
classical automata models for words and trees are special instances when encoding the letters of an alphabet
Σ by subsets of propositions and by viewing words and trees in a straightforward way as (Σ, A)-graphs.

A parity (P, A)-automaton, (P, A)-PA for short, is a tuple A = (Q, δ, qI, α), where Q is a finite set of
states, δ : Q → B+

(

P ∪ P̄ ∪ (Q × { �,�} × A)
)

is the transition function with P̄ := {p̄ | p ∈ P}, qI ∈ Q
is the initial state, and α : Q → N determines the (parity) acceptance condition. Assume that P ∩ P̄ = ∅.
We refer to α(q) as the color of the state q ∈ Q. The index of A is ind(A) := |{α(q) | q ∈ Q}| and
the size of A is the number of syntactically distinct subformulas that occur in the transitions, that is,
||A|| :=

∣

∣

⋃

q∈Q

{

ψ
∣

∣ ψ is a subformula of δ(q)
}
∣

∣. In the following, we assume that |Q| ∈ O(||A||), which holds
when, for example, every state occurs in some transition of A.

Let A = (Q, δ, qI, α) be a (P, A)-PA and G =
(

V, (Ea)a∈A, vI, λ
)

a (2P, A)-graph. A run of A on G is a
tree ̺ : R → V ×Q with some R ⊆ N

∗ such that ̺(ε) = (vI, qI) and for each node x ∈ R with ̺(x) = (v, p),
there is a set M ⊆ Q× { �,�} ×A such that

{

q ∈ P
∣

∣ q ∈ λ(v)
}

∪
{

q̄ ∈ P̄
∣

∣ q 6∈ λ(v)
}

∪M |= δ(p)

and the following conditions are satisfied:

(a) If (q, �, a) ∈ M, then there is a node v′ ∈ V with (v, v′) ∈ Ea such that there is a child x′ ∈ R of x such
that ̺(x′) = (v′, q).

(b) If (q,�, a) ∈ M, then for all nodes v′ ∈ V with (v, v′) ∈ Ea there is a child x′ ∈ R of x such that
̺(x′) = (v′, q).

Roughly speaking, A starts in its initial state by scanning the input graph from its source. The label
(v, p) of the node x in the run is the current configuration of A. That is, A is currently in the state p
and the read-only head is at the vertex v of the input. The transition δ(p) specifies with respect to the

5

labeling λ(v) a constraint that has to be respected by the automaton’s successor states. In particular, for a
proposition (q, �, a) ∈ M, the read-only head must move along some a-labeled edge starting at v. Similarly,
for (q,�, a) ∈ M, a copy of the read-only head must move along every a-labeled edge starting at vertex v.

An infinite branch π in a run ̺ with ¯̺(π) = (v0, q0)(v1, q1) . . . is accepting if max{α(q) | q ∈ inf(q0q1 . . .)}
is even, where inf(q0q1 . . .) is the set of states that occur infinitely often in q0q1 The run ̺ is accepting
if every infinite branch in ̺ is accepting. The language of A with respect to a set U of (2P, A)-graphs is

LU(A) := {G ∈ U | there is an accepting run of A on G} .

By restricting the acceptance condition and the automaton’s transitions, we obtain the following au-
tomata classes. Let A = (Q, δ, qI, α) be a (P, A)-PA.

– A is Büchi if {α(q) | q ∈ Q} ⊆ {2n− 1, 2n}, for some n ≥ 1.

– A is coBüchi if {α(q) | q ∈ Q} ⊆ {2n, 2n+ 1}, for some n ≥ 0.

– A is weak if there is a partition Q0, . . . , Qn on Q, for some n ≥ 0 such that for all i ∈ {0, . . . , n}, we have:
(i) All states in the component Qi have the same parity, that is, α(q) ≡ α(q′) mod 2, for all q, q′ ∈ Qi.
(ii) δ(q) ∈ B+

(

P∪ P̄∪
⋃

j∈{i,...,n}(Qj ×{ �,�}×A)
)

, for all q ∈ Qi. That is, when reading a vertex label
the automaton can stay in the current component Qi or go to components with higher indices.

We also call A a (P, A)-BA, (P, A)-CA, and (P, A)-WA when it is Büchi, coBüchi, and weak, respectively.
Finally, dualizing an alternating automaton corresponds to complementation [28]. In our case, the dual

automaton of a (P, A)-PA A = (Q, δ, qI , α) is defined as the (P, A)-PA A := (Q, δ, qI , α), where for each
q ∈ Q, δ(q) := δ(q) with

tt := ff ff := tt

p := p̄, for p ∈ P p̄ := p, for p̄ ∈ P̄

(q, �, a) := (q,�, a) (q,�, a) := (q, �, a)

β ∧ γ := β ∨ γ β ∨ γ := β ∧ γ

and α(q) := α(q)+ 1. It is not too hard to show that the dual automaton accepts the complement language,
that is, LU(A) = U \ LU(A). Furthermore, note that A is weak if A is weak.

3. From the µ-Calculus to Automata and Back

Translations between Lµ and automata are known for various automaton models. For the sake of com-
pleteness, we present in this section such translations with respect to our automaton model from Section 2.2.
In the remainder of the text, let P and A be non-empty finite sets of propositions and actions, respectively.
Furthermore, throughout this section, let U be a set of (2P, A)-graphs.

3.1. From Formulas to Parity Automata

The following translation is similar to the one in [32]. However, since our automaton model does not
support ε-transitions, we need to require for the translation that formulas are guarded, that is, variables
occur under the scope of a modal operator within their defining fixpoint formulas. For a proof of the
following lemma, see, for instance, [31].

Lemma 3.1. For every sentence ϕ, there is a guarded sentence ψ of size 2O(|ϕ|) such that LU(ψ) = LU(ϕ)
and ad(ψ) = ad(ϕ).1

1The acclaimed polynomial upper bounds of translations into guarded form found in the literature are flawed [10].

6

From guarded formulas one easily obtains equivalent parity automata. This result is well-known, cf. [15].
We present the construction for the sake of completeness but refer to the literature for a correctness proof.

Theorem 3.2. For every guarded sentence ϕ, there is a (P, A)-PA Aϕ with O(|ϕ|) states and LU(Aϕ) =
LU(ϕ). Moreover, ||Aϕ|| ∈ O(|ϕ|) and ind(Aϕ) ≤ ad(ϕ) + 1.

Proof. The components of the parity automaton Aϕ := (Q, δ, qI, α) are as follows. The set of states Q
consists of states of the form (ψ, d), where ψ ∈ sub(ϕ) and d ∈ {0, . . . , ad(ϕ)}. The initial state qI is (ϕ, 0)
and the acceptance condition α is defined as α(ψ, d) := d. For defining the Aϕ’s transition function δ, let
travd, with d ∈ {0, . . . , ad(ϕ)}, be the following function defined by induction over ψ’s formula structure:

travd(ψ) :=















































p if ψ = p with p ∈ P

p̄ if ψ = ¬p with p ∈ P

travaiϕ(X)

(

fpϕ(X)
)

if ψ = X with X ∈ V

travd(ψ
′) ⋆ travd(ψ

′′) if ψ = ψ′ ⋆ ψ′′ with ⋆ ∈ {∧,∨}
(

(ψ′, d), �, a
)

if ψ = 〈a〉ψ′

(

(ψ′, d),�, a
)

if ψ = [a]ψ′

travd(ψ
′) if ψ = κX.ψ′ with κ ∈ {µ, ν}

Note that travd(ψ) is well-founded because of guardedness: no travd(ψ) can be defined in terms of itself
because the formula parameter decreases in each clause apart from that for variables X . Guardedness then
ensures that a clause for a modal operator is eventually met, which terminates the recursive definition. For
a state (ψ, d) ∈ Q, we define δ(ψ, d) := trav0(ψ). The parameter d signals when we have traversed through
a fixpoint variable. It is initialized with 0 and set to aiϕ(X) after we have gone through a variable X and
replaced it by its defining fixpoint formula.

Since the acceptance condition α maps into the set {0, . . . , ad(ϕ)} we obviously have ind(Aϕ) ≤ ad(ϕ)+1.
However, according to the above construction an upper bound on the number of states of Aϕ is only
|ϕ| · (ad(ϕ) + 1). To optain the claimed bounds, we can optimize the construction by removing the states
in Q that are not reachable from Aϕ’s initial state (ϕ, 0). Except from the initial state, the reachable
states have the form (ψ, d), where 〈a〉ψ or [a]ψ is a subformula of ϕ. Furthermore, d ranges only over
some of the priorities. Namely, d is either 0 or d = aiϕ(X), for some variable X that occurs in ψ and for
which either 〈a〉ψ or [a]ψ is a subformula of fpϕ(X) that is not under the scope of another modal operator.
Since each d > 0 for ψ is associated to a fixpoint formula in ϕ, it follows that Aϕ has O(|ϕ|) states and
||Aϕ|| ∈ O(|ϕ|).

3.2. From Weak Automata to Alternation-free Formulas

The following translation essentially combines the ideas of a linear translation from weak alternating
Büchi automata into alternation-free equation systems [23] with a standard translation from the latter into
formulas of the alternation-free µ-calculus. This avoids the explicit introduction of modal equation systems
[11, 25] or the µ-calculus with vectorial form [5]. These are expressively equivalent to Lµ but provide a less
elegant syntax at the benefit of more compact representations. This is also why a translation into plain
formulas involves an exponential blow-up.

Theorem 3.3. For every (P, A)-WA A with n states, there is an alternation-free sentence ϕA with |ϕA| ∈
O
(

||A|| · 2n
)

and LU(ϕA) = LU(A).

Proof. Let A = (Q, δ, qI, α) be a (P, A)-WA. Let Q0, . . . , Qm be a partition of its state set into components
according to the definition of being weak. For every i = m, . . . , 0, each state q ∈ Qi and each S ⊆ Qi \ {q}
we define a formula ψSq that, intuitively, describes the behavior of A, parameterized by the states in S, when
started in state q. It uses the variables Xq′ , for q

′ ∈ Q, that describe the set of all nodes in a graph from
which A has an accepting run when started in state q′. Translating the transition function directly using
these variables would lead to circular dependencies among them rather than a tree-like structure that is

7

required for formulas. The parameter S is used to avoid these circular dependencies: it stores those states
q′, respectively variables Xq′ for which a fixpoint quantifier has been introduced already. Consequently, ψSq
may contain these Xq′ with q

′ ∈ S as free variables.

Let ψSq := κXq.tr
S∪{q}
q (δ(q)), with κ = µ if α(q) is odd and κ = ν otherwise, and where trSq is defined

as follows.

trSq (γ ∧ χ) := trSq (γ) ∧ trSq (χ)

trSq (γ ∨ χ) := trSq (γ) ∨ trSq (χ)

trSq (p) := p for p ∈ P

trSq (p̄) := ¬p for p̄ ∈ P̄

trSq (q
′, �, a) :=











〈a〉Xq′ if q′ ∈ S

〈a〉ψSq′ if q′ ∈ Qi \ S

〈a〉ψ∅
q′ if q′ 6∈ Qi

trSq (q
′,�, a) :=











[a]Xq′ if q′ ∈ S

[a]ψSq′ if q′ ∈ Qi \ S

[a]ψ∅
q′ if q′ 6∈ Qi

Finally, we define ϕA := ψ∅
qI .

It should be clear that this scheme defines at most n · ||A|| ·2k−1 many different subformulas which bounds
the size of ϕA accordingly, where k is the maximum of the cardinalities of the components. It is also not
hard to see that ϕA is alternation-free because, by assumption, A is weak and therefore two variables Xq

and Xq′ are bound by the same kind of fixpoint quantifier whenever q and q′ belong to the same component
Qi. A close inspection shows that, whenever some Xq′ has a free occurrence in some ψSq then we must have
q′ ∈ S and therefore q and q′ belong to the same component.

Finally, we give an invariant, which can be used to prove the correctness of the constructed formula ϕA.
For every (2P, A)-graph G with vertex set V , every vertex v, every component Qi, every q ∈ Qi, every

S ⊆ Qi \ {q}, and every variable interpretation σ : {Xq′ | q′ ∈ S} → 2V , we have v ∈ [[ψSq]]
G

σ iff there is a run
of A on G starting at vertex v that is accepting according to the usual parity condition and the additional
provision that any vertex of the form (u, q′) in the run is immediately accepting if u ∈ σ(Xq′). It is possible
to prove this by a combined induction on the topological structure of the strongly connected components
in A and the size of S. The claim about the correctness of ϕA follows from the invariant. Note that ϕA

contains no free variables and is thus satisfied by exactly those vertices from which A accepts G.

4. From Parity Automata to Weak Automata

In this section, we show that parity automata and weak automata have the same expressive power
over bottlenecked directed acyclic graphs (BDAGs) with a bounded width. BDAGs are fundamental to this
article as our collapse results rely on reductions of different structures—such as various classes of graphs
and words—to BDAGs with a bounded width; see Section 5. The schematic form of BDAGs is illustrated
in Figure 1. Their definition is as follows.

Definition 4.1. Let G =
(

V, (Ea)a∈A, vI, λ
)

be a (Σ, A)-graph.

– G is a directed acyclic graph (DAG) if it does not contain cycles, that is, there are no vertices v0, . . . , vn ∈ V
with n ≥ 1 such that v0 = vn and (vi, vi+1) ∈

⋃

a∈AEa, for all i ∈ N with 0 ≤ i < n.

– G is a bottlenecked DAG (BDAG) of width w ∈ N if G is a DAG and V can be split into the pairwise
disjoint sets L0, N0, L1, N1, . . . such that

(i)
⋃

a∈AEa ⊆
⋃

i∈N

(

(Li × Li) ∪ (Li ×Ni) ∪ (Ni × Li+1)
)

,

(ii) w = sup
{

|Ni|
∣

∣ i ∈ N
}

, and

(iii) each Li is well-founded, i.e., the graph obtained from G by restricting V to Li has no infinite paths.

8

0 NL L1 N L4N 2 L3NL0 1 2 3

Figure 1: Bottlenecked directed acyclic graph (BDAG)

Note that BDAGs naturally define a connectivity measure, which is given by their widths: removing the
vertices in the Nis disconnects the structure into DAGs in which all paths are finite and thus the infinite
behavior described by the original structure is eliminated.

Before presenting our collapse results in Section 5, we need the following construction, parametric in
w ∈ N, that translates parity automata into language-equivalent weak automata with respect to the class of
BDAGs of width at most w. In the following, let w ∈ N and let BDAG≤w be the class of (2P, A)-graphs
that are BDAGs of width at most w. Moreover, for n ∈ N, we abbreviate the set {0, 1, . . . , n} by [n].

4.1. Rankings

Let A = (Q, δ, qI, α) be a (P, A)-PA and ̺ : R → V × Q a run of A on G ∈ BDAG≤w with G =
(

V, (Ea)a∈A, vI, λ
)

. We assume that the run ̺ is memoryless, that is, equally labeled nodes in ̺ have
isomorphic subtrees; formally, for all x, y ∈ R if ̺(x) = ̺(y) then for all z ∈ N

∗, whenever xz ∈ R then
yz ∈ R and ̺(xz) = ̺(yz). This assumption is without loss of generality for the parity condition [15, 28].
In particular, we have that G ∈ LBDAG≤w

(A) iff there is an accepting memoryless run of A on G. For the

memoryless run ̺, we define the graph G̺ := (V ̺, E̺) with V ̺ :=
{

̺(x)
∣

∣ x ∈ R
}

and E̺ :=
{(

̺(x), ̺(y)
)
∣

∣

x, y ∈ R and y is a child of x
}

. The graph G̺ is a representation of the memoryless run ̺ in which equally
labeled nodes are merged. Furthermore, since G ∈ BDAG≤w, we have that G

̺ is a BDAG of width at most
|Q|w. Note that G̺ contains at most |Q| copies of each vertex v ∈ V .

Let c ≥ 0. A state q ∈ Q is c-releasing if α(q) > c and α(q) 6≡ c mod 2. An infinite path of the form
(h0, q0)(h1, q1) . . . in G

̺ is c-dominated if there is a state q ∈ inf(q0q1 . . .) with α(q) = c and no c-releasing
state in inf(q0q1 . . .). The function f : V ̺ → [2|Q|w] is a c-ranking for G̺ if the following conditions hold:

(i) For all (h, q) ∈ V ̺, if f(h, q) is odd then α(q) 6= c.

(ii) For all v, v′ ∈ V ̺ with v = (h, q), if (v, v′) ∈ E̺ and f(v) < f(v′) then q is c-releasing.

Thus, a ranking associates with each vertex in G̺ a number in [2|Q|w], which we call also rank. The ranks
along paths may only increase on vertices with c-releasing states and whenever a vertex’s state has color
c then a vertex’s rank is odd. Note that each infinite path in G̺ either vists vertices with c-releasing
states infinitely often or gets trapped in some rank. If all of these ranks are odd we say that a c-ranking
is safe. Formally, a c-ranking f is safe if for every infinite path (h0, q0)(h1, q1) . . . in G̺, either there is
a state q ∈ inf(q0q1 . . .) that is c-releasing or there is an integer n ∈ N such that f(hn, qn) is odd and
f(hj, qj) = f(hn, qn), for all j ≥ n. We point out that the color α(q) of a state q ∈ Q and the rank f(h, q)
of a vertex (h, q) ∈ V ̺ have different meanings. In particular, the parities of α(q) and f(h, q) can differ.

It holds that the run ̺ is accepting iff for all odd c ≥ 1, all infinite paths in G̺ are not c-dominated.
In the following subsection, we reduce the problem of checking whether every infinite path in G̺ is not
dominated by one specific color to the problem of checking the existence of a safe ranking for G̺.

9

4.2. Reduction

This subsection is dedicated to the proof of the following theorem. The proof is based on ingredients
that appear in the Kupferman and Vardi’s correctness proof of the construction that translates alternating
coBüchi word automata into weak alternating word automata [22]. Since our automata are parity automata
that operate over BDAGs instead of words, some arguments are more subtle than in the coBüchi-word-
automata case.

Theorem 4.2. Let c ≥ 0. Every infinite path in G̺ is not c-dominated iff there is a safe c-ranking for G̺.

The if direction of Theorem 4.2 is easy to see. Assume that there is a safe c-ranking for G̺. It follows
that every infinite path visits either infinitely often vertices with a color greater than c and different parity,
or eventually avoids visiting vertices with color c. Hence, every infinite path in G̺ is not c-dominated.

For the only-if direction, one needs to show the existence of a safe c-ranking f : V ̺ → [2|Q|w] for G̺.
We show its existence by constructing one. For assigning a rank to a vertex, we iteratively delete from G̺

vertices by alternatingly deleting vertices from which we cannot reach a vertex with the color c and from
which only finitely many vertices are reachable. The assigned rank is the iteration in which the vertex is
deleted. Since all infinite paths of the run G̺ go through infinitely many bottlenecks, it turns out that every
vertex is eventually deleted. We only need finitely many iterations here until all vertices of G̺ are deleted
since the width of the BDAG G̺ is at most |Q|w. We also remark that the construction does not work
when the runs are trees since the number of iterations for deleting infinite paths might be unbounded. So,
one would obtain infinitely many ranks, which in turn would lead to having infinitely many states in the
resulting automaton.

For defining the c-ranking f : V ̺ → [2|Q|w], we introduce the following definitions. Consider a subgraph
G = (V,E) of G̺. We call a vertex v ∈ V well-founded in G if every path in G starting from v has finite
length. We call that v ∈ V is c-free in G if no vertex with color c is reachable from v in G. Moreover, define
an infinite sequence of subgraphs G0, G1, G2, . . . of G̺, where the vertices Vi and the edges Ei of a graph
Gi are inductively defined as follows, for i ∈ N:

– V0 := V ̺ and E0 := E̺ \
{

(v, v′) ∈ E̺
∣

∣ v’s state is c-releasing
}

– V2i+1 := V2i \ {v | v is well-founded in G2i} and E2i+1 := E2i ∩ (V2i+1 × V2i+1)

– V2i+2 := V2i+1 \ {v | v is c-free in G2i+1} and E2i+2 := E2i+1 ∩ (V2i+2 × V2i+2)

Note that G0 is obtained from G̺ be removing edges that start from vertices with c-releasing states. By
removing these edges, we have that every infinite path in G0 does not visit vertices with c-releasing states.
Furthermore, since every infinite path in G̺ is not c-dominated, every path in G0 eventually avoids visiting
vertices with color c.

Before defining the function f : V ̺ → [2|Q|w] and showing that it is a safe c-ranking, we prove some
properties about the graphs G0, G1, G2, Recall that by assumption, every infinite path in G̺ is not
c-dominated. Thus, all the infinite paths in the Gis are also not c-dominated.

Lemma 4.3. For every i ∈ N, the graph G2i+1 is empty or has a vertex from which an infinite path starts

that only visits c-free vertices.

Proof. Assume that G2i+1 is not empty. By definition, every vertex in G2i+1 is not well-founded. Hence,
every vertex in G2i+1 has at least one successor.

For the sake of contradiction, assume that there is no c-free vertex in G2i+1. Consider some vertex
(h1, q1) in G2i+1. Let (h

′
1, q

′
1) be a successor of (h1, q1). Since (h′1, q

′
1) is not c-free, there is a vertex (h2, q2)

reachable from (h′1, q
′
1) with α(q2) = c. Let (h′2, q

′
2) be a successor of (h2, q2). Since (h′2, q

′
2) is not c-free,

there is a vertex (h3, q3) reachable from (h′2, q
′
2) with α(q3) = c. Let (h′3, q

′
3) be a successor of (h3, q3). If

we continue this way, we construct an infinite path that does not visit any vertex with a c-releasing state
but visits infinitely many vertices (h, q) with α(q) = c. This path corresponds to a c-dominated path in G̺,
which contradicts the assumption that every infinite path in G̺ is not c-dominated.

10

With the help of the next lemma, we show that one obtains the empty graph from G̺ in 2|Q|w steps by
alternately removing infinite paths according to Lemma 4.3 and well-founded vertices from G̺.

Lemma 4.4. For every i ∈ N, either the graph G2i+1 is empty or there is an integer k ∈ N such that for

every ℓ ∈ N with ℓ ≥ k, we have

∣

∣V2i+2 ∩ (Nℓ ×Q)
∣

∣ <
∣

∣V2i+1 ∩ (Nℓ ×Q)
∣

∣ ,

where the vertices of the BDAG G are partitioned into the sets L0, N0, L1, N1, . . . according to Definition 4.1.

Proof. If G2i+1 is empty, we are done. Otherwise, consider an infinite path π = (h0, q0)(h1, q1) . . . ∈
(V × Q)ω in G2i+1 that consists of only c-free vertices. This path exists by Lemma 4.3. Assume that
(hk′ , qk′) ∈ (Nk ∪ Lk)×Q, for some k, k′ ∈ N. For each ℓ ∈ N with ℓ ≥ k, there is vertex (hℓ′ , qℓ′) ∈ Nℓ ×Q
with ℓ′ ∈ N occurring in π. Note that these vertices (hk′ , qk′) and (hℓ′ , qℓ′) exist since π is infinite and the
Lis are well-founded. By definition, we remove the vertex (hℓ′ , qℓ′) from G2i+1.

Corollary 4.5. Every vertex in G2|Q|w is well-founded and the graph G2|Q|w+1 is empty.

Proof. Observe that there are infinitely many Nis in the BDAG G and these Nis contain at most w vertices.
Also, note that there is some k ∈ N such that G2|Q|w does not contain any vertex (h, q) ∈ Nℓ ×Q, for every
ℓ > k. This follows from Lemma 4.4 and the fact that G̺ contains at most |Q| vertices (h, q) with h ∈ V .

Assume a vertex (h, q) in G2|Q|w. Every infinite path from (h, q) in G0 eventually visits a vertex (h′, q′)
with h′ ∈ Nℓ, for some ℓ > k. The vertex (h′, q′) no longer exists in G2|Q|w. It follows that (h, q) is well-
founded in G2|Q|w. By definition, we remove (h, q) in G2|Q|w+1. We conclude that the graph G2|Q|w+1 is
empty.

We define the c-ranking f : V ̺ → [2|Q|w] as

f(v) :=

{

2i if v is well-founded in G2i,

2i+ 1 if v is c-free in G2i+1.

By Corollary 4.5, the function f assigns to every vertex in G̺ a number in [2|Q|w]. Obviously, f fulfills the
first condition (i) of the definition of a c-ranking. The second condition (ii) follows from the next lemma.

Lemma 4.6. For all vertices v, v′ ∈ V ̺, if v′ is reachable in G̺ from v without visiting a vertex with a

c-releasing state then f(v′) ≤ f(v).

Proof. Assume that f(v) = i. If v′ /∈ Vi then there is some j ∈ N with j < i such that v′ ∈ Vj and v
′ 6∈ Vj+1.

By the definition of f , we have then f(v′) < i. If v′ ∈ Vi, we must show that f(v′) = i. (a) Assume that i
is even, that is, v is well-founded in Gi. Since v′ is reachable from v without visiting a c-releasing vertex,
v′ is also well-founded in Gi. Note that if a vertex v′′ 6= v on the path from v to v′ is removed in some
previous iteration then v′ would also have been removed in that iteration and we would have f(v′) < f(v).
(b) Assume that i is odd, that is, v is c-free in Gi. Again, since v′ is reachable from v without visiting a
c-releasing vertex, v′ is also c-free in Gi. In both cases, it follows that f(v′) = f(v).

Finally, we show that the c-ranking f is safe, which completes the proof of Theorem 4.2.

Lemma 4.7. Every infinite path in G̺ that does not visit infinitely many vertices with c-releasing states,

gets trapped in an odd rank.

Proof. Let π = v0v1 . . . be an infinite path in G̺ that only visits finitely many vertices with c-releasing
states. Due to Lemma 4.6, there is an integer k ∈ N such that f(vm) = f(vk), for all m ≥ k. The suffix
vkvk+1 . . . of the path π is an infinite path in Gf(vk). Assume that f(vk) is even. Every vertex vm with
m ≥ k is well-founded in Gf(vk). However, since π’s suffix vkvk+1 . . . is infinite the vertex vk cannot be
well-founded in Gf(vk). We conclude that f(vk) must be odd.

11

4.3. Automaton Construction

In the following, we show that the existence of a safe ranking can be checked by a Büchi automaton.
The ranks are guessed during a run with the states of the Büchi automaton. The conditions (i) and (ii) of
a ranking are locally checked by the transition function of the automaton. With the acceptance condition
of the automaton one checks whether the guessed ranking is safe. The construction details are given in the
proof of the following theorem.

Theorem 4.8. Let c ≥ 0. There is a (P, A)-BA Bc with |Q| · (2|Q|w + 1) states and LBDAG≤w
(Bc) equals

{

G ∈ BDAG≤w

∣

∣ there is a memoryless run ̺ of A on G such that G̺ has a safe c-ranking
}

.

Furthermore, ||Bc|| ∈ O
(

||A|| · (|Q|w + 1)
)

.

Proof. We define Bc as
(

Q× [2|Q|w], η, pI, β
)

, where pI, η, and β are as follows:

– The initial state pI is the tuple (qI, 2|Q|w).

– To define the transition function η, we need the following two definitions. (1) For q ∈ Q and r, r′ ∈ [2|Q|w],
we write r′ �q r if either r′ ≤ r or q is c-releasing. (2) For ϕ ∈ B+

(

P ∪ P̄ ∪ (Q × { �,�} × A)
)

, q ∈ Q,
and r ∈ [2|Q|w], we define releaseq(ϕ, r) as the positive Boolean formula that we obtain by replacing each
proposition (p, ⋆, a) in ϕ by the disjunction

∨

r′�qr

(

(p, r′), ⋆, a
)

. For q ∈ Q and r ∈ [2|Q|w], we define

η(q, r) :=

{

releaseq
(

δ(q), r
)

if α(q) 6= c or r is even,

ff otherwise.

– The acceptance condition is determined by β : Q × [2|Q|w] → {1, 2} where

β(q, r) :=

{

2 if q is c-releasing or r is odd,

1 otherwise.

Obviously, Bc has |Q| · (2|Q|w + 1) states. An upper bound on the number of distinct subformulas in
the positive Boolean formula η(q, r) for q ∈ Q and r ∈ [2|Q|w] is O

(

m + |Q| · (|Q|w + 1)
)

, where m is the

number of distinct formulas in δ(q). Note that the disjunction
∨

r′�qr

(

(p, r′), ⋆, a
)

in η(q, r), which replaces

a proposition of the form (p, ⋆, a) in δ(q), is a subformula of
∨

0≤r′≤2|Q|w

(

(p, r′), ⋆, a)
)

. The disjunction
∨

0≤r′≤2|Q|w

(

(p, r′), ⋆, a)
)

has O(|Q|w + 1) subformulas. Since we count multiple occurrences of the same

subformula in the transitions of an automaton only once, we obtain that ||Bc|| ∈ O
(

||A|| · (|Q|w + 1) + |Q| ·

(|Q|w + 1)
)

⊆ O
(

||A|| · (|Q|w + 1)
)

. It remains to prove that G ∈ LBDAG≤w
(Bc) iff there is a run ̺ of A on

G such that the graph G̺ has a safe c-ranking.

(⇒) Let ̺′ : R → V ×
(

Q× [2|Q|w]
)

be an accepting, memoryless run of Bc on G =
(

V, (Ea)a∈A, vI, λ
)

. We

define the tree ̺ : R → V ×Q with ̺(x) := (h, q), for every x ∈ R with ̺′(x) =
(

h, (q, r)
)

, that is, the labels
of the nodes in ̺ are the projections of the labels of ̺′ on V × Q. The tree ̺ is a run of A on G since the
transition function of Bc just annotates state of A by ranks. We can assume that there are no x, y ∈ R with
̺′(x) = (h, (q, r)), ̺′(y) = (h, (q, r)), and r 6= r′. That is, the rank r ∈ [2|Q|w] assigned by the run ̺′ to a
vertex (h, q) in the graph G̺ representing ̺ is unique. We define f(h, q) := r.

It follows from the definition of η that f is a c-ranking for G̺. Since ̺′ is accepting, on every branch π
in ̺′ there are either c-releasing states or odd ranks which, in both cases, occur infinitely often. The case
where π visits infinitely many vertices with c-releasing states is obvious. Assume that π visits only finitely
many vertices with c-releasing states. Then, the ranks do not increase from some point onwards. Thus, they
must eventually stabilize. We conclude that f is safe.

(⇐) Let f : V ̺ → [2|Q|w] be a safe c-ranking on the graph representation G̺ = (V ̺, E̺) of the run
̺ : R → V × Q of A on G =

(

V, (Ea)a∈A, vI, λ
)

. The idea is to attach the ranks given by f to the labels

12

of the nodes in ̺ to obtain an accepting run of Bc on G. We define the tree ̺′ : R → V ×
(

Q × [2|Q|w]
)

as ̺′(x) :=
(

h, (q, f(h, q))
)

, for x ∈ R with ̺(x) = (h, q). However, ̺′ is not necessarily a run of Bc on G

because of the following two cases.

1. The rank of (vI , qI) might be smaller than 2|Q|w. In this case, ̺′ does not start in Bc’s initial state,
which is (qI , 2|Q|w).

2. Assume that there are vertices h, h′, h′′ ∈ V with (h, h′), (h, h′′) ∈ Ea, for some a ∈ A. Furthermore,
assume ̺(x) = (h, p) and δ(p) = (q,�, a), for some node x ∈ R and states p, q ∈ Q. The node x
has children y1, y2 ∈ R with ̺(y1) = (h′, q) and ̺(y2) = (h′′, q). According to the definition of ̺′, we
have that ̺′(x) =

(

h, (p, f(h, p))
)

, ̺′(y1) =
(

h′, (q, f(h′, q))
)

, ̺′(y2) =
(

h′′, (q, (f(h′′, q))
)

. The rank of
(h′, q) might be different from the rank of (h′′, q). However, for ̺′ being a run of Bc, it is necessary
to go to the same state, either (q, f(h′, q)) or (q, f(h′′, q)), when moving Bc’s read-only head from the
vertex h to the vertices h′ and h′′.

For both cases, we can easily adjust ̺′ so that we obtain a run of Bc on G. We define the tree ̺′′ : R →
V ×

(

Q × [2|Q|w]
)

as follows. We addresse the first case by defining ̺′′(ε) :=
(

vI , (qI , 2|Q|w)
)

. Whenever
the second case arises, we attach the maximum of the ranks to the labels of the yi nodes. More formally,
let y ∈ R, with ̺(y) = (h′, q). In case y is the child of x ∈ R, with ̺(x) = (h, p), and the chosen set M

satisfying δ(p) in the run ̺ at the node x contains (q,�, a), for some a ∈ A, we define ̺(y) := (h′, q), and
(h, h′) ∈ Ea as ̺′′(y) :=

(

h′, (q,max{f(h′′, q) | (h, h′′) ∈ Ea})
)

. For all other nodes, ̺′′ is as ̺′.
It is easy to see that ̺′′ is a run of Bc on G. Observe that if p in the second case is not c-releasing then

max{f(h′′, q) | (h, h′′) ∈ Ea} ≤ f(h, q). Furthermore, if one of the ranks in {f(h′′, q) | (h, h′′) ∈ Ea} is odd
then α(q) 6= c. The run ̺′′ is accepting. This follows from the assumption that f is safe. Every infinite
path in G̺ that does not visit c-releasing vertices infinitely often gets trapped in an odd rank. Then, by the
definition of β, every infinite branch in ̺′, and thus also in ̺′′, is accepting.

4.4. Applications

The first application is to obtain weak automata from Büchi automata.

Lemma 4.9. Let A be a (P, A)-BA with n states. There is a (P, A)-WA B with n(2nw + 1) states and

LBDAG≤w
(B) = LBDAG≤w

(A). Furthermore, ||B|| ∈ O
(

||A|| · (nw + 1)
)

.

Proof. We first construct from A the coBüchi automaton C by dualizing the transition function of A and its
acceptance condition. The automaton C accepts the complement of A. Recall that a coBüchi automaton
only assigns the colors {0, 1} to its states. Second, let B1 be the Büchi automaton for C obtained from
Theorem 4.8 for the only odd color 1. This automaton is weak. This can be seen by the definition of B1’s
transition function and acceptance condition. Note that C does not have 1-releasing states. From B1’s
definition it also follows easily that B1 has n(2nw+1) states and ||B1|| ∈ O

(

||A|| · (nw+1)
)

. It follows from
Theorem 4.2 that LBDAG≤w

(B1) = LBDAG≤w
(C). Finally, we dualize B1. The resulting automaton is again

weak, has the same size as B1, and accepts the language LBDAG≤w
(A).

We now show how to combine Büchi automata for different odd colors from Theorem 4.8 so that they
simultaneously check the existence of safe rankings.

Lemma 4.10. Let A be a (P, A)-PA with n states and index k. There is a (P, A)-BA B with O
(

kn(2nw +

1)⌈k/2⌉
)

states and LBDAG≤w
(B) = LBDAG≤w

(A). Moreover, ||B|| ∈ O
(

k||A||(2nw + 1)⌈k/2⌉
)

.

Proof. Assume that A = (Q, δ, qI, α) and that the odd colors of A are c1, . . . , cℓ ∈ N, for some ℓ ≤ ⌈k/2⌉.
We extend the automaton construction from Theorem 4.8 so that the constructed automaton C simul-

taneously checks the existence of a run ̺ of A on the given input such that G̺ has ci-safe rankings, with
i ∈ {1, . . . , ℓ}. The states of C have the form (q, r1, . . . , rℓ), where q is a state of A and the ris are ranks as

13

in the Büchi automata Bci from Theorem 4.8, that is, ri ∈ [2|Q|w]. C’s initial state is (qI, 2|Q|w, . . . , 2|Q|w).
Its transition function η is defined as

η(q, r1, . . . , rℓ) :=

{

releaseq
(

δ(q), r1, . . . , rℓ
)

if α(q) 6= ci or ri is even, for all i ∈ {1, . . . , ℓ},

ff otherwise,

where releaseq is the extension from the construction of a Büchi automaton Bci in Theorem 4.8 to multiple
ranks. Namely, releaseq(ϕ, r1, . . . , rℓ) replaces every proposition of the form (p, ⋆, a) in the positive Boolean
formula ϕ by the disjunction

∨

(r′1,...,r
′
ℓ
)�q(r1,...,rℓ)

(

(p, r′1, . . . , r
′
ℓ), ⋆, a

)

, where (r′1, . . . , r
′
ℓ) �q (r1, . . . , rℓ) iff

r′i ≤ ri or q is ci-releasing, for all i ∈ {1, . . . , ℓ}.
The automaton C is a so-called generalized Büchi automaton, that is, its acceptance condition is the

conjunction of the Büchi acceptance conditions β1, . . . , βℓ : Q × [2|Q|w]ℓ → {1, 2}. The ith acceptance
condition is βi(q, r1, . . . , rℓ) := 2 if q is ci-releasing or ri is odd and βi(q, r1, . . . , rℓ) := 1, otherwise.

The automaton C has n(2nw + 1)ℓ states. An upper bound on ||C|| is O
(

||A||(nw + 1) + n(2nw + 1)ℓ
)

⊆

O(||A||(2nw+1)ℓ
)

. With Theorem 4.2 we conclude that C accepts the language LBDAG≤w
(A). It is standard

to obtain from C an equivalent Büchi automatonB with O
(

kn(2nw+1)⌈k/2⌉
)

states and ||B|| ∈ O
(

k||A||(2nw+

1)⌈k/2⌉
)

.

5. Collapse Results

By consecutively applying the previously presented translations to a Lµ sentence, we obtain that Lµ’s
alternation hierarchy over any class only containing BDAGs of width at most w collapses to its alternation-
free fragment, for a fixed w ∈ N.

Theorem 5.1. Let w ≥ 2 and U ⊆ BDAG≤w. For every sentence ϕ, there is an alternation-free sentence

ψ of size 2w
O(|ϕ|·ad(ϕ))

such that LU(ψ) = LU(ϕ). If ϕ is guarded, then the size of ψ is 2(|ϕ|·w)O(ad(ϕ))

.

Proof. Suppose ϕ is guarded and let n := |ϕ| and k := ad(ϕ). We construct the parity automaton Aϕ

with ||Aϕ|| ∈ O(n) and ind(Aϕ) = k + 1 (Theorem 3.2). Then, we construct from Aϕ the Büchi automaton
Bϕ with ||Bϕ|| ∈ (nw)O(k) (Lemma 4.10). From Bϕ, we obtain the weak automaton Cϕ with ||Cϕ|| ∈
(nw)O(k) ·

(

2(nw)O(k)w+1
)

⊆ (nw)O(k) (Lemma 4.9). Finally, we construct the alternation-free sentence ψ

with |ψ| ∈ (nw)O(k) · 2(nw)O(k)

⊆ 2(nw)O(k)

(Theorem 3.3). By construction, LBDAG≤w
(ϕ) = LBDAG≤w

(ψ).
Since U ⊆ BDAG≤w, we have that LU(ϕ) = LU(ψ). When ϕ is not guarded we first transform it into
guarded form (Lemma 3.1) under an at most exponential blow-up, and replace n by 2O(n) which yields an

upper bound of 2w
O(nk)

.

In the following, we derive from Theorem 5.1 further classes of structures over which the alternation
hierarchy of Lµ collapses to the alternation-free fragment. We rely here also on the well known fact that Lµ
cannot distinguish between structures that are bisimilar.

Recall that the (Σ, A)-graphs G =
(

V, (Ea)a∈A, vI, λ
)

is bisimilar to G′ =
(

V ′, (E′
a)a∈A, v

′
I, λ

′
)

if there is
a relation R ⊆ V × V ′ with the following properties. (i) λ(v) = λ′(v′), for all (v, v′) ∈ R, (ii) (vI, v

′
I) ∈ R,

(iii) for all u, v ∈ V , u′ ∈ V ′, and a ∈ A, if (u, v) ∈ Ea and (u, u′) ∈ R then (u′, v′) ∈ E′
a and (v, v′) ∈ R, for

some v′ ∈ V ′, and (iv) for all u′, v′ ∈ V ′, u ∈ V , and a ∈ A, if (u′, v′) ∈ E′
a and (u, u′) ∈ R then (u, v) ∈ Ea

and (v, v′) ∈ R, for some v ∈ V . We call R a bisimulation relation. It is easy to see that (i) every graph is
bisimilar to itself, (ii) if a graph G is bisimilar to a graph G′, then G′ is bisimilar to G, and (iii) if a graph G

is bisimilar to a graph G′ and G′ is bisimilar to a graph G′′, then G is bisimilar to G′′.

Theorem 5.2. Let R be a bisimulation relation between the (Σ, A)-graphs G and G′. For vertices v and v′

of G and G′, respectively, if (v, v′) ∈ R then v ∈ [[ϕ]]
G
iff v′ ∈ [[ϕ]]

G
′

, for every sentence ϕ.

14

+1 +1 +1 +1 +1 +1 +1 +1

L L N L N L N LN00 1 21 2 3 3 4

+1

+1

+1 +1

+1

+1

+1

+1

jump

jump

jump
+1

+1 +1

L N L L2 LNN 2 30 10 1

Figure 2: BDAG representation of infinite words (left) and infinite nested words (right)

5.1. Infinite Nested Words

We view infinite words over the alphabet Σ as (Σ, {+1})-graphs with the vertex set N, the source 0, and
where the edges of the action +1 are given by the successor relation. Let W be the set of these (Σ, {+1})-
graphs. Nested words [2] extend words with a hierarchical structure. Such a hierarchical structure over
an infinite word can be given through a matching relation y ⊆ N × N, which must satisfy the following
conditions for all i, j ∈ N: (1) if iy j then i < j, (2) |{k | iy k}| ≤ 1 and |{k | ky j}| ≤ 1, and (3) if iy j
then there are no i′, j′ ∈ N with i′ y j′ and i < i′ ≤ j < j′. Let NW be the class of infinite nested words.
Thus, NW consists of (Σ, {+1, jump})-graphs G, where the vertex set is N, the source is 0, and the edges
for the actions +1 and jump are given by the successor relation and a matching relation, respectively.

It is easy to see that every graph in W is a BDAG of width 1. In the following we show that even every
graph in NW is a BDAG of width 1. See Figure 2 for an illustration. By Theorem 5.1, it follows then that
the Lµ alternation hierarchy over these structures collapses to the alternation-free fragment. This improves
prior results in [3, 7] on the expressivity of Lµ over infinite nested words. In fact, we establish a more general
result. The collapse results for words and nested words are special instances.

Let A be a non-empty finite set of actions, Σ be an alphabet, and L be the class of (Σ, A)-graphs with
vertex set N and source 0. Furthermore, we require that edges only connect vertices with larger vertices,
that is, if (v, v′) is an edge then v < v′, and that every vertex has a finite out-degree, that is, for each
vertex v, there are only finitely many edges of the form (v, v′). For a vertex u ∈ N of a graph G ∈ L, we
define J(u) :=

{

(v, v′) ∈
⋃

a∈AEa
∣

∣ v < u < v′
}

. Intuitively, J(u) contains the edges that jump over u.

Lemma 5.3. Let G be a (Σ, A)-graph in L. If there is an infinite set U ⊆ N and w ∈ N such that |J(u)| ≤ w,
for all u ∈ U , then G is bisimilar to a BDAG of width at most w + 1. Furthermore, G is a BDAG of width

at most 1 if |J(u)| = 0, for all u ∈ U .

Proof. Let G be the (Σ, A)-graph (N, (Ea)a∈A, 0, λ). Without loss of generality, we assume that (1) 0 6∈ U ,
(2) if u ∈ U then u + 1 6∈ U , and (3) vertices in U do not jump over vertices in U , that is, for every v ∈ U
there are no u, v′ ∈ U with (v, v′) ∈ J(u). We inductively define an infinite sequence of vertices u0, u1, . . .
in U by u0 := minU and

ui := min
{

u ∈ U
∣

∣ u > max{ui−1} ∪ {v′′ ∈ N | (v, v′) ∈ J(ui−1) and
either v′ = v′′ or (v′, v′′) ∈

⋃

a∈AEa}
}

,

for i > 0.
For each i ∈ N, the set J(ui) contains at most w edges. Assume J(ui) =

{

(vi,1, v
′
i,1), . . . , (vi,ni

, v′i,ni
)
}

,
for some ni ∈ N with ni ≤ w. We obtain the (Σ, A)-graph G′ from G as follows. For each vertex v′i,j , with
i ∈ N and j ≤ ni, we add a new vertex v̂′i,j . Furthermore, we redirect the edge from vi,j to v

′
i,j , which jumps

over ui, to its copy v̂′i,j , that is, we delete the edge (vi,j , v
′
i,j) and add the edge (vi,j , v̂

′
i,j). For every edge

(v′i,j , v
′′), where v′′ is some vertex, we also add the new edge (v̂′i,j , v

′′). Note that by the construction of the
sequence u0, u1, . . . , we have that v′′ ≤ ui+1.

It is easy to see that G and G′ are bisimilar. Furthermore, G′ is a BDAG of width at most w+1. Its vertex
set can be partitioned into the layers L0, N0, L1, N1, . . . as follows: for i ∈ N, let Ni := {ui, v̂′i,1, . . . , v̂

′
i,ni

}
and Li := {v ∈ N | ui−1 < v < ui}, with u−1 := −1. If |J(u)| = 0, for all u ∈ U , it follows that |Ni| = 1, for
all i ∈ N. Since G′ is isomorphic to G in this case, we conclude that G is a BDAG of width at most 1.

15

jump2

+1 +1 +1 +1 +1

jump2 jump2

jump1 jump1 jump1

+1 +1 +1 +1+1+1+1

Figure 3: Multiple matching relations

Theorem 5.4. For every sentence ϕ, there is an alternation-free sentence ψ such that LNW(ϕ) = LNW(ψ).

Proof. By Lemma 5.3 and the Theorems 5.2 and 5.1, it suffices to show that every (Σ, {+1, jump})-graph
G ∈ NW has an infinite vertex set U ⊆ N with |J(u)| = 0, for every u ∈ U .

Let y ⊆ N × N be a matching relation. We define the vertices u0, u1, . . . of the set U inductively. Let
u0 := 0. For k > 0, we define uk := j if uk−1 y j, for some j ∈ N. Note that this j is uniquely determined
and j > uk−1. Otherwise, if there is no j ∈ N with uk−1 y j, we define uk := uk−1 + 1. Obviously, there
are no edges that jump over the vertices in U , that is, |J(uk)| = 0, for every k ∈ N.

Remark 5.5. It also follows from Lemma 5.3 that Lµ’s alternation hierarchy collapses over graphs that are,
for example, of the form as depicted in Figure 3. Note that we have here |J(u)| ≤ 1, for each vertex u ∈ N.
However, it remains open whether the hierarchy collapses in general over the class of infinite multiply-nested
words [6, 26], that is, infinite words that can have more than one matching relation.

5.2. Finite Graphs with Bounded Feedback Sets

We now consider classes of finite graphs that can be unfolded to bisimilar BDAGs with bounded width.
The width of these BDAGs is characterized by the cardinality of a feedback vertex set of the original folded
graph. A set F ⊆ V is a feedback vertex set (FVS) of G =

(

V, (Ea)a∈A, vI, λ
)

if the removal of the vertices
in F separates G into a set of finite DAGs. Finite DAGs have the empty set as an FVS.

Lemma 5.6. Every finite (Σ, A)-graph with an FVS of cardinality k ∈ N has a bisimilar BDAG of width at

most k.

Proof. Let G be a (Σ, A)-graph
(

V, (Ea)a∈A, vI, λ
)

with the FVS F ⊆ V of cardinality k. Furthermore, let T
be the tree unfolding of G and let R be the canonical bisimulation relation between the vertices of G and T.

To build a BDAG D of width at most k, we identify some bisimilar subtrees in T and merge their roots.
In more detail, we obtain D as follows. Visit the vertices on every branch of T by starting from the root
of the tree and going to the successor vertices until (i) two vertices in the unfolding of a vertex in v ∈ F
occur in the branch or until (ii) a vertex with no successor is reached. Because F is a FVS of G either (i)
or (ii) are true in a branch after visiting finitely many of the branch’s vertices. Let T0 be this initial finite
subtree of T. Based on T0, construct a DAG by merging some vertices of T0. Namely, merge the leaves t
and t′ of T0 if they have successors in T and stem from the same vertex v ∈ F in G, that is, (v, t) ∈ R and
(v, t′) ∈ R. We call the resulting DAG D0 the layer 0 of D. Furthermore, let N0 be the set of D0’s terminal
vertices that stem from vertices in T with successors and let L0 be the set of the remaining vertices of D0.
Now, the steps described above for constructing D0 are carried out for the |N0| vertices in T to construct
the DAG D1, the layer 1 of D. Instead of a single tree T0 we obtain a forest of finitely many finite trees.
For this forest, we merge the trees’ leaves analogously, obtaining D1 and the vertex sets N1 and L1. In
general, those steps are repeated with respect to Di, with i ∈ N, to construct Di+1, so that a DAG D with
the disjoint sets L0, N0, L1, N1, L2, N2, . . . of vertices is built.

To see that G and D are bisimilar note that either (i) a vertex in D stems directly from a vertex of G’s
tree unfolding and every graph is bisimilar to its own tree unfolding, or (ii) a vertex in D is obtained by
merging different occurrences of the same vertex in G and every vertex of a graph is bisimilar to itself. To
see that D is a BDAG of width at most k observe that sup{|Ni| | i ∈ N} ≤ k. This is the case because, due
to merging, every Ni does not contain more than one occurrence of a vertex in F .

Using the previous lemma, we can, then, obtain the following result.

16

Theorem 5.7. Let k ∈ N and U be a class finite (2P, A)-graphs with FVS of cardinality at most k. For

every sentence ϕ, there is an alternation-free sentence ψ such that LU(ψ) = LU(ϕ).

Proof. It follows from Lemma 5.6 that each graph in U can be unfolded into a BDAG of width at most k.
We then apply Theorem 5.1 to this obtained class of unfolded BDAGs.

Since collapse results carry over to smaller classes of structures, Theorem 5.7 implies the collapse of the
alternation hierarchy over the smaller class of undirected graphs with bounded feedback vertex sets.

Finally, we consider classes of graphs that can be decomposed by removing a bounded number of edges.
Let G =

(

V, (Ea)a∈A, vI, λ
)

be a (Σ, A)-graph. A set F ⊆
⋃

a∈AEa is a feedback edge set (FES) of G if the
removal of the edges in F separates G into a set of finite DAGs. Since every graph with FES F has also a
FVS of cardinality at most |F |, we obtain the following corollary.

Corollary 5.8. Let k ∈ N and U be a class of finite (2P, A)-graphs with FESs of cordinality at most k. For

every sentence ϕ, there is an alternation-free sentence ψ such that LU(ψ) = LU(ϕ).

6. Conclusion

The results in this article focus on Lµ’s expressivity. By generalizing and utilizing automata-theoretic
methods, we have unified, generalized, and strengthened prior collapse results of Lµ’s alternation hierarchy,
namely, the results on finite acyclic directed graphs [27], infinite words [19], and infinite nested words [3].
Future work includes to investigate whether the presented automaton construction for eliminating odd
colors in parity automata can be generalized and to explore over which other classes of structures such
generalizations apply. It would also be interesting to find other classes of structures where for each structure
in such a class one can always find a (bisimilar) bottlenecked directed acyclic graph of bounded width. The
ultimate goal is to characterize the classes of graphs over which the alternation-free fragment has already
the same expressivity as the full µ-calculus.

We mainly ignore complexity issues in this article, except the established upper bounds on the sizes of
the resulting alternation-free formulas. It remains as future work to provide lower bounds and to investigate
the computational complexity of the satisfiability problem for Lµ with respect to classes of structures over
which its alternation hierarchy collapses.

Acknowledgments. This article is an extended version of the conference paper [17]. The authors thank
Christian Dax for initial discussions on the topic of this article, Julian Bradfield for advice on the alternation
hierarchy and Florian Bruse for helping to correct the translation from weak automata into the alternation-
free µ-calculus. We also thank the anonymous reviewers for pointing us to some flaws in earlier versions of the
article. This work was done while Felix Klaedtke was at ETH Zurich. Finally, Julian Gutierrez acknowledges
the support of EPSRC grant EP/G012962/1 (at Edinburgh) and ERC grants ECSYM (at Cambridge) and
RACE (at Oxford). Martin Lange acknowledges the support of the ERC grant MCUNLEASH.

17

References

[1] L. Alberucci and A. Facchini. The modal µ-calculus over restricted classes of transition systems. J. Symb. Log., 74(4):1367–
1400, 2009.

[2] R. Alur and P. Madhusudan. Adding nesting structure to words. J.ACM, 56(3):1–43, 2009.
[3] M. Arenas, P. Barceló, and L. Libkin. Regular languages of nested words: Fixed points, automata, and synchronization.

Theor. Comput. Syst., 49(3):639–670, 2011.
[4] A. Arnold. The modal µ-calculus alternation-depth is strict on binary trees. Theor. Inform. Appl., 33(4–5):329–339, 1999.
[5] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic and the Foundations of Mathematics.

North-Holland, 2001.
[6] A. Blass and Y. Gurevich. A note on nested words. Technical Report MSR-TR-2006-139, Microsoft Research, 2006.
[7] L. Bozzelli. Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In Proceedings of

18th International Conference on Concurrency Theory (CONCUR’07), volume 4703 of Lect. Notes Comput. Sci., pages
476–491, 2007.

[8] J. C. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci., 195(2):133–153, 1998.
[9] J. C. Bradfield. Fixpoint alternation: arithmetic, transition systems, and the binary tree. Theor. Inform. Appl., 33(4–

5):341–356, 1999.
[10] F. Bruse, O. Friedmann, and M. Lange. Guarded transformation for the modal mu-calculus. CoRR, abs/1305.0648, 2013.
[11] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-free modal µ-calculus. In

Proceedings of the 3rd International Conference on Computer Aided Verification (CAV’91), volume 575 of Lect. Notes
Comput. Sci., pages 48–58. Springer, 1992.

[12] G. D’Agostino and G. Lenzi. On the µ-calculus over transitive and finite transitive frames. Theoret. Comput. Sci.,
411(50):4273–4290, 2010.

[13] G. D’Agostino and G. Lenzi. On modal µ-calculus over reflexive symmetric graphs. J. Logic Comput., 23(3):445–455,
2013.

[14] A. Dawar and M. Otto. Modal characterisation theorems over special classes of frames. Ann. Pure Appl. Logic, 161(1):1–42,
2009.

[15] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science (FOCS’91), pages 368–377. IEEE Computer Society, 1991.

[16] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-calculus. In Proceedings of
the 1st Symposium on Logic in Computer Science (LICS’86), pages 267–278. IEEE Computer Society, 1986.

[17] J. Gutierrez, F. Klaedtke, and M. Lange. The µ-calculus alternation hierarchy collapses over structures with restricted
connectivity. In Proceedings of the 3rd International Symposium on Games, Automata, Logics and Formal Verification
(GandALF’12), volume 96 of Elec. Proc. Theo. Comput. Sci., pages 113–126. eptcs.org, 2012.

[18] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-calculus with respect to monadic
second order logic. In Proceedings of the 7th International Conference on Concurrency Theory (CONCUR’96), volume
1119 of Lect. Notes Comput. Sci., pages 263–277. Springer, 1996.

[19] R. Kaivola. Axiomatising linear time mu-calculus. In Proceedings of the 6th International Conference on Concurrency
Theory (CONCUR’95), volume 962 of Lect. Notes Comput. Sci., pages 423–437. Springer, 1995.

[20] D. Kozen. Results on the propositional µ-calculus. Theoret. Comput. Sci., 27(3):333–354, 1983.
[21] O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata emptiness. In Proceedings of the 30th

Annual ACM Symposium on the Theory of Computing (STOC’98), pages 224–233. ACM Press, 1998.
[22] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Trans. Comput. Log., 2(3):408–429,

2001.
[23] O. Kupferman and M. Y. Vardi. From linear time to branching time. ACM Trans. Comput. Log., 6(2):273–294, 2005.
[24] G. Lenzi. A hierarchy theorem for the µ-calculus. In Proceedings of the 23rd International Colloquium on Automata,

Languages and Programming (ICALP’96), volume 1099 of Lect. Notes Comput. Sci., pages 87–97. Springer, 1996.
[25] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Munich, University of Technol-

ogy, 1997.
[26] P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In Proceedings of the 38th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’11), pages 283–294. ACM Press, 2011.
[27] R. Mateescu. Local model-checking of modal mu-calculus on acyclic labeled transition systems. In Proceedings of the 8th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), volume
2280 of Lect. Notes Comput. Sci., pages 281–295. Springer, 2002.

[28] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoret. Comput. Sci., 54(2–3):267–276, 1987.
[29] D. Niwiński. On fixed-point clones. In Proceedings of the 13th International Colloquium on Automata, Languages and

Programming (ICALP’86), volume 226 of Lect. Notes Comput. Sci., pages 464–473. Springer, 1986.
[30] D. Niwiński. Fixed points vs. infinite generation. In Proceedings of the 3rd Annual Symposium on Logic in Computer

Science (LICS’88), pages 402–409. IEEE Computer Society, 1988.
[31] I. Walukiewicz. Completeness of Kozen’s axiomatization of the propositional µ-calculus. In Proceedings of the 10th Annual

IEEE Symposium on Logic in Computer Science (LICS’95), pages 14–24. IEEE Computer Society, 1995.
[32] T. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math. Belg., 8(2):359–391, 2001.

18

