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Abstract. Most games for analysing concurrent systems are played on
interleaving models, such as graphs or infinite trees. However, several
concurrent systems have partial order models rather than interleaving
ones. As a consequence, a potentially algorithmically undesirable trans-
lation from a partial order setting to an interleaving one is required
before analysing them with traditional techniques. In order to address
this problem, this paper studies a game played directly on partial orders
and describes some of its algorithmic applications. The game provides
a unified approach to system and property verification which applies to
different decision problems and models of concurrency. Since this frame-
work uses partial orders to give a uniform representation of concurrent
systems, logical specifications, and problem descriptions, it is particu-
larly suitable for reasoning about concurrent systems with partial order
semantics, such as Petri nets or event structures. Two applications can
be cast within this unified approach: bisimulation and model-checking.

1 Introduction

Games form a successful approach to giving semantics to logics and programming
languages (semantic games) and to program verification (verification games).
Good surveys of some of the most important game-based decision procedures
and tools for property and systems verification can be found in [8, 16, 17], and in
the references therein. These ‘logic games’ [5] usually are sequential and played
on graphs or infinite trees. They offer an elegant approach to studying different
properties of sequential processes and of concurrent systems with interleaving
semantics, e.g., by using Kripke models or (labelled) transition graphs.

However, when dealing with concurrent systems with partial order seman-
tics [15], such as Petri nets or event structures (which are semantically richer
and more complex), the game-based techniques previously mentioned cannot be
directly applied because the explicit notion of independence or concurrency in
the partial order models is not considered. As a result, one has to construct the
graph structures associated with those partial order models—a translation that
one would like to avoid since, in many cases, it is algorithmically undesirable.

The reasons to wish to stay in a purely partial order setting are well-known
by the concurrency theory community. For instance, partial order models of
concurrency can be exponentially smaller than their interleaving counterparts;
moreover they are amenable to partial order reductions [10] and are the natural
input of the unfolding methods [7] for software and hardware verification—which
work very well in practice whenever the systems have high degrees of parallelism.



Then, it is desirable, for several algorithmic reasons, to have a game which
can be played directly on the partial order representations of concurrent systems.
The main problem is that games played directly on ‘noninterleaving structures’
(which include Petri nets and event structures) are not known to be determined
in the general case since they may well turn out to be of imperfect information,
mainly, due to the information about locality and independence in such models.

In this paper we study a class of games played on noninterleaving structures
(posets in our case) which is sound and complete, and therefore determined,
without using stochastic strategies as traditional approaches to concurrent games
[3, 4]. Our framework builds upon two ideas: firstly, the use of posets to give
a uniform representation of concurrent systems with partial order semantics,
logical specifications, and problem descriptions; and secondly, the restriction to
games with a semantic condition that reduces reasoning on different models and
decision problems to the analysis of simpler local correctness conditions.

The solution is realised by a new ‘concurrent logic game’ (CLG) which is
shown to be determined—even though it is, locally, of imperfect information. The
two players of the game are allowed to make asynchronous and independent local
moves in the board where the game is played. Moreover, the elements of the game
are all formalised in order-theoretic terms; as a result, this new model builds a
bridge between some concepts in order theory and the more operational world
of games. To the best of our knowledge, such an order-theoretic characterisation
has not been previously investigated for verification games.

Then our main contribution is the formalization of a concurrent logic game
model that generalises the results in [16] to a partial order setting, that is, the
games by Stirling for bisimulation and model-checking on interleaving structures
(and hence also related tableau-based techniques). The CLG model is inspired by
a concurrent semantic game model (for a fragment of Linear Logic [9]) studied by
Abramsky and Melliès [2]. However, the mathematics of the original game have
been drastically reformulated in the quest towards the answer to algorithmic
questions, and only a few technical features were kept.

Acknowledgements. I thank J. Bradfield, L. Ong, I. Stark, C. Stirling, and
G. Winskel for discussions and feedback on this and related manuscripts as well
as the reviewers for their comments. An extended version, which includes proofs
and examples that due to space could not be included here, is Chapter 5 of [12].

2 The Concurrent Game Model

We consider (infinite) logic games played by two players, Eve (∃) and Adam
(∀), whose interaction can be used to represent the flow of information when
analysing concurrent and distributed systems. The main idea is that by enriching
a logic game with the explicit information about local and independent behaviour
that comes with any partial order model, the traditional, sequential setting for
logic games (usually played on interleaving structures) can be turned into a
concurrent one on a partial order. This section studies a ‘concurrent logic game’
(CLG) played on a poset structure; a simple example is given in the appendix.

2



Preliminaries and Notations on Partial Orders. A ⊥A-bounded poset
A = (A,≤A) is a partially ordered set with a bottom element ⊥A such that for
all a ∈ A we have that ⊥A ≤A a. For any a ∈ A, a successor of a is an element
a′ such that a <A a′ and for all b if a ≤A b and b ≤A a′ then either a = b or
b = a′. Write a → a′ iff a′ is a successor of a and call a a terminal element iff
a 6→. Given a, a (principal) ideal ↓a is the downward-closed set {b ∈ A | b ≤A a};
dually, a (principal) filter ↑a of A is the upward-closed {b ∈ A | a ≤A b}. Also,
for any set A ⊆ A, write ↓A for the set

⋃
a∈A{b | b ∈ ↓a}, and likewise, ↑A for⋃

a∈A{b | b ∈ ↑a}; call ↓A a lower subset and ↑A an upper subset. We write
↓a for the induced poset (↓a,≤A), and similarly for ↑a, ↓A, and ↑A. Clearly
the posets ↓a and ↑a are ⊥-bounded if A is ⊥-bounded, since ⊥↓a = ⊥A in the
former case and ⊥↑a = a in the latter. Finally, a function f : A → A is a closure
operator iff it is extensive, monotonic, and idempotent, i.e., if satisfies that for
all a, a′ ∈ A: a ≤A f(a); a ≤A a′ implies f(a) ≤A f(a′); and f(a) = f(f(a)).

Boards. A board in a CLG is a ⊥-bounded, well-founded poset D = (D,≤D).
A lower (resp. an upper) sub-board B of D is a poset (B,≤D) such that B is a
lower (resp. an upper) subset of D. Then, a lower sub-board is a ⊥-bounded poset
and an upper sub-board is a union of possibly infinitely large ⊥-bounded posets;
as D is well-founded, then all lower sub-boards are also well-founded. We only
consider posets (boards) where every chain has a maximal element. Moreover, a
global position in D is an anti-chain D ⊆ D; the initial global position of D is
{⊥}. Finally, given a global position D of D, call any d ∈ D a local position.

Notation 1 Given any d ∈ D, write d← for the set of local positions {e | e → d}
and d→ for the set {d′ | d → d′}. The sets d← and d→ are, respectively, the
‘preset’ and ‘postset’ of local positions of d. Also, let SP(d) be the predicate that
holds iff | d← | > 1, and call d a ‘synchronization point’ in such a case.

Now, let∇ : D → Υ be a partial function that assigns players in Υ = {∃,∀} to
local positions. More precisely, ∇ is a total function on the set B ⊆ D of elements
that are not synchronization points—i.e., B = {d ∈ D | ¬SP(d)}; call the pair
(D,∇) a polarised board. In the following we only consider polarised boards
with the following property (called ‘dsync’), which ensures that the behaviour at
synchronization points is deterministic: SP(d) ⇒ |d→| = 1 and ∀e ∈ d←.|e→| = 1.

This property, i.e., dsync, induces a correctness condition when playing the
game. It ensures: firstly, that there are no choices to make in synchronization
points (as they are not assigned by ∇ to any player); and secondly, that as a
synchronization point does not share its preset with any other local position, then
local behaviour in the game, which is formally defined later, is truly independent.

Strategies. In a CLG a strategy can be local or global. A local strategy
λ : D → D is a closure operator partially defined on a board D = (D,≤D).
Being partially defined on D means that the properties of closure operators are
restricted to those elements where the closure operator is defined. In particular,
the relation a ≤D a′ ⇒ λ(a) ≤D λ(a′) holds iff λ is defined in a and a′. Let
dfn(λ, d) be the predicate that holds iff λ(d) is defined or evaluates to false
otherwise. The predicate dfn can be defined from a board, for any local strategy,
by means of three rules that realise local strategies λ∀ for Adam and λ∃ for Eve.
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Definition 1 (Local Strategies). Given a board D = (D,≤D), a ‘local strat-
egy’ λ∀ for Adam (resp. λ∃ for Eve) is a closure operator defined only in those
elements of D given by the following rules:

1. The local strategy λ∀ (resp. λ∃) is defined in the bottom element ⊥D.
2. If λ∀ (resp. λ∃) is defined in d ∈ D, and either ∇(d) = ∃ (resp. ∇(d) = ∀)

or SP(d) or d 6→ or d → e∧ SP(e) holds, then for all d′ ∈ d→ we have that λ∀
(resp. λ∃) is defined in d′ as well.

3. If λ∀ (resp. λ∃) is defined in d ∈ D, and both ∇(d) = ∀ (resp. ∇(d) = ∃) and
|d→| ≥ 1 hold, then there exists a d′ ∈ d→ in which λ∀ (resp. λ∃) is defined.

Let dfn(λ∀, d) be the predicate that holds iff λ∀(d) is defined, and likewise for λ∃.
Moreover, the closed elements, i.e., the fixpoints, of λ∀ and λ∃ are as follows:

λ∀(d) = d iff ∇(d) = ∃, or SP(d), or d 6→, or d → e ∧ SP(e)
λ∃(d) = d iff ∇(d) = ∀, or SP(d), or d 6→, or d → e ∧ SP(e)

provided that the predicates dfn(λ∀, d) and dfn(λ∃, d) hold. Moreover, let λ1
∀

and λ1
∃ be the ‘identity local strategies’ of Adam and Eve, respectively, which are

defined everywhere in D; thus, formally: λ1
∀(d) = λ1

∃(d) = d, for all d ∈ D.

Let ΛD be the set of local strategies on D, which can be split in two subsets,
i.e., ΛD = Λ∃D ] Λ∀D, for Eve and Adam. Informally, Definition 1 says that a local
strategy must be able (item 2) to reply to all ‘counter-strategies’ defined in the
same local position, and (item 3) to choose a next local position whenever used.
Moreover, item 3 of Definition 1 implies that in order for Eve and Adam to play
concurrently, they have to follow a set of local strategies rather than only one.

Definition 1 also characterises the fixpoints of local strategies. Note that a
fixpoint of a local strategy is a position in the board where a player cannot make
a choice, either because it is the other player’s turn (e.g., ∇(d) = ∃ for λ∀(d)),
or a synchronization must be performed (SP(d) or d → e ∧ SP(e)), or a terminal
element is reached (d 6→), and hence, there are no next local positions to play.

Remark 1. The intuitions as to why a closure operator captures the behaviour
in a CLG follow [2]. As boards are acyclic ordered structures, there is no reason
to move to a previous position and hence strategies should be extensive. They
should also be monotonic in order to preserve the causality of moves in the game
and idempotent to avoid unnecessary alternations between sequential steps.

When playing, Eve and Adam will use a set of local strategies Λ∃a ⊆ Λ∃D and
Λ∀a ⊆ Λ∀D, whose elements (i.e., local strategies) are indexed by the elements i
and j of two sets K∃ = {1, ..., |Λ∃D|} and K∀ = {1, ..., |Λ∀D|}; by definition, the
identity local strategies are indexed with i = 1 and j = 1. Moreover, at the
beginning of the game Eve and Adam choose (independently and at the same
time) two sets of indices K∃ ⊆ K∃ and K∀ ⊆ K∀, and consequently the two sets
of local strategies Λ∃a ⊆ Λ∃D and Λ∀a ⊆ Λ∀D they will use to play. This means that
both i ∈ K∃ iff λi

∃ ∈ Λ∃a and j ∈ K∀ iff λj
∀ ∈ Λ∀a; by definition, λ1

∃ and λ1
∀ are

always included in Λ∃a and Λ∀a. Based on this selection of local strategies one can
define the sets of global strategies, reachable positions, and moves in the game.
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Global strategies are interpreted in a poset of anti-chains since, by definition,
a global position is an anti-chain of D. We will define A = (A,≤A) to be such a
suitable poset (a space of anti-chains), and call it the ‘arena of global positions’
of D. Then, the concept of arena is formalized in the following way:

Definition 2 (Arena of Global Positions). Given a board D = (D,≤D),
the poset A = (A,≤A) is its ‘arena of global positions’, where A is the set of
anti-chains of D and E ≤A D iff ↓E ⊆ ↓D, for all anti-chains of D.

The reader acquainted with partial order models of concurrency, in particular
with event structures, may have noticed that the poset of anti-chains defined here
is similar to the domain of representative elements of a prime event structure
[15]—and therefore also to the set of states or markings in a safe Petri net.

Definition 3 (Global Strategies). Let D = (D,≤D) be a board. Given two
subsets of indices K∀ of K∀ and K∃ of K∃, and hence, two sets of local strategies
Λ∀a and Λ∃a for Adam and Eve, let the closure operators ∂∀ : A → A and ∂∃ :
A → A on the poset A = (A,≤A), where A is the arena of global positions
associated with D, be the ‘global strategies’ for Adam and Eve defined as follows:

∂∀(D) def= max
⋃

d∈D,j∈K∀
{λj
∀(d) | dfn(λj

∀, d)}
∂∃(D) def= max

⋃
d∈D,i∈K∃

{λi
∃(d) | dfn(λi

∃, d)}

where D ⊆ D is a global position of D (and therefore an element of A) and max
is the ‘maximal elements’ set operation, which is defined as usual.

The reasons why ∂∀ and ∂∃ are closure operators are as follows: extensiveness
is given by the identity local strategies λ1

∀ and λ1
∃ and monotonicity and idempo-

tency are inherited from that of local strategies and ensured by max. Note that
max is needed for two reasons: because (1) a global position must be an anti-chain
of local ones and (2) only representative elements of A should be considered.

Now, the dynamics of a game is given by the interaction between the players
(together with an external environment q which is enforced to be deterministic
by dsync—the property on boards and synchronization points given before).

Definition 4 (Rounds and Composition of Strategies). Let a ‘(∃ ◦ ∀)-
round’ be a global step of the game such that if D ⊆ D is the current global
position of the game, ∂∃ is the strategy of Eve, and ∂∀ is the strategy of Adam,
then the game proceeds first to an intermediate global position D∃◦∀ such that:

D∃◦∀ = (∂∃ ◦ ∂∀)(D)
= max

⋃
d∈D,i∈K∃,j∈K∀

{(λi
∃ ◦ λj

∀)(d) | dfn(λj
∀, d) ∧ dfn(λi

∃, λ
j
∀(d))}

and then to the next global position D′ = (D∃◦∀ \ e←SP)
⋃

e→SP , given by q, where:

e←SP =
⋃

e∈D→
∃◦∀
{u ∈ e← | SP(e) ∧ e← ⊆ D∃◦∀}

e→SP =
⋃

e∈D→
∃◦∀
{v ∈ e→ | SP(e) ∧ e← ⊆ D∃◦∀}

and call the transition from the global position D to D′ a ‘a-round’ of the game.
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This definition follows the intuition that in a logic game Eve must respond to
any possible move of Adam; moreover, she has to do so in every local position.

Plays. The interaction between the strategies of Eve and Adam define a
(possibly infinite) sequence of global positions {⊥}, D1, ..., Dk, ..., and hence, a
sequence of posets given by the union of the order ideals determined by each Dk.
A play is any finite or infinite union of the elements of such posets. Formally, a
play ~ = (H,≤D) on a board D = (D,≤D) is a (possibly infinite) poset such that
H is a downward-closed subset of D. An example can be found in the appendix.

We say that a play can be finite or infinite, and closed or open; more precisely,
a play is: finite iff all chains of ~ are finite; infinite iff ~ has at least one infinite
chain; closed iff at least one of the terminal elements of D is in H; open iff none
of the terminal elements of D is in H. This classification of plays is used in a
further section to define in a concrete way what the winning sets of a game
are. Since for any play {⊥}, D1, ..., Dk, ... the lower subset defined by a global
position Dk always includes the lower subsets of all other global positions Dj

such that j < k, then in a partial order setting any global position D determines
a play ~D = (H,≤D) on a board D = (D,≤D) as follows (and let Γ be the set
of plays of a game): H =

⋃
{e ∈ ↓d | d ∈ D} =

⋃
d∈D{e ∈ D | e ≤D d}.

Winning Sets and Strategies. The winning conditions are the rules that
determine when a player has won a play and define the ‘winning sets’ for each
player. Let W : Γ → Υ be a partial function that assigns a winner ∃,∀ ∈ Υ to a
play ~ ∈ Γ , and call it the winning conditions of a game. The winning sets are
determined by those plays that contain a terminal element or represent infinite
behaviour. On the other hand, winning strategies (which are global strategies)
are defined as usual, i.e., as for games on graphs. Then, we have:

Definition 5. a = (Υ, D, ΛD,∇,W, Γ ) is a ‘Concurrent Logic Game’ (CLG),
where Υ = {∃,∀} is the set of players, the ⊥-bounded poset D = (D,≤D) is a
board, ΛD = Λ∃D ] Λ∀D are two disjoint sets of local strategies, ∇ : D → Υ is
a partial function that assigns players to local positions, and W : Γ → Υ is a
function defined by the winning conditions of a over its set of plays Γ .

A CLG is played as follows: Eve and Adam start by choosing, independently,
a set of local strategies. The selection of local strategies is done indirectly by
choosing the sets of indices K∀ ⊆ K∀ and K∃ ⊆ K∃. The only restriction (which
we call ‘∀/∃-progress’) when choosing the local strategies is that the resulting
global strategy ∂, for either player, must preserve joins in the following way:

∀d ∈ (↑D ∩ ↓∂∀(D)), if BP(d) ∧∇(d) = ∀ then
∀a, b ∈ d→. sync(a, b) implies a, b ∈ ↓∂∀(D).

and likewise for Eve, changing ∂∀ for ∂∃ and the polarity given by ∇. The pred-
icates BP and sync characterise, respectively, the ‘branching points’ of a poset
and pairs of elements that belong to chains that synchronize; their definitions
are: BP(d) iff | d→ | > 1 and sync(a, b) iff ↑a ∩ ↑b 6= U , for U ∈ {∅, ↑a, ↑b}. This
restriction—which avoids the undesired generation of trivial open plays where
nobody wins—is necessary because a synchronization point can be played iff all
elements of its preset have been played. Thus, this is a correctness condition.
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3 Closure Properties

At least three closure properties are interesting: under dual games, under lower
sub-boards, and its order dual, under upper sub-boards. But, before presenting
the closures, let us give a simple, though rather useful, technical lemma, which
helps ensure that in some sub-boards a number of functionals are preserved.

Lemma 1 (Unique Poset Prefixes). Let D be a global position of a board D.
There is a unique poset representing all plays containing D up to such position.

Lemma 1 facilitates reasoning on CLG on posets as it implies that regardless
of which strategies the players are using, if a global position D appears in dif-
ferent plays, then the ‘poset prefixes’ of all such plays, up to D, are isomorphic.
Let us now study some of the closure properties the CLG model enjoys. Given
a CLG a played on a board D, let a ⇓B be the CLG defined from a where B is
a sub-board of D and the other components in a are restricted to B.

Lemma 2 (Closure Under Filters). Let a be a CLG and D a global position
of the board D of a. The structure a ⇓B = (Υ,⊥⊕B, ΛB,∇ ⇓B,W ⇓B, Γ ⇓B)
is also a CLG where B is the upper sub-board of D defined by D.

Where ⊕ is the ‘linear sum’ operator on posets. The order dual of this closure
property is a closure under countable unions of (principal) ideals.

Lemma 3 (Closure Under Ideals). Let a be a CLG and D a global position
of the board D of a. The structure a ⇓B = (Υ, B, ΛB,∇ ⇓B,W ⇓B, Γ ⇓B) is
also a CLG where B is the lower sub-board of D defined by D.

Remark 2. Lemmas 2 and 3 show that the filters of D define the ‘subgames’ of a;
also, that the ideals in D can define a subset of the set of plays of Γ . Moreover,
notice that games on infinite trees can be reduced to the particular case when D
is always a singleton set and where two chains in the board never synchronise.

Since CLG will be used for verification, another useful feature is that of
having a game closed under dual games, this is, a game used to check the dual
of a given property over the same board—i.e., for the same system(s). Formally:

Definition 6 (Dual Games). Let a = (Υ, D, ΛD,∇,W, Γ ) be a CLG. The dual
game aop of a is (Υ, D, ΛD,∇op,Wop, Γ ), such that for all d ∈ D and ~ ∈ Γ :

– if ∇(d) = ∃ (resp. ∀) then ∇op(d) = ∀ (resp. ∃), and
– if W(~) = ∃ (resp. ∀) then Wop(~) = ∀ (resp. ∃).

Moreover, let J be a class of CLG where for all a ∈ J there is a dual game
aop ∈ J. Then, we say that J is closed under dual games.

Lemma 4 (Closure Under Dual Games). Let J be a class of CLG closed
under dual games. If Eve (resp. Adam) has a winning strategy in a ∈ J, then
Adam (resp. Eve) has a winning strategy in the dual game aop ∈ J.
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Lemma 4 does not imply that CLG are determined as the existence of winning
strategies has not yet been ensured; let alone the guarantee that finite and open
plays in which D → D′ and D = D′ hold are not possible, as this implies that
the game is undetermined. Call ‘stable’ a play where D → D′ and D = D′ hold.

Another condition that is necessary, though not sufficient, for a game to be
determined is that all plays that are not finite and open have a winner. This is
ensured by requiring W to be complete. We say that W is complete iff it is a
total function on the subset of plays in Γ that are not finite and open.

Lemma 5 (Unique Winner). Let J be a class of CLG closed under dual games
for which plays that are stable, finite and open do not occur. If the W in a ∈ J
is complete, then every play in a and aop has a unique winner.

Remark 3. If a class of games is closed under dual games and has a complete set
of winning rules, then a proof of determinacy, which does not rely on Martin’s
theorem [14], can be given if the game is sound (where Adam is a correct falsifier).
More importantly, games with these features must also be complete (where Eve is
a correct verifier), and therefore determined. In this way one can reduce reasoning
on games by building completeness and determinacy proofs almost for free!

Let us finish with a counter-example (Figure 1 in the appendix) that shows
that CLG are undetermined. This motivates the definition of a semantic condi-
tion that, when satisfied, allows for the construction of a determined CLG.

Proposition 1. CLG are undetermined in the general case.

4 Metatheorems for Systems and Property Verification

As a CLG model can be seen as a logic game representation of a verification
problem (cf. [5]), then let aP be the CLG associated with a decision problem
V(P), for a given problem P, and J the class of CLG representing such a decision
problem. We say that V(P) holds iff such a decision problem has a positive
answer, and fails to hold otherwise; then V(P) is used as a logical predicate.

As usual, aP is correct iff Eve (resp. Adam) has a winning strategy in aP

whenever V(P) holds (resp. fails to hold). Let a ‘local configuration’ of aP ∈ J
be a local position and a ‘global configuration’ an anti-chain of local positions.
Moreover, a ‘true/false configuration’ is a configuration from which Eve/Adam
can win. A global configuration is logically interpreted in a conjunctive way;
then, it is true iff it only has true local configurations, and false otherwise.

In order to show the correctness of the family of games J, in this abstract
setting, we need to make sure that the CLG aP associated with a particular
verification problem V(P) has some semantic properties, which are given next.

Definition 7 (Parity/co-Parity Condition). Let (A,≤A) be a poset indexed
by a finite subset of N, −→a be a sequence of elements of A whose order respects ≤A

and downward-closure, and fω
min : Aω → N be a function that characterizes the

minimum index that appears infinitely often in −→a . Then, ({b ∈ A | b ∈ −→a },≤A)
is a poset definable by a ‘Parity/co-Parity condition’ iff fω

min(
−→a ) is even/odd.
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Property 1 (ω-Symmetry: bi-complete ω-regularity) A family J of CLG
has Property 1 and is said to be ω-symmetric (bi-complete and ω-regular), iff:

1. J is closed under dual games;
2. for all aP ∈ J we have that aP has a complete set of winning conditions;
3. the winning set given by those plays such that W(~) = ∃, i.e., those where

Eve wins, is definable by Büchi/Rabin/Parity conditions.1

An immediate consequence of the previous property is the following:

Lemma 6. If a CLG aP is ω-symmetric, then it also satisfies that the winning
set given by those plays such that W(~) = ∀, i.e., those where Adam wins, is
definable by co-Büchi/Streett/co-Parity conditions.

Note that parts 1 and 3 of Property 1 are given by the particular problem to
be solved. It is well known that several game characterisations of many verifica-
tion problems have these two properties. On the other hand, part 2 is a design
issue. From a more algorithmic viewpoint, Property 1 and Lemma 6 imply that:

Lemma 7. The winning sets of Adam are least fixpoint definable; and dually,
the winning sets of Eve are greatest fixpoint definable.

Recall that Büchi and Rabin conditions can be reduced to a Parity one.
Moreover, a Parity condition characterises the winning sets (and plays) in the
fixpoint modal logic Lµ [6] as follows: infinite plays where the smallest index that
appears infinitely often is even/odd satisfy greatest/least fixpoints and belong
to the winning sets of Eve/Adam. As in our setting plays are posets, the order
is the one given by the board. The following semantic condition must hold too:

Property 2 (Local Correctness) Let D be the board of a CLG aP. If d ∈ D
is a false configuration, then either ∇(d) = ∃ and all next configurations are
false as well or ∇(d) = ∀. Dually, if d ∈ D is a true configuration, then either
∇(d) = ∀ and all next configurations are true as well or ∇(d) = ∃.

The game interpretation of Property 2 reveals the mathematical property
that makes a CLG logically correct. Property 2 implies that not only the local
positions that belong to a player must be either true or false local configurations,
but also those that belong to q, i.e., the joins of D. Then, truth and falsity must
be transferred to those local positions as well, so that the statements “Eve must
preserve falsity” and “Adam must preserve truth” hold. Formally, one needs to
ensure that the following restriction (which we call ‘a-progress’) holds:⊔

D 6= ∅ ⇒
⊔

d∈D ∂∀({d}) 6= ∅ and
⊔

D 6= ∅ ⇒
⊔

d∈D ∂∃({d}) 6= ∅

where
⊔

is the ‘join operator’ on posets; call ‘live’ a play that is not stable,
finite and open, as well as games whose strategies only generate live plays. a-
progress guarantees that only live plays and games—where truth and falsity
are preserved—are generated. Moreover, it allow us to show the soundness and
completeness of this kind of CLG. A simple technical lemma is still needed: a
direct application of Lemma 5 using a-progress and Property 1 gives Lemma 8:
1 Büchi and Rabin conditions are defined as expected [12] as well as their duals.
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Lemma 8. Every play of a live, ω-symmetric aP has a unique winner.

Theorem 1 (Soundness). If V(P) fails to hold, Adam can always win aP.

And, due to the properties of the game, we get completeness almost for free.
Moreover, determinacy with pure winning strategies—a property not obvious for
concurrent games—follows from the soundness and completeness results.

Theorem 2 (Completeness). If V(P) holds, Eve can always win aP.

Corollary 1 (Determinacy). Eve has a winning strategy in aP iff Adam does
not have it, and vice versa.

5 Algorithmic Applications and Further Work

Solving a CLG aP using the approach we presented here requires the construction
of a winning game aP ⇓B (and with it a winning strategy) for either player,
according to Theorems 1 and 2. This is in general an undecidable problem since
the board D can be infinitely large. However, in many practical cases D can be
given a finite representation where all information needed to solve the verification
problem is contained. Let us finish this section with the following result:

Theorem 3 (Decidability). The winner of any CLG aP can be decided in
finite time if the board D in aP has finite size.

Although Theorem 3 is not a surprising result, what is interesting is that
several partial order models can be given a finite poset representation which, in a
number of cases, can be smaller than their interleaving counterparts. Therefore,
the decidability result may have important practical applications whenever the
posets can be kept small. This opens up the possibility of defining new concurrent
decision procedures for different verification problems.

Remark 4. The size of a board D in a CLG model can be smaller than the un-
folding U of the interleaving structure representing the same problem. The exact
difference, which can be exponential, depends on the degree of independence
or concurrency in D, i.e., on the number of elements of those chains that are
independent and therefore must be interleaved in order to get U from D. Only
experiments can tell if the CLG model can have an important practical impact.

Applications to Bisimulation and Model-Checking. The game frame-
work described in this manuscript can be applied to solve, in a uniform way, the
bisimulation and modal µ-calculus [6] model-checking problems. In particular,
the induced decision procedures generalize those defined by Stirling in [16]. A
detailed description of the two reductions can be found in [12] (Chapter 5).

Future Work. The work presented here can be extended in various ways. In
particular, related to the author’s previous work, we intend to study the expres-
sivity and applicability of the CLG model with respect to logics and equivalences
for so-called ‘true concurrency’, where interleaving approaches, either concurrent
or sequential, are not semantically powerful enough. Results on this direction
would allow us to give a concurrent alternative to the higher-order logic games
for bisimulation and (local) model-checking previously presented in [11, 13].
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Appendix

All proofs and some examples can be found in Chapter 5 of the author’s PhD
thesis [12].2 Here we present only some selected ones which closely relate with
the main technical results in the paper. We also include the proof of the closure
under dual games since this lemma is the key property that makes the proof of
completeness of the game model rather short, even though we are working on
a partial order setting. A simple example that illustrates how a CLG is played
between Eve and Adam is also given in the proof of the following proposition.

Proposition 1. CLG are undetermined in the general case.
2 This research was supported by an Overseas Research Studentship (ORS) award,

a School of Informatics PhD scholarship of the University of Edinburgh, and the
EPSRC Research Grant EP/G012962/1 ‘Solving Parity Games and Mu-Calculi’.
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a-rounds: {d∀0} → {d∀3 , d∃6} → {d∀3 , d∃6} → ...

Fig. 1. Local positions are labelled with their polarities and the dotted lines are the
player’s moves. Here W(↓D) = ∃ iff d∃10 ∈ D and W(↓D) = ∀ otherwise, for all global
positions D containing a terminal element. The play is stable, finite and open.

Proof. Neither player can have a winning strategy in the game presented in
Figure 1 since Eve and Adam can enforce plays for which W is not defined (a
stable, finite and open play). Notice that ∀/∃-progress is not violated. ut

Notice that the play presented in Figure 1 is the best that both players can
do, since any other strategy they choose to play will lose against the strategy
their opponent is currently playing in the example.

Lemma 4 (Closure Under Dual Games). Let J be a class of CLG closed
under dual games. If Eve (resp. Adam) has a winning strategy in a ∈ J, then
Adam (resp. Eve) has a winning strategy in the dual game aop ∈ J.

Proof. Suppose that Eve has a winning strategy ∂W in a. Since for all global
positions in the game a one has that the next global position is initially defined
by ∂W ◦ ∂∀, then whenever Adam has to make a move in aop he can use the
winning strategy ∂W of Eve because for all d ∈ D, if ∇(d) = ∃ then we have that
∇(d)op = ∀. However, notice that in each local position of the game board Adam
must always “play first” both in a and in aop because the global evolution of
the game, which is determined by the rounds being played, is always defined by
pairs of local strategies λi

∃ and λj
∀ such that λi

∃ ◦ λj
∀(d), for any local position d,

regardless of whether we are playing a or aop.
So, there are actually two cases: firstly, consider those d ∈ D, for any global

position D, such that ∇(d) = ∃. In this case ∇op(d) = ∀ and then in aop Adam
can simply play Eve’s strategy in a at position d. The second case is that of those
d ∈ D such that ∇(d) = ∀. In this case, ∇op(d) = ∃ and hence Adam can play d
itself, and let Eve decide on the new local position d′, for which, by hypothesis,
Eve has a winning strategy in a and the two previous cases apply again, though
in a new round of the game; moreover, the behaviour at synchronization points,
which are played deterministically by the environment q, remains as in a. In
this way, Adam can enforce in aop all plays that Eve can enforce in a.
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Finally, since for all such plays in Γ it was, by hypothesis, Eve who was the
winner, then Adam is the winner in all plays in aop as now for all ~ ∈ Γ , one has
that Wop(~) = ∀. The case when Adam has a winning strategy in a is dual. ut

Theorem 1 (Soundness). If V(P) fails to hold, Adam can always win aP.

Proof. We show that Adam can win all plays of aP if V(P) fails to hold by
providing a winning strategy for him. The proof has two parts: first, we provide
a board where Adam can always win and show how to construct a game on that
board, in particular, the local strategies in the game—and hence, a strategy for
Adam; then, we show that in such a game Adam can always win by checking
that his strategy is indeed a pure winning strategy.

Let aP ⇓B be a CLG on a poset B = (B,≤D), which is a subset of D =
(D,≤D), the initial board of the game. Let the set B be a downward-closed
subset of D with respect to ≤D; the bottom element ⊥B = ⊥D (where every
play of the game starts) is, by hypothesis, a false configuration.

The construction of the board is as follows: B contains only the winning
choices for Adam (i.e., those that preserve falsity) as defined by the local correct-
ness semantic property 2. After those elements of the poset have been selected,
adjoin to them all possible responses or moves available to Eve that appear in
D. Do this, starting from ⊥, either infinitely often for infinite chains or until
a terminal element is reached in finite chains. This construction clearly ensures
that B is a downward-closed set with respect to ≤D. As in the proofs of Lemmas
2 and 3 (see [12] for further details), the polarity function ∇ for B is as in D.

Using the constructions given in the proof of Lemma 2, one can define all
other elements of aP ⇓B. In particular, the local strategies for Eve and Adam will
be ‘stable’ closure operators;3 based on Definition 1 such stable closure operators
are completely defined once one has determined what the ‘output’ functions will
be (the local positions d′ in item 3) since the fixpoints are completely determined
already in Definition 1. Then, each local strategy λj

∀ for Adam and λi
∃ for Eve—

where j ∈ K∀ ⊆ K∀ and i ∈ K∃ ⊆ K∃, respectively—is defined as follows:4

λi
∃(d) = d ∨ f i

∃(d)
λj
∀(d) = d ∨ gj

∀(d)

where:
λi
∃(d) = d , if fix∃(λi

∃, d)
λi
∃(d) = f i

∃(d) , otherwise
λj
∀(d) = d , if fix∀(λ

j
∀, d)

λj
∀(d) = gj

∀(d) , otherwise

where each ‘output’ function gj
∀ necessarily preserves falsity and each output

function f i
∃ must preserve truth (because B was constructed taking into ac-

count Property 2). Moreover fix∃ and fix∀ are predicates that characterise the
fixpoints of the local strategies for Eve and Adam in the following way:
3 Good references for stable maps on posets are [1, 2] as well as some references therein.
4 Recall that i, j > 1 as λ1

∀ and λ1
∃ are the identity local strategies of Adam and Eve.
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fix∃(λ∃, d) def= dfn(λ∃, d) and ( ∇(d) = ∀, or SP(d), or d 6→, or d → e ∧ SP(e) )
fix∀(λ∀, d) def= dfn(λ∀, d) and ( ∇(d) = ∃, or SP(d), or d 6→, or d → e ∧ SP(e) )

where d ∈ D, λ∀ ∈ Λ∀D, and λ∃ ∈ Λ∃D in a game board D = (D,≤D).
However, since in B all choices available to Eve were preserved, then the set of

local strategies for Eve (i.e., Λ∃B) can be safely chosen to be simply the same set of
local strategies in D (i.e., Λ∃D); therefore, Λ∃B = Λ∃D (because, formally, they play
in D, even though Adam can prevent the positions in D \B to be reached) and
Λ∀B ⊆ Λ∀D; moreover, the definition of global strategies immediately follows from
this specification of local strategies as given by Definition 3 – of course, subject
the restriction that any such global strategy must preserve the existence of joins
in B (progress restrictions). Finally, the sets of plays and winning conditions are
defined from B and the new sets of strategies as done in the proof of Lemma 2.

For the second part of this proof, let us show that the game aP ⇓B is winning
for Adam, i.e., that he has a winning strategy. Then, let us analyse the outcome
of plays to certify that he indeed wins all plays in such a game. First consider
finite plays, which must be closed because all valid strategies must preserve the
existence of joins. All such plays have a global position Df which contains at
least one local position that is a terminal element of B. Due to Property 1 (part
2), all those plays are effectively recognised as winning for one of the players, in
this case for Adam: since ⊥ is a false configuration, Eve must preserve falsity,
and Adam is only playing strategies that also preserve falsity, then Df contains
at least one local position df which also is a false configuration, and therefore
Df is a false configuration as well since it is interpreted conjunctively. As a
consequence all finite plays are winning for Adam. The same argument also
applies for infinite, closed plays. The final case is that of open, infinite plays.

The correctness of this case is shown by a transfinite induction on a well-
founded poset of sub-boards of B; this technique generalizes the analysis of
approximants of fixpoints on interleaving structures (i.e., on total orders) to a
partial ordered setting. So, let (O,≤O) be the following partial order on sub-
boards (i.e., posets):

O = { a ⇓↑D | D is a global position of B}
a ⇓↑D ≤O a ⇓↑D′ iff ↑D′ ⊆ ↑D

The relation ≤O is clearly well-founded because all finite and infinite chains in
the poset (O,≤O) have ⊥O = a ⇓↑⊥B = a ⇓B as their bottom element. Since
any particular play in the game corresponds to a chain of (O,≤O), then let us
also define a valuation J· K : O → {true,false} and a total order on the sub-
boards (i.e., posets), and therefore subgames, associated with B. Let ~ be any
open, infinite play (an infinite chain of (O,≤O)) and let α, $ ∈ Ord be two
ordinals, where $ is a limit ordinal. Then:

J~0K = J⊥OK (the base case)
J~α+1K = J→O (~α)K (the induction step)
J~$K = J

⋃
α<$(~α)K (because $ is a limit ordinal)

where →O is the accessibility relation of ≤O restricted to the elements of the
chain ~. Then, for Adam, we have the following:
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J⊥OK = false (by hypothesis, ⊥O is a false configuration)
J→O (~α)K = J~αK (due to Property 2, →O preserves falsity)
J
⋃

α<$(~α)K =
∨

α<$ J~αK (because due to Lemma 7,
Adam’s winning sets are least fixpoint definable)

Due to the principle of (transfinite) fixpoint induction, the result holds for
all ordinals, and therefore for all global positions of any open, infinite play. Note
that we can actually repeat this analysis for all ordinals β < α (and thus for all
global positions), due to Property 1 (part 3), since winning configurations, and
hence winning sets, are fixpoint definable. But, since ordinals are well-founded
such a process of checking subgames and open, infinite plays always terminates
regardless of which α one chooses. Hence, there can be neither a D nor a game
aP ⇓⊥B⊕↑D where Eve wins.

As she cannot win any finite or infinite play in aP ⇓B, and due to Lemma 8
all plays have a unique winner, Adam’s strategy is indeed a winning strategy in
aP; more precisely, it clearly is a pure winning strategy. Then, one can ensure
that If V(P) fails to hold then Adam can win all plays of aP. ut

A similar proof can be given to show the completeness of the game. Neverthe-
less, due to the properties of the game (notably, the closure under dual games),
we can get the proof of completeness almost for free!

Theorem 2 (Completeness). If V(P) holds, Eve can always win aP.

Proof. Due to Property 1 (part 1) there exists a dual CLG aop
P for the dual

verification problem V(Pop) of V(P) such that V(Pop) does not hold. And, due
to Theorem 1 Adam has a winning strategy in the game aop

P for the dual problem
Pop. Therefore, due to Lemma 4 and Lemma 8, Eve can use the local strategies
of Adam in aop

P to be the unique winner of all plays ~ ∈ Γ of aP, and hence the
existence of a winning strategy for Eve in aP follows. ut

Theorem 3 (Decidability). The winner of any CLG aP can be decided in
finite time if the board D in aP has finite size.

Proof. Since D, by hypothesis, has finite size, then there are finitely many
sub-boards B, and consequently, finitely many subgames aP ⇓B that must be
checked before constructing a winning one for either player. Moreover, construct-
ing a particular game aP ⇓B either for Eve or Adam as described in the proofs
of Theorems 1 and 2 can be effectively done also because D is finite, as follows.

Firstly, since B is finite there are finitely many different strategies for Eve and
Adam. Moreover, since those strategies are closure operators in a finite structure,
then their sets of closed elements eventually stabilize. As a consequence, there
are only finitely many possible different plays (and game configurations), whose
winner can always be checked—because the game is determined and its set of
winning conditions is complete. Therefore, a winning strategy can be chosen from
the set of strategies of the game by exhaustively searching such a set, simply by
comparing it against all possible strategies of the other player. As we assume
that Properties 1 and 2 hold, they need not be verified. ut
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