
String diagrams for game theory: a (very)

preliminary report

Jules Hedges
Aided and abetted by

Viktor Winschel Philipp Zahn

February 17, 2015

1 Introduction

We introduce a string language for game theory. The string language is close to
the one for non-compact categories (ie. causality usually flows one way), plus a
feedback operation (that seems to be new) to deal with the forward-reasoning
of players. For example here is a picture of a general bimatrix game:

Even though the string language is simple and intuitive, the semantics is
subtle and heavily uses continuation passing style. (I’ve been working for quite
some time on connections between CPS and game theory.) This note consists
of a few pages of theory, then examples, and in the last section a Haskell imple-
mentation including implementations of each example. Most of the proofs don’t
exist yet, my evidence consists mostly of the fact that the implementation gives
the right answers in a wide variety of examples.

1



4 DECISION PROBLEMS

2 Background definitions

Fix a cartesian closed category C that contains everything convenient, eg. finite
sets of moves, real numbers. Later we also fix a strong monad on C to rep-
resent side effects in the game, eg. probability distributions of finite support,
probabilistic state transformers.

For the theoretical sections we work only with pure strategies, for simplicity.
To see the definitions for games with side effects, look at the code.

3 Pregames

Definition 1. A pregame G = (A,R,P,E) : X → Y consists of:

• Types X,Y of histories, plays

• Types A,R of strategies, outcomes

• A play function P : A→ X → Y

• An equilibrium relation E : A× ((X → Y )→ R)→ B

A game X → Y is a pregame (A, 1,P,E) : X → Y , ie. the outcomes have
been ‘closed off’. (So a pregame is a sort of ‘open game’ as in open/closed
formulas in formal languages). In this case we have ((X → Y ) → R) ∼= 1 and
so the equilibrium relation E is a unary relation on strategies. A computation
is a game (1, 1,P, ∗) : X → Y , ie. it is a game with no strategic content, in
which additionally the unique strategy ∗ : 1 is an equilibrium. We can lift any
function f : X → Y to a computation f : X → Y by setting P∗ = f .

The deeply magical part here is the type (X → Y ) → R, which is a sort of
continuation. This is what makes the whole thing work.

In string diagrams we draw a pregame as a box with the wires X and Y at
the top and bottom (so time flows downwards), and R going sideways. The R
is what makes this interestingly different to usual string diagrams.

4 Decision problems

Other than computations, our basic pregames are decision problems. These are
defined by relations ε : (X → Y )× ((X → Y )→ R)→ B which specify when a
player is happy with a strategy X → Y (mapping observations to choices) in a
strategic context that maps every strategy to an outcome. For example, when
(R,≤) is totally ordered, we can set

fεk ⇐⇒ kf = max
f ′

kf ′

(These relations started life as selection functions ε : (Y → R) → Y , and
have been generalised beyond all recognition. First they became multivalued
(Y → R)→ Y → B, and then they became relativised to the history X.)

We can consider a decision problem ε : (X → Y )× ((X → Y )→ R)→ B as
a pregame ε : X → Y by defining

• Aε = X → Y

2



5 CATEGORY STRUCTURE

• Rε = R

• Pεfx = fx

• Eε = ε

5 Category structure

Given G : X → Y and H : Y → Z we define H ◦ G : X → Z such that

• AH◦G = AG ×AH
• RH◦G = RG ×RH
• PH◦G(a, b) = PHb ◦ PGa

• (a, b)EH◦Gk ⇐⇒ aEGk1 ∧ bEHk2 where

k1 = λ(f : X → Y ).π1(k(PHb ◦ f))

k2 = λ(f : Y → Z).π2(k(f ◦ PGa))

(as a hint to mental type checking, we have k : (X → Z)→ R× S).

Theorem 1. There is a category C in which objects are types, and morphisms
are pregames. The composition is ◦ and the identity is id.

Proof. Left unit: Take G : X → Y and consider G ◦ idX : X → Y . Up to natural
isomorphism we have

• AG◦idX
= AG × 1 = AG

• Similarly RG◦idX
= RG

• PG◦idX
ax = PGa(PidX

∗ x) = PGa(idX x) = PGax

• aEG◦idX
k ⇐⇒ aEGk2 where

k2 = λ(f : X → Y ).k(f ◦ PidX
∗) = k

Right unit: symmetric.
Associativity: Take G : X → Y , H : Y → Z and I : Z → W . The only con-

dition that really needs checking is the one for E. Up to natural transformation
both ways of bracketing give

(a, b, c)EI◦H◦Gk ⇐⇒ aEGk1 ∧ bEHk2 ∧ cEIk3
(where k : (X →W )→ R× S × T ) where

k1 = λ(f : X → Y ).π1(k(PIc ◦ PHb ◦ f))

k2 = λ(f : Y → Z).π2(k(PIc ◦ f ◦ PGa))

k3 = λ(f : Z →W ).π3(k(f ◦ PHb ◦ PGa))

Game-theoretically this categorical composition is a strange thing, like a
sequential composition in which the first player has been ‘forgotten’ (or ‘cut’ in
logic...). We can get back a game-theoretically sensible sequential composition
using categorical composition together with copying (the comonoid structure in
the next section). (See example 5.) This is ‘splitting the atom of game theory’,
decomposing sequential composition into something more primitive.

3



7 STRANGE TRACE-LIKE THING

6 Tensor and comonoid structure

Just as categorical composition gives a primitive version of sequential games,
the monoidal structure gives a primitive version of simultaneous games.

Given games G : X1 → Y1 and H : X2 → Y2 we define G ⊗ H : X1 ×X2 →
Y1 × Y2 by

• AG⊗H = AG ×AH

• RG⊗H = RG ×RH

• PG⊗H(a, b)(x1, x2) = (PGax1,PHbx2)

• (a, b)EG⊗Hk ⇐⇒ aEGk1∧bEHk2 (where k : (X1×X2 → Y1×Y2)→ R×S)
where

k1 = λ(f : X1 → Y1).π1(kλ((x1, x2) : X1 ×X2).(fx1,PHbx2))

k2 = λ(f : X2 → Y2).π2(kλ((x1, x2) : X1 ×X2).(PGax1, fx2))

Theorem 2 (:: Maybe Theorem). (C,⊗, 1) is a symmetric monoidal closed
category. Or maybe a closed Freyd category. The important question is, what
are the valid operations on string diagrams? We probably get different answers
depending on whether side-effects are coming from a commutative or noncom-
mutative monad.

For every type X we also have copying and deleting computations ∆ : X →
X × X, ! : X → 1 by lifting them from C (using the overline operation from
section 3). This makes every object of (C,⊗, 1) into a commutative comonoid.

N.B. ⊗ is not a cartesian product, for what looks like similar reasons to in a
Freyd category. Making a decision and copying the result is not the same thing
as making the decision twice. The object 1 is not even terminal, because like in
a Freyd category we can delete information in nontrivial ways.

7 Strange trace-like thing

Suppose G is a pregame of the form G : 1 → R1 × Y with RG = R1 × R2. We
define a game 2G : 1→ Y with

• A2G = AG

• R2G = R2

• P2Ga = π2 ◦ PG

• aE2Gk ⇐⇒ aEGk′ where

k′ = λ((r, y) : R1 × Y ).(r, ky)

or to be more precise,

k′ = λ(f : 1→ R1 × Y ).(π1(f∗), kλ(∗ : 1).π2(f∗))

where ∗ : 1.

4



8 IMPLEMENTATION

There’s a fairly close analogy to logic here. G is like a formula with free
variables of type R1 and R2 (and we can think of R2 as a tuple of all the
remaining free variables). Then we close off one variable with a quantifier, and
the other variables remain open.

This is the least obvious part from the point of view of category theory. The
biggest restriction is that this only applies to morphisms from 1 (points?), which
looks ugly and more importantly makes it unclear how to do repeated games
(in which there is utility feeding back between stages that are defined relative
to a history). If this condition is relaxed then a strategy only determines an
outcome relative to X. The feedback operation can then be applied if RG =
(X → MR1)× R2. The presence of the monad M in that type seems to make
things really difficult.

In any case we draw this operation in string diagrams like this:

I have 2 different ways of thinking about this. One is that it’s capturing
just the right amount of backward-causality that you get in game theory caused
by players reasoning about future events. Another is that it’s related to de-
limited continuations eg. with shift/reset, where decisions correspond to ‘shift’
(they capture a continuation) and the twist corresponds to ‘reset’ (it delimits a
continuation).

8 Implementation

See the last section for a complete Haskell implementation of the definitions
above, and the examples below. As the examples get more complicated I get
less precise with the mathematics, because you can check the details in the code
(if you read Haskell).

5



9 EXAMPLE 1: DECISION PROBLEM

9 Example 1: Decision problem

We model the decision problem of a player who makes a choice x : X which
results in an outcome fx : X, and the player would like the choice to be the
same as the outcome. For example in a Keynes beauty contest, X is the set
of candidates and the agent would like to vote for the winner. This decision is
modelled by the selection function

ε : X × (X → X)→ B

(the type is really (1→ X)× ((1→ X)→ X)→ B) given by

xεf ⇐⇒ x = fx

We build up to the point before we bend the arrow around:

G = (f ⊗ id) ◦∆ ◦ ε : 1→ X ×X

(where ∆ is copying) (Here we consider f as a computation, and start abusing
notation by not overlining things with no strategic content.) The types here (up
to natural isomorphism) are AG = X (ie. the player’s strategy is just a choice
of move) and RG = (1→ X)× 1. G is given by

PGx∗ = (fx, x)

xEGk ⇐⇒ xεk′

(where k : (1→ X ×X)→ (1→ X)× 1) where

k′ = λ(x : X).π1(kλ(∗ : 1).(fx, x))∗

Now we make 2G : 1 → X with R2G = 1 (ie. 2G is a game, although a
‘degenerate’ 1-player game). Now we get

P2Gx∗ = x

6



10 EXAMPLE 2: BIMATRIX GAME WITH PURE STRATEGIES

xE2G∗ ⇐⇒ xEGk ⇐⇒ xεk′

where
k = λ(g : 1→ X ×X).π1 ◦ g

k′ = λ(x : X).π1(kλ(∗ : 1).(fx, x))∗ = f

So x is an equilibrium of 2G iff it is a fixpoint of f .
Obvious observation: Even for the simplest possible example this is nearly

impossible to keep track of all the type isomorphisms by hand. Computer
support is vital!

Each example will work in the same way: first build a pregame by directly
translating the string diagram into combinators, then apply the contravariant
action with a type isomorphism to get R into the right form, and finally apply
feedback. Even in the simplest example it is totally impractical to track by hand
the type isomorphisms needed for R. One of two things are needed: either a type
system that makes unifications like X ∼ 1 ×X and X ∼ 1 → X, or a layer of
code generation between the user and Haskell that calculates the isomorphisms
manually.

10 Example 2: bimatrix game with pure strate-
gies

Here is a picture of a general bimatrix game:

We will consider an example, Meeting In New York (a coordination game)
in which the two players receive the same payoff. Since both players receive the
same utility (and have the same preferences) we can use a simpler representation:

7



11 EXAMPLE 3: BIMATRIX GAME WITH MIXED STRATEGIES

(Corollary: not all bimatrix games are created equal - qualitative features
of bimatrix games which are not revealed by the usual formulation can be seen
graphically here.)

Here R is the 2-element poset {lose < win}, and both players are maximising.
The computation q : X ×X → R returns win if the inputs are equal, and lose
if they are not equal. Strategies are pairs X ×X.

The two selection functions are the same (because the players have the same
preferences) and have type ε : X × (X → R)→ B. The definition is that

xεk ⇐⇒ kx = max
x′

kx′

The type of strategies for the whole thing is X ×X, and E correctly picks out
the coordinating strategies (A,A) and (B,B).

11 Example 3: bimatrix game with mixed strate-
gies

Take the same example, but change the monad from identity to the Giry monad
∆ (where ∆X is probability distributions on X of finite support). We need to
use the expectation algebra E : ∆R→ R, so outcomes will change from discrete
win/lose to numerical utilities R. The selection functions of the players simply
change to

xεk ⇐⇒ E(kx) = max
x′

E(kx′)

Technically here x′ should vary over all mixed strategies, but in the code we
take a shortcut - since everything in this example is multilinear, k can only be
maximised at a vertex of the simplex, so it suffices to check only the 2 pure
strategies.

8



12 EXAMPLE 4: BIMATRIX GAME WITH NONCLASSICAL
PREFERENCES

12 Example 4: bimatrix game with nonclassical
preferences

We can model the same game again in a better way, by throwing away util-
ities and taking selection functions seriously. The idea is that in a coordination
game players don’t have preferences over numbers or any abstract ‘outcomes’,
they have preferences directly over each other’s choice. The picture labels the
two types of choices X and Y for clarity, but actually X = Y . Both players
want to coordinate, which is modelled by a fixpoint selection function with type

ε : ∆X × (X → ∆X)→ B

given by
aεk ⇐⇒ a = a >>= k

We can see by experimenting that this model does the same as the previous
one, even though it’s implemented in a totally different way - the previous one
doesn’t have any fixpoints appearing explicitly anywhere.

9



14 EXAMPLE 6: STARTING TO REALLY SHOW OFF

13 Example 5: sequential game

The next game is a sequential version of the coordination game, in which the
second player can observe the move of the first player. The selection function
for the first player is the same as the one from example 3, and the one for the
second player has type

ε2 : (X → ∆X)× ((X → ∆X)→ ∆R)→ B

This again is defined by

aε2k ⇐⇒ E(ka) = max
a′

E(ka′)

but this time a′ is varying over strategies contingent on the observed move.
Again we take a shortcut, and just check the 4 pure strategies.

This example confirms the intuition that this game has equilibria in which
the first player is mixing with arbitrary probability, and the second player plays
a copycat strategy.

We can also model imperfect information by inserting another computation
box between the two players, which forgets some information carried in the wire.
Since this box can also have side effects the games can be really dynamic with
the game itself having effects interleaved with the players’ decisions.

The solution concept defined by E corresponds to Nash equilibrium, but I
think it extends quite easily to subgame-perfect equilibrium, which is a more
appropriate solution concept for sequential games.

14 Example 6: starting to really show off

(This section contains no mathematics... I don’t understand how my own code
works, so just look in the appendix)

The point of this example is to show the power not of string diagrams,
but of allowing side-effects from an arbitrary monad. Generally the theory of

10



15 CODE DUMP

correlated equilibrium is quite different to ordinary Nash, but it falls out as a
special case if we use a reader monad to allow the players’ strategies to have read-
only access to a shared source of randomness. This was originally intended as a
half-way step to using state monads to model learning agents. For this we need
selection functions to be ‘relations with side effects’ (which makes more sense
as functional programming than as mathematics) because the equilibrium check
also needs to have access to the randomising device. In fact the two monads are
different: the players need to see the concrete signal (after the randomness has
been resolved) but the check needs to have first-class access to the device itself.
The code itself looks very dubious, but it is also doing the right thing on a more
complex example, with totally read-only code using a very outdated version of
the equilibrium checker (pre-dating string diagrams, ie. over 2 weeks old). My
main point in showing this example is that there’s serious expressive power to
be gained by using different monads, and also a lot of theory to be figured out.

15 Code dump

{-# LANGUAGE NoMonomorphismRestriction, GADTs #-}

import Control.Monad (liftM, liftM2)

--import for examples

import Data.Functor.Identity

import Numeric.Probability.Distribution hiding (map, check, lift)

import Data.Ratio

import Control.Monad.Trans.Reader

import Control.Monad.Trans.Class

type Computation m m’ x y = Pregame m m’ x y () ()

type Decision m m’ x y r = Pregame m m’ x y r (x -> m y)

data Pregame m m’ x y r a where

Arr :: (Monad m, Monad m’) => (x -> y) -> Computation m m’ x y

Contra :: (Monad m, Monad m’) => (r -> s) -> Pregame m m’ x y s a ->

Pregame m m’ x y r a

Decision :: (Monad m, Monad m’) => ((x -> m y) -> ((x -> m y) -> m r)

-> m’ Bool) -> Decision m m’ x y r

Compose :: (Monad m, Monad m’) => Pregame m m’ x y r a -> Pregame m m’

y z s b -> Pregame m m’ x z (r, s) (a, b)

Tensor :: (Monad m, Monad m’) => Pregame m m’ x y r a -> Pregame m m’ x

’ y’ s b -> Pregame m m’ (x, x’) (y, y’) (r, s) (a, b)

Twist :: (Monad m, Monad m’) => Pregame m m’ () (r, y) (r, s) a ->

Pregame m m’ () y s a

play :: Pregame m m’ x y r a -> a -> x -> m y

play (Arr f) () x = return (f x)

play (Contra _ g) a x = play g a x

play (Decision _) f x = f x

play (Compose g h) (a, a’) x = play g a x >>= play h a’

play (Tensor g h) (a, a’) (x, x’) = liftM2 (,) (play g a x) (play h a’ x

’)

play (Twist g) a x = liftM snd (play g a x)

11



15 CODE DUMP

check :: Pregame m m’ x y r a -> a -> ((x -> m y) -> m r) -> m’ Bool

check (Arr _) _ _ = return True

check (Contra i g) a k = check g a $ \f -> k f >>= return . i

check (Decision e) a k = e a k

check (Compose g h) (a, b) k = let k1 f = liftM fst $ k $ \x -> f x >>=

play h b

k2 f = liftM snd $ k $ \x -> play g a x

>>= f

in liftM2 (&&) (check g a k1) (check h b k2)

check (Tensor g h) (a, b) k = let k1 f = liftM fst $ k $ \(x, x’) ->

liftM2 (,) (f x) (play h b x’)

k2 f = liftM snd $ k $ \(x, x’) -> liftM2

(,) (play g a x) (f x’)

in liftM2 (&&) (check g a k1) (check h b k2)

check (Twist g) a k = check g a $ \f -> do r <- liftM fst (f ())

s <- k $ \() -> liftM snd (f ())

return (r, s)

-- %%%%%%%%%%%%%%%%%%%%%%

copy = Arr $ \x -> (x, x)

identity = Arr id

data X = A | B deriving (Show, Eq, Ord)

data R = Lose | Win deriving (Show, Eq, Ord)

-- Example 1: decision problem

player1 :: Decision Identity Identity () X X

player1 = Decision $ \a k -> Identity $ runIdentity (a ()) == (

runIdentity $ k a)

g1 = player1 ‘Compose‘ copy ‘Compose‘ ((Arr $ const B) ‘Tensor‘ identity)

g1’ = Contra (\(x, ()) -> ((x, ()), ((), ()))) g1

g1’’ = Twist g1’

{-

*Main> :t check g1’’

check g1’’

:: ((() -> Identity X, ()), ((), ()))

-> ((() -> Identity X) -> Identity ()) -> Identity Bool

*Main> runIdentity $ check g1’’ ((\() -> Identity A, ()), ((), ())) $

const $ Identity ()

False

*Main> runIdentity $ check g1’’ ((\() -> Identity B, ()), ((), ())) $

const $ Identity ()

True

*Main>

-}

-- Example 2: bimatrix game, pure strategies

12



15 CODE DUMP

player2 :: Decision Identity Identity () X R

player2 = Decision $ \a k -> Identity $ runIdentity (k a) == (maximum $

map (runIdentity . k) as)

where as = [\() -> return A, \() -> return B]

q2 :: Computation Identity Identity (X, X) R

q2 = Arr $ \(a, b) -> if a == b then Win else Lose

g2 = copy ‘Compose‘ ((player2 ‘Compose‘ copy) ‘Tensor‘ (player2 ‘Compose‘

copy)) ‘Compose‘ (Arr $ \((a,b),(c,d)) -> ((a,c),(b,d))) ‘Compose‘

((q2 ‘Compose‘ copy) ‘Tensor‘ identity)

g2’ = Contra (\((r,s),()) -> ((((), ((r, ()), (s, ()))), ()), (((), ()),

()))) g2

g2’’ = Twist g2’

{-

*Main> :t check g2’’

check g2’’

:: ((((), ((() -> Identity X, ()), (() -> Identity X, ()))), ()),

(((), ()), ()))

-> ((() -> Identity (X, X)) -> Identity ()) -> Identity Bool

*Main> runIdentity $ check g2’’ ((((), ((\() -> Identity A, ()), (\() ->

Identity A, ()))), ()), (((), ()), ())) $ const $ Identity ()

True

*Main> runIdentity $ check g2’’ ((((), ((\() -> Identity A, ()), (\() ->

Identity B, ()))), ()), (((), ()), ())) $ const $ Identity ()

False

*Main> runIdentity $ check g2’’ ((((), ((\() -> Identity B, ()), (\() ->

Identity A, ()))), ()), (((), ()), ())) $ const $ Identity ()

False

*Main> runIdentity $ check g2’’ ((((), ((\() -> Identity B, ()), (\() ->

Identity B, ()))), ()), (((), ()), ())) $ const $ Identity ()

True

-}

-- Example 3: bimatrix game, mixed strategies

type Random = T Rational

-- Notice the common structure with player2: an algebra of the identity

monad (runIdentity) got replaced with an algebra of the probability

monad (expectation)

player3 :: Decision Random Identity () X Rational

player3 = Decision $ \a k -> Identity $ expected (k a) == (maximum $ map

(expected . k) as)

where as = [\() -> return A, \() -> return B]

q3 :: Computation Random Identity (X, X) Rational

q3 = Arr $ \(a, b) -> if a == b then 1 else 0

g3 = copy ‘Compose‘ ((player3 ‘Compose‘ copy) ‘Tensor‘ (player3 ‘Compose‘

copy)) ‘Compose‘ (Arr $ \((a,b),(c,d)) -> ((a,c),(b,d))) ‘Compose‘

((q3 ‘Compose‘ copy) ‘Tensor‘ identity)

13



15 CODE DUMP

g3’ = Contra (\((r,s),()) -> ((((), ((r, ()), (s, ()))), ()), (((), ()),

()))) g3

g3’’ = Twist g3’

{-

*Main> runIdentity $ check g3’’ ((((), ((\() -> certainly A, ()), (\() ->

certainly A, ()))), ()), (((), ()), ())) $ const $ return ()

True

*Main> runIdentity $ check g3’’ ((((), ((\() -> choose (1%2) A B, ()),

(\() -> choose (1%2) A B, ()))), ()), (((), ()), ())) $ const $

return ()

True

*Main> runIdentity $ check g3’’ ((((), ((\() -> choose (1%2) A B, ()),

(\() -> choose (1%3) A B, ()))), ()), (((), ()), ())) $ const $

return ()

False

-}

-- Example 4: bimatrix game with nonclassical preferences

type Random’ = T Double

player4 :: Decision Random’ Identity () X X

player4 = Decision $ \a k -> Identity $ approx (a ()) (k a)

g4 = copy ‘Compose‘ ((player4 ‘Compose‘ copy) ‘Tensor‘ (player4 ‘Compose‘

copy)) ‘Compose‘ (Arr $ \((a,b),(c,d)) -> ((c,a),(b,d)))

g4’ = Contra (\((r,s),()) -> (((), ((r, ()), (s, ()))), ())) g4

g4’’ = Twist g4’

{-

*Main> runIdentity $ check g4’’ (((), ((\() -> certainly A, ()), (\() ->

certainly A, ()))), ()) $ const $ return ()

True

*Main> runIdentity $ check g4’’ (((), ((\() -> choose 0.5 A B, ()), (\()

-> choose 0.5 A B, ()))), ()) $ const $ return ()

True

*Main> runIdentity $ check g4’’ (((), ((\() -> choose 0.5 A B, ()), (\()

-> choose 0.4 A B, ()))), ()) $ const $ return ()

False

-}

-- Example 5: sequential game with mixed strategies

player5 = player3

player5’ :: Decision Random Identity X X Rational

player5’ = Decision $ \a k -> Identity $ expected (k a) == (maximum $ map

(expected . k) as)

where as = [const $ certainly A, const $ certainly B,

certainly, \x -> certainly $ case x of {A -> B; B -> A}]

q5 = q3

14



15 CODE DUMP

g5 = player5 ‘Compose‘ copy ‘Compose‘ (copy ‘Tensor‘ (player5’ ‘Compose‘

copy)) ‘Compose‘ (Arr $ \((a,b),(c,d)) -> ((a,c),(b,d))) ‘Compose‘

((q5 ‘Compose‘ copy) ‘Tensor‘ identity)

g5’ = Contra (\((r,s),()) -> ((((r, ()), ((), (s, ()))), ()), (((), ()),

()))) g5

g5’’ = Twist g5’

{-

*Main> runIdentity $ check g5’’ ((((\() -> choose (123%456) A B, ()), (()

, (return, ()))), ()), (((), ()), ())) $ const $ return ()

True

*Main> runIdentity $ check g5’’ ((((\() -> choose (123%456) A B, ()), (()

, (const $ return A, ()))), ()), (((), ()), ())) $ const $ return ()

False

-}

-- Example 6: correlated equilibrium

data Signal = S1 | S2 deriving (Show, Eq, Ord)

-- No idea how this works... it was reverse engineered from read-only

code that might have used Bayesian updating somehow... in any case

it seems to do the right thing

player6 :: Decision (ReaderT Signal Random) (Reader (Random Signal)) () X

Rational

player6 = Decision $ \a k ->

do device <- ask

let a1 () = runReaderT (a ()) S1

let a2 () = runReaderT (a ()) S2

let k1 a’ = runReaderT (k $ \() -> lift $ a’ ()) S1

let k2 a’ = runReaderT (k $ \() -> lift $ a’ ()) S2

return $ (runIdentity $ check player3 a1 k1) && (runIdentity $ check

player3 a2 k2)

q6 :: Computation (ReaderT Signal Random) (Reader (Random Signal)) (X, X)

Rational

q6 = Arr $ \(a,b) -> if a == b then 1 else 0

g6 = copy ‘Compose‘ ((player6 ‘Compose‘ copy) ‘Tensor‘ (player6 ‘Compose‘

copy)) ‘Compose‘ (Arr $ \((a,b),(c,d)) -> ((a,c),(b,d))) ‘Compose‘

((q6 ‘Compose‘ copy) ‘Tensor‘ identity)

g6’ = Contra (\((r,s),()) -> ((((), ((r, ()), (s, ()))), ()), (((), ()),

()))) g6

g6’’ = Twist g6’

-- (s6,s6) is a correlated equilibrium. In (s6.s6’) the players have

tragically failed to agree on how to interpret the coordinating

signal

s6, s6’ :: ReaderT Signal Random X

s6 = do signal <- ask

return $ case signal of {S1 -> A; S2 -> B}

s6’ = do signal <- ask

return $ case signal of {S1 -> B; S2 -> A}

15



15 CODE DUMP

device :: Random Signal

device = choose (1%2) S1 S2

{-

*Main> runIdentity $ runReaderT (check g6’’ ((((), ((\() -> return A, ())

, (\() -> return A, ()))), ()), (((), ()), ())) $ const $ return ())

device

True

*Main> runIdentity $ runReaderT (check g6’’ ((((), ((\() -> return A, ())

, (\() -> return B, ()))), ()), (((), ()), ())) $ const $ return ())

device

False

*Main> runIdentity $ runReaderT (check g6’’ ((((), ((\() -> s6, ()), (\()

-> s6, ()))), ()), (((), ()), ())) $ const $ return ()) device

True

*Main> runIdentity $ runReaderT (check g6’’ ((((), ((\() -> s6, ()), (\()

-> s6’, ()))), ()), (((), ()), ())) $ const $ return ()) device

False

-}

16


