
On compositionality

Jules Hedges

2016

This short essay is copied (with some small modifications and additional
comments) from section 0.4 of my Ph.D. thesis, Towards compositional game
theory. It is loosely based on a talk I gave at Logic for Social Behaviour 2016
in Zürich.

The term compositionality is commonplace in computer science, but is not
well-known in other subjects. Compositionality is the principle that a system
should be designed by composing together smaller subsystems, and reasoning
about the system should be done recursively on its structure. When I thought
more deeply, however, I realised that there is more to this principle than first
meets the eye, and even a computer scientist may not be aware of its nuances.

It is worthwhile to spend some time thinking about various natural and
artificial systems, and the extent to which they are compositional. To begin
with, it is well known that most programming languages are compositional.
The behaviour of atomic1 statements in an imperative language, such as variable
assignments and IO actions, is understood. Functions are written by combining
atomic statements using constructs such as sequencing (the ‘semicolon’ in C-like
syntax), conditionals and loops, and the behaviour of the whole is understood
in terms of the behaviour of the parts together with the ways in which they are
combined. This scales sufficiently well that a team of programmers can broadly
understand the behaviour of a program consisting of hundreds of millions of
individual atomic statements.

When the software industry began software was unstructured, with no in-
termediate concepts between atomic statements and the entire program, and
much of its history has been the creation of finer intermediate concepts: code
blocks, functions, classes, modules. Compositionality is not all-nor-nothing, but
is slowly increased over time; nor is it entirely well-defined, with many tradeoffs
and heated debates in the design and use of different language features. Even
with a modern well-designed language it is possible to write bad code which
cannot be easily decomposed; and even though there are many design patterns
and best practice guidelines, good software design is ultimately an art.

Going beyond software, consider a physical system designed by human en-
gineers, such as an oil refinery. An individual component, such as a pump or
a section of pipe, may have a huge amount of engineering built into it, with
detailed knowledge of its behaviour in a wide variety of physical situations. It is
then possible to connect these components together and reuse knowledge about
the components to reason about the whole system. As in software, each com-
ponent has an ‘interface’, which is a high level understanding of its behaviour,
with unnecessary details being intentionally forgotten.

1The term ‘atomic’ is used naively here, and does not refer to concurrency.

1



As a third example, an organisation made of human beings, such as a com-
pany or university, is also built in a compositional way, demonstrating that
engineering is not a requirement. It is possible to understand the behaviour of
a department without knowing the details of how the behaviour is implemented
internally. For example, a software engineer can use a computer without know-
ing the exact process through which the electricity bill is paid, and will probably
not even be aware if the electricity provider changes. This is another example
of reasoning via an interface.

Clearly interfaces are a crucial aspect of compositionality, and I suspect that
interfaces are in fact synonymous with compositionality. That is, composition-
ality is not just the ability to compose objects, but the ability to work with
an object after intentionally forgetting how it was built. The part that is re-
membered is the ‘interface’, which may be a type, or a contract, or some other
high-level description. The crucial property of interfaces is that their complexity
stays roughly constant as systems get larger. In software, for example, an inter-
face can be used without knowing whether it represents an atomic object, or a
module containing millions of lines of code whose implementation is distributed
over a large physical network.

For examples of non-compositional systems, we look to nature. Generally
speaking, the reductionist methodology of science has difficulty with biology,
where an understanding of one scale often does not translate to an understanding
on a larger scale.2 For example, the behaviour of neurons is well-understood, but
groups of neurons are not. Similarly in genetics, individual genes can interact
in complex ways that block understanding of genomes at a larger scale.

Such behaviour is not confined to biology, though. It is also present in eco-
nomics: two well-understood markets can interact in complex and unexpected
ways. Consider a simple but already important example from game theory.
The behaviour of an individual player is fully understood: they choose in a
way that maximises their utility. Put two such players together, however, and
there are already problems with equilibrium selection, where the actual physical
behaviour of the system is very hard to predict.

More generally, I claim that the opposite of compositionality is emergent
effects. The common definition of emergence is a system being ‘more than
the sum of its parts’, and so it is easy to see that such a system cannot be
understood only in terms of its parts, i.e. it is not compositional. Moreover I
claim that non-compositionality is a barrier to scientific understanding, because
it breaks the reductionist methodology of always dividing a system into smaller
components and translating explanations into lower levels.

More specifically, I claim that compositionality is strictly necessary for work-
ing at scale. In a non-compositional setting, a technique for a solving a problem
may be of no use whatsoever for solving the problem one order of magnitude
larger. To demonstrate that this worst case scenario can actually happen, con-
sider the theory of differential equations: a technique that is known to be effec-
tive for some class of equations will usually be of no use for equations removed
from that class by even a small modification. In some sense, differential equa-
tions is the ultimate non-compositional theory.

Of course emergent phenomena do exist, and so the challenge is not to avoid

2I learned of this point of view from Michael Hauhs, at the 2015 Dagstuhl seminar Coal-
gebraic semantics of reflexive economics. I believe it is originally due to Robert Rosen.

2



them but to control them. In some cases, such as differential equations, this
is simply impossible due to the nature of what is being studied. Using open
games it is possible to control emergent effects in game theory, although it is far
from obvious how to do it. A powerful strategy that is used by open games is
continuation passing style, in which we expand our model of an object to include
not only its behaviour in isolation, but also its behaviour in the presence of
arbitrary environments. Thus an emergent behaviour of a compound system was
already present in the behaviour of each individual component, when specialised
to an environment that contains the other components.

As a final thought, I claim that compositionality is extremely delicate, and
that it is so powerful that it is worth going to extreme lengths to achieve
it. In programming languages, compositionality is reduced by such plausible-
looking language features as goto statements, mutable global state, inheritance
in object-oriented programming, and type classes in Haskell. The demands
placed on game theory are extremely strong3: seeing a game as something fun-
damentally different to a component of a game such as a player or outcome
function breaks compositionality; so does seeing a player as something funda-
mentally different to an aggregate of players; so does seeing a player as some-
thing fundamentally different to an outcome function. Open games include all
of these as special cases.

3Of course, these demands have been written retrospectively.

3


