Satisfiability as
Abstract Interpretation

Leopold Haller
(joint work with Vijay D’Silva)

UNIVERSITY OF

OXFORD

eeeeeeeeeeeeeeeeeeeee

A Tale of Two Communities

Al over- under- 5P DBPLL
(1977) approximate, approx:mate, (1960) (1962)
sound brecise
CDCL
(1996)

Learning.

Efficiency!

Tuesday, 13 September 11

Al
(1977)

A Tale of Two Communities

over- under-
approximate, approximate, (le?)) Iagpélz;'
sound brecise
CDCL
BMC (1996)

(2003)

Find bugs

Learning.

Efficiency!

Tuesday, 13 September 11

A Tale of Two Communities

Al over- under- 5P DPLL
(1977) approximate, approx:mate, (1960) (1962)
sound brecise
CDCL
BMC (1996)
(2003)

Learning.

Efficiency!

Find bugs

SMT
(early 00s)

Richer
logics

/_____—\

Tuesday, 13 September 11

A Tale of Two Communities

Al over- under- 5P DPLL
(1977) approximate, approx:mate, (1960) (1962)
sound brecise
CDCL
BMC (1996)
(2003)
Flexible Trace Learning.
Disjunction Partitioni e B -
—— (2005) —

SMT
(early OOs)

Richer
logics

/-—'_—\

Tuesday, 13 September 11

A Tale of Two Communities

Al over- under- 5P DPLL
(1977) approximate, iAP approximate, — 5¢0 (1962)
sound brecise
CDCL
BMC (1996)
(2003)
Flexible Trace Learning.
Disjunction Partitioning il g S
—— (2005) —

Harris et al.
SMPP - Trace partition (POPL 2010)

using SAT SMT
(early 00s)

Richer
logics

/—_\

Tuesday, 13 September 11

A Tale of Two Communities

Al over- under- 5P DPLL
(1977) approximate, iAP approximate, — 5¢0 (1962)
sound brecise
CDCL
BMC (1996)
(2003)
Flexible Trace Learning.
Disjunction Partitioning il g S

/——\

(2005)

Harris et al.

SMPP - Trace partition (POPL 2010)
using SAT SMT
Combine AD Cousot&Cousot&Mauborgne (early 00s)

and SMT (FOSSACS 201 1)
Richer
logics

/—‘_\

Tuesday, 13 September 11

A Tale of Two Communities

Al over- under- 5P DPLL
(1977) approximate, iAP approximate, 5.0 (1962
sound brecise
CDCL
BMC (1996)
(2003)
Flexible Trace Learning.
Disjunction Partitioning il g S
— (2005) —

Harris et al.

SMPP - Trace partition (POPL 2010)
using SAT SMT
Combine AD Cousot&Cousot&Mauborgne (early 00s)
and SMT (FOSSACS 201 1)
Richer
Monnieaux & Gonnord legies
P

Focus on path (SAS 201 1)
using SMT

Tuesday, 13 September 11

A Tale of Two Communities

DPLL CDCL

(1962) (1996) solvers

are

(proper) abstract interpreters

Al
(1977)

Tuesday, 13 September 11

Why does this matter?

Tuesday, 13 September 11

Why does this matter?

100s \

10s \

Sy \
Is I I I I I I ?

2000 2001 2002 2003 2004 2005 2006 2007

“ the practical success of SAT has come as a surprise to
many 1n the computer science community. The
combination of strong practical drivers and open
competition 1n this experimental research effort created
enough momentum to overcome the pessimism based

on theory. Can we take these lessons to other problems
and domains?”

— Malk & Zhang, 2009

Tuesday, 13 September 11

Why does this matter!?

Tuesday, 13 September 11

Data

Why does this matter!?

> Control
A FO Logic Programs
B Finite State
P- =98 Programs

CDCL

Tuesday, 13 September 11

Why does this matter!?

ACDCL(A) B > Abstract domain A

Tuesday, 13 September 11

Why does this matter!?

> Control

FO Logic Programs

Data

Finite State

ﬂ' Logic Programs
ACDCL(A) B > Abstract domain A

Tuesday, 13 September 11

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)

Tuesday, 13 September 11

The CDCL Algorithm

Propositions
Literal
Clause

CNF formula

p=((PV-g)A...

Assignment

Satisfiability

Jargon Slide
finite set V'
p,p peV

disjunction of literals

literals conjunction of clauses
A (—=rVwVq)
clauses

partial function V — {t,f}

Does there exists an assignment
V — {t,f} such that ¢ is true?

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ = (pV —q¢) A... A (-7 Aw A q)

conflict /

Learn

BCP

&\?

Decide

Bac_ ktrack

~ 7

SAT

UNSAT

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ = (pV —q¢) A... A (-7 Aw A q)

(Deduction k

conflict

Learn

BCP| —
'\\/ Decide >
Backtrack > UNSAT
~

SAT

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ = (pV —q¢) A... A (-7 Aw A q)

ZMake assumption)

(Deduction k

conflict

Learn

SAT

BCP| —
'\\/ Decide >
Backtrack > UNSAT
~

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ = (pV —q¢) A... A (-7 Aw A q)

ZMake assumption)

(Deduction k

conflict

Learn

BCP| —
'_/ Decide >
Backtrack > UNSAT
~

SAT
A\
(UNsAFE)

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ =

(Deduction

conflict / \

Learn

[Reﬁne formula

(pV=ag)A...AN(—r Aw A Qq)
Make assumption)
BCID - “‘\\ /Z:

Decide >| SAT

A\

(UNSAFE)
Backtrack > UNSAT
~_

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ =

(Deduction

BCP

(pV—g) A ...

/\

conflict / \

Learn

\ /
[Reﬁne formula
C

A(=r Aw A q)

ZMake assumption)

Decide

)

Backtrack

UNSAT

Restore
onsistent state

)

SAT

A\
(UNsaFe)

Tuesday, 13 September 11

The CDCL Algorithm

Propositional CNF formula ¢ =

(Deduction

BCP

(pV—g) A ...

/\

conflict / \

Learn

\ /
[Reﬁne formula
C

A(=r Aw A q)

ZMake assumption)

Decide

)

Backtrack

SAT

A\
(UNsaFe)

UNSAT

Restore
onsistent state

)

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

Boolean Constraint Propagation (BCP)

Operates over a partial function
(variable assignment)

V — {t,f}

Tuesday, 13 September 11

conflict

Learn

Decide

SAT

Backtrack

S~ "

UNSAT

Boolean Constraint Propagation (BCP)

Unit Rule

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

Boolean Constraint Propagation (BCP)

Dt Unit Rule
qg—f

r—f
N(—pVagVrV-ow)A...

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

Boolean Constraint Propagation (BCP)

Dt Unit Rule
qg—f

r—f
N (EpV gV rV-ow)A. ..

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

Boolean Constraint Propagation (BCP)

Unit Rule

A (EpV(gV TV —w) AL

Tuesday, 13 September 11

Decide > SAT

conflict S

Learn Backtrack — UNSAT
~ "

Boolean Constraint Propagation (BCP)

Unit Rule

.../\(@\/@\/@\/ﬁw)/\...

Tuesday, 13 September 11

conflict S

Decide

Learn

SAT

Backtrack — UNSAT

S~ "

Boolean Constraint Propagation (BCP)

Unit Rule >

Dt
qg—f

w — f

Tuesday, 13 September 11

conflict

Learn

Decide

SAT

Backtrack

S~ "

UNSAT

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Boolean Constraint Propagation (BCP)

BCP = Exhaustive application of unit rule

Tuesday, 13 September 11

conflict

Learn

Decide

SAT

Backtrack

S~ "

UNSAT

gpz@/\(ﬂp\/ﬁq)/\(q\/fr\/ﬂw)/\(q\/fr‘\/w)

Boolean Constraint Propagation (BCP)

BCP = Exhaustive application of unit rule

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

gpz@/\(ﬂp\/ﬁq)/\(q\/fr\/ﬂw)/\(q\/fr‘\/w)

Boolean Constraint Propagation (BCP)

BCP = Exhaustive application of unit rule

—> p—1

Tuesday, 13 September 11

Decide > SAT

UNSAT

Boolean Constraint Propagation (BCP)

BCP = Exhaustive application of unit rule

—> p—1

Tuesday, 13 September 11

Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Boolean Constraint Propagation (BCP)

BCP = Exhaustive application of unit rule

—> p—t ——> p—t
qgr—f

Tuesday, 13 September 11

conflict

-

Learn

BCP

A

) N
i c/ \\
y ° p
. :
\ . 4
\ 4 i
>‘\\\ ‘
— _
e =

e T 5%~

SAT

Backtrack —

UNSAT

S~ "

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Pt
qg—f

Decisions

Tuesday, 13 September 11

BCP

SAT

) N
+ ’c, \\
) ¥
Y D . '
\ e C I e I]
\ y
\ '
¥.on v
x&\
g i
o - =

e o = <

conflict/ \

Learn Backtrack —{ UNSAT
~ "

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Decisions

Pick an unassigned variable and assign a truth value
Pt
q—f

Tuesday, 13 September 11

conflict

-

Learn

BCP

SAT

A

) N
+ ’c, \\
‘ ¥
Y D . '
\ e C I e I ‘
\ y
\ '
TN A
\\\
g i
S o e =

e o = <

Backtrack —

UNSAT

S~ "

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Decisions

Pick an unassigned variable and assign a truth value

Pt
qg—f

Dt

> qg—f
r—f

Tuesday, 13 September 11

conflict %

Learn

Decide

SAT

Backtrack

UNSAT

S~ "

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Dt
qg—f
r—f

Tuesday, 13 September 11

Decide

SAT

UNSAT

Dt p—t
gr—sf —> q—f
r— f ri—f

w +— f

Tuesday, 13 September 11

Decide >| SAT

conflict %

Learn Backtrack — UNSAT
~ "

p=pA(mpV-q)A(gVrV-w) VoV

pH—1 p—1
q—t —=> g—=1t —> conflict
r—t r—f

w — f

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

Backtrack

UNSAT

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

Backtrack

UNSAT

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Dt

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

UNSAT

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

UNSAT

r—f

Tuesday, 13 September 11

conflict

scpl~— *

Backtrack

Decide

SAT

—>| UNSAT

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

r—f

w — f

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

UNSAT

r—f

Tuesday, 13 September 11

conflict

BCP

\
Dt

Decide

SAT

UNSAT

Tuesday, 13 September 11

conflict

scpl~— *

Decide

SAT

UNSAT

qg—f

reason

r—f

g+—f and r — f is not possible

Tuesday, 13 September 11

scp|l~— *

Decide > SAT

UNSAT

conflict \
ST) ‘*‘h:
,/// i'\\\
Y, \
3

P . W f o
q—t .
reason
| conflict
........ v
........ g
r—f g
R TOOURIPPEE R learn lemma
g+t and r+— f is not possible | > gV

Tuesday, 13 September 11

Yo s

Decide >| SAT

conflict

Backtrack — UNSAT

p=pA(=pV-ag)A(gVrV-w)A(qgVrVvw) qVr

Tuesday, 13 September 11

scp| ~—— *
conflict \/

-

Learn

Decide > SAT

UNSAT

o =pA(pVog) AN(gVrV-w)A(gVrVw)A(gVr)

Tuesday, 13 September 11

scp| ~—— *
conflict \/

-

Learn

Decide > SAT

UNSAT

Tuesday, 13 September 11

scp| ~—— *
conflict _/

-

Learn

Decide > SAT

UNSAT

o =pA(pVog) AN(gVrV-w)A(gVrVw)A(gVr)

Pt
qg—f >th
r—f qg—f

w — f

Tuesday, 13 September 11

scp| ~—— *
conflict _/

-

Learn

Decide > SAT

UNSAT

Pt
qg—f >th
r—f qg—f

w — f

Tuesday, 13 September 11

The CDCL Algorithm

One Line Summaries

BCP and decisions construct an assignment
Learning infers new clauses ..
\ v

Model theoretic search guides proof theoretic search

Important: CDCL is more than case splitting

Tuesday, 13 September 11

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)

Tuesday, 13 September 11

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Tuesday, 13 September 11

Imagine no assignments,
it’s easy if you try

if(p && (f\

assert(0)

return 0;

}

Imagine only Booleans,
| wonder if you can

Tuesday, 13 September 11

intPmain(void)

{

bool p,q,r,w;

if(p & (!'p || q) & (q || r ||
assert(90);

return 0;

}

/private/tmp/sat.c [P0S=0002,0004][16%] [LEN=12]

c| sat.c (/private/tmp) - VIM

O i @ % @

Iw) & (q || r || w))

Tuesday, 13 September 11

Concrete Interpretation

P={p—tg—1t),(p—tqg—f)} Q={p—tq—=1t),(p—=fg—1)}
Var — B
PUQ PUQ m PUQ
P PoQ Q Q FoQ P
P0Q PNQ m_ m_ Q

Shaded: Strongest post-condition for assume(!p || Q)

Tuesday, 13 September 11

Satisfiability as Concrete Analysis

C=(p(V—->DB),CNU Concrete domain
T=V =08 All environments
1 =10 No environment

post ,(X) = {e € X | ¢ satisfies o} Strongest post-condition

Concrete Satisfiability:

o is satisfiable exactly if post ,(T) # ()

Tuesday, 13 September 11

Cartesian Abstract Domain

%) Concrete
Set of environments
ﬂ v
Abstract
V= & %) Environment of sets

Tuesday, 13 September 11

Cartesian Abstract Domain

Shaded: Abstract strongest post-condition for assume(!p || @)

Tuesday, 13 September 11

Cartesian Abstract Interpretation

C={p(V—>8),C,N,U)
A=(V = p(B),C,M,L)
C%A

apost , = . © post , oy

post . (P) =0
post o (P) = {{p = f,q >)}
POStyxorg(T) ={{p—= g = t)

Concrete domain
Abstract domain
Galois connection

Best abstract transformer

a(P) = (p— {t},q — B)
apost,,n,(a(P)) = L
apost . (a(P)) = (p— {f}, ¢ — {f})
apost, oo (T) =T

Tuesday, 13 September 11

Transformers are sound ...

Computing the best abstract transformer is SAT-hard

Use best abstract transformer only for literals

conjunction meet

disjunction join

If apost, = L then ¢ is unsatisfiable.

(follows from the standard soundness theorem of abstract interpretation)

but they are not complete ...

Tuesday, 13 September 11

... but not complete

Abbreviate (p— {t},¢—B) as (p—1)

p=pA(-pVg)
apastgp(_l—) — apOStp(T)] (apostﬁp(_r) L apOStq(T))

==t {(p—~fU(gr—1t))
=(p—t)nT

= (pr t)

£

post,(T) ={(p—t,q— 1)}

Tuesday, 13 September 11

Recovering Precision

Theorem (Cousot and Cousot 1979)

post(vy(a)) C v(gfp,(apost(z Ma))) € v(apost(a))

p=pA(7PVq)
apost ,(T) = apost,,(T) N (apost_,(T) U apost ,(T))
= (pr=t)
apost,((p — t)) = apost,,({p — t)) M (apost_,((p — t)) Ll apost,({p — t)))
=p—tHnN(LU(p—tqg—t))
=P=t)Np=tg—t
= (p—t,q—1)

Tuesday, 13 September 11

Interpreting Logic

One Line Summaries

Satisfying assignments are fixed points of the semantics
Cartesian abstract interpretation is sound but imprecise

gfp improves precision in the abstract

Tuesday, 13 September 11

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)

Tuesday, 13 September 11

A SAT solver and an abstract interpreter
walk into a bar

#define 1_True (1bool ((uint8_t)0))
#define]_False (1bool ((uint8_t)1))
#define 1_Undef (1bool ((uint8_t)2))

class 1bool { [..] };

class Solver {
[...]
/l FALSE means solver is 1n a conflicting state
bool okay () const;
vec<lbool> assigns; // The current assignments.
// Enqueue a literal . Assumes value of literal 1s undefined.

void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
// Perform unit propagation. Return possibly conflicting clause.
CRef propagate () ;

}s

MiniSAT 2.2.0

Tuesday, 13 September 11

Partial assignments

A SAT solver uses partial assighments 1_Undef

V — 1_True 1_False

— okay

An element of the Cartesian abstraction is: { N f}
9

/ \{t}

vV — {f}

N/

Partial assignments are order isomorphic to the reduced Cartesian abstraction

Tuesday, 13 September 11

Unit rule

assighment

conflict if m makes all literals in C' false
unit(m,C') = < wlp —t] if 7 makes all literals in C but p false

T otherwise

Unit rule and abstract transformer

h(unit(m, C')) = apost~(h(m))

Order
isomorphism

The unit rule is the best abstract transformer

Tuesday, 13 September 11

BCP

BCP(p,) {
repeat

7l <

for Clause C' € ¢ do 7 « unit(C, ")
until 7’ =

Theorem: BCP as fixed point
h(BCP(p, 7)) = gfp, (apost,(h(m) M x))

BCP is a greatest fixed point

Tuesday, 13 September 11

A SAT solver and an abstract interpreter
walk into a bar

#define 1_True (1bool ((uint8_t)0))
#define]_False (1bool ((uint8_t)1))
#define 1_Undef (1bool ((uint8_t)2))

class 1bool { [..] };

class Solver {
[...]
/l FALSE means solver is 1n a conflicting state
bool okay () const;
vec<lbool> assigns; // The current assignments.
// Enqueue a literal . Assumes value of literal 1s undefined.

void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
// Perform unit propagation. Return possibly conflicting clause.
CRef propagate () ;

}s

MiniSAT 2.2.0

Tuesday, 13 September 11

Another learning example

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A((3VIVI)

DLO

Tuesday, 13 September 11

Another learning example

1ALV -2V -3)A (=4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A((3VIVI)

Tuesday, 13 September 11

Another learning example

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A(3VIVI)

DLO
1
2 _
— 3
DL2

Tuesday, 13 September 11

Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(—=6V-8)A(-7TVE8V-9)A((3VIVI)

DLO
1
DL1 %
2 _
DL2 B
4 > 5
DL3
6 >

Tuesday, 13 September 11

Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
DL1 %
2 _
DL2 3
2, > 5
DL3
6 > [- (79N 3)

_>§\II,’;1 é

Tuesday, 13 September 11

Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
2 _
—> e _'(_'8 A AVA _'3)
DL2
4 -5
DL3

,,— _I(_Ig /\ _I3)

!
6 -7 ’
/Il‘/' II]-é

8

Tuesday, 13 September 11

Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
T /' _|(6/\2/_'1)
2 L
> 3 L+ (=8 ATA=3)
DL2 ; y
4 . 5 ,'I / /
DL3 .' ,'
6 — 7 1 o= (=9 A =3)
|‘ \:\‘ B) 7’
\ g | /
']

Cuts = Heuristic underapproximation of the weakest pre-
condition

Tuesday, 13 September 11

Another learning example

1ALV -2V-3)A(=4VE)A(=6VT)A(=6V -8)A(-7TV8V-9)A(3VIVI)
A9V 3)

Tuesday, 13 September 11

Trace Partitioning
(Mauborgne and Rival, 2005)

int main(void)

{
int x,y;
Domain of Intervals: %f(y < 5)
int main(void) V — 4 X 1, X Y
{ :
: . if(x < 5)
int x,y; assert(y < 5);
— }
2 el Transform program else
S f (= 5) {

) S

assert(y < 5);
1f{x = 5)

return 0; assert(y < 5);

}

}

Analysis too imprecise
return 0;

Same analysis is precise

Changing the equation allows one to prove more with the same analysis.

Instance of a power domain (Cousot and Cousot, 1979)

Tuesday, 13 September 11

Learning in SAT

Conflict
reason

if(p = true && q = true)

{
if(phi)
assert(0);
if(phi) T f f | llse
assert(0) ranstorm rormauia if((1p || 'q))
{

if(phi)
assert(0):

Learned
clause

Decisions and learning are dynamic “trace” partitioning

Tuesday, 13 September 11

Learning in SAT

Conflict
reason

Safe

if(phi)

ascaryio) Transform formula

%f('p || !q)
if(phi)

assert(0);

Learned
clause

Decisions and learning are dynamic “trace” partitioning

Tuesday, 13 September 11

CDCL is Abstract Interpretation

One Line Summaries

CDCL implements the Cartesian abstract domain as its main data structure

The unit rule is the application of the_best abstract clause transformer

BCP is fixed point computation

Decisions & Learning are discovery of trace partitions

Tuesday, 13 September 11

CDCL is Abstract Interpretation

Summary of Summaries

CDCL = Partial assighments = Cartesian abstract domain
+ Unit rule & BCP + Abstract transformer & GFP
+ Decisions & Learning + Trace partitioning

Not an ANALOGY but an ISOMORPHISM

Precise results using a strict abstraction!

Tuesday, 13 September 11

Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)

Tuesday, 13 September 11

What about programs!?

DLO (2 < —2] %\ [a> 1]
(o= 1] la=0)
b= —1 bo—1

g(/

Tuesday, 13 September 11

What about programs!?

(c3 : af:\O) /(c? a= —1)

~
~N

\/)\\ \\
DLO - ‘ SN SR (2 < —2] rlﬂ [> 1]
(@:a< -1 (3:a<0) (c3:a>0) (e:a>—1) (/ﬂ\
o= —1] a=0)
(c1:a < =2 (cs :a>1)
b= —1 bi=1

g(/

Tuesday, 13 September 11

What about programs!?

DLO

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1)

([al]/—\[aO]
(Cl:KW@‘“”D
b:= -1 b:=1
| > : >_(
(ny : b < 2) m:b=> —2 (72)<

N .®<_/

b:=2 - b:= -2
¢ :h<0) (£:b>0 T[H]

Tuesday, 13 September 11

What about programs!?

DLO

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1)

N .®<_/

b2 T,
(é b§§® [é b2i® 1;@
DL1
ln]:a<1—4m

Tuesday, 13 September 11

What about programs!?

oLy ———— [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =

([a = —1] [a = 0]

b:=-1 b:=1

B

4 L SAFE

Tuesday, 13 September 11

What about programs!?

DLO p<2 4 [
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
([a=—1] [a=0]
=—1 b:=1
(<
l[/b 0]
0
DL1
n :a< —2)
&@ CELE) gtED SAFE — Generalise!

Heuristic underapproximation of the
weakest pre-condition

Tuesday, 13 September 11

DLO

(2 :a < —1)

What about programs!?

(3:a<0) (3:a>0) (:a>—1)

Tuesday, 13 September 11

What about programs!?

oLy —————— [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
([all/—\[ao] W
(C1:éiS _ >a > o =)
’ - b:= -1 b:=1
: : /\ /\

SAFE

Tuesday, 13 September 11

ACDCL(A)

One Line Summaries

ACDCL(A) program analysers!

Techniques from SAT translate to programs

ACDCL(A) discovers small, property driven refinement

Tuesday, 13 September 11

Something more practical

ACDCL(Interval) procedure over floating point and
machine integer intervals

Automatically finds property-dependent partitioning

Example: Taylor expansion of sine-function

int main()

{

float IN;
__CPROVER_assume(IN > -HALFPI && IN < HALFPI);

float x = IN;

float result = X = (xkx%kX)/6.0F + (XkxkXkX%kX)/120.0T + (XkXKXKXKkX%kX%kX)/5040.0f;
assert(result <= VAL && result >= -VAL);

return 0;

Tuesday, 13 September 11

N[

Implementation

A\

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

result < 2.0

el

result > -2.0

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

N[
|

result < 1.5 —

/\//

result > -1.5

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

result < 1.2

/\ ’//

result > -1.2

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

result < 1.1

/\ —//

result > -1.1

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

result < 1.01

/‘\ | L

restilt > -1.01

Tuesday, 13 September 11

Number of partitions vs. tightness of bound

result < 1.001

T T~ g

resu1/t > -1.001

Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT

Tuesday, 13 September 11

Conclusion

SAT solvers are abstract interpreters

partial assignments

Cartesian domain

unit rule abstr. transformer
BCP gfp

decisions meet irreducibles

learning trace partioning

Abstract interpreters can be SAT solvers

ACDCL(A) for program analysis / SMT
precise results in an imprecise abstraction

Tuesday, 13 September 11

..walk into a bar

Al looks toward SMT

Precise analysis,
efficient handling
of disjunction

post operators,
widenings

SMT looks towards Al

Tuesday, 13 September 11

esearc I Besel M =7 &=

Videos §# Projects Publications People Downloads
: Project Tuva Enhanced Video Player
Home Our Research Connections Careers ! Y
Watch the Feynman Lectures
Worldwide Labs Research Areas Research Groups
@ > Videos ¥ n e ..] D< |

Featured videos

: > Non-Visual Mainstream Smartphone and
Find videos ,O ! Camera Interactions for Blind and Low-

Vision Users
@ Include transcript search x Clear search and filter

il © Ll

Filter Sort: most recent 23456 7 Nextr 1-10 of 2866 videos
Date recorded Abstractions in Satisfiability Solvers Abstractions in Satisfiability Solvers
From: Vijay D'Silva

MM/DD/YYYY lsht] 01:06:38 - 9 September 2011 - Vijay D'Silva

To:

The Mathematical Challenge of Large Networks
MM/DD/YYYY

lsht] 01:12:12 - 7 September 2011 - Laszlb Lovész

Collections Validation of a Quantum Simulator

) €€l captions '

available lsh] 00:56:37 - 6 September 2011 - Matthias Troyer

iISAX 2.0: Indexing and Mining One Billion Time Series/Database
Cracking and the Path Towards Auto-tuning Database Kernels

lsht] 01:25:12 . 6 September 2011 - Themis Palpanas and Stratos Idreos

- SpecNet: Spectrum Sensing Sans Frontiéres

Invited questions

Isn’t this just CEGAR?
What if case splits are not enough!?

Show me experiments!

Tuesday, 13 September 11

