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A Tale of Two Communities
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100s \

10s \

Sy \
Is I I I I I I ?

2000 2001 2002 2003 2004 2005 2006 2007

“ the practical success of SAT has come as a surprise to
many 1n the computer science community. The
combination of strong practical drivers and open
competition 1n this experimental research effort created
enough momentum to overcome the pessimism based

on theory. Can we take these lessons to other problems
and domains?”

— Malk & Zhang, 2009
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Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)
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The CDCL Algorithm

Propositions
Literal
Clause

CNF formula

p=((PV-g)A...

Assignment

Satisfiability

Jargon Slide
finite set V'
p,p peV

disjunction of literals

literals conjunction of clauses
A (—=rVwVq)
clauses

partial function V — {t,f}

Does there exists an assignment
V — {t,f} such that ¢ is true?
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Propositional CNF formula ¢ =

( Deduction

conflict / \

Learn

[Reﬁne formula

(pV=ag)A...AN(—r Aw A Qq)
Make assumption)
BCID - “‘\\ /Z:

Decide >| SAT

A\

(UNSAFE)
Backtrack > UNSAT
~_

Tuesday, 13 September 11



The CDCL Algorithm

Propositional CNF formula ¢ =

( Deduction

BCP

(pV—g) A ...

/\

conflict / \

Learn

\ /
[Reﬁne formula
C

A(=r Aw A q)

ZMake assumption)

Decide

)

Backtrack

UNSAT

Restore
onsistent state

)

SAT

A\
(UNsaFe )

Tuesday, 13 September 11



The CDCL Algorithm

Propositional CNF formula ¢ =

( Deduction

BCP

(pV—g) A ...

/\

conflict / \

Learn

\ /
[Reﬁne formula
C

A(=r Aw A q)

ZMake assumption)

Decide

)

Backtrack

SAT

A\
(UNsaFe )

UNSAT

Restore
onsistent state

)

Tuesday, 13 September 11



Decide > SAT

conflict

Learn Backtrack —{ UNSAT
~ "

Boolean Constraint Propagation (BCP)

Operates over a partial function
(variable assignment)

V — {t,f}
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The CDCL Algorithm

One Line Summaries

BCP and decisions construct an assignment
Learning infers new clauses ..
\ v

Model theoretic search guides proof theoretic search

Important: CDCL is more than case splitting
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Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)
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p=pAN(pV-g) A(gVrV-w)A(gVrVuw)
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Imagine no assignments,
it’s easy if you try

if(p && (f\

assert(0)

return 0;

}

Imagine only Booleans,
| wonder if you can
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intPmain(void)

{

bool p,q,r,w;

if(p & (!'p || q) & (q || r ||
assert(90);

return 0;

}

/private/tmp/sat.c [P0S=0002,0004][16%] [LEN=12]

c| sat.c (/private/tmp) - VIM

O i @ % @

Iw) & (q || r || w))
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Concrete Interpretation

P={p—tg—1t),(p—tqg—f)} Q={p—tq—=1t),(p—=fg—1)}
Var — B
PUQ PUQ m PUQ
P PoQ Q Q FoQ P
P0Q PNQ m_ m_ Q

Shaded: Strongest post-condition for assume(!p || Q)
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Satisfiability as Concrete Analysis

C=(p(V—->DB),CNU Concrete domain
T=V =08 All environments
1 =10 No environment

post ,(X) = {e € X | ¢ satisfies o} Strongest post-condition

Concrete Satisfiability:

o is satisfiable exactly if post ,(T) # ()
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Cartesian Abstract Domain

%) Concrete
Set of environments
ﬂ v
Abstract
V= & %) Environment of sets
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Cartesian Abstract Domain

Shaded: Abstract strongest post-condition for assume(!p || @)
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Cartesian Abstract Interpretation

C={p(V—>8),C,N,U)
A=(V = p(B),C,M,L)
C%A

apost , = . © post , oy

post . (P) =0
post o (P) = {{p = f,q > )}
POStyxorg(T) ={{p—= g = t)

Concrete domain
Abstract domain
Galois connection

Best abstract transformer

a(P) = (p— {t},q — B)
apost,,n,(a(P)) = L
apost . (a(P)) = (p— {f}, ¢ — {f})
apost, oo (T) =T
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Transformers are sound ...

Computing the best abstract transformer is SAT-hard

Use best abstract transformer only for literals

conjunction meet

disjunction join

If apost, = L then ¢ is unsatisfiable.

(follows from the standard soundness theorem of abstract interpretation)

but they are not complete ...
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... but not complete

Abbreviate (p— {t},¢—B) as (p—1)

p=pA(-pVg)
apastgp(_l—) — apOStp(T) ] (apostﬁp(_r) L apOStq(T))

==t {(p—~fU(gr—1t))
=(p—t)nT

= (pr t)

£

post,(T) ={(p—t,q— 1)}
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Recovering Precision

Theorem (Cousot and Cousot 1979)

post(vy(a)) C v(gfp,(apost(z Ma))) € v(apost(a))

p=pA(7PVq)
apost ,(T) = apost,,(T) N (apost_,(T) U apost ,(T))
= (pr=t)
apost,((p — t)) = apost,,({p — t)) M (apost_,((p — t)) Ll apost,({p — t)))
=p—tHnN(LU(p—tqg—t))
=P=t)Np=tg—t
= (p—t,q—1)
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Interpreting Logic

One Line Summaries

Satisfying assignments are fixed points of the semantics
Cartesian abstract interpretation is sound but imprecise

gfp improves precision in the abstract
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Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)
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A SAT solver and an abstract interpreter
walk into a bar

#define 1_True (1bool (( uint8_t )0))
#define ]_False (1bool (( uint8_t)1))
#define 1_Undef (1bool (( uint8_t )2))

class 1bool { [..] };

class Solver {
[...]
/l FALSE means solver is 1n a conflicting state
bool okay () const;
vec<lbool> assigns; // The current assignments.
// Enqueue a literal . Assumes value of literal 1s undefined.

void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
// Perform unit propagation. Return possibly conflicting clause.
CRef propagate () ;

}s

MiniSAT 2.2.0
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Partial assignments

A SAT solver uses partial assighments 1_Undef

V — 1_True 1_False

— okay

An element of the Cartesian abstraction is: { N f}
9

/ \{t}

vV — {f}

N/

Partial assignments are order isomorphic to the reduced Cartesian abstraction
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Unit rule

assighment

conflict  if m makes all literals in C' false
unit(m,C') = < wlp —t] if 7 makes all literals in C but p false

T otherwise

Unit rule and abstract transformer

h(unit(m, C')) = apost~(h(m))

Order
isomorphism

The unit rule is the best abstract transformer
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BCP

BCP(p, ) {
repeat

7l <

for Clause C' € ¢ do 7 « unit(C, ")
until 7’ =

Theorem: BCP as fixed point
h(BCP(p, 7)) = gfp, (apost,(h(m) M x))

BCP is a greatest fixed point
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A SAT solver and an abstract interpreter
walk into a bar

#define 1_True (1bool (( uint8_t )0))
#define ]_False (1bool (( uint8_t)1))
#define 1_Undef (1bool (( uint8_t )2))

class 1bool { [..] };

class Solver {
[...]
/l FALSE means solver is 1n a conflicting state
bool okay () const;
vec<lbool> assigns; // The current assignments.
// Enqueue a literal . Assumes value of literal 1s undefined.

void uncheckedEnqueue (Lit p, CRef from = CRef_Undef);
// Perform unit propagation. Return possibly conflicting clause.
CRef propagate () ;

}s

MiniSAT 2.2.0
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Another learning example

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A((3VIVI)

DLO
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Another learning example
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DLO
1
2 _
— 3
DL2
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Another learning example
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DLO
1
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DL3
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Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
2 _
—> e _'(_'8 A AVA _'3)
DL2
4 -5
DL3

,,— _I(_Ig /\ _I3)

!
6 -7 ’
/Il‘/' II ]-é

8
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Another learning example

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
T /' _|(6/\2/\_'1)
2 L
> 3 L+ (=8 ATA=3)
DL2 ; y
4 . 5 ,'I / /
DL3 .' ,'
6 — 7 1 o= (=9 A =3)
|‘ \:\‘ B ) 7’
\ g | /
' ]

Cuts = Heuristic underapproximation of the weakest pre-
condition
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Another learning example

1ALV -2V-3)A(=4VE)A(=6VT)A(=6V -8)A(-7TV8V-9)A(3VIVI)
A9V 3)
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Trace Partitioning
(Mauborgne and Rival, 2005)

int main(void)

{
int x,y;
Domain of Intervals: %f(y < 5)
int main(void) V — 4 X 1, X Y
{ :
: . if(x < 5)
int x,y; assert(y < 5);
— }
2 el Transform program else
S f (= 5) {

) S

assert(y < 5);
1f{x = 5)

return 0; assert(y < 5);

}

}

Analysis too imprecise
return 0;

Same analysis is precise

Changing the equation allows one to prove more with the same analysis.

Instance of a power domain (Cousot and Cousot, 1979)
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Learning in SAT

Conflict
reason

if(p = true && q = true)

{
if( phi )
assert(0);
if( phi ) T f f | llse
assert(0) ranstorm rormauia if((1p || 'q))
{

if( phi )
assert(0):

Learned
clause

Decisions and learning are dynamic “trace” partitioning
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Learning in SAT

Conflict
reason

Safe

if( phi )

ascaryio) Transform formula

%f( 'p || !q)
if( phi )

assert(0);

Learned
clause

Decisions and learning are dynamic “trace” partitioning
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CDCL is Abstract Interpretation

One Line Summaries

CDCL implements the Cartesian abstract domain as its main data structure

The unit rule is the application of the_best abstract clause transformer

BCP is fixed point computation

Decisions & Learning are discovery of trace partitions
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CDCL is Abstract Interpretation

Summary of Summaries

CDCL = Partial assighments = Cartesian abstract domain
+ Unit rule & BCP + Abstract transformer & GFP
+ Decisions & Learning  + Trace partitioning

Not an ANALOGY but an ISOMORPHISM

Precise results using a strict abstraction!
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Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)
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What about programs!?

DLO (2 < —2] %\ [a> 1]
( o= 1] la=0)
b= —1 bo—1

g( /
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What about programs!?

(c3 : af:\O) /(c? a= —1)

~
~N

\/)\\ \\
DLO - ‘ SN SR (2 < —2] rlﬂ [ > 1]
(@:a< -1 (3:a<0) (c3:a>0) (e:a>—1) ( /ﬂ\
o= —1] a=0)
(c1:a < =2 (cs :a>1)
b= —1 bi=1

g( /
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What about programs!?

DLO

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1)

( [al]/—\[aO]
(Cl:KW@‘“”D
b:= -1 b:=1
| > : >_(
(ny : b < 2) m:b=> —2 (72 )<

N .®<_/

b:=2 - b:= -2
¢ :h<0) (£:b>0 T[H]
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What about programs!?

DLO

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1)

N .®<_/

b2 T,
(é b§§® [é b2i® 1;@
DL1
ln]:a<1—4m
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What about programs!?

oLy ———— [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =

( [a = —1] [a = 0]

b:=-1 b:=1

B

4 L SAFE
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What about programs!?

DLO p<2 4 [
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
( [a=—1] [a=0]
=—1 b:=1
(<
\_l_[/b 0]
0
DL1
n :a< —2)
&@ CELE) gtED SAFE — Generalise!

Heuristic underapproximation of the
weakest pre-condition
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DLO

(2 :a < —1)

What about programs!?

(3:a<0) (3:a>0) (:a>—1)
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What about programs!?

oLy —————— [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
( [all/—\[ao] W
(C1:éiS _ >a > o =)
’ - b:= -1 b:=1
: : /\ /\

SAFE
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ACDCL(A)

One Line Summaries

ACDCL(A) program analysers!

Techniques from SAT translate to programs

ACDCL(A) discovers small, property driven refinement
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Something more practical

ACDCL(Interval) procedure over floating point and
machine integer intervals

Automatically finds property-dependent partitioning

Example: Taylor expansion of sine-function

int main()

{

float IN;
__CPROVER_assume(IN > -HALFPI && IN < HALFPI);

float x = IN;

float result = X = (xkx%kX)/6.0F + (XkxkXkX%kX)/120.0T + (XkXKXKXKkX%kX%kX)/5040.0f;
assert(result <= VAL && result >= -VAL);

return 0;
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N[

Implementation

A\
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Number of partitions vs. tightness of bound

result < 2.0

el

result > -2.0
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Number of partitions vs. tightness of bound

N[
|

result < 1.5 —

/\//

result > -1.5
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Number of partitions vs. tightness of bound

result < 1.2

/\ ’//

result > -1.2
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Number of partitions vs. tightness of bound

result < 1.1

/\ —//

result > -1.1
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Number of partitions vs. tightness of bound

result < 1.01

/‘\ | L

restilt > -1.01
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Number of partitions vs. tightness of bound

result < 1.001

T T~ g

resu1/t > -1.001

Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT

Tuesday, 13 September 11



Conclusion

SAT solvers are abstract interpreters

partial assignments

Cartesian domain

unit rule abstr. transformer
BCP gfp

decisions meet irreducibles

learning trace partioning

Abstract interpreters can be SAT solvers

ACDCL(A) for program analysis / SMT
precise results in an imprecise abstraction
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..walk into a bar

Al looks toward SMT

Precise analysis,
efficient handling
of disjunction

post operators,
widenings

SMT looks towards Al
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Videos §# Projects Publications People Downloads
: Project Tuva Enhanced Video Player
Home Our Research Connections Careers ! Y
Watch the Feynman Lectures
Worldwide Labs Research Areas Research Groups
@ > Videos ¥ n e .. ] D< |

Featured videos

: > Non-Visual Mainstream Smartphone and
Find videos ,O ! Camera Interactions for Blind and Low-

Vision Users
@ Include transcript search x Clear search and filter

il © Ll

Filter Sort: most recent 23456 7 Nextr 1-10 of 2866 videos
Date recorded Abstractions in Satisfiability Solvers Abstractions in Satisfiability Solvers
From: Vijay D'Silva

MM/DD/YYYY lsht] 01:06:38 - 9 September 2011 - Vijay D'Silva

To:

The Mathematical Challenge of Large Networks
MM/DD/YYYY

lsht] 01:12:12 - 7 September 2011 - Laszlb Lovész

Collections Validation of a Quantum Simulator

) €€l captions '

available lsh] 00:56:37 - 6 September 2011 - Matthias Troyer

iISAX 2.0: Indexing and Mining One Billion Time Series/Database
Cracking and the Path Towards Auto-tuning Database Kernels

lsht] 01:25:12 . 6 September 2011 - Themis Palpanas and Stratos Idreos

- SpecNet: Spectrum Sensing Sans Frontiéres

Invited questions

Isn’t this just CEGAR?
What if case splits are not enough!?

Show me experiments!
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