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“ the practical success of SAT has come as a surprise to 
many in the computer science community. The 
combination of strong practical drivers and open 
competition in this experimental research effort created 
enough momentum to overcome the pessimism based 
on theory. Can we take these lessons to other problems 
and domains?”

    – Malik & Zhang, 2009
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Conflict Driven Clause Learning
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The CDCL Algorithm
Jargon Slide

clauses

literals

| {z } | {z }

Propositions finite set 

Literal

Clause disjunction of literals

CNF formula conjunction of clauses

V

p,¬p p 2 V

Satisfiability Does there exists an assignment     
V -> {t,f}     such that p- is true?V ! {t, f} '

Assignment partial function V ! {t, f}

' = (p _ ¬q) ^ . . . ^ (¬r _ w _ q)
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Boolean Constraint Propagation (BCP)
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(variable assignment)

V ! {t, f}
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The CDCL Algorithm
One Line Summaries

BCP and decisions construct an assignment

Model theoretic search guides proof theoretic search

Important: CDCL is more than case splitting

Learning infers new clauses
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Conflict Driven Clause Learning

CDCL is Abstract Interpretation

Interpreting Logic

ACDCL(A)
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' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)
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' = p ^ (¬p _ ¬q) ^ (q _ r _ ¬w) ^ (q _ r _ w)

Imagine no assignments,
it’s easy if you try

Imagine only Booleans,
I wonder if you can
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Concrete Interpretation

P = {hp 7! t, q 7! ti, hp 7! t, q 7! fi} Q = {hp 7! t, q 7! ti, hp 7! f, q 7! ti}

Shaded: Strongest post-condition for assume(!p || q)

concrete domain of environments

Variables p and q.

P = {hp 7! t,q 7! ti, hp 7! t,q 7! fi} Q = {hp 7! t,q 7! ti, hp 7! f,q 7! ti}

P [Q

P [Q P [Q P [Q

P

P �Q Q

Q P �Q

P

P \Q

P \Q P \Q P \Q

Var ! B

;

Strongest postcondition for assume(¬p_ q)

V. D’Silva 24
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Satisfiability as Concrete Analysis

C = h}(V ! B),✓,\,[i
> = V ! B
? = ;

post'(X) = {" 2 X | " satisfies '}

Concrete domain
All environments
No environment
Strongest post-condition

Concrete Satisfiability:

' is satisfiable exactly if post'(>) 6= ;
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Cartesian Abstract Domain

}(V ! B) Concrete
Set of environments

Abstract
Environment of setsV ! }(B)

��!  ��↵ �
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Cartesian Abstract Domain

cartesian abstract domain

The Cartesian abstraction of }(Var ! B) is Var ! }(B)

P [Q

P [Q P [Q P [Q

P

P �Q Q

Q P �Q

P

P \Q

P \Q P \Q P \Q

Var ! B

;

>

P

Q

Q

P

P \Q

P \Q P \Q P \Q

?

Abstract strongest postcondition for assume(¬p_ q)

V. D’Silva 26
Shaded:  Abstract strongest post-condition for assume(!p || q)
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Cartesian Abstract Interpretation

Concrete domain

Abstract domain

Galois connection

Best abstract transformer

C = h}(V ! B),✓,\,[i
A = hV ! }(B),v,u,ti

C ���! ���↵
�

A

apost' = ↵ � post' � �

P = {" | "(p) = t} ↵(P ) = hp 7! {t}, q 7! Bi
postp^q(P ) = ; apostp^q(↵(P )) = ?

postp_¬q(P ) = {hp 7! f, q 7! fi} apostp_¬q(↵(P )) = hp 7! {f}, q 7! {f}i
postp xor q(>) = {hp 7! f, q 7! ti apostp xor q(>) = >

hp 7! t, q 7! fi}
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Transformers are sound ...

Computing the best abstract transformer is SAT-hard

Use best abstract transformer only for literals

conjunction meet

disjunction join

(follows from the standard soundness theorem of abstract interpretation)

but they are not complete ...

If apost' = ? then ' is unsatisfiable.

Tuesday, 13 September 11



... but not complete

' = p ^ (¬p _ q)

apost'(>) = apostp(>) u (apost¬p(>) t apostq(>))

= hp 7! ti u (hp 7! fi t hq 7! ti)
= hp 7! ti u >
= hp 7! ti
6=

post'(>) = {hp 7! t, q 7! fi}

Abbreviate hp 7! {t}, q 7! Bi as hp 7! ti
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Recovering Precision

' = p ^ (¬p _ q)

apost'(>) = apostp(>) u (apost¬p(>) t apostq(>))

= hp 7! ti
apost'(hp 7! ti) = apostp(hp 7! ti) u (apost¬p(hp 7! ti) t apostq(hp 7! ti))

= hp 7! ti u (? t hp 7! t, q 7! ti)
= hp 7! ti u hp 7! t, q 7! ti
= hp 7! t, q 7! ti

Theorem (Cousot and Cousot 1979)

post(�(a)) ✓ �(gfp
x

(apost(x u a))) ✓ �(apost(a))
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Interpreting Logic
One Line Summaries

Satisfying assignments are fixed points of the semantics

Cartesian abstract interpretation is sound but imprecise

gfp improves precision in the abstract
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Conflict Driven Clause Learning

CDCL is Abstract Interpretation

Interpreting Logic

ACDCL(A)

Tuesday, 13 September 11



A SAT solver and an abstract interpreter 
walk into a bar

This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.

Fix a concrete domain }(Struct), where Struct is Var ! Val .

6.1 Truth Tables

This is a toy example included only to illustrate the formalisation
and ease of generalisation to other domains. Truth tables, BDDs and
their extensions are data structures for subsets of Struct . When ex-
tended to richer logics, the representation may not be finite. Re-
call that B is a Boolean algebra. Assume the set of variables
Var = {x1, . . . , xn

} is totally ordered and finite. The domain
of truth tables is defined as the tuple (Table,v,t,u), whose ele-
ments are defined as follows.

Table =̂ Val

n

! B
f v g iff f(v1, . . . , v

k

)) g(v1, . . . , v
k

)

(f t g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t or
g(v1, . . . , v

k

) = t
f otherwise

(f u g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t and
g(v1, . . . , v

k

) = t
f otherwise

Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.

a b

f f
f t
t f
t t

a = t
f
f
t
t

b = f
t
f
t
f

a = t ^ b = f
t
f
t
f

u

=

C
There is a Galois connection }(Struct)

��!

 ��

↵

�

Table .

↵(S) =̂ {(�(x1), . . . ,�(xn

)) 7! t | � 2 S}

[ {(�(x1), . . . ,�(xn

)) 7! f | � /2 S}

�(T ) =̂ {� 2 Struct | T (�(x1), . . . ,�(xn

)) = t}

The ↵ and � are bijective because there is no loss of information.
Consequently, the abstract transformers lose no information.
Example 15. Consider equalities over three variables ordered as
(x, y, z) and values {a, b, c}. The truth table for (x = y _ y = z)
is {(a, a, a) 7! t, (a, a, b) 7! t, (a, a, c) 7! t, . . .}. C
6.2 Boolean Constraint Propagation

The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula

' =̂ p ^ (¬p _ ¬q) ^ (q _ r _ ¬s _ u) ^ (¬p _ q _ s)

to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True ( lbool (( uint8 t )0))
2 #define l False ( lbool (( uint8 t )1))
3 #define l Undef ( lbool (( uint8 t )2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.

the clause containing u, so the procedure stops. Suppose ' is ex-
tended to  as below. The previous reasoning still holds. Moreover,
t and r must be false yielding the truth assignment shown.

 =̂ ' ^ (¬p _ ¬u) ^ (q _ u _ ¬r)

� =̂ {p 7! t, q 7! f, r 7! f, s 7! t, u 7! f, }

Since (q _ r _ ¬s _ u) is not satisfied by �,  is unsatisfiable. C
BCP is now formalised. A partial assignment is a function

� : Prop ! {t, f, u} indicating that a proposition is true, false
or unassigned. In MINISAT, the partial assignments are stored in
the array “assigns”, which uses the integer values 0, 1 and 2 to de-
note t, f and u, respectively. We define ¬u to be u. The set of partial
assignments is Assg . The value of a literal l under � is �(l) if l is
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The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula
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to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True ( lbool (( uint8 t )0))
2 #define l False ( lbool (( uint8 t )1))
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4
5 class lbool { [...] };
6
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8 [...]
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12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.
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Example 17. Let us play with transformers. Let hti denote that p
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This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.
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This is a toy example included only to illustrate the formalisation
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tended to richer logics, the representation may not be finite. Re-
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of truth tables is defined as the tuple (Table,v,t,u), whose ele-
ments are defined as follows.

Table =̂ Val

n

! B
f v g iff f(v1, . . . , v

k

)) g(v1, . . . , v
k

)

(f t g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t or
g(v1, . . . , v

k

) = t
f otherwise

(f u g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t and
g(v1, . . . , v

k

) = t
f otherwise

Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.

a b

f f
f t
t f
t t

a = t
f
f
t
t

b = f
t
f
t
f

a = t ^ b = f
t
f
t
f

u

=

C
There is a Galois connection }(Struct)

��!

 ��

↵

�

Table .

↵(S) =̂ {(�(x1), . . . ,�(xn

)) 7! t | � 2 S}

[ {(�(x1), . . . ,�(xn

)) 7! f | � /2 S}

�(T ) =̂ {� 2 Struct | T (�(x1), . . . ,�(xn

)) = t}
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6.2 Boolean Constraint Propagation

The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula

' =̂ p ^ (¬p _ ¬q) ^ (q _ r _ ¬s _ u) ^ (¬p _ q _ s)

to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True ( lbool (( uint8 t )0))
2 #define l False ( lbool (( uint8 t )1))
3 #define l Undef ( lbool (( uint8 t )2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.
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some literal in ✓ evaluates to true. The unit rule asserts that if all but
one literals in a clause are false under �, the remaining literal must
be assigned true to satisfy the clause. A conflict occurs if all literals
in a clause are false under �. Formally the unit rule is a function
unit : Clause ⇥ Assg ! Assg that extends � to unit(✓, �) to sat-
isfy ✓ if the condition of the rule holds and does nothing otherwise.
BCP updates a partial assignment using the unit rule until no deduc-
tion is possible, or a conflict occurs. The state of BCP is either a
partial assignment � or the conflict state  .

BCP as Abstract Iteration The concrete domain propositional
domain is }(Prop ! B). The propositional Cartesian abstrac-
tion AC is (Prop ! }(B),v,t,u) with the pointwise order and
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The state of BCP is an abstract element in the following sense. An
undefined proposition may have any value in {t, f}. A partial as-
signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a

that concretises to ;, such as {p 7! {t} , q 7! ;}. Such an element
represents not only that a conflict occurred but that the conflict in-
volves q. Abstract elements are now denoted �.
Example 17. Let us play with transformers. Let hti denote that p
maps to {t}. The abstract semantics is below.
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p

(hBi) = hti asem
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(hti) = hti asem
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In the last case, p is assigned f, so a conflict occurs. Consider the
clause ✓ =̂ ¬p_¬q and a pair hx, yi for values of p and q. Abstract
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An element of the Cartesian abstraction is:

V �!

{t, f}

{f} {t}

?

¬
V �!

Partial assignments are order isomorphic to the reduced Cartesian abstraction

Tuesday, 13 September 11



Unit rule

assignment
Clause

unit(⇡, C) =

8
><

>:

conflict if ⇡ makes all literals in C false

⇡[p 7! t] if ⇡ makes all literals in C but p false

⇡ otherwise

Unit rule and abstract transformer

h(unit(⇡, C)) = apostC(h(⇡))

Order 
isomorphism

The unit rule is the best abstract transformer
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BCP

BCP is a greatest fixed point

BCP(',⇡) {
repeat

⇡0  ⇡;
for Clause C 2 ' do ⇡  unit(C,⇡0)

until ⇡0 = ⇡;
}

Theorem: BCP as fixed point

h(BCP(',⇡)) = gfp
x

(apost
'

(h(⇡) u x))
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A SAT solver and an abstract interpreter 
walk into a bar

This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.

Fix a concrete domain }(Struct), where Struct is Var ! Val .

6.1 Truth Tables

This is a toy example included only to illustrate the formalisation
and ease of generalisation to other domains. Truth tables, BDDs and
their extensions are data structures for subsets of Struct . When ex-
tended to richer logics, the representation may not be finite. Re-
call that B is a Boolean algebra. Assume the set of variables
Var = {x1, . . . , xn

} is totally ordered and finite. The domain
of truth tables is defined as the tuple (Table,v,t,u), whose ele-
ments are defined as follows.
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Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.
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)) = t}

The ↵ and � are bijective because there is no loss of information.
Consequently, the abstract transformers lose no information.
Example 15. Consider equalities over three variables ordered as
(x, y, z) and values {a, b, c}. The truth table for (x = y _ y = z)
is {(a, a, a) 7! t, (a, a, b) 7! t, (a, a, c) 7! t, . . .}. C
6.2 Boolean Constraint Propagation

The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula

' =̂ p ^ (¬p _ ¬q) ^ (q _ r _ ¬s _ u) ^ (¬p _ q _ s)

to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True ( lbool (( uint8 t )0))
2 #define l False ( lbool (( uint8 t )1))
3 #define l Undef ( lbool (( uint8 t )2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.

the clause containing u, so the procedure stops. Suppose ' is ex-
tended to  as below. The previous reasoning still holds. Moreover,
t and r must be false yielding the truth assignment shown.

 =̂ ' ^ (¬p _ ¬u) ^ (q _ u _ ¬r)

� =̂ {p 7! t, q 7! f, r 7! f, s 7! t, u 7! f, }

Since (q _ r _ ¬s _ u) is not satisfied by �,  is unsatisfiable. C
BCP is now formalised. A partial assignment is a function

� : Prop ! {t, f, u} indicating that a proposition is true, false
or unassigned. In MINISAT, the partial assignments are stored in
the array “assigns”, which uses the integer values 0, 1 and 2 to de-
note t, f and u, respectively. We define ¬u to be u. The set of partial
assignments is Assg . The value of a literal l under � is �(l) if l is
a proposition and is ¬�(p) otherwise. A clause ✓ is satisfied by � if
some literal in ✓ evaluates to true. The unit rule asserts that if all but
one literals in a clause are false under �, the remaining literal must
be assigned true to satisfy the clause. A conflict occurs if all literals
in a clause are false under �. Formally the unit rule is a function
unit : Clause ⇥ Assg ! Assg that extends � to unit(✓, �) to sat-
isfy ✓ if the condition of the rule holds and does nothing otherwise.
BCP updates a partial assignment using the unit rule until no deduc-
tion is possible, or a conflict occurs. The state of BCP is either a
partial assignment � or the conflict state  .
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The state of BCP is an abstract element in the following sense. An
undefined proposition may have any value in {t, f}. A partial as-
signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a

that concretises to ;, such as {p 7! {t} , q 7! ;}. Such an element
represents not only that a conflict occurred but that the conflict in-
volves q. Abstract elements are now denoted �.
Example 17. Let us play with transformers. Let hti denote that p
maps to {t}. The abstract semantics is below.
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In the last case, p is assigned f, so a conflict occurs. Consider the
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isfy ✓ if the condition of the rule holds and does nothing otherwise.
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signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a
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represents not only that a conflict occurred but that the conflict in-
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13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.

the clause containing u, so the procedure stops. Suppose ' is ex-
tended to  as below. The previous reasoning still holds. Moreover,
t and r must be false yielding the truth assignment shown.

 =̂ ' ^ (¬p _ ¬u) ^ (q _ u _ ¬r)

� =̂ {p 7! t, q 7! f, r 7! f, s 7! t, u 7! f, }

Since (q _ r _ ¬s _ u) is not satisfied by �,  is unsatisfiable. C
BCP is now formalised. A partial assignment is a function

� : Prop ! {t, f, u} indicating that a proposition is true, false
or unassigned. In MINISAT, the partial assignments are stored in
the array “assigns”, which uses the integer values 0, 1 and 2 to de-
note t, f and u, respectively. We define ¬u to be u. The set of partial
assignments is Assg . The value of a literal l under � is �(l) if l is
a proposition and is ¬�(p) otherwise. A clause ✓ is satisfied by � if
some literal in ✓ evaluates to true. The unit rule asserts that if all but
one literals in a clause are false under �, the remaining literal must
be assigned true to satisfy the clause. A conflict occurs if all literals
in a clause are false under �. Formally the unit rule is a function
unit : Clause ⇥ Assg ! Assg that extends � to unit(✓, �) to sat-
isfy ✓ if the condition of the rule holds and does nothing otherwise.
BCP updates a partial assignment using the unit rule until no deduc-
tion is possible, or a conflict occurs. The state of BCP is either a
partial assignment � or the conflict state  .

BCP as Abstract Iteration The concrete domain propositional
domain is }(Prop ! B). The propositional Cartesian abstrac-
tion AC is (Prop ! }(B),v,t,u) with the pointwise order and
Galois connection below.

↵(S) =̂ p 7! {�(p) | � 2 S} �(a) =̂ {� | �(p) 2 a(p) for all p}

The state of BCP is an abstract element in the following sense. An
undefined proposition may have any value in {t, f}. A partial as-
signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a

that concretises to ;, such as {p 7! {t} , q 7! ;}. Such an element
represents not only that a conflict occurred but that the conflict in-
volves q. Abstract elements are now denoted �.
Example 17. Let us play with transformers. Let hti denote that p
maps to {t}. The abstract semantics is below.

asem

p

(hBi) = hti asem

p

(hti) = hti asem

p

(hfi) = h;i

In the last case, p is assigned f, so a conflict occurs. Consider the
clause ✓ =̂ ¬p_¬q and a pair hx, yi for values of p and q. Abstract
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This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.

Fix a concrete domain }(Struct), where Struct is Var ! Val .

6.1 Truth Tables
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Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.
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6.2 Boolean Constraint Propagation
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the MINISAT 2.2.0 solver routines shown in Figure 5.
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to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True ( lbool (( uint8 t )0))
2 #define l False ( lbool (( uint8 t )1))
3 #define l Undef ( lbool (( uint8 t )2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.
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Another learning example
DPLL Learning Example

Learn deeper reason for a conflict using an implication graph

¬1 ^ (1 _ ¬2 _ ¬3) ^ (¬4 _ 5) ^ (¬6 _ 7) ^ (¬6 _ ¬8) ^ (¬7 _ 8 _ ¬9) ^ (3 _ 9 _ 1)

^(9 _ 3)

DL0

1

¬(¬9 ^ ¬3)

¬(¬8 ^ 7 ^ ¬3)

¬(6 ^ 2 ^ ¬1)

Every cut that disconnects the roots from the error is a reason
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Cuts = Heuristic underapproximation of the weakest pre-
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Learn deeper reason for a conflict using an implication graph
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Trace Partitioning 
(Mauborgne and Rival, 2005)

V ! Z⇥ Z

Transform program

Domain of Intervals:

Analysis too imprecise

Same analysis is precise

Changing the equation allows one to prove more with the same analysis.

Instance of a power domain (Cousot and Cousot, 1979)
Tuesday, 13 September 11



Learning in SAT

Transform formula

Conflict 
reason

Learned 
clause

Decisions and learning are dynamic “trace” partitioning

Safe
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Learning in SAT

Transform formula

Conflict 
reason
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Decisions and learning are dynamic “trace” partitioning

Safe
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CDCL is Abstract Interpretation
One Line Summaries

CDCL implements the Cartesian abstract domain as its main data structure

The unit rule is the application of the best abstract clause transformer

BCP is fixed point computation

Decisions & Learning are discovery of trace partitions
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CDCL is Abstract Interpretation
Summary of Summaries

CDCL = Partial assignments 
              + Unit rule & BCP
              + Decisions & Learning

Precise results using a strict abstraction!

Not an ANALOGY but an ISOMORPHISM

           =   Cartesian abstract domain
                + Abstract transformer & GFP
                + Trace partitioning
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Conflict Driven Clause Learning

Interpreting Logic

CDCL is Abstract Interpretation

ACDCL(A)
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What about programs?Abstract Implication Graph

n1

c2 c3c1 c4

n2

 

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0  : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2  : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE
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ACDCL(A)
One Line Summaries

ACDCL(A) program analysers!

Techniques from SAT translate to programs

ACDCL(A) discovers small, property driven refinement
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Something more practical

ACDCL(Interval) procedure over floating point and 
machine integer intervals

Automatically finds property-dependent partitioning

Example:     Taylor expansion of sine-function
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Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT
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Conclusion

partial assignments Cartesian domain
unit rule abstr. transformer

BCP gfp
decisions meet irreducibles
learning trace partioning

SAT solvers are abstract interpreters

Abstract interpreters can be SAT solvers

ACDCL(A) for program analysis / SMT
precise results in an imprecise abstraction
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... walk into a bar

AI looks toward SMT

SMT looks towards AI

post operators,
widenings

Precise analysis,
efficient handling 

of disjunction

Tuesday, 13 September 11



Invited questions
Isn’t this just CEGAR? 

What if case splits are not enough?

Show me experiments!
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