Abstract Satisfaction

Vijay D’Silva, Leopold Haller, Daniel Kroening

=

?

A Tale of Two
Software Verification DPhils

Thursday, 17 November 11

Abstract Interpretation based
Program Analysis

Error states do not overlap
abstract representation,
hence program is safe

P NG

7Frogram traces \ %” Abstract representation

. Test for all inputs and
/[Concrete Domain J P
memory states

[Interpreter J
\ Abstract Domain Abstract analysis

Thursday, 17 November 11

Lattice of Boolean Constants

r— 1 y— 1 y+— 0 x +— 0

r— 1 x+— 0 r— 1 x+— 0
y— 1 y— 1 y— 0 y — 0

L

Abstract interpretation operates over lattices

Thursday, 17 November 11

Domain of Constants

Constant Propagation

Var — IntVals U {7}

e 00 \c| test.c (/private/tmp) - VIM "
e Q@ e e
int main()

{

int a,b;
bool cond;
Analyse by applying e —a, 01

if(cond)

abstract transformers @ _2.° “
a = 10; 4bH1,aI%?

<
assert(a > 0);

assert(b > 0);

return 9; yg\\\\

test.c [P0S=0018,0001] [100%] [LEN=18]
"/tmp/test.c" 18L, 148C written

Efficient, but imprecise

Thursday, 17 November 11

Domain of Intervals

Var — {|l,u] | [,u € IntVals}

e 0o c| test.c (/private/tmp) - VIM "

int main()

{

int a,b;
bool cond;

a =1 ~a,be 1,1

b = a;
if(cond)
a = 4;

else . a & 41’:1() :
‘g—:_;;,,_——”’—— []

assert(a > 0);
assert(b > :);‘\\\\j? GE []'7:1]
return 9;
} \
both safe
test.c [P0S=0018,0001] [100%] [LEN=18]

"/tmp/test.c" 18L, 148C written

Efficient, but imprecise

Thursday, 17 November 11

How can | get
abstract domains to be more
precise?

Thursday, 17 November 11

SAT Solving

Program traces

Build a logical formula that encodes program semantics

isTrace(t) A error(t)

Solve satisfiability: Does there exist a t that makes the above
formula true.

Fast SAT solvers exist that can solve this question.

Thursday, 17 November 11

SAT encoding

® 00 [c| test.c (/private/tmp) - VIM . a/O —]- /\
o= Q@ PR
%nt main() bO = A N\
ot auet (co — ay = 4) A
a = .,;
b = a;
if(cca)nd) (_ICO —> a1 =]_O) N\
a = 4,
el:e= 10; (al S 0V b() S O)

assert(a > 0);
assert(b > 0);

, return 0; Translate inequalities and 2

equalities to circuits

"/tmp/test.c" 18L, 148C written

Precise, but not scalable

Thursday, 17 November 11

How can | get my SAT solver
to be more efficient?

Thursday, 17 November 11

Our initial project

Let’s combine SAT solving and abstract interpretation to
achieve both efficiency and precision!

Thursday, 17 November 11

Partial assignments in SAT

The main data-structure in a SAT solver is a partial assignment
from variables to truth values.

This assignment is extended using deductions and decisions.

T — 1
y—1 y — 0
r— 1 s 7 0
y— 1
— 0
x+— 0 Yy s ()
y— 1

y — 0

Thursday, 17 November 11

SAT operates over a lattice
020 T
k\) T — 1 y — 1 y — 0 xr +— 0

r— 1 x+— 0 r— 1 x+— 0
y— 1 y— 1 y— 0 y — 0

L

SAT operates the Boolean constants lattice

Thursday, 17 November 11

The Unit Rule

p—t Unit Rule
qg—f

r—f
A (pVagVrV-ow)A...

Thursday, 17 November 11

The Unit Rule

pr—t Unit Rule
qg—f

r—f
LA (BpVagVTrV-ow)A. ..

Thursday, 17 November 11

The Unit Rule

Unit Rule

A (EpV(QV TV W) AL

Thursday, 17 November 11

The Unit Rule

Unit Rule

A (EpV(QV(HV —w) AL

The Unit Rule

The Unit Rule

%f(!p [la [l r |l fw)

y,

Thursday, 17 November 11

The Unit Rule

The unit rule is the best abstract transformer over the lattice!

—>if('p || g || r || 'w)
«

}

Thursday, 17 November 11

Decisions

No deductions are possible on the following formula.

o= (wVaqg) A(~wVq)

Hence a decision is made:

g — false

From which both of the following can be deduced:

w — true w —> false

The solver backtracks and learns that g must be true,
essentially, we expanded the formula into

(GN @)V (—gA o)

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x != 0); = €[-1,1] too imprecise!

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x !=0); z€[-1,1] too imprecise!

Apply partitioning:

void foo_part(int a, int x)

{
if(a < 0)
foo(a,x);

} foo(a,x); x € |—1,—1]

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x !=0); z€[-1,1] too imprecise!

Apply partitioning: Decisions are a well-known

void foo part(int a, int Xx) i i
' -P program analysis technique!
if(a < 0)
foo(a,x); e [1.1
s 1,1] safe

foo(a,x); z € [—1, —1]

Thursday, 17 November 11

Summary: SAT = Al

Modern SAT solvers are abstract interpreters

The SAT architecture is an abstract interpreter architecture that
automatically and intelligently refines a base domain.

SAT

] —> Abstract Domain
\archltectu re

Thursday, 17 November 11

SAT over Interval Domain

1000 - - Astrée
“n 100 - - CBMC
)

S 10 - - CDFL
0413

1 —_
0.1 -
0
benchmark

Naive implementation of SAT (Intervals) applied to numeric
program verification benchmarks.

On average ca. 200x faster than SAT, significantly more
precise than mature abstract interpreters.

Thursday, 17 November 11

How can | get my SAT solver
to be more efficient?

Choose a domain that’s better suited to
your problem than the Boolean
constants domain!

Thursday, 17 November 11

abstract domains to be more
precise?

O
(é @O O How can | get

4
7

£z
)
{

Wrap them in the SAT architecture!

Thursday, 17 November 11

Thanks for your attention

Thursday, 17 November 11

