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A Tale of Two
Software Verification DPhils

Thursday, 17 November 11



Abstract Interpretation based
Program Analysis

Error states do not overlap
abstract representation,
hence program is safe

P NG

7Frogram traces \ %” Abstract representation

. Test for all inputs and
/[ Concrete Domain J P
memory states

[ Interpreter J
\ Abstract Domain Abstract analysis
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Lattice of Boolean Constants

r— 1 y— 1 y+— 0 x +— 0

r— 1 x+— 0 r— 1 x+— 0
y— 1 y— 1 y— 0 y — 0

L

Abstract interpretation operates over lattices
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Domain of Constants

Constant Propagation

Var — IntVals U {7}

e 00 \c| test.c (/private/tmp) - VIM "
e Q@ e e
int main()

{

int a,b;
bool cond;
Analyse by applying e —a, 01

if(cond)

abstract transformers @ _2.° “
a = 10; 4bH1,aI%?

<
assert(a > 0);

assert(b > 0);

return 9; yg\\\\

test.c [P0S=0018,0001] [100%] [LEN=18]
"/tmp/test.c" 18L, 148C written

Efficient, but imprecise
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Domain of Intervals

Var — {|l,u] | [,u € IntVals}

e 0o c| test.c (/private/tmp) - VIM "

int main()

{

int a,b;
bool cond;

a =1 ~a,be 1,1

b = a;
if(cond)
a = 4;

else . a & 41’:1() :
‘g—:_;;,,_——”’—— [ ]

assert(a > 0);
assert(b > :);‘\\\\j? GE []'7:1]
return 9;
} \
both safe
test.c [P0S=0018,0001] [100%] [LEN=18]

"/tmp/test.c" 18L, 148C written

Efficient, but imprecise
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How can | get
abstract domains to be more
precise?
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SAT Solving

Program traces

Build a logical formula that encodes program semantics

isTrace(t) A error(t)

Solve satisfiability: Does there exist a t that makes the above
formula true.

Fast SAT solvers exist that can solve this question.
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SAT encoding

® 00 [c| test.c (/private/tmp) - VIM . a/O — ]- /\
o= Q@ PR
%nt main() bO = A N\
ot auet (co — ay = 4) A
a = .,;
b = a;
if(cca)nd) (_ICO —> a1 = ]_O) N\
a = 4,
el:e= 10; (al S 0V b() S O)

assert(a > 0);
assert(b > 0);

, return 0; Translate inequalities and 2

equalities to circuits

"/tmp/test.c" 18L, 148C written

Precise, but not scalable
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How can | get my SAT solver
to be more efficient?
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Our initial project

Let’s combine SAT solving and abstract interpretation to
achieve both efficiency and precision!
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Partial assignments in SAT

The main data-structure in a SAT solver is a partial assignment
from variables to truth values.

This assignment is extended using deductions and decisions.

T — 1
y—1 y — 0
r— 1 s 7 0
y— 1
— 0
x+— 0 Yy s ()
y— 1

y — 0
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SAT operates over a lattice
020 T
k\ ) T — 1 y — 1 y — 0 xr +— 0

r— 1 x+— 0 r— 1 x+— 0
y— 1 y— 1 y— 0 y — 0

L

SAT operates the Boolean constants lattice
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The Unit Rule

p—t Unit Rule
qg—f

r—f
A (pVagVrV-ow)A...
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The Unit Rule

pr—t Unit Rule
qg—f

r—f
LA (BpVagVTrV-ow)A. ..
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The Unit Rule

Unit Rule

A (EpV(QV TV W) AL
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The Unit Rule

Unit Rule

A (EpV(QV(HV —w) AL




The Unit Rule




The Unit Rule

%f(!p [la [l r |l fw)

y,

Thursday, 17 November 11



The Unit Rule

The unit rule is the best abstract transformer over the lattice!

—>if('p || g || r || 'w)
«

}
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Decisions

No deductions are possible on the following formula.

o= (wVaqg) A(~wVq)

Hence a decision is made:

g — false

From which both of the following can be deduced:

w — true w —> false

The solver backtracks and learns that g must be true,
essentially, we expanded the formula into

(GN @)V (—gA o)

Thursday, 17 November 11



Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x != 0); = €[-1,1] too imprecise!
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Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x !=0); z€[-1,1] too imprecise!

Apply partitioning:

void foo_part(int a, int x)

{
if(a < 0)
foo(a,x);

} foo(a,x); x € |—1,—1]
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Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

void foo(int a, int x) {
if(a < 0)
X = -
else
X = =1;
} assert(x !=0); z€[-1,1] too imprecise!

Apply partitioning: Decisions are a well-known

void foo part(int a, int Xx) i i
' -P program analysis technique!
if(a < 0)
foo(a,x); e [1.1
s 1,1]  safe

foo(a,x); z € [—1, —1]
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Summary: SAT = Al

Modern SAT solvers are abstract interpreters

The SAT architecture is an abstract interpreter architecture that
automatically and intelligently refines a base domain.

SAT

] —> Abstract Domain
\archltectu re
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SAT over Interval Domain

1000 - - Astrée
“n 100 - - CBMC
)

S 10 - - CDFL
0413

1 —_
0.1 -
0
benchmark

Naive implementation of SAT (Intervals) applied to numeric
program verification benchmarks.

On average ca. 200x faster than SAT, significantly more
precise than mature abstract interpreters.
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How can | get my SAT solver
to be more efficient?

Choose a domain that’s better suited to
your problem than the Boolean
constants domain!
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abstract domains to be more
precise?

O
(é @O O How can | get

4
7

£z
)
{

Wrap them in the SAT architecture!
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Thanks for your attention
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