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A Tale of Two
Software Verification DPhils
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Abstract Interpretation based 
Program Analysis

Error

Abstract representationProgram traces

Error states do not overlap
abstract representation, 
hence program is safe

Interpreter
Concrete Domain

Abstract Domain

Test for all inputs and
memory states

Abstract analysis
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Lattice of Boolean Constants 

?

>

x 7! 1

y 7! 1

x 7! 0

y 7! 1

x 7! 1

y 7! 0

x 7! 0

y 7! 0

x 7! 0x 7! 1 y 7! 0y 7! 1

Abstract interpretation operates over lattices
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a, b 7! 1

Domain of Constants 
Constant Propagation

b 7! 1, a 7!?
?

safe

Var ! IntVals [ {?}

Efficient, but imprecise

Analyse by applying 
abstract transformers
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Domain of Intervals 

both safe

Efficient, but imprecise

a, b 2 [1, 1]

a 2 [4, 10],

b 2 [1, 1]

Var 7! {[l, u] | l, u 2 IntVals}
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How can I get 
abstract domains to be more 

precise?
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SAT Solving

ErrorProgram traces

isTrace(t) ^ error(t)

Build a logical formula that encodes program semantics

Solve satisfiability:  Does there exist a t that makes the above 
formula true. 

Fast SAT solvers exist that can solve this question.
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SAT encoding

Precise, but not scalable

a0 = 1 ^
b0 = a0 ^

(c0 ! a1 = 4) ^
(¬c0 ! a1 = 10) ^
(a1  0 _ b0  0)

Translate inequalities and
equalities to circuits 
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How can I get my SAT solver 
to be more efficient?
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Our initial project

Let’s combine SAT solving and abstract interpretation to 
achieve both efficiency and precision?
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Partial assignments in SAT

x 7! 1

y 7! 1
x 7! 0

y 7! 1

x 7! 1

y 7! 0
x 7! 0

y 7! 0

x 7! 0

x 7! 1
y 7! 0y 7! 1

The main data-structure in a SAT solver is a partial assignment 
from variables to truth values. 

This assignment is extended using deductions and decisions.
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SAT operates over a lattice

?

>

x 7! 1

y 7! 1

x 7! 0

y 7! 1

x 7! 1

y 7! 0

x 7! 0

y 7! 0

x 7! 0x 7! 1 y 7! 0y 7! 1

SAT operates the Boolean constants lattice
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The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .
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The Unit Rule
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The Unit Rule
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The Unit Rule
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q 7! f
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Unit Rule
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The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f
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The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f
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The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f

The unit rule is the best abstract transformer over the lattice!
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Decisions

No deductions are possible on the following formula.

Hence a decision is made:

q 7! false

From which both of the following can be deduced:

w 7! true w 7! false

The solver backtracks and learns that q must be true,
essentially, we expanded the formula into

� = (w _ q) ^ (¬w _ q)

(q ^ �) _ (¬q ^ �)
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Trace partitioning

Trace partitioning is an well-known refinement technique in 
abstract interpretation

too imprecise!x 2 [�1, 1]
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Trace partitioning

Trace partitioning is an well-known refinement technique in 
abstract interpretation

too imprecise!

Apply partitioning:

x 2 [�1, 1]

x 2 [�1,�1]

x 2 [1, 1] safe
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Trace partitioning

Trace partitioning is an well-known refinement technique in 
abstract interpretation

too imprecise!

Apply partitioning:

x 2 [�1, 1]

x 2 [�1,�1]

x 2 [1, 1] safe

Decisions are a well-known
program analysis technique!
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Summary: SAT = AI

Modern SAT solvers are abstract interpreters

The SAT architecture is an abstract interpreter architecture that 
automatically and intelligently refines a base domain.

SAT 
architecture

Abstract Domain
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SAT over Interval Domain
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Fig. 2. Execution times of Astrée, CBMC, and cdfl; wrong results set to 3600s
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Fig. 3. E↵ects of learning and decision heuristics

several observations: on average, our analysis is 264 times faster than cbmc, if
cbmc terminates properly at all. The largest speed-up is a factor of 1595. Al-
though Astrée is often faster than our prototype, its precision is insu�cient in
many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning Figure 3 visualises the e↵ects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment One of the main advantages of our pro-
cedure is that refinement is property-dependent. The precision of the analysis
dynamically adapts to match the precision required by the property. This is il-
lustrated in Figure 4 where we check bounds on the result of computing a sine
approximation under the input range [�⇡

2 ,
⇡

2 ]. The input value is shown on the
x-axis, the result of the computation on the y-axis. The bound we check against
is depicted as two red horizontal lines, boundaries of explored partitions are
shown as black vertical lines. The actual maximum of the function lies at about
1.00921. As the checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches

Naive implementation of SAT(Intervals) applied to numeric 
program verification benchmarks.

On average ca. 200x faster than SAT, significantly more 
precise than mature abstract interpreters.
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How can I get my SAT solver 
to be more efficient?

Choose a domain that’s better suited to 
your problem than the Boolean 

constants domain!
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How can I get 
abstract domains to be more 

precise?

Wrap them in the SAT architecture!
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Thanks for your attention
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