
Abstract Satisfaction
Vijay D’Silva, Leopold Haller, Daniel Kroening

Thursday, 17 November 11

A Tale of Two
Software Verification DPhils

Thursday, 17 November 11

Abstract Interpretation based
Program Analysis

Error

Abstract representationProgram traces

Error states do not overlap
abstract representation,
hence program is safe

Interpreter
Concrete Domain

Abstract Domain

Test for all inputs and
memory states

Abstract analysis

Thursday, 17 November 11

Lattice of Boolean Constants

?

>

x 7! 1

y 7! 1

x 7! 0

y 7! 1

x 7! 1

y 7! 0

x 7! 0

y 7! 0

x 7! 0x 7! 1 y 7! 0y 7! 1

Abstract interpretation operates over lattices

Thursday, 17 November 11

a, b 7! 1

Domain of Constants
Constant Propagation

b 7! 1, a 7!?
?

safe

Var ! IntVals [{?}

Efficient, but imprecise

Analyse by applying
abstract transformers

Thursday, 17 November 11

Domain of Intervals

both safe

Efficient, but imprecise

a, b 2 [1, 1]

a 2 [4, 10],

b 2 [1, 1]

Var 7! {[l, u] | l, u 2 IntVals}

Thursday, 17 November 11

How can I get
abstract domains to be more

precise?

Thursday, 17 November 11

SAT Solving

ErrorProgram traces

isTrace(t) ^ error(t)

Build a logical formula that encodes program semantics

Solve satisfiability: Does there exist a t that makes the above
formula true.

Fast SAT solvers exist that can solve this question.
Thursday, 17 November 11

SAT encoding

Precise, but not scalable

a0 = 1 ^
b0 = a0 ^

(c0 ! a1 = 4) ^
(¬c0 ! a1 = 10) ^
(a1  0 _ b0  0)

Translate inequalities and
equalities to circuits

Thursday, 17 November 11

How can I get my SAT solver
to be more efficient?

Thursday, 17 November 11

Our initial project

Let’s combine SAT solving and abstract interpretation to
achieve both efficiency and precision?

Thursday, 17 November 11

Partial assignments in SAT

x 7! 1

y 7! 1
x 7! 0

y 7! 1

x 7! 1

y 7! 0
x 7! 0

y 7! 0

x 7! 0

x 7! 1
y 7! 0y 7! 1

The main data-structure in a SAT solver is a partial assignment
from variables to truth values.

This assignment is extended using deductions and decisions.

Thursday, 17 November 11

SAT operates over a lattice

?

>

x 7! 1

y 7! 1

x 7! 0

y 7! 1

x 7! 1

y 7! 0

x 7! 0

y 7! 0

x 7! 0x 7! 1 y 7! 0y 7! 1

SAT operates the Boolean constants lattice

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f

Thursday, 17 November 11

The Unit Rule

p 7! t

q 7! f

r 7! f

Unit Rule

. . . ^ (¬p _ q _ r _ ¬w) ^ . . .

p 7! t

q 7! f

r 7! f

w 7! f

The unit rule is the best abstract transformer over the lattice!

Thursday, 17 November 11

Decisions

No deductions are possible on the following formula.

Hence a decision is made:

q 7! false

From which both of the following can be deduced:

w 7! true w 7! false

The solver backtracks and learns that q must be true,
essentially, we expanded the formula into

� = (w _ q) ^ (¬w _ q)

(q ^ �) _ (¬q ^ �)

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

too imprecise!x 2 [�1, 1]

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

too imprecise!

Apply partitioning:

x 2 [�1, 1]

x 2 [�1,�1]

x 2 [1, 1] safe

Thursday, 17 November 11

Trace partitioning

Trace partitioning is an well-known refinement technique in
abstract interpretation

too imprecise!

Apply partitioning:

x 2 [�1, 1]

x 2 [�1,�1]

x 2 [1, 1] safe

Decisions are a well-known
program analysis technique!

Thursday, 17 November 11

Summary: SAT = AI

Modern SAT solvers are abstract interpreters

The SAT architecture is an abstract interpreter architecture that
automatically and intelligently refines a base domain.

SAT
architecture

Abstract Domain

Thursday, 17 November 11

SAT over Interval Domain

13

benchmark

ti
m
e
(s
)

0 5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

1000 Astrée

CBMC

CDFL

Fig. 2. Execution times of Astrée, CBMC, and cdfl; wrong results set to 3600s

Learning disabled

W
it
h
le
ar
n
in
g

0.1 1 10 100 1000

0.1

1

10

100

1000

Range decisions

R
an

d
om

d
ec
is
io
n
s

0.1 1 10 100 1000

0.1

1

10

100

1000

Fig. 3. E↵ects of learning and decision heuristics

several observations: on average, our analysis is 264 times faster than cbmc, if
cbmc terminates properly at all. The largest speed-up is a factor of 1595. Al-
though Astrée is often faster than our prototype, its precision is insu�cient in
many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning Figure 3 visualises the e↵ects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment One of the main advantages of our pro-
cedure is that refinement is property-dependent. The precision of the analysis
dynamically adapts to match the precision required by the property. This is il-
lustrated in Figure 4 where we check bounds on the result of computing a sine
approximation under the input range [�⇡

2 ,
⇡

2]. The input value is shown on the
x-axis, the result of the computation on the y-axis. The bound we check against
is depicted as two red horizontal lines, boundaries of explored partitions are
shown as black vertical lines. The actual maximum of the function lies at about
1.00921. As the checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches

Naive implementation of SAT(Intervals) applied to numeric
program verification benchmarks.

On average ca. 200x faster than SAT, significantly more
precise than mature abstract interpreters.

Thursday, 17 November 11

How can I get my SAT solver
to be more efficient?

Choose a domain that’s better suited to
your problem than the Boolean

constants domain!

Thursday, 17 November 11

How can I get
abstract domains to be more

precise?

Wrap them in the SAT architecture!

Thursday, 17 November 11

Thanks for your attention

Thursday, 17 November 11

