
Abstract Conflict Driven
Clause Learning

Leopold Haller

Joint work with
Vijay D’Silva, Alberto Griggio, Michael Tautschnig, Daniel Kroening

Monday, 23 July 12

Anglo-EU Translation Guide

What the British say What the British mean What others understand

That’s not bad. That’s good Could be better.

Oh, by the way ... The primary purpose of our
discussion is ...

It’s not very important, but ...

Monday, 23 July 12

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says What they might mean What others understand

Isn’t this an instance of abstract
interpretation?

I think there is a simple top-down
characterisation of this in the
language of algebra, fixed points
and abstraction.

This is a trivial consequence of
abstract interpretation.

Technique X computes an abstract
fixed point.

There is a view of X that allows for
the application of a rich body of
results.

Details are unimportant.

“Everything is Abstract Interpretation ...”

Monday, 23 July 12

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says What they might mean What others understand

Isn’t this an instance of abstract
interpretation?

I think there is a simple top-down
characterisation of this in the
language of algebra, fixed points
and abstraction.

This is a trivial consequence of
abstract interpretation.

Technique X computes an abstract
fixed point.

There is a view of X that allows for
the application of a rich body of
results.

Details are unimportant.

“Everything is Abstract Interpretation ...”

... including SAT solvers

(Satisfiability Solvers are Static Analysers. D’Silva, Haller, Kroening, SAS 2012)

Monday, 23 July 12

Propositional Satisfiability (SAT)

• Solvers are based on Conflict Driven Clause Learning (CDCL)

• Basis of modern Satisfiability Module Theory (SMT) solvers

• Critical components of program verification techniques

Given a propositional formula ', is there a

propositional truth assignment � such that � |= '.

clause

literal

| {z } | {z }' = (p _ ¬q) ^ . . . ^ (¬r _ w _ q)

Monday, 23 July 12

SAT Solvers are E�cient

2000 2001 2002 2003 2004 2005 2006 2007

1s

10s

100s

(Malik and Zhang 2009)

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 3 / 33

Work on CDCL has resulted in an exponential decrease in runtimes.

Can we lift this success to other domains?

(Malik and Zhang, 2009)

Model Search Conflict Analysis

Conflict

Learn clause

Monday, 23 July 12

SMT via DPLL(T)

Propositional CDCL Theory Solver

DPLL(T) is a mathematical recipe and implementation framework for
building SMT decision procedures!

Solve satisfiability for (QF) first order formula with background theory

(p _ q) ^ (r _ s)

(x+ y  3| {z }
p

_ 2x� y � 1| {z }
q

) ^ (x = 5| {z }
r

_ y = x| {z }
s

)

CDCL enumerates candidate propositional truth assignments,
theory solver checks consistency.

Monday, 23 July 12

SMT via DPLL(T)

(x = 0 _ x = 2 _ x = 4 _ . . . _ x = 2k)^
(y = 0 _ y = 2 _ y = 4 _ . . . _ y = 2k)^

(x+ y = 2c+ 1)

DPLL(T) explores truth
assignments to predicates

x\y 0 2 4 ...

0

2

4

...

...

...

...

...

x\y even odd

even

odd

Full even / odd
partitioning

DPLL(T) can be viewed to partition the space of potential models
using the structure of the formula.

Measures have to be taken to avoid enumeration behaviour.

Monday, 23 July 12

Monday, 23 July 12

Natural Domain SMT

Propositional CDCL

Theory SolverDPLL(T)

Theory
Model Search

Theory
Conflict Analysis

Conflict

“Theory” Learning

Natural
Domain SMT

Model
Search

Confl.
Analysis

Monday, 23 July 12

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Imprecise OA:

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

a 7! [2, 8], b 7! [�3, 3]

Imprecise OA:

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3]

Imprecise OA:

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3] {a 7! [�1,�1], a 7! [1,1]}

Imprecise OA:

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3] {a 7! [�1,�1], a 7! [1,1]}

{(a 7! [4,1], b 7! [�3, 3])}
Imprecise OA: UA “guess”:

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3] {a 7! [�1,�1], a 7! [1,1]}

{(a 7! [4,1], b 7! [�3, 3])}
Imprecise OA: UA “guess”:

{a 7! [4,1]}

>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3] {a 7! [�1,�1], a 7! [1,1]}

{(a 7! [4,1], b 7! [�3, 3])}
Imprecise OA: UA “guess”:

{a 7! [4,1]}

>>

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

a 7! [5, 5]

a 7! [5, 5], b 7! [�3, 3]

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

a 7! [2, 8], b 7! [�3, 3] {a 7! [�1,�1], a 7! [1,1]}

{(a 7! [4,1], b 7! [�3, 3])}
Imprecise OA: UA “guess”:

{a 7! [4,1]}

>>

Sound, but incomplete

Monday, 23 July 12

Abstract Interpretation

Concrete Lattice Abstract Lattice

(}(States),✓,\,[) ���! ���↵
�

Galois connection:

(Intervals,v,u,t)

Monday, 23 July 12

Abstract Interpretation

Concrete Lattice Abstract Lattice

(}(States),✓,\,[) ���! ���↵
�

Galois connection:

(Intervals,v,u,t)

Abstraction and concretisation function

↵({x 7! 3, x 7! 1, x 7! 9}) = x 7! [1, 9]

�(x 7! [4, 6]) = {x 7! 4, x 7! 5, x 7! 6}

Monday, 23 July 12

Abstract Interpretation

Concrete Lattice Abstract Lattice

(}(States),✓,\,[) ���! ���↵
�

Galois connection:

(Intervals,v,u,t)

Abstraction and concretisation function

↵({x 7! 3, x 7! 1, x 7! 9}) = x 7! [1, 9]

�(x 7! [4, 6]) = {x 7! 4, x 7! 5, x 7! 6}

Concrete transformer post : }(States) ! }(States)

ˆ
post : Intervals ! Intervals

Sound abstr. transformer
post � � ✓ � � ˆ

post

Monday, 23 July 12

Approximating Fixed Points

Fixed points can be computed in the abstract

lfp X. I [post(X) ✓ �(lfp X.↵(I) t ˆ
post(X))

Concrete Abstract

I ↵(I)

Monday, 23 July 12

Accelerating Fixed Point Computations

Fixed point computations might take a long time (or fail to terminate):
F0 : x 7! [0, 0] F1 : x 7! [0, 1] F2 : x 7! [0, 2] F3 : x 7! [0, 3] . . .

Monday, 23 July 12

Accelerating Fixed Point Computations

Fixed point computations might take a long time (or fail to terminate):
F0 : x 7! [0, 0] F1 : x 7! [0, 1] F2 : x 7! [0, 2] F3 : x 7! [0, 3] . . .

Widening
(jumps above least fixed point)

lfp

Narrowing
(stay above greatest fixed point)

gfp
Monday, 23 July 12

Monday, 23 July 12

Abstractly Interpreting Logic

' = p ^ (¬p _ q) ^ (¬p _ ¬q)

Check satisfiability of the following formula

Prove the following program safe

Monday, 23 July 12

Abstractly Interpreting Logic

Constants analysis

8

P [Q P [Q P [Q P [Q

P P �Q Q Q P �Q P

P \ Q P \ Q P \ Q P \ Q

Vars ! B

;

p:t q:t q:f p:f

p:t, q:t p:t, q:f p:f, q:t p:f, q:f

>

?

t,> >, t >, f f,>

t, t t, f f, t f, f

t,? f,? ?, t ?, f

>,>

?,?

Fig. 1. Domains for assignments over p and q. The concrete domain P(Asg) is on the
left. The set P contains assignments that map p to true. Partial assignments are on the
right. The shaded elements of P(Asg) cannot be represented as partial assignments.

with ⇡0 as above. We can begin by assuming p is true, q is false, and r is false,
written ⇡ =̂ hp:t, q:f, r:fi. Given ⇡, bcp concludes, from (q_ r_¬s), that s must
be false and from (q _ r _ s) that s must be true. This situation, denoted ?, is
a conflict. No assignment extending ⇡ satisfies '. C

We show that partial assignments are an abstract domain. A partial assign-

ment is a partial function in Prop ! B. Consider the set {t, f,>} with the
information order t v > and f v >. We model a partial assignment as a to-
tal function ⇡ : Prop ! {t, f,>}, where for each variable p, ⇡(x) is > if ⇡ is
undefined on p. The domain of partial assignments (PAsg ,v) contains a set
PAsg =̂ (Prop ! {t, f,>}) [{?}, of partial assignments extended with a least
element ?, called a conflict. The order between non-? elements is the pointwise
lifting of the information order. A partial assignment in which p is t and other
variables map to > is written hp:ti. Figure 1 depicts partial assignments over
two variables.

A variant of the partial assignments domain is used for constant propaga-
tion [16] and is equivalent to the Cartesian abstraction [4]. In abstract inter-
pretation parlance, partial assignments as presented here are a reduction of the
Cartesian abstraction domain in which the empty set has a unique representa-
tion. The abstraction and concretisation functions ↵

PAsg

: P(Asg) ! PAsg and
�
PAsg

: PAsg ! P(Asg) below are standard and are known to form a Galois
connection.

↵
PAsg

(;) =̂ ? ↵
PAsg

(S) =̂
n

x 7!

G

{�(x) | � 2 S} | x 2 Prop

o

, for S 6= ;

�
PAsg

(?) =̂ ; �
PAsg

(⇡) =̂ {� 2 Asg | for all x in Prop,�(x) v ⇡(x)}

We formalise the unit rule. The unit rule states that if all but one literals in
a clause are false under a partial assignment, the remaining literal must be true.
It is defined by a function unit : Clause⇥PAsg ! PAsg . The image of a clause ✓

>
p:t

p:t, q:t

?

Monday, 23 July 12

Abstractly Interpreting Logic

Form

Set of formulae Set of structures
Struct

Semantic entailment relation
|= 2 }(Struct ⇥ Form)

Concrete Domain
(}(Struct),✓,\,[)

Monday, 23 July 12

Abstractly Interpreting Logic

Form

Set of formulae Set of structures
Struct

Semantic entailment relation
|= 2 }(Struct ⇥ Form)

Concrete Domain
(}(Struct),✓,\,[)

E.g., propositional logic:
Lit = {p,¬p | p 2 Props} Clauses = }(Lit)

Form = }(Clauses) Struct = Props ! {t, f}

� |= ' i↵

8C 2 '. 9l 2 C. (l = p ^ �(p) = t) _ (l = ¬p ^ �(p) = f)

Monday, 23 July 12

Abstract Satisfaction

mods'(S) = {� | � 2 S ^ � |= '} confs'(S) = {� | � 2 S _ � 6|= '}
mods' = postassume(') confs' = ˜preassume(')

Structure transformers;

Monday, 23 July 12

Abstract Satisfaction

'

'

Overapproximation amods' of mods'

Underapproximation aconfs' of confs'

gfp amods' = ? or

lfp aconfs' = > =) ' is unsatisfiable

mods'(S) = {� | � 2 S ^ � |= '} confs'(S) = {� | � 2 S _ � 6|= '}
mods' = postassume(') confs' = ˜preassume(')

Structure transformers;

Monday, 23 July 12

Monday, 23 July 12

Model Search

Find either a satisfying assignment or a conflicting partial assignment

Deduction:
Infer variable
assignments

Decisions:
Guess variable
assignments

Monday, 23 July 12

Partial Assignments are an Abstract Domain

8

P [Q P [Q P [Q P [Q

P P �Q Q Q P �Q P

P \ Q P \ Q P \ Q P \ Q

Vars ! B

;

p:t q:t q:f p:f

p:t, q:t p:t, q:f p:f, q:t p:f, q:f

>

?

t,> >, t >, f f,>

t, t t, f f, t f, f

t,? f,? ?, t ?, f

>,>

?,?

Fig. 1. Domains for assignments over p and q. The concrete domain P(Asg) is on the
left. The set P contains assignments that map p to true. Partial assignments are on the
right. The shaded elements of P(Asg) cannot be represented as partial assignments.

with ⇡0 as above. We can begin by assuming p is true, q is false, and r is false,
written ⇡ =̂ hp:t, q:f, r:fi. Given ⇡, bcp concludes, from (q_ r_¬s), that s must
be false and from (q _ r _ s) that s must be true. This situation, denoted ?, is
a conflict. No assignment extending ⇡ satisfies '. C

We show that partial assignments are an abstract domain. A partial assign-

ment is a partial function in Prop ! B. Consider the set {t, f,>} with the
information order t v > and f v >. We model a partial assignment as a to-
tal function ⇡ : Prop ! {t, f,>}, where for each variable p, ⇡(x) is > if ⇡ is
undefined on p. The domain of partial assignments (PAsg ,v) contains a set
PAsg =̂ (Prop ! {t, f,>}) [{?}, of partial assignments extended with a least
element ?, called a conflict. The order between non-? elements is the pointwise
lifting of the information order. A partial assignment in which p is t and other
variables map to > is written hp:ti. Figure 1 depicts partial assignments over
two variables.

A variant of the partial assignments domain is used for constant propaga-
tion [16] and is equivalent to the Cartesian abstraction [4]. In abstract inter-
pretation parlance, partial assignments as presented here are a reduction of the
Cartesian abstraction domain in which the empty set has a unique representa-
tion. The abstraction and concretisation functions ↵

PAsg

: P(Asg) ! PAsg and
�
PAsg

: PAsg ! P(Asg) below are standard and are known to form a Galois
connection.

↵
PAsg

(;) =̂ ? ↵
PAsg

(S) =̂
n

x 7!

G

{�(x) | � 2 S} | x 2 Prop

o

, for S 6= ;

�
PAsg

(?) =̂ ; �
PAsg

(⇡) =̂ {� 2 Asg | for all x in Prop,�(x) v ⇡(x)}

We formalise the unit rule. The unit rule states that if all but one literals in
a clause are false under a partial assignment, the remaining literal must be true.
It is defined by a function unit : Clause⇥PAsg ! PAsg . The image of a clause ✓

}(Props ! {t, f}) ���! ���↵
�

This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.

Fix a concrete domain }(Struct), where Struct is Var ! Val .

6.1 Truth Tables

This is a toy example included only to illustrate the formalisation
and ease of generalisation to other domains. Truth tables, BDDs and
their extensions are data structures for subsets of Struct . When ex-
tended to richer logics, the representation may not be finite. Re-
call that B is a Boolean algebra. Assume the set of variables
Var = {x1, . . . , xn

} is totally ordered and finite. The domain
of truth tables is defined as the tuple (Table,v,t,u), whose ele-
ments are defined as follows.

Table =̂ Val

n

! B
f v g iff f(v1, . . . , v

k

)) g(v1, . . . , v
k

)

(f t g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t or
g(v1, . . . , v

k

) = t
f otherwise

(f u g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t and
g(v1, . . . , v

k

) = t
f otherwise

Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.

a b

f f
f t
t f
t t

a = t
f
f
t
t

b = f
t
f
t
f

a = t ^ b = f
t
f
t
f

u

=

C
There is a Galois connection }(Struct)

��!

 ��

↵

�

Table .

↵(S) =̂ {(�(x1), . . . ,�(xn

)) 7! t | � 2 S}

[{(�(x1), . . . ,�(xn

)) 7! f | � /2 S}

�(T) =̂ {� 2 Struct | T (�(x1), . . . ,�(xn

)) = t}

The ↵ and � are bijective because there is no loss of information.
Consequently, the abstract transformers lose no information.
Example 15. Consider equalities over three variables ordered as
(x, y, z) and values {a, b, c}. The truth table for (x = y _ y = z)
is {(a, a, a) 7! t, (a, a, b) 7! t, (a, a, c) 7! t, . . .}. C
6.2 Boolean Constraint Propagation

The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula

' =̂ p ^ (¬p _ ¬q) ^ (q _ r _ ¬s _ u) ^ (¬p _ q _ s)

to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True (lbool ((uint8 t)0))
2 #define l False (lbool ((uint8 t)1))
3 #define l Undef (lbool ((uint8 t)2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.

the clause containing u, so the procedure stops. Suppose ' is ex-
tended to as below. The previous reasoning still holds. Moreover,
t and r must be false yielding the truth assignment shown.

 =̂ ' ^ (¬p _ ¬u) ^ (q _ u _ ¬r)

� =̂ {p 7! t, q 7! f, r 7! f, s 7! t, u 7! f, }

Since (q _ r _ ¬s _ u) is not satisfied by �, is unsatisfiable. C
BCP is now formalised. A partial assignment is a function

� : Prop ! {t, f, u} indicating that a proposition is true, false
or unassigned. In MINISAT, the partial assignments are stored in
the array “assigns”, which uses the integer values 0, 1 and 2 to de-
note t, f and u, respectively. We define ¬u to be u. The set of partial
assignments is Assg . The value of a literal l under � is �(l) if l is
a proposition and is ¬�(p) otherwise. A clause ✓ is satisfied by � if
some literal in ✓ evaluates to true. The unit rule asserts that if all but
one literals in a clause are false under �, the remaining literal must
be assigned true to satisfy the clause. A conflict occurs if all literals
in a clause are false under �. Formally the unit rule is a function
unit : Clause ⇥ Assg ! Assg that extends � to unit(✓, �) to sat-
isfy ✓ if the condition of the rule holds and does nothing otherwise.
BCP updates a partial assignment using the unit rule until no deduc-
tion is possible, or a conflict occurs. The state of BCP is either a
partial assignment � or the conflict state .

BCP as Abstract Iteration The concrete domain propositional
domain is }(Prop ! B). The propositional Cartesian abstrac-
tion AC is (Prop ! }(B),v,t,u) with the pointwise order and
Galois connection below.

↵(S) =̂ p 7! {�(p) | � 2 S} �(a) =̂ {� | �(p) 2 a(p) for all p}

The state of BCP is an abstract element in the following sense. An
undefined proposition may have any value in {t, f}. A partial as-
signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a

that concretises to ;, such as {p 7! {t} , q 7! ;}. Such an element
represents not only that a conflict occurred but that the conflict in-
volves q. Abstract elements are now denoted �.
Example 17. Let us play with transformers. Let hti denote that p
maps to {t}. The abstract semantics is below.

asem

p

(hBi) = hti asem

p

(hti) = hti asem

p

(hfi) = h;i

In the last case, p is assigned f, so a conflict occurs. Consider the
clause ✓ =̂ ¬p_¬q and a pair hx, yi for values of p and q. Abstract

7

This section identifies some iterative procedures in the literature.
As the main result of this section, we show that Boolean Constraint
Propagation in propositional SAT solvers is a Cartesian abstract in-
terpretation.

Fix a concrete domain }(Struct), where Struct is Var ! Val .

6.1 Truth Tables

This is a toy example included only to illustrate the formalisation
and ease of generalisation to other domains. Truth tables, BDDs and
their extensions are data structures for subsets of Struct . When ex-
tended to richer logics, the representation may not be finite. Re-
call that B is a Boolean algebra. Assume the set of variables
Var = {x1, . . . , xn

} is totally ordered and finite. The domain
of truth tables is defined as the tuple (Table,v,t,u), whose ele-
ments are defined as follows.

Table =̂ Val

n

! B
f v g iff f(v1, . . . , v

k

)) g(v1, . . . , v
k

)

(f t g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t or
g(v1, . . . , v

k

) = t
f otherwise

(f u g)(v1, . . . , v
k

) =̂

8

>

<

>

:

t if f(v1, . . . , v
k

) = t and
g(v1, . . . , v

k

) = t
f otherwise

Example 14. Consider the formula ' = (a = t) ^ (b = f), where
the variables a and b range over the value domain B. We show a step
of the computation of the abstract semantics of ' in the Boolean
truth table domain B2

! B over two variables.

a b

f f
f t
t f
t t

a = t
f
f
t
t

b = f
t
f
t
f

a = t ^ b = f
t
f
t
f

u

=

C
There is a Galois connection }(Struct)

��!

 ��

↵

�

Table .

↵(S) =̂ {(�(x1), . . . ,�(xn

)) 7! t | � 2 S}

[{(�(x1), . . . ,�(xn

)) 7! f | � /2 S}

�(T) =̂ {� 2 Struct | T (�(x1), . . . ,�(xn

)) = t}

The ↵ and � are bijective because there is no loss of information.
Consequently, the abstract transformers lose no information.
Example 15. Consider equalities over three variables ordered as
(x, y, z) and values {a, b, c}. The truth table for (x = y _ y = z)
is {(a, a, a) 7! t, (a, a, b) 7! t, (a, a, c) 7! t, . . .}. C
6.2 Boolean Constraint Propagation

The workhorse of propositional solvers is the Boolean Constraint
Propagation (BCP) routine, which iteratively updates a data struc-
ture called a partial assignment using a criterion called the unit rule.
This section shows that BCP is abstract fixed point iteration. The
model of BCP we use is the standard one, appearing for example in
the MINISAT 2.2.0 solver routines shown in Figure 5.
Example 16. BCP is applied to the formula

' =̂ p ^ (¬p _ ¬q) ^ (q _ r _ ¬s _ u) ^ (¬p _ q _ s)

to construct a satisfying assignment. Since p must be true, q must
be false to satisfy (¬p _ ¬q). In addition, from (¬p _ q _ s), we
conclude that w must be true. Similar deduction does not apply to

1 #define l True (lbool ((uint8 t)0))
2 #define l False (lbool ((uint8 t)1))
3 #define l Undef (lbool ((uint8 t)2))
4
5 class lbool { [...] };
6
7 class Solver {
8 [...]
9 // FALSE means solver is in a conflicting state

10 bool okay () const ;
11 vec<lbool> assigns ; // The current assignments .
12 // Enqueue a literal . Assumes value of literal is undefined .
13 void uncheckedEnqueue (Lit p, CRef from = CRef Undef);
14 // Perform unit propagation . Return possibly conflicting clause .
15 CRef propagate () ;
16 };

Figure 5: Partial assignments and BCP in MINISAT 2.2.0.

the clause containing u, so the procedure stops. Suppose ' is ex-
tended to as below. The previous reasoning still holds. Moreover,
t and r must be false yielding the truth assignment shown.

 =̂ ' ^ (¬p _ ¬u) ^ (q _ u _ ¬r)

� =̂ {p 7! t, q 7! f, r 7! f, s 7! t, u 7! f, }

Since (q _ r _ ¬s _ u) is not satisfied by �, is unsatisfiable. C
BCP is now formalised. A partial assignment is a function

� : Prop ! {t, f, u} indicating that a proposition is true, false
or unassigned. In MINISAT, the partial assignments are stored in
the array “assigns”, which uses the integer values 0, 1 and 2 to de-
note t, f and u, respectively. We define ¬u to be u. The set of partial
assignments is Assg . The value of a literal l under � is �(l) if l is
a proposition and is ¬�(p) otherwise. A clause ✓ is satisfied by � if
some literal in ✓ evaluates to true. The unit rule asserts that if all but
one literals in a clause are false under �, the remaining literal must
be assigned true to satisfy the clause. A conflict occurs if all literals
in a clause are false under �. Formally the unit rule is a function
unit : Clause ⇥ Assg ! Assg that extends � to unit(✓, �) to sat-
isfy ✓ if the condition of the rule holds and does nothing otherwise.
BCP updates a partial assignment using the unit rule until no deduc-
tion is possible, or a conflict occurs. The state of BCP is either a
partial assignment � or the conflict state .

BCP as Abstract Iteration The concrete domain propositional
domain is }(Prop ! B). The propositional Cartesian abstrac-
tion AC is (Prop ! }(B),v,t,u) with the pointwise order and
Galois connection below.

↵(S) =̂ p 7! {�(p) | � 2 S} �(a) =̂ {� | �(p) 2 a(p) for all p}

The state of BCP is an abstract element in the following sense. An
undefined proposition may have any value in {t, f}. A partial as-
signment � defines an abstract element that maps p to {t, f} if �(p)
is undefined, and to {�(p)} otherwise. The conflict state is any a

that concretises to ;, such as {p 7! {t} , q 7! ;}. Such an element
represents not only that a conflict occurred but that the conflict in-
volves q. Abstract elements are now denoted �.
Example 17. Let us play with transformers. Let hti denote that p
maps to {t}. The abstract semantics is below.

asem

p

(hBi) = hti asem

p

(hti) = hti asem

p

(hfi) = h;i

In the last case, p is assigned f, so a conflict occurs. Consider the
clause ✓ =̂ ¬p_¬q and a pair hx, yi for values of p and q. Abstract

7

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point
¬p ^ (p _ q) ^ (¬q _ r)

>

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point
¬p ^ (p _ q) ^ (¬q _ r)

>

(p:f)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point
¬p ^ (p _ q) ^ (¬q _ r)

>

(p:f)

(p:f, q:t)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point
¬p ^ (p _ q) ^ (¬q _ r)

>

(p:f)

(p:f, q:t)

(p:f, q:t, r:t)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point
¬p ^ (p _ q) ^ (¬q _ r)

>

(p:f)

(p:f, q:t)

(p:f, q:t, r:t)

bcp(⇡) = gfp X. unit(⇡ uX)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods'

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

p ^ (q _ r) ^ (q _ ¬r)

>

p:t
Deduction

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

p ^ (q _ r) ^ (q _ ¬r)

p:t, q:f

q:fDecision

>

p:t
Deduction

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

p ^ (q _ r) ^ (q _ ¬r)

p:t, q:f

q:fDecision

>

p:t
Deduction

p:t, q:f, r:t

?
Deduction

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

p ^ (q _ r) ^ (q _ ¬r)

p:t, q:f

q:fDecision

Recall: Widenings jump over a least fixed point

Decisions jump under a greatest fixed point (unusual: unsound!)

>

p:t
Deduction

p:t, q:f, r:t

?
Deduction

Monday, 23 July 12

Conflict Analysis

Abduction:
Find possible

generalisations of
conflict

Heuristic Choice:
Choose one

generalisation

Monday, 23 July 12

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph

?

(¬p _ q) ^ (¬p _ ¬r) ^ (¬q _ r _ ¬s) ^ (s _ t) ^ (s _ ¬t)

p:t

q:t

r:f

s:f
t:t

Monday, 23 July 12

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph

?

(¬p _ q) ^ (¬p _ ¬r) ^ (¬q _ r _ ¬s) ^ (s _ t) ^ (s _ ¬t)

p:t

q:t

r:f

s:f
t:t

Conflict abduction is performed by obtaining cuts through the graph

q:t, r:f s:fp:t

⇡ = (p:t, q:t, r:f, s:f, t:t)Original conflict

Possible generalisations
from cuts

cut({⇡}) = {(p:t), (q:t, r:f), (s:f)}

Monday, 23 July 12

Abduction computes a least fixed point

(p:t, q:t, r:f, s:t)

(p:t, q:t) (r:f, s:t)

(r:f) (s:t)

Original conflict

generalisation from graph cuts

generalisation from clause minimisation

Monday, 23 July 12

Abduction computes a least fixed point

(p:t, q:t, r:f, s:t)

(p:t, q:t) (r:f, s:t)

(r:f) (s:t)

Original conflict

generalisation from graph cuts

{(p:t, q:t, r:f, s:t)}

{(p:t, q:t), (r:f, s:t)}

Collecting all conflicts

{(p:t, q:t), (r:f), (s:t)}

generalisation from clause minimisation

Monday, 23 July 12

Abduction computes a least fixed point

(p:t, q:t, r:f, s:t)

(p:t, q:t) (r:f, s:t)

(r:f) (s:t)

Original conflict

generalisation from graph cuts

{(p:t, q:t, r:f, s:t)}

{(p:t, q:t), (r:f, s:t)}

Collecting all conflicts

{(p:t, q:t), (r:f), (s:t)}

generalisation from clause minimisation

Abduction underapproximately computes the fixed point lfp confs'

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(p:t, q:t, r:f, s:t)}

{(p:t, q:t), (r:f, s:t)}

Collecting all conflicts

{(p:t, q:t), (r:f), (s:t)}

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(p:t, q:t, r:f, s:t)}

{(p:t, q:t), (r:f, s:t)}

Collecting all conflicts

{(p:t, q:t), (r:f), (s:t)}

SAT Solvers choose one reason

{(p:t, q:t, r:f, s:t)}

{(r:f, s:t)}

{(r:f)}

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(p:t, q:t, r:f, s:t)}

{(p:t, q:t), (r:f, s:t)}

Collecting all conflicts

{(p:t, q:t), (r:f), (s:t)}

SAT Solvers choose one reason

{(p:t, q:t, r:f, s:t)}

{(r:f, s:t)}

{(r:f)}

Recall that narrowing is used to converge above a greatest fixed point.
Heuristic choice of conflict reasons leads to convergence below a least fixed point!

w

w

Monday, 23 July 12

ACDCL: A recipe for deriving natural domain
SMT solvers from abstract domains

18

Search Prove

gfp(amod')

Dual widen

lfp(aconf ')

Dual narrow

SAT UNSAT

Conflict

Clause

Fig. 5. Abstract Interpretation view of CDCL

restrict an element with meet irreducible instead of arbitrary assignments in a
sat solver is relevant for termination.

Conflict Analysis is Underapproximate Analysis Conflict analysis finds
general explanations for a given conflict identified during deduction. Techniques
for conflict analysis are diverse and include graph cutting [17] and conflict min-
imisation [18]. There may, in general, be many incomparable explanations for a
given conflict, of which only one is chosen by the sat solver.

To represent sets of conflict, we introduce the lattice of cubes. Given a conflict
⇡ 2 PAsg , all smaller partial assignments ⇡0

v ⇡ are also conflicts. We therefore
define the cubes lattice as the downset lattice C (PAsg) =̂ (P#(PAsg),✓) defined
as below.

P#(PAsg) =̂ {Q ✓ PAsg | ⇡ 2 Q ^ ⇡0
v ⇡ implies ⇡0

2 Q}

To simplify presentation, we represent downsets as sets of their maximal ele-
ments. Cubes are an underapproximation with ↵C (PAsg)

(S) =̂ {⇡ 2 ⇡ | �
PAsg

(⇡) ✓
S} and �C (PAsg)

(Q) =̂
S

⇡2Q �
PAsg

(⇡).
Let � 2 PAsg be a conflict. Concrete abduction starting from � is given

by a transformer conf ',� : P(Asg) ! P(Asg) that adds countermodels of ',
given below.

conf ',� =̂ X 7! conf '(X [�(�))

The hypothetical best conflict analysis is the best abstract transformer aconf ',�

in the cubes lattice which yields a set containing all possible conflicts. The com-
putation of this set is intractable. A concrete conflict analysis technique can
be viewed as a transformer f v aconf ',�. For example, the cuts pictured over
the conflict graph earlier yield a transformer cut : C (PAsg) ! C (PAsg) with
cut =̂ X 7! X [{hw : ti, hx : f, y : ti}. It holds that cut v aconf ',c where c is

Overapproximating domain Underapproximating domain

learned
transformer

conflict

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Deduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Conflict

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Conflict
Abduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Conflict
Abduction
Choice

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Conflict
Abduction
Choice
Abduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

'

Decision
Deduction

Deduction

Conflict
Abduction
Choice
Abduction
Choice

Monday, 23 July 12

Monday, 23 July 12

Tabu Learning

'

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

C

⇡

Monday, 23 July 12

Tabu Learning

'

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

C ?⇡

Monday, 23 July 12

Tabu Learning

'

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

C ?⇡

No lattice theoretic prerequisites, possible over any domain

tabuC(⇡) =

(
? if ⇡ v C

⇡ otherwise

Monday, 23 July 12

Propositional Clause Learning

'

When assignment is “nearly conflicting”, drive the search away from the conflict

C

⇡

Monday, 23 July 12

Propositional Clause Learning

'

When assignment is “nearly conflicting”, drive the search away from the conflict

C

⇡

'
C

⇡

Monday, 23 July 12

Propositional Clause Learning

'

When assignment is “nearly conflicting”, drive the search away from the conflict

C

⇡

'
C

⇡

C = (p:t, q:t, r:f) = (p:t) u (q:t) u (r:f)

unit (p:t,q:t,r:f)(⇡) =

8
><

>:

⇡ u ¬(p:t) ⇡ v (q:t) ^ ⇡ v (r:f)

⇡ u ¬(q:t) ⇡ v (p:t) ^ ⇡ v (r:f)

⇡ u ¬(r:f) ⇡ v (p:t) ^ ⇡ v (q:t)

decomposition allows
us to express“nearly

conflicting”

complements drive the
search away from conflict

Monday, 23 July 12

Complementable Meet Irreducibles

No precise
complement

Precise complement

Clause learning requires a weak complementation property of the abstraction

Every element needs to have a decomposition into
precisely complementable elements.

(p:t, q:f)| {z } = (p:t)|{z}u (q:f)|{z}

Monday, 23 July 12

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Monday, 23 July 12

Complementable Meet Irreducibles

Intervals and Octagons are intersections of
complementable half-spaces

Examples of lattices with complementable meet irreducibles

Monday, 23 July 12

Complementable Meet Irreducibles

Intervals and Octagons are intersections of
complementable half-spaces

Trace abstraction based on
 control history

CFG

Examples of lattices with complementable meet irreducibles

Monday, 23 July 12

Generalised Unit Rule

Monday, 23 July 12

Generalised Unit Rule

Intervals

Monday, 23 July 12

Generalised Unit Rule

Intervals

Monday, 23 July 12

Generalised Unit Rule

Intervals

Monday, 23 July 12

Generalised Unit Rule

Trace abstractions:

Intervals

Monday, 23 July 12

Generalised Unit Rule

Trace abstractions:

Intervals

Monday, 23 July 12

Generalised Unit Rule

Trace abstractions:

Intervals

Monday, 23 July 12

Monday, 23 July 12

An SMT Solver based on ACDCL

Decision
Heuristic

OA Domain
Interface

Choice
Heuristic

UA Domain
Interface

Abstract Model Search Abstract Conflict Graph
Generalisation

Abstract CDCL

Floating Point
Intervals

Interval
Splitting

Sets of
Intervals

Trail-Guided
Choice

(Joint work with Alberto Griggio, implemented
using MathSAT infrastructure)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]
y 2 [�1, 7]

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]
y 2 [�1, 7]

x 2 [�1, 2]

Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]
y 2 [�1, 7]

x 2 [�1, 2]

Graph nodes are meet irreducibles (e.g., half spaces)

x  2

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

x = y ^ x+ y � 10

x 2 [�1, 0]

y 2 [�1, 0]

1. Generalise each node of the conflict graph using heuristic choice

2. Cut the graph

y 2 [�1, 7]

x 2 [�1, 2]

Graph nodes are meet irreducibles (e.g., half spaces)

x  2

Monday, 23 July 12

Experiments

until it has a singleton value, shows inferior performance
compared to a “breadth-first” exploration, in which intervals
of all the variables are restricted uniformly. We interpret this
finding as indication that the value of abstraction lies in the
fact that the search can be guided effectively using general,
high-level reasoning, before considering specialised cases.

FP-ACDCL currently performs decisions as follows: (i) vari-
ables are statically ordered, and the selection on which variable
x to branch is cyclic across this order; (ii) the bound b

is chosen to be an approximation of the arithmetic average
between the current bounds l and u on x; note, that the
arithmetic average is different from the median, since floating
point values are unevenly distributed; (iii) the choice between
hx ⌫ bi and hx � bi is random. Considering the advances in
heuristics for propositional SAT, there is likely a lot of room
for enhancing this. In particular, the integration of fairness
considerations with activity-based heuristics typically used in
modern CDCL solvers could lead to analogous performance
improvements. This is part of ongoing and future work.

3) Generalised Explanations for Conflict Analysis: In ab-
duction, there is a trade-off to be made between finding
reasons quickly and finding very general reasons. We perform
abduction that relaxes bounds iteratively. As mentioned earlier,
there may be many incomparable relaxations. Our experiments
suggest that the precise way in which bounds are relaxed
is extremely important for performance. Abstract FIRST-UIP
(Algorithm 2) uses a heuristic choice function chooseded,q to
select these relaxations. When implementing choose , fairness
considerations similar to those mentioned for the decision
heuristic need to be taken into account. However, there is
an additional, important criterion. Since learnt lemmas are
used to drive backjumping, it is preferable to learn deduction
rules that allow for backjumping higher in the trail. This will
lead to propagations that are affected by a smaller number of
decisions, and thus will hold for a larger portion of the search
space.

Our choice heuristic, called trail-guided choice, is
abstraction-independent, and is both fair and aims to increase
backjump potential. In order to generalise the deduction tr

i

on
the trail, we start with trivial abduction q =

d
tr1 . . . tr i�1,

which is sufficient to deduce an element d. In the first step, we
remove all bounds over variables from q which are irrelevant
to the deduction. Then we step backwards through the trail and
attempt to weaken the current element q using trail elements.
The process is depicted below.

. . .

x � 5.2 . . .

y ⌫ 1.3 . . .

y ⌫ 7.2
x � 0.4

Step 1: Attempt weakening x � 0.4 to x � 5.2

Step 2: Attempt weakening y ⌫ 7.2 to y ⌫ 1.3

When an element tr
j

is encountered such that tr
j

is used
in q (that is, q ✓ tr

j

), we attempt to weaken q by replacing
the bound tr

j

with the most recent trail element more general
than tr

j

. If no such element exists, we attempt removing the
relevant bound altogether. We check whether the weakened q

FP-ACDCL FP-ACDCL

bi
t-v

ec
to

r
en

co
di

ng
(Z

3)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

FP
-A

C
D

C
L

w
.o

.g
en

er
al

is
at

io
n

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

(a) (b)
Fig. 2. Comparison of FP-ACDCL against Z3 with bit-vector encoding (a);
effects of generalisations in conflict analysis (b). Darker colour indicates
unsatisfiability. Points on the borders indicate timeouts (1200 s).

is still sufficiently strong to deduce d. If not, we undo the
weakening, and do not consider any further weakenings using
any elements more general than tr

j

. After this, we repeat the
process for element tr

j�1. The algorithm terminates once no
further generalisations are possible.

Since we step backwards in order of deduction, we heuristi-
cally increase the the potential for backjumps: The procedure
never weakens a bound that was introduced early during model
search at the expense of having to uphold a bound that is
ensured only at a deep level of the search.

We have experimented with stronger but computationally
more expensive generalisation techniques such as finding
maximal bounds for deductions by search over floating point
values. Our experiments indicate that the cheaper technique
described above is more effective overall. We see two main
avenues of improvement: First, for many deductions it is
possible to implement good or optimal abduction transformers
effectively without search. Second, we expect that dynamic
heuristics that take into account statistical information may
guide conflict analysis towards useful clauses.

B. Experimental Evaluation
We have evaluated our prototype FP-ACDCL tool over a

set of more than 200 benchmark formulae, both satisfiable
and unsatisfiable. The formulae have been generated from
problems that check (i) ranges on numerical variables and
expressions, (ii) error bounds on some numerical computa-
tions using different orders of evaluation of subexpressions,
and (iii) feasibility of systems of inequalities over bounded
floating-point variables. We make our benchmarks and the
FP-ACDCL tool available for experimentation by other re-
searchers at http://www.cprover.org/fmcad2012/. All the re-
sults have been obtained on an Intel Xeon machine with
2.6 GHz and 16 GB of memory running Linux, with a time
limit of 1200 seconds.

We have performed two different sets of experiments. In
the first, we have compared FP-ACDCL with the current
state-of-the-art procedures for floating-point arithmetic, based
on encoding into bit-vectors. We have generated bit-vector
encodings of all the benchmark instances in our set, and
solved them with the Z3 SMT solver [16] which was the
winner of the main bit-vector division in the SMT-COMP 2011

(Bit-vector encoding generated by MathSAT, solved by Z3)

Monday, 23 July 12

ACDCL for Programs

⇡ |= P i↵ trace ⇡ is an erroneous trace generated by program P

Treat program analysis as a logical problem:

Monday, 23 July 12

ACDCL for Programs

18

Search Prove

gfp(amod')

Dual widen

lfp(aconf ')

Dual narrow

SAT UNSAT

Conflict

Clause

Fig. 5. Abstract Interpretation view of CDCL

restrict an element with meet irreducible instead of arbitrary assignments in a
sat solver is relevant for termination.

Conflict Analysis is Underapproximate Analysis Conflict analysis finds
general explanations for a given conflict identified during deduction. Techniques
for conflict analysis are diverse and include graph cutting [17] and conflict min-
imisation [18]. There may, in general, be many incomparable explanations for a
given conflict, of which only one is chosen by the sat solver.

To represent sets of conflict, we introduce the lattice of cubes. Given a conflict
⇡ 2 PAsg , all smaller partial assignments ⇡0

v ⇡ are also conflicts. We therefore
define the cubes lattice as the downset lattice C (PAsg) =̂ (P#(PAsg),✓) defined
as below.

P#(PAsg) =̂ {Q ✓ PAsg | ⇡ 2 Q ^ ⇡0
v ⇡ implies ⇡0

2 Q}

To simplify presentation, we represent downsets as sets of their maximal ele-
ments. Cubes are an underapproximation with ↵C (PAsg)

(S) =̂ {⇡ 2 ⇡ | �
PAsg

(⇡) ✓
S} and �C (PAsg)

(Q) =̂
S

⇡2Q �
PAsg

(⇡).
Let � 2 PAsg be a conflict. Concrete abduction starting from � is given

by a transformer conf ',� : P(Asg) ! P(Asg) that adds countermodels of ',
given below.

conf ',� =̂ X 7! conf '(X [�(�))

The hypothetical best conflict analysis is the best abstract transformer aconf ',�

in the cubes lattice which yields a set containing all possible conflicts. The com-
putation of this set is intractable. A concrete conflict analysis technique can
be viewed as a transformer f v aconf ',�. For example, the cuts pictured over
the conflict graph earlier yield a transformer cut : C (PAsg) ! C (PAsg) with
cut =̂ X 7! X [{hw : ti, hx : f, y : ti}. It holds that cut v aconf ',c where c is

Fwd/bwd lfp analysis
with strongest postcondition and preimage

Fwd/bwd gfp with
weakest precondition and universal post.

partial
safety proof

refined
transformer

⇡ |= P i↵ trace ⇡ is an erroneous trace generated by program P

Treat program analysis as a logical problem:

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE

! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE

! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1

n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : >

n2 : b � 1 : ? SAFE ! Generalise!

! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Under-approximate
weakest pre-condition

Example 1: Interval Conflict Graphs

Monday, 23 July 12

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE ! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1
n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : a  �42

n2 : b � 2 : ? SAFE

! Generalise!! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1

n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : >

n2 : b � 1 : ? SAFE ! Generalise!

! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Abstract Implication Graph

n1

c2 c3c1 c4

n2

[a  �2]

[a = �1] [a = 0]

[a � 1]

b := 2 b := �2

b := �1 b := 1

[b = 0]

b  0

DL0

c1 : a  �2

c2 : a  �1 c3 : a  0 c2 : a � �1c3 : a � 0

c4 : a � 1

c3 : a = 0 c2 : a = �1

n2 : b  2 n2 : b � �2

 : b  0 : b � 0

DL1

n1 : a  �42

n1 : a  �2

c2 : ?

c3 : ?

c4 : ?

c1 : >

n2 : b � 1 : ? SAFE

! Generalise!

! find cut

maximal wp-underapproximation transformer

¬(n2 : b � 1)

¬(n1 : a  �2)

n2 : b  �1

 : ? SAFE

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 25 / 33

Example 1: Interval Conflict Graphs

ACDCL “intelligently” decomposes the problem

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Input Range

Sine function

Program output

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Partitions

Safety bound

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Property-dependent Trace Partitioning

�⇡
2

⇡
2

result  0.99

result � -0.99

result  1.0

result � -1.0

result  1.001

result � -1.001

result  1.01

result � -1.01

result  1.1

result � -1.1

result  1.2

result � -1.2

result  1.5

result � -1.5

result  2.0

result � -2.0

Leopold Haller (OUDCS) DPLL is Abstract Interpretation 27 / 33

Intelligent decomposition of the analysis

Counter-Example

Example 2: Problem Dependent Decomposition

Monday, 23 July 12

And never the twain shall meet?

Thanks for your attention!

Oh, East is East, and West is West, and never the twain shall meet,	

Till Earth and Sky stand presently at God’s great Judgment Seat;	

But there is neither East nor West, Border, nor Breed, nor Birth,	

When two strong men stand face to face, tho’ they come from the ends
of the earth!

Monday, 23 July 12

