Abstract Conflict Driven
Clause Learning

UNIVERSITY OF

OXFORD

Leopold Haller

Joint work with
Vijay D’Silva, Alberto Griggio, Michael Tautschnig, Daniel Kroening

Monday, 23 July 12

Anglo-EU Translation Guide
What the British say What the British mean What others understand

el

Monday, 23 July 12

“Everything is Abstract Interpretation ...

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says What they might mean What others understand

U"*nmum --
interpretation?
memmw--

Monday, 23 July 12

“Everything is Abstract Interpretation ...

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says What they might mean What others understand

Isn’t this an instance of abstract
interpretation?

Technique X computes an abstract

... including SAT solvers

(Satisfiability Solvers are Static Analysers. D’Silva, Haller, Kroening, SAS 2012)

Monday, 23 July 12

Propositional Satisfiability (SAT)

literal
e={pPV-gAN...N(—7VwVq)

clause

Given a propositional formula ¢, is there a
propositional truth assignment o such that o = .

* Solvers are based on Conflict Driven Clause Learning (CDCL)
* Basis of modern Satisfiability Module Theory (SMT) solvers

* Critical components of program verification techniques

Monday, 23 July 12

CDCL

100s \

106 N (Malik and Zhang, 2009)

Sy \
Is I T T T T T T —

2000 2001 2002 2003 2004 2005 2006 2007

Learn clause

Ve —
Model Search Conflict Analysis
~— v
Conflict

Work on CDCL has resulted in an exponential decrease in runtimes.

Can we lift this success to other domains!?

Monday, 23 July 12

SMT via DPLL(T)

Solve satisfiability for (QF) first order formula with background theory

r+y<3V22xr—y>1l)AN(zx=>dVy==x
(\q/_/ ~ —~ J) (\/—/ \\/./)

D q r s

(pVaq)A(rVs)

Propositional CDCL [« —> Theory Solver

CDCL enumerates candidate propositional truth assignments,
theory solver checks consistency.

DPLL(T) is a mathematical recipe and implementation framework for
building SMT decision procedures!

Monday, 23 July 12

SMT via DPLL(T)

DPLL(T) can be viewed to partition the space of potential models
using the structure of the formula.
Measures have to be taken to avoid enumeration behaviour.

(r=0Vax=2Vax=4V...Vax=2k)A
(y=0Vy=2Vy=4V...Vy=2k)A
(x+y=2c+1)

\
Xy[0[2]4 x\y | even | odd
0
2 even
4
odd
DPLL(T) explores truth Full even / odd

assighments to predicates partitioning

Monday, 23 July 12

CDCL SMT

L

Nalural Domain
SMT

Natural Domain SMT

DPLL(T)

Propositional CDCL

Model Confl. |le

Search || Analysis

Natural
Domain SMT

—> Theory Solver

“Theory” Learning

4

Theory
Model Search

S~

—~——

Theory
Conflict Analysis

eV

Conflict

Monday, 23 July 12

Abslrac] ln‘opvg{aﬁ'm

Abstract Interpretation by Example:
Intervals

Track possible range for variable

a += b;

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

a += b;

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T

a += b;

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T

a —> [57 5] int b;

a += b;

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T
int a3 =5k
a s [5,5] Bk D
1f ()
: . b = 3:
Imprecise OA: -
a+— |5,5],b+— [—3,3] b = -3;
a += b;

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T
int a3 =5k
a s [5,5] Bk D
1f ()
: . b = 3:
Imprecise OA: -
a+— |5,5],b+— [—3,3] b = -3;
a += b;

a+—[2,8],b— |—3,3]

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with Underapproximate Analysis with
strongest postcondition weakest precondition
T

int a=2>5;

a+ [5,5] e
1f ()

: . b = 3:
Imprecise OA: -
a+— [5,5],b— |—3,3] b = -3;

a += b;

a+—[2,8],b— |—3,3]

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with Underapproximate Analysis with
strongest postcondition weakest precondition
T

int a=2>5;

a+ [5,5] e
1f ()

: . b = 3:
Imprecise OA: -
a+— [5,5],b— |—3,3] b = -3;

0 [2,8],b— [=3,3] aEb s [—o0,—1],a - [1,00])

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with Underapproximate Analysis with
strongest postcondition weakest precondition
T

int a=5:

a s [5,5] Bk D
1f ()

Imprecise OA: elts)e= ; UA “guess’:
a — [575]7[)H [_373] b = -3; {(a'% [4700]7[)'% [_373])}

0 [2,8],b— [=3,3] aEb s [—o0,—1],a - [1,00])

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with Underapproximate Analysis with
strongest postcondition weakest precondition
T

int a=5:

a +— [5, 5] aE 0 {a+— [4,00])
if ()

Imprecise OA: elts)e= ; UA “guess’:
a — [575]7[)H [_373] b = -3; {(a'% [4700]7[)'% [_373])}

0 [2,8],b— [=3,3] aEb s [—o0,—1],a - [1,00])

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:
Intervals

Track possible range for variable

Overapproximate Analysis with Underapproximate Analysis with
strongest postcondition weakest precondition
T T

int a=5:

a +— [5, 5] aE 0 {a+— [4,00])
if ()

Imprecise OA: elts)e= ; UA “guess’:
a — [575]7[)H [_373] b = -3; {(a'% [4700]7[)'% [_373])}

0 [2,8],b— [=3,3] aEb s [—o0,—1],a - [1,00])

assert(a == 0):

Monday, 23 July 12

Abstract Interpretation by Example:

Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

Underapproximate Analysis with
weakest precondition

T T
int a=5:
a +— [5, 5] aE 0 {a+— [4,00])
if ()
- . b = - “ ”,
Imprecise OA: alee UA “guess’:

a+— [5,5],b— |—3,3]

b =-3; {(ar [4,00],b— [-3,3])}

a+—[2,8],b— |—3,3]

a += b; {a — [—00,—1],a — [1, 0]}

assert(a == 0):

Sound, but incomplete

Monday, 23 July 12

Abstract Interpretation

Galois connection:
/y

84

Abstract Lattice
(Intervals, &, 1M, L)

Concrete Lattice

(p(States), C,N, V) S

\
/4

Monday, 23 July 12

Abstract Interpretation

Galois connection:
/y

84

Abstract Lattice
(Intervals, &, 1M, L)

Concrete Lattice

(p(States), C,N, V) S

\
/4

Abstraction and concretisation function
a{r—3,z— 1, z—9}) =2+ [1,9]
v(x +— [4,6])) ={x— 4,2 — 5,z 6}

Monday, 23 July 12

Abstract Interpretation

Galois connection:
/y

84

Abstract Lattice
(Intervals, &, 1M, L)

Concrete Lattice

(p(States), C,N, V) S

\
/4

Abstraction and concretisation function
a{r—3,z— 1, z—9}) =2+ [1,9]
v(x +— [4,6]) ={x — 4,2 — 5+ 6}

Concrete transformer post : p(States) — @(States)

Sound abstr. transformer post : Intervals — Intervals

post oy C ~vo pOASt

Monday, 23 July 12

Approximating Fixed Points

Fixed points can be computed in the abstract

fp X. T U post(X) C v(Ifp X.a(I) L post(X))

Concrete Abstract

a(I)

Monday, 23 July 12

Accelerating Fixed Point Computations

X = 0:
while(x <)
X++1

Fixed point computations might take a long time (or fail to terminate):
Fo:x— 10,00 Fi:z—[0,1] Fr:2+—1[0,2] F3:x2+—]0,3]

Monday, 23 July 12

Accelerating Fixed Point Computations

X = 0:
while(x <)
X++1

Fixed point computations might take a long time (or fail to terminate):
Fo:x— 10,00 Fi:z—[0,1] Fr:2+—1[0,2] F3:x2+—]0,3]

Widening Narrowing
(jumps above least fixed point) (stay above greatest fixed point)
1o |

S

<

Ipr:)
1
1

T (Eéﬁ)

Monday, 23 July 12

Abslracl l“ ayde‘-’es»

’nlu‘ml;# L?iq

Abstractly Interpreting Logic

Check satisfiability of the following formula

p=pA(—pVaq)A(—pV q)

Prove the following program safe

int main()

{

if(p)
if(!'p || q)
il 1 la)
assert(false);

Monday, 23 July 12

Abstractly Interpreting Logic

Constants analysis

- T -
p:t ///q:t/ \q:f\\\p:f
N A A
p:t, g:t \p:t,q:f p:f,q:t/ p:f, qg:f
~ > B /-
int main()
{ T
if(p) p:t
if(!'p || q) p:t, q:t
if(!p || 'q) 1
assert(false);
}

Monday, 23 July 12

Abstractly Interpreting Logic

Set of formulae Set of structures
Form Struct

Semantic entailment relation
= ¢ p(Struct x Form)

Concrete Domain
(@(Struct), C,N, V)

Monday, 23 July 12

Abstractly Interpreting Logic

Set of formulae Set of structures
Form Struct

Semantic entailment relation
= ¢ p(Struct x Form)

Concrete Domain
(p(Struct), C,N, V)

E.g., propositional logic:

Lit ={p,—p | p € Props} Clauses = p(Lit)
Form = @(Clauses) Struct = Props — {t,f}
o = o iff

VO ep. A eC. (I=phialp)=t)V(=-pAolp) =f)

Monday, 23 July 12

mods,(S) ={oc | o€ SAo

mods, = post

Abstract Satisfaction

Structure transformers;

assume(p)

= ¢}

confs ,(S) ={o |oceSVao

confs , = pre

assume(p)

ki

Monday, 23 July 12

mods,(S) ={oc|oceSNo =

mods, = post

Abstract Satisfaction

Structure transformers;

assume(p)

0}

confs ,(S) ={o |oceSVao

confs , = pre

Overapproximation amods, of mods,

Underapproximation aconfs , of confs,

assume(p)

ki

[\
gfp amods, = L or
if - — (is unsatisfiable
p aconfs, =
\ J
. Struct . Struct
g
X
O-
¥
N J

Monday, 23 July 12

Naluv_ﬂe :ponna;_v) ,nlum l'? L?;C

SMT \

CDCL as
Ng:!“"ie povuo.m SNT

[for (roros'cl-'omo Lgtc \

M Sen Cz (0]l Analysis
Sy 1 . Rlraci s

Model Search

Find either a satisfying assighment or a conflicting partial assignment

/ \
Deduction: Decisions:
Infer variable Guess variable
assighments assignments

S~ Y

Monday, 23 July 12

Partial Assignments are an Abstract Domain

¢ #define 1_False (lbool ((uint8_t)1)) §
j #define 1.Undef (Ibool ((uint8_t)2)) §

class lbool { [..] };

class Solver {
[...]
/[FALSE means solver is in a conflicting state
[RosT™ ™= "arm==% () const:
¢ vec<lbool>_assign: // The current assignments.
// Enqueue a literal . Assumes value of literal is undefined.

- | ~
- ~
- ~
_ 7/ N ~
- ~
~

N pit q:t q:f p:f
p(Props — {t,f}) == N ~ - ~ o
|

AN A A
) N s N s N |

-

~ N / —_

~~ -

- -

p:t,q:t p:it,q:f p:Af,qt p:Af,q:f

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

pA(pVq)A(=gVrT)

T

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

pA(pVq)A(=gVrT)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

—pA(PVq)A(~qVr)

!
l

(p:f, q:t)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

—pA(PVq)A(~qVr)

-
pf
(p:f, q:t)

pfqtrtO

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Deduction Computes a Greatest Fixed Point

—pA(PVq)A(~qVr)
T
plf
pflqt

pfqtrtO

bep(m) = gfp X. unit(m M X)

The unit rule overapproximates the model transformer, BCP abstractly
computes the fixed point:

gfp mods.,

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

pA(gVT)A(qgV—r)
T

g p:t

Deduction l

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

pA(gVT)A(qgV—r)
T

g p:t

Deduction l

Decision ¢:f

p:t, q:f

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

pA(gVT)A(qgV—r)

T
Deduction l
p:t
S
Decision ¢:f
p:t, q:f
Deduction l p:t, q:f, r:t

o

Monday, 23 July 12

Decision Making is Dual Widening

Once no more new facts can be deduced,
a solver heuristically picks a truth value for an unassigned variable

pA(gVT)A(qgV—r)

T
Deduction l
p:t
S
Decision ¢:f
p:t, q:f
Deduction l p:t, q:f, r:t

S

Recall: Widenings jump over a least fixed point

Decisions jump under a greatest fixed point (unusual: unsound!)

Monday, 23 July 12

Conflict Analysis

&~ N
Abductlgn: Heuristic Choice:
Find possible

Choose one

generalisations of .
generalisation

conflict

S~ Y

Monday, 23 July 12

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph
(—pVg A(—=pV-r)A(~gVrV-s)A(sVE)A(sV i)

//

t:t

Monday, 23 July 12

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph
(—pVg A(—=pV-r)A(~gVrV-s)A(sVE)A(sV i)

s:f
Conflict abduction is performed by obtaining cuts through the graph
Original conflict T = (pit, g:t, rif, s:f dt)

Possible generalisations cut({w}) _ {(p:t), (q:t, ,,0:1:)7 (S:f)}
from cuts

Monday, 23 July 12

Abduction computes a least fixed point

7“ f \)S t generalisation from clause minimisation

(ptqt‘\//,

(p:t, q:t, r:f, s:t)

r:f, s:t) generalisation from graph cuts

Original conflict

Monday, 23 July 12

Abduction computes a least fixed point

7“ f \)S t generalisation from clause minimisation

(ptqt‘\//,

(p:t, q:t, r:f, s:t)

r:f, s:t) generalisation from graph cuts

Original conflict

{(p:t, q:t),;r:f), (s:t)} O

{(p:t, q:t), (r:f, s:t) }

1

{(p:t, q:t, r:f, s:1) }
Collecting all conflicts

Monday, 23 July 12

Abduction computes a least fixed point

7“ f \)S t generalisation from clause minimisation

(ptqt‘\//,

(p:t, q:t, r:f, s:t)

r:f, s:t) generalisation from graph cuts

Original conflict

{(p:t, q:t),;r:f), (s:t)} O

{(p:t, q:t), (r:f, s:t) }

1

{(p:t, q:t, r:f, s:1) }
Collecting all conflicts

Abduction underapproximately computes the fixed point Ifp confs,,

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(p:t, q:t),;r:f), (s:t)} O

{(p:t, q:t), (r:f, s:t)}

1

{(p:t, q:t,r:f, s:t) }
Collecting all conflicts

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(p:t, :t), ;r:f), (511)} 9 {(rTzf)} ¥
{(p:t, q:t), (r:f, s:t)} {(r:f,s:t)}
t 1
{(p:t, q:t, r:f, s:t) } {(p:t, q:t, r:f, s:t) }
Collecting all conflicts SAT Solvers choose one reason

Monday, 23 July 12

Heuristic Choice is Dual Narrowing

{(pt, g:t), (r:f), (s:t)} 9 [(r:f)} D

i 1

{(p:t, q:t), (r:f, s:t)} {(r:f,s:t)}

f 1

{(p:t, q:t, r:f, s:t) } {(p:t, q:t, r:f, s:t) }
Collecting all conflicts SAT Solvers choose one reason

Recall that narrowing is used to converge above a greatest fixed point.
Heuristic choice of conflict reasons leads to convergence below a least fixed point!

Monday, 23 July 12

ACDCL: A recipe for deriving natural domain
SMT solvers from abstract domains

Search | d Prove
g N earne , N

transformer
[gfp(amodw)J /\ [pr(aconfgp)J

. .

[Dual WidenJ \—/ [Dual narrow}

\) conflict \)

A\ 4

(“sar) (Usar)

Overapproximating domain O Underapproximating domain [/

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

Struct

0

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

Struct

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

Struct

Deduction

Monday, 23 July 12

Model Search and Conflict Analysis
with Abstract Domains

Struct

Deduction

\ Decision

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

(>

Deduction
Decision
Deduction

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

Deduction
Decision
Deduction
Conflict

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

®

Deduction
Decision
Deduction
Conflict
Abduction

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

&

Deduction
Decision
Deduction
Conflict
Abduction
Choice

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

=

o

Deduction
Decision
Deduction
Conflict
Abduction
Choice
Abduction

Monday, 23 July 12

Model Search and Conflict Analysis

with Abstract Domains

Struct

Deduction
Decision
Deduction
Conflict
Abduction
Choice
Abduction
Choice

Monday, 23 July 12

CDCL as
Nalurd? Domain SMT

[for froros'ol-'omo [.gtc \

Mode0 Seardh (0l Analysis
. A_Lgimclfm W. bsl:aa.'%

k" Aoslrocl Learivg 4)

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

4)

Monday, 23 July 12

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

4)

Monday, 23 July 12

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

4)

\- J

No lattice theoretic prerequisites, possible over any domain

(1 iftrCC

tabuc(m) = <
c(m) 7 otherwise

\

Monday, 23 July 12

Propositional Clause Learning

When assignment is “nearly conflicting”, drive the search away from the conflict

4)

Monday, 23 July 12

Propositional Clause Learning

When assignment is “nearly conflicting”, drive the search away from the conflict

(") 4)

Monday, 23 July 12

Propositional Clause Learning

When assignment is “nearly conflicting”, drive the search away from the conflict

- \ f)
-
C' = (p:t, q:t,r:f) = (p:t) M (gt) M1 (r:f) decomposition allows

complements drive thg \ / us to express‘“nearly
search away from conflict

T —(pit) 7 C (¢t) A (r:f) conflicting”
Unit(p:t,q:t,’r:f) (T‘-) = q 7l _'(q:t) T L (p:t) Ay (T:f)
T =(r:f) 7 E (pit) A C (q:t)

Monday, 23 July 12

Complementable Meet Irreducibles

Clause learning requires a weak complementation property of the abstraction

No precise

Precise complement
complement

Every element needs to have a decomposition into
precisely complementable elements.

Monday, 23 July 12

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Monday, 23 July 12

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Intervals and Octagons are intersections of
complementable half-spaces

Monday, 23 July 12

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Branches — {left, right, T}
CFG

VRN
SROLOLY
Q00

Intervals and Octagons are intersections of Trace abstraction based on
complementable half-spaces control history

Monday, 23 July 12

Generalised Unit Rule

Monday, 23 July 12

Generalised Unit Rule

A
Intervals Conflict ¢

Monday, 23 July 12

Generalised Unit Rule

A A
Intervals Conflict ¢ Element o
T Vo
. b
> >

Monday, 23 July 12

Intervals

A

Generalised Unit Rule

Conflict ¢

A

Element o
"""" Vo
1

Monday, 23 July 12

Intervals

Trace abstractions:

A

Generalised Unit Rule

Conflict ¢

Conflict ¢

A

Element o
T I
1

Monday, 23 July 12

Intervals

Trace abstractions:

A

Generalised Unit Rule

Conflict ¢

Conflict ¢

()
()
()

A

Element o
T I
1

Element o

9
()
()

Monday, 23 July 12

Intervals

Trace abstractions:

A

Generalised Unit Rule

Conflict ¢

Conflict ¢

()
()
()

A

Element o

Element o

9
) =
()

Monday, 23 July 12

!

lnslmnccs/ A«Oicn!im»s

M. blegratalion Coee-s:
based SMT Solver Slalic An vﬁu

— .

An SMT Solver based

on ACDCL

Floating Point Interval Sets of Trail-Guided
Intervals Splitting Intervals Choice

OA Domain Decision UA Domain Choice
Interface Heuristic Interface Heuristic

Abstract Model Search

Abstract CDCL

Abstract Conflict Graph
Generalisation

(Joint work with Alberto Griggio, implemented

using MathSAT infrastructure)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

T € [—00,0)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

T € [—00,0)

N

yc [—OO, O]

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

T € [—00,0)
%é

)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

T € [—00,0)
%é

)

yc [—OO, 7]

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

Monday, 23 July 12

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

r=y N x+y=>10
Graph nodes are meet irreducibles (e.g., half spaces)

|. Generalise each node of the conflict graph using heuristic choice

2. Cut the graph

Monday, 23 July 12

Experiments

FP-ACDCL
N ¢ o oo
B ® O

é[) 100 '.’: .:. » ‘ o
oy ®
= ® o4 ¢
8 10 .o.‘o O ® -
- ‘o
D]
— o 1
@) 1
-
= _
@ E
> i
- 0.1¢ -
oy
= _ _

0061 T 10 d00 1000

(Bit-vector encoding generated by MathSAT, solved by Z3)

Monday, 23 July 12

ACDCL for Programs

Treat program analysis as a logical problem:

m = P iff trace m is an erroneous trace generated by program P

Monday, 23 July 12

ACDCL for Programs

Treat program analysis as a logical problem:

m = P iff trace m is an erroneous trace generated by program P

Fwd/bwd Ifp analysis Fwd/bwd gfp with
with strongest postcondition and preimage weakest precondition and universal post.
. \ s refined O f x

transformer

E[gfp(amodw)JE /_\ E |fp(aconf¢) E

[Dual WidenJ \/ [Dual narrowj

partial
\. J \. J
safety proof

7

Y Y

[SAT J [UNSATJ

Monday, 23 July 12

Example |:Interval Conflict Graphs

[a < 2] r,«,l? [a > 1]
e/ e
b= —1 b:=1

Monday, 23 July 12

DLO

Example |:Interval Conflict Graphs

[azu

[a ——1]

[a = 0]

: LY

N .®<_/

b= -2
\-l_[/bO]

Monday, 23 July 12

Example |:Interval Conflict Graphs

DLO— [a<_2] L e

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1)

(cya<2)W@4:a>l) [——1] [a = 0]
\Gutbgé) n2:b2—{ T b.x /3.1

N .®<_/

(:b<0) ({:b>0) T[H]

Monday, 23 July 12

DLO
(2 :a < —1)

Example |:Interval Conflict Graphs

[azu

(3:a<0) (3:a>0) (:a>—1)

[_—1]
(61 :a < =2 (cs :a>1)
EY
nzibgé) n2:b2—{ T

[a = 0]

N .®<_/

—2
(:b<0 (4:b>0) T[M]
DL1
ln] ca < —42)

Monday, 23 July 12

DLO

(2 :a < —1)

Example |:Interval Conflict Graphs

[321]

(3:a<0) (3:a>0) (:a>—1)

[a ——1]

[a = 0]

(C42321) T \/.

N .®<_/

4 L SAFE

b= 2
\—l_[/bO]

Monday, 23 July 12

DLO

(2 :a < —1)

Example |:Interval Conflict Graphs

[a < -2] rlﬂ [a>1]
(C3:a$0) (C3:320) (Cgiaz—]_) n1
[a——l] [a = 0]

KO

@

b= 2
\—l_[/bO]

DL1
n :a< —2)
&@ m:b>1) -4 1 L SAFE — Generalise!

Under-approximate
weakest pre-condition

Monday, 23 July 12

Example |:Interval Conflict Graphs

o [a < 2] l [a > 1]
< AN >
(@:a< -1 (3:a<0) (3:a>0) (e:a>—1) (/ﬂ\ W
[a=—1] [a=0]
: : = -
b:=-1 b:=1

o 1) --(m:b>1)
\ //z’
/:nz . b > 1) ~(4 1 L) SAFE — find cut

ACDCL “intelligently” decomposes the problem

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

Input Range
_ T s
2 2

Sine function AN

Program output

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

result < 2.0
* _ Partitions _
— 5 / \ 2
Safety bound €--> €= =>
afety boun €Yol oyl
v

result > -2.0

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

N[
|

result < 1.5 —

/\//

result > -1.5

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

result < 1.2

/\ ’//

result > -1.2

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

result < 1.1

/\ —//

result > -1.1

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

result < 1.01

/‘\ | L

restilt > -1.01

Monday, 23 July 12

Example 2: Problem Dependent Decomposition

Counter-Example

_ T s
2 2

result < 1.001 // y
——
/\ »
resu1/t > -1.001

Intelligent decomposition of the analysis

Monday, 23 July 12

And never the twain shall meet!?

Oh, East 1s East, and West 1s West, and never the twain shall meet,
Till Earth and Sky stand presently at God’s great Judgment Seat;

But there 1s neither East nor West, Border, nor Breed, nor Birth,
When two strong men stand face to face, tho’ they come from the ends
of the earth!

Thanks for your attention!

Monday, 23 July 12

