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The quest for ever more efficient SAT solvers
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SAT solving performance (from [MZ09])



Parallelising SAT

Software (ManySAT, Plingeling):

Solver 1 Solver 2 Solver 3

exchange of (unit) clauses

Coarse-grain parallelism

Hardware (e.g., [DTYZ08]):

FPGA

Propagation

Clauses

Propagation

Clauses

· · ·Software solver

Fine-grain parallelism



Challenges in Hardware-Based CDCL

while true do
if ¬decide() then

return SAT;

while BCP() = conflict do
analyseAndLearn();
if ¬backtrack() then

return UNSAT;

I Memory access in Boolean Constraint Propagation is hard to predict.
Existing approaches rely on fast on-chip memory.
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Memory resources

on-chip off-chip

Block RAM SDRAM

hundreds of small composable blocks large atomic unit of memory

parallel access sequential access

one-cycle access non-deterministic delay

uniform access speed streaming access faster

0.5-7MB (Virtex-5) multiple GB

Existing approaches store instance information on-chip
Capacity limits: e.g., [DTYZ08] - 64K variables/clauses
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Relieving capacity limits
Previously suggested: Instance partitioning

HW solver pj p1 pn· · ·

We explore the feasibility of

I directly utilizing off-chip storage

I by building a custom memory hierarchy for SAT algorithms.

Our platform is the
BEE3 (Berkeley Emulation Engine v3)

I 4 interconnected Virtex5 FPGAs

I 2 independent memory channels

I 8GB per channel (64GB in total)

I Ethernet, RS232, etc.
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BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip on-chip

Parallelise?
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Parallel Deduction

Possible overlap while processing clauses:

issue read receive clause read values done

issue read receive clause read values done︸ ︷︷ ︸
Overlap

Use of multiple propagation units:

BCP controlPropagator Propagator

Variable values
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Parallel watched literals

Utilize the two independent memory channels.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

Split watch-list in two

Store clauses redundantly

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n

Local propagation
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Progress
I Implementation of a BCP core on the BEE3 board.

I Validated in simulation, synthesized on the board

I 15000 LUTs (20%)
I 100MHz control logic, 250MHz memory

Size limits (Virtex5 w. 16GB)

clauses (max. 24 literals) ca. 70.000.000

variables ca. 1.000.000

I Obtaining benchmark results is work in progress



Future work & Conclusion

Future work

I Application specific caches

I Parallelization through use of multiple FPGA chips

Architecture for a hardware-based BCP core that:

I Achieves significantly higher capacity than existing approaches by directly
accessing large off-chip memory resources.

I Employs fine-grain parallelisation strategies.
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