
Relieving Capacity Limits
on FPGA-Based SAT Solvers

Leopold Haller 1 Satnam Singh 2

1Oxford University Computing Laboratory

2Microsoft Research Cambridge

FMCAD 2010



The quest for ever more efficient SAT solvers

2000 2001 2002 2003 2004 2005 2006 2007

1s

10s

100s

SAT solving performance (from [MZ09])



Parallelising SAT

Software (ManySAT, Plingeling):

Solver 1 Solver 2 Solver 3

exchange of (unit) clauses

Coarse-grain parallelism

Hardware (e.g., [DTYZ08]):

FPGA

Propagation

Clauses

Propagation

Clauses

· · ·Software solver

Fine-grain parallelism



Challenges in Hardware-Based CDCL

while true do
if ¬decide() then

return SAT;

while BCP() = conflict do
analyseAndLearn();
if ¬backtrack() then

return UNSAT;

I Memory access in Boolean Constraint Propagation is hard to predict.
Existing approaches rely on fast on-chip memory.



Challenges in Hardware-Based CDCL

while true do
if ¬decide() then

return SAT;

while BCP() = conflict do
analyseAndLearn();
if ¬backtrack() then

return UNSAT;

I Memory access in Boolean Constraint Propagation is hard to predict.
Existing approaches rely on fast on-chip memory.



Memory resources

on-chip off-chip

Block RAM SDRAM

hundreds of small composable blocks large atomic unit of memory

parallel access sequential access

one-cycle access non-deterministic delay

uniform access speed streaming access faster

0.5-7MB (Virtex-5) multiple GB

Existing approaches store instance information on-chip
Capacity limits: e.g., [DTYZ08] - 64K variables/clauses



Memory resources

on-chip off-chip

Block RAM SDRAM

hundreds of small composable blocks large atomic unit of memory

parallel access sequential access

one-cycle access non-deterministic delay

uniform access speed streaming access faster

0.5-7MB (Virtex-5) multiple GB

Existing approaches store instance information on-chip
Capacity limits: e.g., [DTYZ08] - 64K variables/clauses



Relieving capacity limits
Previously suggested: Instance partitioning

HW solver pj p1 pn· · ·

We explore the feasibility of

I directly utilizing off-chip storage

I by building a custom memory hierarchy for SAT algorithms.

Our platform is the
BEE3 (Berkeley Emulation Engine v3)

I 4 interconnected Virtex5 FPGAs

I 2 independent memory channels

I 8GB per channel (64GB in total)

I Ethernet, RS232, etc.



Relieving capacity limits
Previously suggested: Instance partitioning

HW solver pj p1 pn· · ·

We explore the feasibility of

I directly utilizing off-chip storage

I by building a custom memory hierarchy for SAT algorithms.

Our platform is the
BEE3 (Berkeley Emulation Engine v3)

I 4 interconnected Virtex5 FPGAs

I 2 independent memory channels

I 8GB per channel (64GB in total)

I Ethernet, RS232, etc.



Relieving capacity limits
Previously suggested: Instance partitioning

HW solver pj p1 pn· · ·

We explore the feasibility of

I directly utilizing off-chip storage

I by building a custom memory hierarchy for SAT algorithms.

Our platform is the
BEE3 (Berkeley Emulation Engine v3)

I 4 interconnected Virtex5 FPGAs

I 2 independent memory channels

I 8GB per channel (64GB in total)

I Ethernet, RS232, etc.





BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip on-chip

Parallelise?



BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip on-chip

Parallelise?



BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip

on-chip

Parallelise?



BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip on-chip

Parallelise?



BCP in CDCL algorithms

procedure bcp(l : literal)
wl ←readWatchlist(l);
r ← ∅;
for address ∈ wl do

clause ← readClause(address);
vals ← readVarValues(vals);
r ← r ∪ propagate(clause, vals);
//returns conflict, deduction or move WL

processResults(r); writeResults(r);
end procedure

Read access pattern:

watch list clause vars clause vars

linear linear rand. linear rand.

off-chip on-chip

Parallelise?



Parallel Deduction

Possible overlap while processing clauses:

issue read receive clause read values done

issue read receive clause read values done︸ ︷︷ ︸
Overlap

Use of multiple propagation units:

BCP controlPropagator Propagator

Variable values



Parallel Deduction

Possible overlap while processing clauses:

issue read receive clause read values done

issue read receive clause read values done︸ ︷︷ ︸
Overlap

Use of multiple propagation units:

BCP controlPropagator Propagator

Variable values



Parallel watched literals

Utilize the two independent memory channels.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

Split watch-list in two

Store clauses redundantly

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n

Local propagation




Parallel watched literals

Utilize the two independent memory channels.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

Split watch-list in two

Store clauses redundantly

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n

Local propagation




Parallel watched literals

Utilize the two independent memory channels.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

Split watch-list in two

Store clauses redundantly

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n

Local propagation




Parallel watched literals

Utilize the two independent memory channels.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

Split watch-list in two

Store clauses redundantly

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n

Local propagation




Architecture

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

var
values

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board



Architecture

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

var
values

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board



Architecture

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

var
values

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board



Architecture

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

var
values

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board



Architecture

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

var
values

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board



Progress
I Implementation of a BCP core on the BEE3 board.

I Validated in simulation, synthesized on the board

I 15000 LUTs (20%)
I 100MHz control logic, 250MHz memory

Size limits (Virtex5 w. 16GB)

clauses (max. 24 literals) ca. 70.000.000

variables ca. 1.000.000

I Obtaining benchmark results is work in progress



Future work & Conclusion

Future work

I Application specific caches

I Parallelization through use of multiple FPGA chips

Architecture for a hardware-based BCP core that:

I Achieves significantly higher capacity than existing approaches by directly
accessing large off-chip memory resources.

I Employs fine-grain parallelisation strategies.



Future work & Conclusion

Future work

I Application specific caches

I Parallelization through use of multiple FPGA chips

Architecture for a hardware-based BCP core that:

I Achieves significantly higher capacity than existing approaches by directly
accessing large off-chip memory resources.

I Employs fine-grain parallelisation strategies.



Thank you for your attention.

John D. Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang.

A practical reconfigurable hardware accelerator for boolean satisfiability solvers.

In DAC, pages 780–785, 2008.

Sharad Malik and Lintao Zhang.

Boolean satisfiability from theoretical hardness to practical success.

Commun. ACM, 52(8):76–82, 2009.


