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PRECISION VS EFFICIENCY




Static Analysis vs Decision Procedures

Static Analysis

Static analyses aggressively /\/\

over-approximate disjunction - Program tray\\ —

for efficiency. ~—

\

Decision Procedures

Modern SAT solvers precisely
reason about disjunction.
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Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && x <= 10)
{
for(int i = 0: i < 5 ++1i)
XKk=X
assert(x >= 0 && x <= B
}

Interval Analysis Bounded Model Checking
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Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && X <= 10)
{

for(int i = 0; i < 5; ++1i)
Xk=X}

assert(x >= 0 & x <= 1e32):

}

Interval Analysis Bounded Model Checking

® 00 () ai — bash — 80x24

leo@scythe ai$ time ./ai --function foo /tmp/test.c
file /tmp/test.c: Parsing
Converting

Type-checking test
Generating GOTO Program
Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10
Getting domain

sk Verification successful

real omd.133s
user omd.113s

sys  nd.0lds Success!

leo@scythe ais |}
0.1s
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Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && X
{

for(int i 0

Xk=X}

assert(x >= 0

}

Interval Analysis

<= 10)

<

4 55 ++1)

&& X <= 1le32):

Bounded Model Checking

k) cbmc — bash — 80x24

800 (L] ai — bash — 80x24 o 800 o
leo@scythe ai$ time ./ai --function foo /tmp/test.c file /tmp/test.c: Parsing
file /tmp/test.c: Parsing Converting

Converting
Type-checking test
Generating GOTO Program
Function Pointer Removal
got goto-program

CFG has 4 nodes
Obtaining loops ...

done

setting widening to 10
Getting domain

sk Verification successful

omd.133s
8md.113s
omd.014s

real
user
Sys

Success!
0.1s

leo@scythe ais

Type-checking test

Generating GOTO Program

Adding CPROVER library

Function Pointer Removal

Partial Inlining

Generic Property Instrumentation

Starting Bounded Model Checking

size of program expression: 20 assignments

simple slicing removed 2 assignments

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction

Running propositional reduction

Solving with MiniSAT2 with simplifier

132504 variables, 576600 clauses

SAT checker: negated claim is UNSATISFIABLE, i.e., holds

Runtime decision procedure: 293.838s '
Success!

VERIFICATION SUCCESSFUL

real 4m54.088s
user 4m53.011s 2 9 o
sys omd.745s s

leo@scythe cbmes §
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Static Analysis, BMC, and the Problem of Disjunction

float a,x;
if(x < 9)
a=1:

else
a = -1;

assert(a != 0):

Interval Analysis Bounded Model Checking
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Static Analysis, BMC, and the Problem of Disjunction

float a,x;

if(x < 0)
a =1;
else
a = -1,

(x:T,a:|—1.0,1.0])) «——assert(a !'= 0);

Interval Analysis Bounded Model Checking

e 0o (na tmp — bash — 80x24 "9

Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10

Getting domain

sk Verification failed

Found 1 possible assertion violations

sobioiioiiox possible assertion violation at instruction @ of:

3:
ASSERT  IEEE_FLOAT_NOTEQUAL(a, (float)®) // c::foo
RETURN return; //
IF irep("(\"nil\")") GOTO - ELSE GOTO -

Potential violation: -0.000000f <= a && a <= 0.000000f

Information over assertion variables: a <= 0.000000f -0.000000f <= a

o
Failure!
real omd.228s
user omd . 096s
Sys omd.019s o. ’ s

leo@scythe tmps
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Static Analysis, BMC, and the Problem of Disjunction

float a,x;

if(x < 0)
a=1;
else
a = -1;

(z:T,a:[-1.0,1.0]) «——assert(a != 0)

Interval Analysis

8 00 (- tmp — bash — 80x24

Bounded Model Checking

/800 2 tmp — bash — 80x24 ]

Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10

Getting domain

sk Verification failed

Found 1 possible assertion violations

soblokloiiok possible assertion violation at instruction @ of:

3:
ASSERT  IEEE_FLOAT_NOTEQUAL(a, (float)®) // c::foo
RETURN return; //
IF irep("(\"nil\")") GOTO - ELSE GOTO -

Potential violation: -0.000000f <= a && a <= 0.000000f

Information over assertion variables: a <= 0.000000f -0.000000f <= a

Failure!
0.1s

real omd.228s

user omd.096s
Sys omo.019s
leo@scythe tmps J

file test.c: Parsing

Converting

Type-checking test

Generating GOTO Program

Adding CPROVER library

Function Pointer Removal

Partial Inlining

Generic Property Instrumentation

Starting Bounded Model Checking

size of program expression: 17 assignments

simple slicing removed @ assignments

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction

Running propositional reduction

Solving with MiniSAT2 with simplifier

139 variables, 384 clauses

empty clause: negated claim is UNSATISFIABLE, i.e., holds

Runtime decision procedure: 0.004s '
VERIFICATION SUCCESSFUL s u c c e s s 3
0.1s

real omd.117s
user omd.999s
sys omd.014s
leo@scythe tmps i
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Static Analysis or Bit-Blasting!?

=
| Error

= ———— %

Standard static analysis fails, but we could do better than bit-blasting?
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Static Analysis or Bit-Blasting!?

=
[ Error

= ——— — 4

Standard static analysis fails, but we could do better than bit-blasting?

|dea: Partition the traces so that we can prove correctness for each partition.
Question:Where does the partition come from!?

To be efficient, we want partitions that are just precise enough
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Our Contribution

e Conflict Driven Fixed Point Learning (CDFL)

* Intelligent, property-driven refinement for abstract analyses
* Distinct from and orthogonal to CEGAR

* |Instantiation of CDFL(Interval)
* Significantly faster than modern SAT solvers on FP programs
* Better precision than straightforward abstract analysis
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WHAT WOULD
A SAT SOLVER DO?




p=pAN(pV-g) A(gVrV-w)A(gVrVuw)
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Imagine no assignments,
it’s easy if you try

if(p && (f\

assert(0)

return 0;

}

Imagine only Booleans,
| wonder if you can
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intPmain(void)

{

bool p,q,r,w;

if(p & (!'p || q) & (q || r ||
assert(90);

return 0;

}

/private/tmp/sat.c [P0S=0002,0004][16%] [LEN=12]

c| sat.c (/private/tmp) - VIM

O i @ % @

Iw) & (q || r || w))
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SAT Solvers Operate over Abstract Domains
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SAT Solvers Operate over Abstract Domains

Partial assighment

Prop — {t,f,7}
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SAT Solvers Operate over Abstract Domains

Boolean Constants Domain
T
Partial assignment (p:t,q:T)  (p:T,qit)  (p:T,g:f)  (p:f, q@:T)

Prop — {t,f,7}

(p:t, q:t) (p:t, g:f) (p:f, q:t) (p:f, g:f)
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Deduction
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Deduction

bool p,q;
if(p)
if(!'p || !q)
2 .o )

assert(0):
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Deduction

bool p,a; —> (p: T,q: T)

if(p) '——9'<Z7I't,q 3_r>

{ite 1090 — (it g )

assert(0):
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Deduction

bool p,a; —> (p: T,q: T)

if(p) — (p:t,g:T)

L0 st

assert(0):

T

> ( :
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Intervals

Deduction

bool p,a; —> (p: T,q: T)

if(p) ? <p ' 4,q T>
TIa ! : :
T ta
assert(0):

if(x <= 10.0)

{
ll: vy = X % 2;
L2t

}

T

> ( :
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Intervals

Deduction

bool p,a; —> (p: T,q: T)

if(p) — (p:t,g:T)
if(!p || !Q)___%

itE .o
assert(0):

if(x <= 10.0)

{
ll: vy = X % 2;
L2t

¥

—
o

(p:t,q:f)
(x: [—00,10.0]
(x :[—00,10.0
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{ — (x:
Intervals 11: ‘¥ = x % 2
12: — (x:

Deduction

bool p,a; —> (p: T,q: T)
if(p) H(p:t,q:_r) p:t > q : f
if(tp 119 5 (p:t,q:f)

5L oan )
assert(9);

if(x <= 10.0)

}

l1:(x:

—00,10.0],y : T)

:—OO, 1007y : [_007 20]>

/Ylg : (x : |00, 10.0])

fose 1O-O]>_>12 : (y @ |00, 20.0])

Monday, 23 July 12



Intervals

CDFL

Deduction

bool p,a; —> (p: T,q: T)

if(p) H(p:t,q:T} p:t > q: f
g 1w s

assert(2):

1f(x <= 10.0) _ ]
{ — (x : |—00,10.0],y : T)
—

LL: W = X ok & _ :
L2 <£E C OO, 1007y : [_00720]>

}

/l2 : (x : |00,10.0])

bz (2[00, 1005y, 1y + o0, 20.0])

Apply abstract strongest DO StA - A = A
post-condition
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Deduction over loops

X = 0;

LY
Intervals while(x<10)
X =X * 1

L2:
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Deduction over loops

X = 0;

11:  — (2 :[0.0,0.0])
while(x<10)
X =X + 1;

L2:  — (x:[10.0,10.0])
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Deduction over loops

X = 0;

11:  —> (z:[0.0,0.0])
while(x<10)
X =X + 1j

L2:  — (x:[10.0,10.0])

l1 : (x:]0.0,0.0]) > [y : (x:[10.0,10.0])
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Decisions

bool p,q;
if(p || q)
if([!p ]|| q)

Monday, 23 July 12



Decisions

bool p,q;
if(p(ll q) )
if(!p || ¢
[...1; —@:T,q:T)

No information gained!
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Case |

Decisions

bool p,q;
if(p(ll q) )
1fiip || ®
[...1; —@:T,q:T)

No information gained!
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Decisions

bool p,q;
if(p(ll q) )
1fiip || ®
[...1; —@:T,q:T)

No information gained!

Case |
q:f

<p : T)Q : f> %bool P -

(p:t,q:f) «—1flp || q)
if(!p || q)
1 <+ [
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[ SAT j Decisions

bool p,q;
if(p(ll q) )
if(!'p || g
[...]; —(P:T,q:T)

No information gained!

Case | Case 2
q;f q:t

<p Taqf> Hbool « 0 [

(p:t,q:f)«—2Tip |1 a)
if(!p || q)

L<— [...1;
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Decisions

bool p,q;
if(p || q)
if([!p ]|| q)
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=B

bool p,q;
%iffp(!l T)I

if(!p
1 =k

Decisions

Monday, 23 July 12



Intervals

Decisions
float a;
if(x < 0

a=1;
else
a = -1,

assert(a!=0);
(x:T,a:[—1.0,1.0])
possibly unsafe
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Intervals

Decisions

float a;
if(x < @
a =1,
else
a = -1,

assert(a!=0);
(x:T,a:[—1.0,1.0])
possibly unsafe

Case |
r < (
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Decisions

float a;
if(x < 0

a =1,
else

a = -1,
assert(a'=0);

(x:T,a:[—1.0,1.0])
possibly unsafe

Case |
r < (

(x :]oo,—0.],a :[1.0,1.0])
Safe
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Decisions

float a;
if(x < @
a =1,
else
a = -1;
assert(al!=0);

(x:T,a:[—1.0,1.0])
possibly unsafe

Case | Case 2

xr <0 x>0

(x :]oo,—0.],a :[1.0,1.0])
Safe
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Decisions

float a;
if(x < @
a =1,
else
a = -1;

assert(al=0);
(x:T,a:[—1.0,1.0])
possibly unsafe

Case | Case 2
x <0 x > 0
(x :|oo,—0.],a:[1.0,1.0]) (x : |oo,—0.],a: [-1.0,—1.0])

Safe Safe

Monday, 23 July 12



CDFL Decisions

There is a common pattern!
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CDFL Decisions

There is a common pattern!

SAT Solvers:

Sp:t,q:tz = (p:t)y M (q:t)

no precise complement
as a partial assignment  precise complements
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[ CDFL j Decisions

There is a common pattern!

SAT Solvers:
pitg:t) = (p:t) M (g:t)
N ~ / N—— N——
(p:f) (q:f)

no precise complement
as a partial assignment  precise complements

Interval Analysis:

(x:]0,10],y : [3,00]) = (x:]0,00]) M (x:[—00,10]) M (y:[3,00])

\ 4 \ 4 \ 4 \ J/

(x:[—00,—0.]) (x:[10.0,00]) (x:[—00,2.999])
precise complements

no precise complement
as an interval
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[ CDFL ] Decisions

To instantiate CDFL, we need that:

Lattice elements are decomposable into
meets of precisely complementable elements

Va € A.a=a1M...Mag s.t. all a; can be precisely complemented
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SAT Learning

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A((3VIVI)

DLO
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SAT Learning

1ALV -2V -3)A (=4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A((3VIVI)
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SAT Learning

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A(3VIVI)

DLO
1
2 _
— 3
DL2
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SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(—=6V-8)A(-7TVE8V-9)A((3VIVI)

DLO
1
DL1 %
2 _
DL2 3
4 > 5
DL3
6 >/
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SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
DL1 %
2 _
DL2 3
4 > 5
DL3
6 > [ - —(=9 A =3)

\_>§\/§,1é
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SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
2 _
— 3 e _'(_'8/\7/\_'3)
DL2
4 - 5
DL3

,,— _I(_|9 /\ _I3)

!
6 -7 ’
/'l‘// II ]-é

8
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SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1 o (6A2A 1)
DL1 %}—
2 3t 3 (<8 AT A3)
DL2 : =
4 > 5 ,ll / {
DL3 .' 4
6 / o= =(=9 A =3)
\

> I
\g ,/
Ty

|

0|

Cuts = Heuristic underapproximation of the weakest pre-
condition
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Learning and Conflict Graphs

B—
i
L
I
@<_J
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Learning and Conflict Graphs

@

DI_O [a < —2] rniﬂ [a > 1]
( 2= 1] [a=0]

b:= -1 b:=1
b:=2 b:=-2
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Learning and Conflict Graphs

B

DLO [a < —2] rlﬁ 2> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
( [a = —1] [a = 0]
b:=-1 b:=1
b:=2 b:= -2
b < >
(¢ :b<0) (4 : b >0) T[/bo]
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Learning and Conflict Graphs

B

DLO [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
( [a = —1] [a = 0]
b:=-1 b:=1
b:=2 b:= -2
<
(4 :b<0) (4 :b>0) T[/bm
DL1
m:a< —42)
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Learning and Conflict Graphs

B

oLy ————— [a < —2] rlﬁ [a > 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) -
( [a=—1] [a = 0]
b:= -1 b:=1
>(n2 )<
b:=2 b:= -2
\—l_[/bO]
SAFE
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Learning and Conflict Graphs

oLy —————— [a < —2] rlﬂ [a> 1]
(@:a< -1 (3:a<0) (3:a>0) (e:a>—1) ( ng
[a=—1] [a=0]
=—1 b:=1
NI
\—l_[/b 0]
a
DL1
gt SAFE — Generalise!

Heuristic underapproximation of the
weakest pre-condition
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Learning and Conflict Graphs

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1) ( /ﬂ\
[a = —1] [a = 0]
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[ CDFL j Learning and Conflict Graphs

/ ms3 \
M1 A2
\ / \ conflict /
ma

safety

|. Build an implication graph over complementable elements
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[ CDFL j Learning and Conflict Graphs

m3

T4
\ L] / \ conflict /
safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.
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[ CDFL j Learning and Conflict Graphs

/ / /
T4 ms, Mo

4

/
my

l
l
1
I

\ / \ conflict /
safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.

3. Cut the implication graph to obtain conflict reason
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[ CDFL j Learning and Conflict Graphs

mg m37 m2 ............... >» |earn
' Mg V My
m/ |_,| 'l
1 : ,
' m
m : 4
I_” / ’ : I_H
mq mb : My
\ .l / \ conflict /
Mo safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.

3. Cut the implication graph to obtain conflict reason

4. Negate and add as clause
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IMPLEMENTATION AND
EXPERIMENTS




Experiments

* |[mplementation of CDFL(Intervals) applied to floating point programs.

* Analysis is sound and complete in the absence of loops.

e Compared to Astree and CBMC + state of the art decision procedure, on
small, non-linear programs.
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Experiments

unknown
safe bug / timeout
Astrée 17 0 40
CDFL 33 24 0
CBMC 25 23 9

57 small, non-linear FP programs w. bounded loops

- Astrée

- CBMC

- CDFL

benchmark

(Astree “spurious’ false alarms treated as timeouts)

CDFL on average 260x faster than propositional SAT
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Approximating a Sine Function

Input Range

Sine function

Program output

Monday, 23 July 12



Number of partitions vs. tightness of bound

result < 2.0
* _ Partitions _
— 5 / \ 2
Safety bound €--> €-=>
afety boun €Yol oyl
v

result > -2.0
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Number of partitions vs. tightness of bound

N[
|

result < 1.5 —

/\//

result > -1.5
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Number of partitions vs. tightness of bound

result < 1.2

/\ ’//

result > -1.2
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Number of partitions vs. tightness of bound

result < 1.1

/\ —//

result > -1.1
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Number of partitions vs. tightness of bound

result < 1.01

/‘\ | L

restilt > -1.01
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Number of partitions vs. tightness of bound

Counter-Example

_ T s
2 2

result < 1.001 // y
——
/\ »
resu1/t > -1.001

Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT

Monday, 23 July 12



Conclusion

e CDFL lifts architecture of a modern SAT solver to abstract domains.

* Property dependent analysis: Analysis is just precise enough.

 CDFL(Intervals) significantly outperforms classical CDCL on natural
domain problems and is significantly more precise than standard analysis.

* You can probably apply this to your static analysis problem
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Thanks for your attention!
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Backup Slides
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Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR

CDFL
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Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR Refined Fixed

CDFL
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Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR Refined Fixed

CDFL Fixed Refined
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Is it a variant of CEGAR?

Abstract Domain Analysis
CEGAR Refined Fixed
CDFL Fixed Refined

CEGAR finds an abstraction that allows proving a property.

CDFL finds a way to efficiently reason within a fixed abstraction

Orthogonal!
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Shallow vs Deep Integration

Monday, 23 July 12



Shallow vs Deep Integration

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

SAT Solver
Shallow Integration :
(e.g., SMPP by Harris et al. Deduction
at POPL2010) : Learning
Decisions

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Static
Analyser
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Shallow vs Deep Integration

Shallow Integration
(e.g., SMPP by Harris et al.
at POPL2010)

CDFL is deep integration

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Static
Analyser

SAT Solver
Deduction
Learning | :
Decisions
Abstract SAT Solver
Abstract
Deduction
Abstract
Learning
Abstract
Decisions

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Decisions Inside Loops

r <0
X = =1: g /\ /
while(x) not precisely
X = =X; x>0 complementable
assert(x !'= 0);
X = =1;
. if(x)
Solution: {
while()
{ x = =x; x = =x;}
Use richer abstraction, e.g., §
{evenloop, oddloop} — Interval X = -X;
while()
{ x = =-x;: x = =-x:}
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