Numeric Bounds Analysis with
Conflict-Driven Learning

Vijay D’Silva, Leopold Haller,
Daniel Kroening, Michael Tautschnig

UNIVERSITY OF

OXFORD

TACAS 2012

Monday, 23 July 12

PRECISION VS EFFICIENCY

Static Analysis vs Decision Procedures

Static Analysis

Static analyses aggressively /\/\

over-approximate disjunction - Program tray\\ —

for efficiency. ~—

\

Decision Procedures

Modern SAT solvers precisely
reason about disjunction.

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && x <= 10)
{
for(int i = 0: i < 5 ++1i)
XKk=X
assert(x >= 0 && x <= B
}

Interval Analysis Bounded Model Checking

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && X <= 10)
{

for(int i = 0; i < 5; ++1i)
Xk=X}

assert(x >= 0 & x <= 1e32):

}

Interval Analysis Bounded Model Checking

® 00 () ai — bash — 80x24

leo@scythe ai$ time ./ai --function foo /tmp/test.c
file /tmp/test.c: Parsing
Converting

Type-checking test
Generating GOTO Program
Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10
Getting domain

sk Verification successful

real omd.133s
user omd.113s

sys nd.0lds Success!

leo@scythe ais |}
0.1s

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float x;
if(x >= 0 && X
{

for(int i 0

Xk=X}

assert(x >= 0

}

Interval Analysis

<= 10)

<

4 55 ++1)

&& X <= 1le32):

Bounded Model Checking

k) cbmc — bash — 80x24

800 (L] ai — bash — 80x24 o 800 o
leo@scythe ai$ time ./ai --function foo /tmp/test.c file /tmp/test.c: Parsing
file /tmp/test.c: Parsing Converting

Converting
Type-checking test
Generating GOTO Program
Function Pointer Removal
got goto-program

CFG has 4 nodes
Obtaining loops ...

done

setting widening to 10
Getting domain

sk Verification successful

omd.133s
8md.113s
omd.014s

real
user
Sys

Success!
0.1s

leo@scythe ais

Type-checking test

Generating GOTO Program

Adding CPROVER library

Function Pointer Removal

Partial Inlining

Generic Property Instrumentation

Starting Bounded Model Checking

size of program expression: 20 assignments

simple slicing removed 2 assignments

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction

Running propositional reduction

Solving with MiniSAT2 with simplifier

132504 variables, 576600 clauses

SAT checker: negated claim is UNSATISFIABLE, i.e., holds

Runtime decision procedure: 293.838s '
Success!

VERIFICATION SUCCESSFUL

real 4m54.088s
user 4m53.011s 2 9 o
sys omd.745s s

leo@scythe cbmes §

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float a,x;
if(x < 9)
a=1:

else
a = -1;

assert(a != 0):

Interval Analysis Bounded Model Checking

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float a,x;

if(x < 0)
a =1;
else
a = -1,

(x:T,a:|—1.0,1.0])) «——assert(a !'= 0);

Interval Analysis Bounded Model Checking

e 0o (na tmp — bash — 80x24 "9

Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10

Getting domain

sk Verification failed

Found 1 possible assertion violations

sobioiioiiox possible assertion violation at instruction @ of:

3:
ASSERT IEEE_FLOAT_NOTEQUAL(a, (float)®) // c::foo
RETURN return; //
IF irep("(\"nil\")") GOTO - ELSE GOTO -

Potential violation: -0.000000f <= a && a <= 0.000000f

Information over assertion variables: a <= 0.000000f -0.000000f <= a

o
Failure!
real omd.228s
user omd . 096s
Sys omd.019s o. ’ s

leo@scythe tmps

Monday, 23 July 12

Static Analysis, BMC, and the Problem of Disjunction

float a,x;

if(x < 0)
a=1;
else
a = -1;

(z:T,a:[-1.0,1.0]) «——assert(a != 0)

Interval Analysis

8 00 (- tmp — bash — 80x24

Bounded Model Checking

/800 2 tmp — bash — 80x24]

Function Pointer Removal

got goto-program

CFG has 4 nodes

Obtaining loops ...

done

setting widening to 10

Getting domain

sk Verification failed

Found 1 possible assertion violations

soblokloiiok possible assertion violation at instruction @ of:

3:
ASSERT IEEE_FLOAT_NOTEQUAL(a, (float)®) // c::foo
RETURN return; //
IF irep("(\"nil\")") GOTO - ELSE GOTO -

Potential violation: -0.000000f <= a && a <= 0.000000f

Information over assertion variables: a <= 0.000000f -0.000000f <= a

Failure!
0.1s

real omd.228s

user omd.096s
Sys omo.019s
leo@scythe tmps J

file test.c: Parsing

Converting

Type-checking test

Generating GOTO Program

Adding CPROVER library

Function Pointer Removal

Partial Inlining

Generic Property Instrumentation

Starting Bounded Model Checking

size of program expression: 17 assignments

simple slicing removed @ assignments

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction

Running propositional reduction

Solving with MiniSAT2 with simplifier

139 variables, 384 clauses

empty clause: negated claim is UNSATISFIABLE, i.e., holds

Runtime decision procedure: 0.004s '
VERIFICATION SUCCESSFUL s u c c e s s 3
0.1s

real omd.117s
user omd.999s
sys omd.014s
leo@scythe tmps i

Monday, 23 July 12

Static Analysis or Bit-Blasting!?

=
| Error

= ———— %

Standard static analysis fails, but we could do better than bit-blasting?

Monday, 23 July 12

Static Analysis or Bit-Blasting!?

=
[Error

= ——— — 4

Standard static analysis fails, but we could do better than bit-blasting?

|dea: Partition the traces so that we can prove correctness for each partition.
Question:Where does the partition come from!?

To be efficient, we want partitions that are just precise enough

Monday, 23 July 12

Our Contribution

e Conflict Driven Fixed Point Learning (CDFL)

* Intelligent, property-driven refinement for abstract analyses
* Distinct from and orthogonal to CEGAR

* |Instantiation of CDFL(Interval)
* Significantly faster than modern SAT solvers on FP programs
* Better precision than straightforward abstract analysis

Monday, 23 July 12

WHAT WOULD
A SAT SOLVER DO?

p=pAN(pV-g) A(gVrV-w)A(gVrVuw)

Monday, 23 July 12

Imagine no assignments,
it’s easy if you try

if(p && (f\

assert(0)

return 0;

}

Imagine only Booleans,
| wonder if you can

Monday, 23 July 12

intPmain(void)

{

bool p,q,r,w;

if(p & (!'p || q) & (q || r ||
assert(90);

return 0;

}

/private/tmp/sat.c [P0S=0002,0004][16%] [LEN=12]

c| sat.c (/private/tmp) - VIM

O i @ % @

Iw) & (q || r || w))

Monday, 23 July 12

SAT Solvers Operate over Abstract Domains

Monday, 23 July 12

SAT Solvers Operate over Abstract Domains

Partial assighment

Prop — {t,f,7}

Monday, 23 July 12

SAT Solvers Operate over Abstract Domains

Boolean Constants Domain
T
Partial assignment (p:t,q:T) (p:T,qit) (p:T,g:f) (p:f, q@:T)

Prop — {t,f,7}

(p:t, q:t) (p:t, g:f) (p:f, q:t) (p:f, g:f)

Monday, 23 July 12

Deduction

Monday, 23 July 12

Deduction

bool p,q;
if(p)
if(!'p || !q)
2 .o)

assert(0):

Monday, 23 July 12

Deduction

bool p,a; —> (p: T,q: T)

if(p) '——9'<Z7I't,q 3_r>

{ite 1090 — (it g)

assert(0):

Monday, 23 July 12

Deduction

bool p,a; —> (p: T,q: T)

if(p) — (p:t,g:T)

L0 st

assert(0):

T

> (:

Monday, 23 July 12

Intervals

Deduction

bool p,a; —> (p: T,q: T)

if(p) ? <p ' 4,q T>
TIa ! : :
T ta
assert(0):

if(x <= 10.0)

{
ll: vy = X % 2;
L2t

}

T

> (:

Monday, 23 July 12

Intervals

Deduction

bool p,a; —> (p: T,q: T)

if(p) — (p:t,g:T)
if(!p || !Q)___%

itE .o
assert(0):

if(x <= 10.0)

{
ll: vy = X % 2;
L2t

¥

—
o

(p:t,q:f)
(x: [—00,10.0]
(x :[—00,10.0

Monday, 23 July 12

{ — (x:
Intervals 11: ‘¥ = x % 2
12: — (x:

Deduction

bool p,a; —> (p: T,q: T)
if(p) H(p:t,q:_r) p:t > q : f
if(tp 119 5 (p:t,q:f)

5L oan)
assert(9);

if(x <= 10.0)

}

l1:(x:

—00,10.0],y : T)

:—OO, 1007y : [_007 20]>

/Ylg : (x : |00, 10.0])

fose 1O-O]>_>12 : (y @ |00, 20.0])

Monday, 23 July 12

Intervals

CDFL

Deduction

bool p,a; —> (p: T,q: T)

if(p) H(p:t,q:T} p:t > q: f
g 1w s

assert(2):

1f(x <= 10.0) _]
{ — (x : |—00,10.0],y : T)
—

LL: W = X ok & _ :
L2 <£E C OO, 1007y : [_00720]>

}

/l2 : (x : |00,10.0])

bz (2[00, 1005y, 1y + o0, 20.0])

Apply abstract strongest DO StA - A = A
post-condition

Monday, 23 July 12

Deduction over loops

X = 0;

LY
Intervals while(x<10)
X =X * 1

L2:

Monday, 23 July 12

Deduction over loops

X = 0;

11: — (2 :[0.0,0.0])
while(x<10)
X =X + 1;

L2: — (x:[10.0,10.0])

Monday, 23 July 12

Deduction over loops

X = 0;

11: —> (z:[0.0,0.0])
while(x<10)
X =X + 1j

L2: — (x:[10.0,10.0])

l1 : (x:]0.0,0.0]) > [y : (x:[10.0,10.0])

Monday, 23 July 12

Decisions

bool p,q;
if(p || q)
if([!p]|| q)

Monday, 23 July 12

Decisions

bool p,q;
if(p(ll q))
if(!p || ¢
[...1; —@:T,q:T)

No information gained!

Monday, 23 July 12

Case |

Decisions

bool p,q;
if(p(ll q))
1fiip || ®
[...1; —@:T,q:T)

No information gained!

Monday, 23 July 12

Decisions

bool p,q;
if(p(ll q))
1fiip || ®
[...1; —@:T,q:T)

No information gained!

Case |
q:f

<p : T)Q : f> %bool P -

(p:t,q:f) «—1flp || q)
if(!p || q)
1 <+ [

Monday, 23 July 12

[SAT j Decisions

bool p,q;
if(p(ll q))
if(!'p || g
[...]; —(P:T,q:T)

No information gained!

Case | Case 2
q;f q:t

<p Taqf> Hbool « 0 [

(p:t,q:f)«—2Tip |1 a)
if(!p || q)

L<— [...1;

Monday, 23 July 12

Decisions

bool p,q;
if(p || q)
if([!p]|| q)

Monday, 23 July 12

=B

bool p,q;
%iffp(!l T)I

if(!p
1 =k

Decisions

Monday, 23 July 12

Intervals

Decisions
float a;
if(x < 0

a=1;
else
a = -1,

assert(a!=0);
(x:T,a:[—1.0,1.0])
possibly unsafe

Monday, 23 July 12

Intervals

Decisions

float a;
if(x < @
a =1,
else
a = -1,

assert(a!=0);
(x:T,a:[—1.0,1.0])
possibly unsafe

Case |
r < (

Monday, 23 July 12

Decisions

float a;
if(x < 0

a =1,
else

a = -1,
assert(a'=0);

(x:T,a:[—1.0,1.0])
possibly unsafe

Case |
r < (

(x :]oo,—0.],a :[1.0,1.0])
Safe

Monday, 23 July 12

Decisions

float a;
if(x < @
a =1,
else
a = -1;
assert(al!=0);

(x:T,a:[—1.0,1.0])
possibly unsafe

Case | Case 2

xr <0 x>0

(x :]oo,—0.],a :[1.0,1.0])
Safe

Monday, 23 July 12

Decisions

float a;
if(x < @
a =1,
else
a = -1;

assert(al=0);
(x:T,a:[—1.0,1.0])
possibly unsafe

Case | Case 2
x <0 x > 0
(x :|oo,—0.],a:[1.0,1.0]) (x : |oo,—0.],a: [-1.0,—1.0])

Safe Safe

Monday, 23 July 12

CDFL Decisions

There is a common pattern!

Monday, 23 July 12

CDFL Decisions

There is a common pattern!

SAT Solvers:

Sp:t,q:tz = (p:t)y M (q:t)

no precise complement
as a partial assignment precise complements

Monday, 23 July 12

[CDFL j Decisions

There is a common pattern!

SAT Solvers:
pitg:t) = (p:t) M (g:t)
N ~ / N—— N——
(p:f) (q:f)

no precise complement
as a partial assignment precise complements

Interval Analysis:

(x:]0,10],y : [3,00]) = (x:]0,00]) M (x:[—00,10]) M (y:[3,00])

\ 4 \ 4 \ 4 \ J/

(x:[—00,—0.]) (x:[10.0,00]) (x:[—00,2.999])
precise complements

no precise complement
as an interval

Monday, 23 July 12

[CDFL] Decisions

To instantiate CDFL, we need that:

Lattice elements are decomposable into
meets of precisely complementable elements

Va € A.a=a1M...Mag s.t. all a; can be precisely complemented

Monday, 23 July 12

SAT Learning

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A((3VIVI)

DLO

Monday, 23 July 12

SAT Learning

1ALV -2V -3)A (=4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A((3VIVI)

Monday, 23 July 12

SAT Learning

1ALV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVEV-9)A(3VIVI)

DLO
1
2 _
— 3
DL2

Monday, 23 July 12

SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(—=6V-8)A(-7TVE8V-9)A((3VIVI)

DLO
1
DL1 %
2 _
DL2 3
4 > 5
DL3
6 >/

Monday, 23 July 12

SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
DL1 %
2 _
DL2 3
4 > 5
DL3
6 > [- —(=9 A =3)

_>§\/§,1é

Monday, 23 July 12

SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1
2 _
— 3 e _'(_'8/\7/_'3)
DL2
4 - 5
DL3

,,— _I(_|9 /\ _I3)

!
6 -7 ’
/'l‘// II]-é

8

Monday, 23 July 12

SAT Learning

1AV -2V-3)A (-4 VE)A(=6VT)A(=6V-8)A(-7TVE8V-9)A(3VIVI)

DLO
1 o (6A2A 1)
DL1 %}—
2 3t 3 (<8 AT A3)
DL2 : =
4 > 5 ,ll / {
DL3 .' 4
6 / o= =(=9 A =3)
\

> I
\g ,/
Ty

|

0|

Cuts = Heuristic underapproximation of the weakest pre-
condition

Monday, 23 July 12

Learning and Conflict Graphs

B—
i
L
I
@<_J

Monday, 23 July 12

Learning and Conflict Graphs

@

DI_O [a < —2] rniﬂ [a > 1]
(2= 1] [a=0]

b:= -1 b:=1
b:=2 b:=-2

Monday, 23 July 12

Learning and Conflict Graphs

B

DLO [a < —2] rlﬁ 2> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
([a = —1] [a = 0]
b:=-1 b:=1
b:=2 b:= -2
b < >
(¢ :b<0) (4 : b >0) T[/bo]

Monday, 23 July 12

Learning and Conflict Graphs

B

DLO [a < —2] rlﬂ [a> 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) =
([a = —1] [a = 0]
b:=-1 b:=1
b:=2 b:= -2
<
(4 :b<0) (4 :b>0) T[/bm
DL1
m:a< —42)

Monday, 23 July 12

Learning and Conflict Graphs

B

oLy ————— [a < —2] rlﬁ [a > 1]
(@:a< -1 (:a<0)(z:a>0) [(c:a>—1) -
([a=—1] [a = 0]
b:= -1 b:=1
>(n2)<
b:=2 b:= -2
\—l_[/bO]
SAFE

Monday, 23 July 12

Learning and Conflict Graphs

oLy —————— [a < —2] rlﬂ [a> 1]
(@:a< -1 (3:a<0) (3:a>0) (e:a>—1) (ng
[a=—1] [a=0]
=—1 b:=1
NI
\—l_[/b 0]
a
DL1
gt SAFE — Generalise!

Heuristic underapproximation of the
weakest pre-condition

Monday, 23 July 12

Learning and Conflict Graphs

(@:a< -1 (3:a<0) (3:a>0) (e:a>—1) (/ﬂ\
[a = —1] [a = 0]

Monday, 23 July 12

[CDFL j Learning and Conflict Graphs

/ ms3 \
M1 A2
\ / \ conflict /
ma

safety

|. Build an implication graph over complementable elements

Monday, 23 July 12

[CDFL j Learning and Conflict Graphs

m3

T4
\ L] / \ conflict /
safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.

Monday, 23 July 12

[CDFL j Learning and Conflict Graphs

/ / /
T4 ms, Mo

4

/
my

l
l
1
I

\ / \ conflict /
safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.

3. Cut the implication graph to obtain conflict reason

Monday, 23 July 12

[CDFL j Learning and Conflict Graphs

mg m37 m2 >» |earn
' Mg V My
m/ |_,| 'l
1 : ,
' m
m : 4
I_” / ’ : I_H
mq mb : My
\ .l / \ conflict /
Mo safety

|. Build an implication graph over complementable elements

2. On conflict, generalise the implication graph using under-
approximate weakest pre-condition.

3. Cut the implication graph to obtain conflict reason

4. Negate and add as clause

Monday, 23 July 12

IMPLEMENTATION AND
EXPERIMENTS

Experiments

* |[mplementation of CDFL(Intervals) applied to floating point programs.

* Analysis is sound and complete in the absence of loops.

e Compared to Astree and CBMC + state of the art decision procedure, on
small, non-linear programs.

Monday, 23 July 12

Experiments

unknown
safe bug / timeout
Astrée 17 0 40
CDFL 33 24 0
CBMC 25 23 9

57 small, non-linear FP programs w. bounded loops

- Astrée

- CBMC

- CDFL

benchmark

(Astree “spurious’ false alarms treated as timeouts)

CDFL on average 260x faster than propositional SAT

Monday, 23 July 12

Approximating a Sine Function

Input Range

Sine function

Program output

Monday, 23 July 12

Number of partitions vs. tightness of bound

result < 2.0
* _ Partitions _
— 5 / \ 2
Safety bound €--> €-=>
afety boun €Yol oyl
v

result > -2.0

Monday, 23 July 12

Number of partitions vs. tightness of bound

N[
|

result < 1.5 —

/\//

result > -1.5

Monday, 23 July 12

Number of partitions vs. tightness of bound

result < 1.2

/\ ’//

result > -1.2

Monday, 23 July 12

Number of partitions vs. tightness of bound

result < 1.1

/\ —//

result > -1.1

Monday, 23 July 12

Number of partitions vs. tightness of bound

result < 1.01

/‘\ | L

restilt > -1.01

Monday, 23 July 12

Number of partitions vs. tightness of bound

Counter-Example

_ T s
2 2

result < 1.001 // y
——
/\ »
resu1/t > -1.001

Precise results using a strict abstraction!
Orders of magnitude faster than propositional SAT

Monday, 23 July 12

Conclusion

e CDFL lifts architecture of a modern SAT solver to abstract domains.

* Property dependent analysis: Analysis is just precise enough.

 CDFL(Intervals) significantly outperforms classical CDCL on natural
domain problems and is significantly more precise than standard analysis.

* You can probably apply this to your static analysis problem

Monday, 23 July 12

Thanks for your attention!

Monday, 23 July 12

Backup Slides

Monday, 23 July 12

Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR

CDFL

Monday, 23 July 12

Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR Refined Fixed

CDFL

Monday, 23 July 12

Is it a variant of CEGAR?

Abstract Domain Analysis

CEGAR Refined Fixed

CDFL Fixed Refined

Monday, 23 July 12

Is it a variant of CEGAR?

Abstract Domain Analysis
CEGAR Refined Fixed
CDFL Fixed Refined

CEGAR finds an abstraction that allows proving a property.

CDFL finds a way to efficiently reason within a fixed abstraction

Orthogonal!

Monday, 23 July 12

Shallow vs Deep Integration

Monday, 23 July 12

Shallow vs Deep Integration

ooo

SAT Solver
Shallow Integration :
(e.g., SMPP by Harris et al. Deduction
at POPL2010) : Learning
Decisions

oo

Static
Analyser

Monday, 23 July 12

Shallow vs Deep Integration

Shallow Integration
(e.g., SMPP by Harris et al.
at POPL2010)

CDFL is deep integration

ooo

Static
Analyser

SAT Solver
Deduction
Learning | :
Decisions
Abstract SAT Solver
Abstract
Deduction
Abstract
Learning
Abstract
Decisions

oo

Monday, 23 July 12

Decisions Inside Loops

r <0
X = =1: g /\ /
while(x) not precisely
X = =X; x>0 complementable
assert(x !'= 0);
X = =1;
. if(x)
Solution: {
while()
{ x = =x; x = =x;}
Use richer abstraction, e.g., §
{evenloop, oddloop} — Interval X = -X;
while()
{ x = =-x;: x = =-x:}

Monday, 23 July 12

