Strengthening Induction-Based Race Checking
with Lightweight Static Analysis

A. Donaldson L. Haller D. Kroening
Oxford University Computing Laboratory

VMCAI 2011

Cell BE processor

‘__‘,,JPPEI [sPE| [sSPE] [sPEL.__

Stream processing
unit with small
scratchpad memory

General-purpose ’

PowerPC core EIB ’

]sLEy [SPE | |[SPE]

’ Main Memory ’

SPE cores have small (kb) and very fast scratchpad memory, to which they
have exclusive access.

Cell BE processor

’__‘,,JPPE] [sPE| [sSPE] [sPEL.__

Stream processing
unit with small
scratchpad memory

General-purpose ’

PowerPC core EIB ’

]ngy [SPE| [SPE]

’ Main Memory ’

SPE cores have small (kb) and very fast scratchpad memory, to which they
have exclusive access.

Direct access DMA requests

Scratchpad memory ’e—»

» SPE cores cannot not directly access main memory.

» DMA (direct memory access) library calls move data to and from
scratchpad asynchronously

Problem

» Scratchpad memories lead to high performance
> this comes at the expense of program complexity!

» Massive scope for errors with DMA operations due to possible race
conditions

Problem

» Scratchpad memories lead to high performance
> this comes at the expense of program complexity!

» Massive scope for errors with DMA operations due to possible race
conditions

Contribution

» We apply k-induction to DMA programs to verify absence of DMA
races.

> k-induction alone is too weak to verify all properties of interest.

> We strengthen k-induction using lightweight static analysis
techniques

DMA operations

DMA requests are issued using library function calls:

get(/, h,s, t) — load data into scratchpad memory
put(/, h, s, t) — write data into main memory
wait(t) — wait for all ops with tag ¢ to finish

| = local memory address

h — host memory address

put

|
S

Scratchpad memory

get

——
s — array size

Main memory

» Many concurrent DMAs can be issued simultaneously

> Latency can be hidden by using multiple buffers

DMA races

Scheduling of DMA operations changes result —> Races can occur!

DMA races

Scheduling of DMA operations changes result —> Races can occur!

» Races between two DMA operations;
put(h, h2, 52, t2);
get(h, h,s1, t1);
h h

DMA races

Scheduling of DMA operations changes result —> Races can occur!

» Races between two DMA operations;
put(/z, hQ, S, tz);
get(ll, h1, s1, tl);

h b
NN
ng

» Races between a DMA operation and local data access;
int a[10];
get(&a,h,10*sizeof (int),t);
a[0]=10;

Triple buffering code example

#define CHUNK 16384 // Process data in 16K chunks
float buffers[3] [CHUNK/sizeof (float)]; // Three buffers for triple buffering

void process_data(float* buf) { ... }

void triple buffer(char* in, char* out, int num chunks) {
unsigned int tags[3] = { 0, 1, 2 }, put buf, get buf, process_buf;
get (buffers[0], in, CHUNK, tags[0]);
in += CHUNK;
get (buffers[1l], in, CHUNK, tags[1l]):;
in += CHUNK;
wait(tags[0]);
process_data (buffers[0]) ;
put_buf = 0; process buf = 1; get buf = 2;
for(int i = 2; i < num_chunks; i++) {
put (buffers[put buf], out, CHUNK, tags[put_buf]);
out += CHUNK;
get (buffers[get_buf], in, CHUNK, tags[get_buf]);
in += CHUNK;
wait (tags[process_buf]);
process_data (buffers[process_buf]) ;
int tmp = put_buf; put_buf = process_buf;
process_buf = get buf; get_buf = tmp;

// Handle data processed/fetched on final loop iteration

Triple buffering code example

#define CHUNK 16384 // Process data in 16K chunks
float buffers[3] [CHUNK/sizeof (float)]; // Three buffers for triple buffering

void process_data(float* buf) { ... }

void triple buffer(char* in, char* out, int num chunks) {
unsigned int tags[3] = { 0, 1, 2 }, put buf, get buf, process_buf;
get (buffers[0], in, CHUNK, tags[0]);
in += CHUNK;
get (buffers[1l], in, CHUNK, tags[1l]):;
in += CHUNK;
wait(tags[0]);
process_data (buffers[0]) ;
put_buf = 0; process buf = 1; get buf = 2;
for(int i = 2; i < num_chunks; i++) {
put (buffers[put buf], out, CHUNK, tags[put_buf]);
out += CHUNK;
get (buffers[get_buf], in, CHUNK, tags[get_buf]);
in += CHUNK;
wait (tags[process_buf]);
process_data (buffers[process_buf]) ;
int tmp = put_buf; put_buf = process_buf;
process_buf = get buf; get_buf = tmp;

// Handle data processed/fetched on final loop iteration

Buffers change roles in each iteration.

lllustration of bug

get buffers[0] || in CHUNK tags[O]
get buffers[1] || in CHUNK tagsl[1]
wait tags[0]
process | buffers[0]

Loop head
put buffers[0] || in CHUNK tags[0]
get buffers[2] in CHUNK tags[2]
wait tags[1]
process | buffers[1]

Loop head
put buffers[1] in CHUNK tags[1]
get buffers[0] || in CHUNK tags[0]

lllustration of bug

get buffers[0] || in CHUNK tags[O]
get buffers[1] || in CHUNK tagsl[1]
wait tags[0]
process | buffers[0]

Loop head
put buffers[0] || in CHUNK tags[0]
get buffers[2] in CHUNK tags[2]
wait tags[1]
process | buffers[1]

Loop head
put buffers[1] in CHUNK tags[1]
get buffers[0] || in CHUNK tags[0]

Race on buffers[0]

Asserting race-freedom with SCRATCH

C program Safe / Bug / Fail

SCRATCH

instrumentation l»—)[k-induction engine

v

Establishes race freedom for code running on a single SPE node.

» Based on the CBMC bounded model checker

v

Calls to put, get, and wait are instrumented with assertions.

v

The resulting program is analyzed with a k-induction engine.

Instrumenting DMA programs

Add a tracker datastructure:

struct DMA_op {

bool valid;

char* address; // Local store address
unsigned size; // Num bytes to transfer
unsigned tag; // Identifying tag

};

struct DMA_op tracker = { 0, *, *x, * };

> s

Used to store one single pending DMA request.

Instrumenting DMA programs

A call get(/, h,s,t) is translated to:

assert (t < 32); // Check tag in range
assert (s < 16K); // Check DMA not too large
assert (! tracker.valid // Check no race with prior DMA

|| 1 + s <= tracker.address
|| tracker.address + tracker.size <= 1);

memset (1, *, s); // Over-approximate effect of DMA
if (%) {
tracker.valid = true; // Nondeterministically decide
tracker.address = 1; // whether to track this DMA
tracker.size = s;
tracker.tag = t; // Model checker will try both

} // possibilities!

Instrumenting DMA programs

A call get(/, h,s,t) is translated to:

assert (t < 32); // Check tag in range
assert (s < 16K); // Check DMA not too large
assert (! tracker.valid // Check no race with prior DMA

|| 1 + s <= tracker.address
|| tracker.address + tracker.size <= 1);

memset (1, *, s); // Over-approximate effect of DMA
if (%) {
tracker.valid = true; // Nondeterministically decide
tracker.address = 1; // whether to track this DMA
tracker.size = s;
tracker.tag = t; // Model checker will try both
} // possibilities!

A call wait(t) just becomes:

assume (tracker.tag != t); // Simple as that!

Instrumenting DMA programs

A call get(/, h,s,t) is translated to:

assert (t < 32); // Check tag in range
assert (s < 16K); // Check DMA not too large
assert (! tracker.valid // Check no race with prior DMA

|| 1 + s <= tracker.address
|| tracker.address + tracker.size <= 1);

memset (1, *, s); // Over-approximate effect of DMA
if (%) {
tracker.valid = true; // Nondeterministically decide
tracker.address = 1; // whether to track this DMA
tracker.size = s;
tracker.tag = t; // Model checker will try both
} // possibilities!

A call wait(t) just becomes:

assume (tracker.tag != t); // Simple as that!

The resulting program is checked using k-induction.

k-Induction example

C

i<n

0 oo oHEoX
I
-

assert a#b;

a,b,c:=b,c,a;
X++;
i++;

i>n
B T

B

B,

k-Induction example

i<n

L—

a,b,c:=b,c,a;
X++;

0 oo oHEoX

i<n

assert a#b;

it++;

B

i>n

B

B,

k-induction

Induction step

assume a#b;

a,b,c:=b,c,a;

A
BZ
A
BZ
i<n
A
BZ
i>n i<n
end

k-Induction example

k-induction

Base case Induction step

B

0 oo oHEoX

assume a#b;
a,b,c:=b,c,a;

i<n

;

assert a#b;

a,b,c:=b,c,a;
b, 2635 L g
X++;

i<n i++;

B

i>n
B T

k-Induction example

k-induction

Base case Induction step

B

0 oo oHEoX

assume a#b;
a,b,c:=b,c,a;

i<n

;

assert a#b;

a,b,c:=b,c,a;
b, 2635 L g
X++;

i<n i++;

B

i>n
B T

k-Induction example

i<n

0 oo oHEoX

i<n

;

assert a#b;
a,b,c:=b,c,a;
X++;

B

assert x>0;
end;

B

B,

k-induction

Base case

Induction step

assume a#b;
a,b,c:=b,c,a;

assert x>0;

end;

k-Induction example

i<n

0 oo oHEoX

i<n

;

assert a#b;
a,b,c:=b,c,a;
X++;

B

assert x>0;
end;

B

B,

k-induction

Base case

Induction step

assume a#b;
a,b,c:=b,c,a;

end;

assert x>0;

k-Induction example

B

0 oo oHEoX

i<n

assert a#b;

a,b,c:=b,c,a;
b, 2635 L g
X++;

i<n i++;

assert x>0;
end;

Base case

i>n
5
H
v

assert x>0
end

k-induction

Induction step

assume a#b;

a,b,c:=b,c,a;

A
BZ
A
BZ
i<n
A
BZ
i>n i<n

B

k-Induction example

B

0 oo oHEoX

i<n

assert a#b;

a,b,c:=b,c,a;
b, 2635 L g
X++;

i<n i++;

assert x>0;
end;

k-induction
Base case Induction step
X,i,a,b,c 8
i<n
s
a,b,c:=b,c,a;
i<n ’ T Béq
A
B;
i>n i<n
assert x>0; BzA
sod; iz i<n
v

B

k-Induction for software

Base case Step case
Sas k times k times
if(¢) sg ...1if(¢) sp assume(¢); sz=™¢; ..
if(—=¢) s, is correct if(¢) sg else s, is correct

sa; while(¢) { sz }; s, is correct

k-Induction for software

Base case Step case
Sas k times k times
if(¢) sg ...1if(¢) sp assume(¢); sz=™¢; ..
if(—=¢) s, is correct if(¢) sg else s, is correct

sa; while(¢) { sz }; s, is correct

> Base case failure: There is a bug of depth at most k
> Step case failure: Choose higher k, or abandon proof attempt

» Multiple loops transformed to single monolithic loop

k-Induction for software

Base case Step case
Sas k times k times
if(¢) sg ...1if(¢) sp assume(¢); sz=™¢; ..
if(—=¢) s, is correct if(¢) sg else s, is correct

sa; while(¢) { sz }; s, is correct

> Base case failure: There is a bug of depth at most k
> Step case failure: Choose higher k, or abandon proof attempt

» Multiple loops transformed to single monolithic loop

But as we have seen this is not always enough!

Strengthening k-induction

Transition system M = (S, T,1). Set of error states E.
post+(Q), set of successors of states in Q

safe*(Q) iff no error states reachable in k steps

Strengthening k-induction

Transition system M = (S, T,1). Set of error states E.
post+(Q), set of successors of states in Q

safe*(Q) iff no error states reachable in k steps

Guess inductive invariant

() 1CQ (ii)post, (Q)CQ (i) QNE=0

Inductive invariant
M safe

Strengthening k-induction

Transition system M = (S, T,1). Set of error states E.
post+(Q), set of successors of states in Q

safe*(Q) iff no error states reachable in k steps

Guess inductive invariant

() 1CQ (ii)post, (Q)CQ (i) QNE=0

Inductive invariant
M safe

k>0 (a) safe“(1) (b) VQ.safe"(Q) = safe"(Q)
M safe

k-induction

Strengthening k-induction

Transition system M = (S, T,1). Set of error states E.
post+(Q), set of successors of states in Q

safe*(Q) iff no error states reachable in k steps

Guess inductive invariant

() 1CQ (ii)post, (Q)CQ (i) QNE=0

Inductive invariant
M safe

k>0 (a) safe“(1) (b) VQ.safe"(Q) = safe"(Q)

k-induction M safe
k>0 (i) CQ (i) post:(Q) C Q
(a) safe“(1) (b) safe*(Q) = safe"*!(Q)
Combined

M safe

Strengthening induction-based race checking

Analysis step is added to the scratch pipeline:
C program

Safe / Bug / Fail

«O» «Fr « =>»

« =

Strengthening induction-based race checking

Analysis step is added to the scratch pipeline:

C program Safe / Bug / Fail

SCRATCH

analysis

-induction engine

For modifying the CFG, we utilize
> Analysis with cheap abstract domains
» Code motion

» Assertion chunking

Abstract Domains

We utilize a reduced product of two domains:
> the interval domain; x € [c1, &)

> an equality / disequality domain; x =y, x # y

Then annotate CFG with assumptions

inv: control flow locations — local invariants.

» Prepend control flow nodes with assume statements:

h:si; assume (inv(h)); s1;
b s2; assume (inv(h)); s2;
ki s3; assume (inv(h)); s3;
Iy : s4; assume (inv(h)); s4;

Chunking

Strengthening assert statements can help the inductive step of the proof.

» Chunking analysis identifies assertions over small contiguous memory
regions

» Combines them into stronger assertions:

Chunking

Strengthening assert statements can help the inductive step of the proof.
» Chunking analysis identifies assertions over small contiguous memory
regions
» Combines them into stronger assertions:
for(int i=0; i < SIZE; i++) {

assert (noDMAop (al[i],sizeof (float)));
ali] := 1.0f;

Chunking

Strengthening assert statements can help the inductive step of the proof.

» Chunking analysis identifies assertions over small contiguous memory
regions

» Combines them into stronger assertions:

for(int i=0; i < SIZE; i++) {
assert (noDMAop (al[i],sizeof (float)));
ali] := 1.0f;

for(int i=0; i < SIZE; i++) {
assert (noDMAop (a[0] ,SIZE*sizeof (float)));
al[i] := 1.0f;

}

Code motion

> For performance reasons, DMA get operations issued as soon as possible.

» This makes induction-based verification more difficult.

Code motion
> For performance reasons, DMA get operations issued as soon as possible.

» This makes induction-based verification more difficult.

Code motion is used to reverse this process.

. get_possible(l,h,s,t);
ith;(l,h,s,t), 52:
while (...) while(...)
{...} €.
o3 get(l,h,s,t);
’ s3;

> Swap independent statements to push back DMA operations.
> Insert check at original location (non-terminating loops!)

» Soundness of statement independence is checked using a SAT solver.

Experiments

Runtimes on a 3.2Ghz Intel Xeon 48GB:

[Benchmark | Lines of code | Time [of which Al | k | Max base case vars | Max step case vars
single buffer 152 1.70 9.86% 2 5873 178305
single buffer 10 160 4.25 5.21% 3 6781 334915
double buffer 270 8.52 9.06% 2 67418 386705
double buffer 10 284 24.74 3.49% 3 132266 726512
triple buffer 379 44.32 6.46% 3 9208 650404
triple buffer 10 420 54.80 3.96% 3 9224 707592
double buffer TP 359 9.13 15.65% 2 109783 206434
double buffer IO TP 390 42.47 7.18% 3 215385 854164
triple buffer TP 611 138.10 7.13% 3 8813 958183
triple buffer 10 TP 1813 422.45 3.39% 3 8824 3377134

Why does k-induction work in this domain

» k-induction works well for sequential hardware circuits with
pipelines.
» required k proportional to pipeline depth

Why does k-induction work in this domain

» k-induction works well for sequential hardware circuits with
pipelines.
» required k proportional to pipeline depth

» Buffering schemes used in DMA programs have a similar
structure.

» required k proportional to number of buffers

Effect of strengthening on k-induction

» Benchmarks cannot be verified without strengthening.

> To enable comparison, we verify simplified example programs, by
restricting the size of the data buffer SZ.

5
_ 8 12 16 20 24 28 32
. - 2 2 2 2 2
time (s) 3 3 3 3 3 3
512 1 * D e e e T S
--SBnaive e
"""" SB-10 naive
1281 __ 5B strength. | b
------ SB-10 strength. SRS
324 T T e =
ol = -
38 (e S Y s S S A B S M

Summary

» Detection of races in DMA programs

» Application of k-induction at loop level
» Strengthening of k-induction with lightweight static analysis

» cheap abstract domains
> assertion chunking

» code motion

Summary

» Detection of races in DMA programs

» Application of k-induction at loop level
» Strengthening of k-induction with lightweight static analysis

» cheap abstract domains
> assertion chunking

» code motion

Future work includes:
» Inter-thread race detection

» Widening the scope of k-induction beyond race checking

Thank you for your attention.

