
An Improved Stability Bound for Binary Exponential Bako�Hesham Al-Ammal� Leslie Ann Goldbergy Phil MaKenziezFebruary 24, 2000AbstratGoodman, Greenberg, Madras and Marh gave a lower bound of n�
(logn) for themaximum arrival rate for whih the n-user binary exponential bako� protool is stable.Thus, they showed that the protool is stable as long as the arrival rate is at mostn�
(log n). We improve the lower bound, showing that the protool is stable for arrivalrates up to O(n�(:75+Æ)), for any Æ > 0.1 IntrodutionA multiple-aess hannel is a broadast hannel that allows multiple users to ommuniatewith eah other by sending messages onto the hannel. If two or more users simultaneouslysend messages, then the messages interfere with eah other (ollide), and the messages arenot transmitted suessfully. The hannel is not entrally ontrolled. Instead, the users use aontention-resolution protool to resolve ollisions. Thus, after a ollision, eah user involvedin the ollision waits a random amount of time (whih is determined by the protool) beforere-sending. Perhaps the best-known ontention-resolution protool is the Ethernet protoolof Metalfe and Boggs [10℄. The Ethernet protool is based on the following simple binaryexponential bako� protool. Time is divided into disrete units alled steps. If the i'thuser has a message to send during a given step, then it sends this message with probability2�bi , where bi denotes the number of ollisions that this message has already had. Withprobability 1 � 2�bi , user i does not send during the step. The Ethernet protool is basedon binary exponential bako�, but some modi�ations are made to make it easier to build.See [7, 10℄ for details.H�astad, Leighton and Rogo� [7℄ have studied the performane of the binary exponentialbako� protool in the following natural model. The system onsists of n users. Eah usermaintains a queue of messages that it wishes to send. At the beginning of the t'th timestep, the length of the queue of the i'th user is denoted qi(t) and the number of times thatthe message at the head of its queue has ollided is denoted bi(t). At the beginning of thet'th step, eah queue reeives 0 or 1 new messages. In partiular, a new message is added�hesham�ds.warwik.a.uk, Department of Computer Siene, University of Warwik, Coventry,CV4 7AL, United Kingdom.yleslie�ds.warwik.a.uk, http://www.ds.warwik.a.uk/�leslie/, Department of Computer Si-ene, University of Warwik, Coventry, CV4 7AL, United Kingdom. This work was partially supported byEPSRC grant GR/L6098 and by ESPRIT Projets RAND-APX and ALCOM-FT.zphilma�researh.bell-labs.om, Information Sienes Center, Bell Laboratories, Luent Tehnologies,600 Mountain Avenue, Murray Hill, NJ 07974{0636. 1



to the end of eah queue independently with probability �=n, where � is the arrival rate ofthe system. (Thus, the length of the i'th queue is now qi(t) + Z, where Z is a Bernoullirandom variable, whih is 1 with probability �=n and 0 otherwise.) After the new messagesare added to the queues, eah user makes an independent deision about whether or not tosend the message at the head of its queue, using the binary exponential bako� protool. (Ifthe message at the head of the i'th queue has never been sent before then bi = 0, so it is nowsent. Otherwise, bi = bi(t), so it is sent independently with probability 2�bi(t).) If exatly onemessage is sent (so there are no ollisions), then this message is delivered suessfully, and itleaves its queue. Otherwise, the messages that are sent ollide and no messages are deliveredsuessfully.Sine the arrivals are modelled by a stohasti proess, the evolution of the whole systemover time an be viewed as a Markov hain in whih the state just before step t is X(t) =((q1(t); : : : ; qn(t)); (b1(t); : : : ; bn(t))) and the next state is X(t + 1). The start state of thehain, X(0), is ((0; : : : ; 0); (0; : : : ; 0)). The hain is said to be reurrent if, with probability 1,it returns to its start state. That is, it is reurrent ifPr(X(t) = X(0) for some t � 1) = 1:It is said to be positive reurrent if the expeted time that it takes to return to the start stateis �nite. In partiular, let Tret = minft � 1 j X(t) = X(0)g:The hain is said to be positive reurrent if E[Tret℄ <1. Note that if the hain is not positivereurrent then the protool is not a very good one. Informally, one it enters a \bad" state(one with a large baklog of messages), the expeted time that it takes to get bak to a statewhih is not bad is in�nite. For this reason, we say that a protool is stable if and only if theorresponding Markov hain is positive reurrent.1 H�astad et al. [7℄ proved that if the arrivalrate is too high, then the binary exponential bako� protool is unstable, in the sense thatthe orresponding Markov hain is not positive reurrent.Theorem 1 (H�astad, Leighton, and Rogo�) Suppose that for some positive �, � � 12+�.Suppose that n is suÆiently large (as a funtion of �). Then E[Tret℄ =1.On the other hand, Goodman, Greenberg, Madras and Marh [5℄ showed that if the arrivalrate is suÆiently low, then the protool is stable.Theorem 2 (Goodman, Greenberg, Madras and Marh) There is a positive onstant �suh that E[Tret℄ is �nite for the n-user system, provided that � < 1n� log n .While Goodman, Greenberg, Madras, and Marh's result is the only known stabilityresult for the �nitely-many-users binary-exponential-bako� protool, their upper bound (� <1n� log n ) is very small. In this paper, we narrow the gap between the two results. In partiular,we prove the following theorem.Theorem 3 There is a positive onstant � suh that for any � < 0:25, as long as n issuÆiently large and � < 1�n1�� then E[Tret℄ is �nite for the n-user system.1For further information about Markov hains, reurrene, positive reurrene and stability, see [2℄ andChapter 6 of [6℄. 2



The main point of Theorem 3 is to show that n-user Binary Exponential Bako� is stablefor an arrival rate that is the inverse of a polynomial in n, and in fat the inverse of a sublinearpolynomial in n. With our spei� proof tehnique, it seems that we annot prove stabilityfor rates higher than about n�:75, and thus a natural open problem is to improve this bound.Perhaps the most interesting (and diÆult) question raised by this work is whether an n-usersystem is stable for some onstant arrival rate. For further disussion about improving ourresult, see Setion 4.The organisation of the paper is as follows. In Setion 2 we summarise other related work.In Setion 3 we give the proof of Theorem 3.2 Related WorkWe now summarize some other related work. We start by observing that the results in The-orem 1 and 2 an be extended to more general models. For example, the result of Goodmanet al. an be extended to a more general model of stohasti arrivals in whih the expetednumber of arrivals at user i at time t (onditioned on all events up to time t) is a quantity,�i, and Pi �i is required to be equal to �. The result of H�astad et al. an be extended tosmall values of n, provided that � > :568 + 1=(4n � 2). The instability result of H�astad etal. implies that, when � is suÆiently large, the expeted average waiting time of messages isin�nite.Next, we mention that the binary exponential bako� protool is known to be unstablein the in�nitely-many-users Poisson-arrivals model. Kelly and MaPhee [8, 9℄ showed this for� > ln 2 and Aldous [1℄ showed that it holds for all positive �.2While the goal of this paper is to understand the binary-exponential bako� protool, onwhih Ethernet is based, there are other aknowledgement-based protools whih are knownto be stable in the same model for larger arrival rates. In partiular, H�astad et al. have shownthat polynomial-bako� protools are stable as long as � < 1. The expeted waiting time ofmessages is high in polynomial-bako� protools, but Raghavan and Upfal [11℄ have given aprotool that is stable for � < 1=10, in whih the expeted waiting time of every messageis O(logn), provided that the users are given a reasonably good estimate of logn. Finally,Goldberg, MaKenzie, Paterson and Srinivasan [4℄ have given a protool that is stable for� < 1=e, in whih the expeted average message waiting-time is O(1), provided that the usersare given an upper bound on n.We onlude by observing that the tehnique of Goldberg and MaKenzie [3℄ an be usedto extend Theorem 3 so that it applies to a non-geometri version of binary-exponentialbako�, whih is loser to the version used in the Ethernet. (Instead of deiding whether tosend on eah step independently with probability 2�bi , the user simply hooses the number ofsteps to wait before sending uniformly at random from [1; : : : ; 2bi ℄.) The ideas are the sameas those used in the proof that follows, but the details are messier. Our result an also beextended along the lines of [7℄ to show that, when � is suÆiently low, the expeted averagemessage waiting time is �nite.32Note that it an be misleading to view the in�nitely-many-users model as the limit (as n tends to in�nity) ofthe n-users model. For example, the \polynomial bako�" protool is known to be unstable (for any positive �)in the in�nitely-many-users Poisson-arrivals model [8, 9℄, but it is stable (for any � < 1) in the n-users model[7℄. Thus, Aldous's result does not rule out the possibility that there is a positive onstant �� suh that then-user binary exponential bako� protool is stable whenever � < ��.3The word \stable" is not used onsistently in the literature. For example, [7℄ inorporates the expeted3



3 The stability proofIn this setion, we will prove Theorem 3. Let � be a suÆiently large positive onstant andlet � be a onstant in the range (0; :25). Suppose that the arrival rate � is 1�0n1�� for some�0 � �. We will show that, if n is suÆiently large, the Markov hain orresponding to thebinary exponential bako� protool is positive reurrent.The most ommon tool for proving that a Markov hain is positive reurrent is Foster'stheorem.4Theorem 4 (Foster) A time-homogeneous irreduible aperiodi Markov hain X with aountable state spae A is positive reurrent i� there exists a positive funtion f(�), � 2 A, anumber � > 0, and a �nite set C � A, suh that the following inequalities hold.E[f(X(t+ 1))� f(X(t)) j X(t) = �℄ � ��; � 62 C (1)E[f(X(t+ 1)) j X(t) = �℄ < 1; � 2 C: (2)Basially, the idea is to use a \potential funtion" f to follow the progress of the hain. Thehain is positive reurrent i� there is a potential funtion f whih1. usually dereases (Equation 1), and2. annot inrease muh (Equation 2)in a single step. Equation 1 implies that, from any state � 62 C, the expeted time to reah Cfrom � is at most f(�)=�. This (ombined with Equation 2) implies that the expeted returntime to C is �nite, whih in turn implies that the hain is positive reurrent. (For moredetails, see [2℄.)In pratie, it an be diÆult to �nd a potential funtion satisfying the riteria in Foster'stheorem. We will use the following generalisation of the theorem due to Fayolle, Malyshevand Menshikov [2℄.Theorem 5 (Fayolle, Malyshev, Menshikov) A time-homogeneous irreduible aperiodiMarkov hain X with a ountable state spae A is positive reurrent i� there exists a positivefuntion f(�), � 2 A, a number � > 0, a positive integer-valued funtion k(�), � 2 A, and a�nite set C � A, suh that the following inequalities hold.E[f(X(t+ k(X(t)))) � f(X(t)) j X(t) = �℄ � ��k(�); � 62 C (3)E[f(X(t+ k(X(t)))) j X(t) = �)℄ < 1; � 2 C: (4)average waiting time into the de�nition of \stability". Reall that in this paper, as in [5℄, stability meanspositive reurrene.4A Markov hain is said to be time-homogeneous if its transition probabilities are �xed (for all time). It isirreduible if, for every pair of states (x; y), it is possible, in some number of steps, for the hain to move fromstate x to state y. It is aperiodi if, for any state x, the greatest ommon divisor of the setft j the hain an move from state x to state x in exatly t stepsgis one. See [6℄ for details. The Markov hain orresponding to the binary exponential bako� protool istime-homogeneous, irreduible, and aperiodi. 4



The reason that the generalisation is easier to use than Foster's theorem is that, while itmay be diÆult to �nd a potential funtion f whih (usually) goes down in a single step, itmay be easier to �nd one whih goes down over several steps. In the generalised version ofthe theorem, it is only neessary to show that from a state �, the potential goes down by afator of k over k steps, where k is allowed to depend upon �.We will now de�ne the potential funtion that we will use. The value � in the potentialfuntion is a onstant in the range [�; 0:5 � �). Let f(X(t)) be the following funtion of thestate just before step t. f(X(t)) = �n2���� nXi=1 qi(t) + nXi=1 2bi(t):We use the following notation, where � = 3. For a state X(t), let m(X(t)) denotethe number of users i with qi(t) > 0 and bi(t) < lg � + lgn, and let m0(X(t)) denote thenumber of users i with qi(t) > 0 and bi(t) < (1 � � � �) lg n + 1. We will take � to be1 � 2=� and C to be the set onsisting of the single state ((0; : : : ; 0); (0; : : : ; 0)). We de�nek(((0; : : : ; 0); (0; : : : ; 0))) = 1, so Equation 4 is satis�ed. For every state � 62 C, we will de�nek(�) in suh a way that Equation 3 is also satis�ed. We give the details in three ases.3.1 Case 1: m0(X(t)) = 0 and m(X(t)) < n1����.For every state � suh that m0(�) = 0 and m(�) < n1���� we de�ne k(�) = 1. We wish toshow that, if � 6= ((0; : : : ; 0); (0; : : : ; 0)) and X(t) = �, then E[f(X(t + 1)) � f(X(t))℄ � ��.First, we give some intuition as to why the potential f is expeted to drop in a single step.In this ase (sine m0(X(t)) = 0) all users whih have messages to send have large bako�ounters. Furthermore (sine m(X(t)) < n1����) most bako� ounters (all but at mostn1����) are very large. This means that ollisions are fairly unlikely. The expeted drop in fmainly omes from the fat that if user i does send (whih happens with probability 2�bi)and sueeds (whih is fairly likely), then f drops by 2bi � 1. The proof that f is expeted togo down omes from a areful analysis of a single step and uses the same general approahas the one used in the proof of Lemma 5.7 of [7℄. For onveniene, we use m as shorthandfor m(X(t)) and we use ` to denote the number of users i with qi(t) > 0. Without loss ofgenerality, we assume that these are users 1; : : : ; `. We use pi to denote the probability thatuser i sends on step t. (So pi = 2�bi(t) if i 2 [1; : : : ; `℄ and pi = �=n otherwise.) We letT denote Qni=1(1 � pi) and we let S denote Pni=1 pi1�pi . Note that the expeted number ofsuesses at step t is ST . Let Ia;i;t be the 0=1 indiator random variable whih is 1 i� thereis an arrival at user i during step t and let Is;i;t be the 0=1 indiator random variable whihis 1 i� user i sueeds in sending a message at step t. ThenE[f(X(t+ 1))� f(X(t))℄ = �n2���� nXi=1 (E[Ia;i;t℄�E[Is;i;t℄) + nXi=1 �E[2bi(t+1)℄� 2bi(t)� ;= �n2������ �n2����ST + nXi=1 �2bi(t)�i � (2bi(t) � 1)�i� ; (5)= �n2������ �n2����ST + nXi=1�2bi(t)pi(1� T1� pi )� (2bi(t) � 1)pi T1� pi� ;= �n2������ �n2����ST + X̀i=1(1� T1� pi ) + nXi=`+1 �n(1� T1� pi )� `T;5



= �n2������ �n2����ST + `� `T + (n� `)�n � T 0�X̀i=1 11� pi + nXi=`+1 pi1� pi1A ;= �n2������ �n2����ST + `� `T + (n� `)�n � ST � `T;= �n2�����+ `+ (n� `)�n � T ((�n2���� + 1)S + 2`); (6)where �i in Equality 5 denotes the probability that user i ollides at step t and �i denotes theprobability that user i sends suessfully at step t. (To see why Equality 5 holds, note thatwith probability �i, bi(t + 1) = bi(t) + 1, with probability �i, bi(t + 1) = 0, and otherwise,bi(t+ 1) = bi(t).) We now �nd lower bounds for S and T . First,S = nXi=1 pi1� pi= X̀i=1 2�bi(t)1� 2�bi(t)!+ �(n� `)n� �� mXi=1� 1�n� 1�+ �(n� `)n� �= m�n� 1 + �(n� `)n� � : (7)Next, T = nYi=1(1� pi)� (1� 12n1���� )m(1� 1�n)`�m(1� �n)n�`� 1� m2n1���� � `�m�n � �(n� `)n (8)Combining Equations 6, 7 and 8, we get the following equation.E[f(X(t+ 1))� f(X(t))℄ � �n2�����+ `+ (n� `)�n � (9)�1� m2n1���� � `�m�n � �(n� `)n ��(�n2���� + 1)� m�n� 1 + �(n� `)n� � �+ 2`� :We will let g(m; `) be the quantity in Equation 9 plus � and we will show that g(m; `) isnegative for all values of 0 � m < n1���� and all ` � m. In partiular, for every �xedpositive value of m, we will show that1. g(m;m) is negative,2. g(m;n) is negative, and3. �2�`2 g(m; `) > 0. (g(m; `) is onave up as a funtion of ` for the �xed value of m so g(m; `)is negative for all ` 2 [m;n℄.) 6



We will handle the ase m = 0 similarly exept that m = ` = 0 orresponds to the start state,so we will replae Item 1 with the following for m = 0.1'. g(0; 1) is negative.The details of the proof are now merely alulations.1. g(m;m) is negative:g(m;m) � 2�0 n(2�2 �) (� n� 1) (�0 n2 � n�) =n(�2 �+5)m2 ��02 + 2n� 2m� 2n(�2 �+4) "�02 � 2n(�2 �+5) �02m�+ 2� n3 + 2n(�2 �+5) " � �02 � 2n(��+3) "�0 � � n(��+4)m2 �� �0� 2n(����+4) �� � 4m2 � 2n(�3 ���+6) �m�02 + 2n(�2 ���+5)m��0 + 6mn+ 2n(�2 ���+5)m��0 � � 2n(�2 ���+4)m2 ��0 + 2n(��+3)m� �0� n(��+4)m��0 � 2n2 + 2n(����+5) �� � 2� n2 + 2n(����+3) �+ n(�+3)m�0 � + 6m2 � n� 8� n2m+ n(��+5)m�� �0 + 2n(����+3) �m� 2n(��+3)m�0 � 3n(�+2)m2 �0 � + 4n(��+4) m� �0 + 2n(����+3)m2 ��� 2n(����+4) �+ 2n(��+2) "�0 + 2m2 n(�+1) �0 + 2n(��+�+4)m2 � �02� 4n(����+4) �m� � 4n(��+3)m2 � �0 � n(��+�+3)m2 �02 + 2n(��+2)m2 �0� n(�+2)m�0 + 2� nmSine � + � < :5, the dominant term is �2n(�3���+6)�m�02. Note that there is a positiveterm (n(�2�+5)m2��02) whih ould be half this big if m is as big as n1���� (the upperbound for Case 1), but all other terms are asymptotially smaller.2. g(m;n) is negative:g(m;n)� 2�0 � n (� n� 1) =2�n(��+3) �2 � 2� n(��+2) � � 2�0 �2 n3 + 2�0 � n2� 2m�n(����+3) �0 � � 2�0 � nm+ �0 � n2m2 �+m2 n(�+�) �0 �+ 2mn(�+�+2) �0 �2 � 2mn(�+�+1) �0 � + 2m�n(����+3) �0 + 6�0 nm+ 4�0 � n3 � 4�0 n2 � 2n(����+2)m2 ��0 � 2�0 m2 � 4�0 � n2m+ 2 "�0 �2 n2� 2 "�0 � nSine � + � < :5 and � > 2, the term �2�0�2n3 dominates +4�0�n3. For the samereason, the term �2m�n(����+3)�0� dominates the two terms +2m�n(����+3)�0 and+�0�n2m2�. The other terms are asymptotially smaller.3. �2�`2 g(m; `) > 0: �2�`2 g(m; `) = �2 (� 1� n + �n) (�(�n(����+2) + 1)�n� � + 2)
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1'. g(0; 1) is negative:g(0; 1) � �0 � n(2�2 �) (�0 n2 � n�) =�n(�2 ���+3) ��0 � n(��+2) �0 � + n(����+2) �� + � n2� n(��+2) " � �0 + 2n(�2 �+3) �02 � n(�2 �+4) �02 � + 2n(��+3) � �0+ n(�2 �+4) " � �02 + n(����+4) �� + n(��+2) �0 + n(�2 ���+4) ��0+ n(�2 ���+4) �� �0 + 4� � 3n(��+1) �0 � 5� n� 3n(����+3) ��Sine �0(1 � �) � �(1 � �) > 1, � + � < :5, and � � �, the term �n(�2�+4)�02�(1 � �)dominates the term +n(����+4)��. The other terms are asymptotially smaller.3.2 Case 2: m(X(t)) � n1���� or m0(X(t)) > n:4.For every state � suh that m(�) � n1���� or m0(�) > n:4, we will de�ne an integer k (whihdepends upon �) and we will show that, if X(t) = �, then E[f(X(t + k)) � f(X(t))℄ � ��k,where � = 1� 2=�.For onveniene, we will usem as shorthand form(X(t)) andm0 as shorthand form0(X(t)).If m � n1���� then we will de�ne r = m, W = n�+�dlg re2�8, A = W , b = lg � + lgn andv = n. Otherwise, we will de�ne r = m0, W = dlg re2�8, A = 0, b = (1� � � �) lgn+ 1, andv = 2dn1����e. In either ase, we will de�ne k = 4(r + v)dlg re.The intuition behind the proof is as follows. First, sine many users have small bako�ounters, it is fairly likely that a ollision ours on the �rst step. So we do not expetthe potential f to drop in a single step. Instead, we study the evolution of the system overk steps. With suÆiently high probability, the bako� ounters get driven up during the �rst�(r log r) steps. (We refer to these steps as \the preamble".) During the remaining steps,the bako� ounters stay reasonably high exept during steps whih our shortly after1. arrivals (but there are likely to be few of these sine we only run for k steps), and2. suessful sends (whih help to redue f).We refer to these as \exeptional steps". Without loss of generality, there are few of them,sine otherwise there are many suesses and the potential goes down. Although the bako�ounters stay high (as we just explained), most of them do not get too high, sine we only runfor k steps. So the probability of suess during any given step whih is not exeptional or inthe preamble is high. Finally, with suÆiently high probability, there are at leastW suesses,and this redues the potential.A tehnial diÆulty in the proof is larifying the independene between some of theevents and for this reason, it is helpful to identify \preamble steps" (steps in �0), \exeptionalsteps" (steps in �1), and also \following steps". (The formal de�nition of \following steps" isgiven later. Typially, these steps follow at least W suesses). The details of this partitionof steps will be desribed later.Let � be the set of all steps ft; : : : ; t + k � 1g and let S be the random variable whihdenotes the number of suesses that the system has during � . Let p denote Pr(S � W ).Then we haveE[f(X(t+ k))� f(X(t))℄ � �n2�����k � �n2����E[S℄ + nXi=1 t+kXt0=t+1E[2bi(t0) � 2bi(t0�1)℄8



� �n2�����k � �n2����Wp+ kn� ��k;where the �nal inequality holds as long as �p � 213 and n is suÆiently big (see the Appendix).Thus, it suÆes to �nd a positive lower bound for p whih is independent of n. We do thiswith plenty to spare. In partiular, we show that p � 1� 5� 10�5.We start with a tehnial lemma, whih desribes the behaviour of a single user.Lemma 6 Let j be a positive integer, and let Æ be a positive integer whih is at least 2.Suppose that qi(t) > 0. Then, with probability at least 1 � dlg jejÆ=(2 ln 2) , either user i sueeds inat least one of the steps in the interval [t; : : : ; t+ Æjdlg je � 1℄, or bi(t+ Æjdlg je) � dlg je.Proof: Suppose that user i is running in an externally-jammed hannel (so every sendresults in a ollision). Let Xz denote the number of steps t0 2 [t; : : : ; t + dÆj lg(j)e℄ withbi(t0) = z. We laim that Pr(Xz > Ædlg je2z�1) < j�Æ=(2 ln 2). This proves the lemmasine Pdlg je�1z=0 Ædlg je2z�1 � Æjdlg je. To prove the laim, note that X0 � 1, so Pr(X0 >Ædlg je2�1) = 0 < j�Æ=(2 ln 2). For z > 0, note thatPr(Xz > Ædlg je2z�1) � (1� 2�z)Ædlg je2z�1 < j�Æ=(2 ln 2): 2Next, we de�ne some events. We will show that the events are likely to our, and,if they do our, then S is likely to be at least W . This will allow us to onlude thatp � 1�5�10�5, whih will �nish Case 2. We start by de�ning B = dW e+dAe, k0 = 4rdlg re,and k00 = 4BdlgBe. Next, we give names to some of the steps in � = ft; : : : ; t + k � 1g. Let�0 be the preamble of � onsisting of steps ft; : : : ; t+ k0 � 1g. For every i, let � 0(i) be the setof times in � when user i will \de�nitely" send. In partiular, t0 2 � 0(i) if and only if1. bi(t0) = 0 and qi(t0) > 0, or2. bi(t0) = 0 and there is an arrival at user i at t0.�2 will be the suÆx of following steps in � . In partiular, t0 2 �2 if and only if there areat least B pairs (t00; i) with t00 < t0 and t00 2 � 0(i). (Informally, by the time �2 is entered,there will have been at least B \de�nite sends", some of whih may have oinided in time.)Note that �2 is a random variable. Finally, �1 will be a (possibly non-ontiguous) subsetof � � �0 � �2. Informally, �1 will ontain all steps whih our during or shortly after\de�nite sends." Formally, �1 will be the set of all t0 2 � � �0 � �2 suh that, for some i,� 0(i) \ [t0 � k00 + 1; t0℄ 6= ;. See Figure 1.We an now de�ne the events E1{E4.E1. There are at most A arrivals during � .E2. Every station with qi(t) > 0 and bi(t) < b either sends suessfully during �0 or hasbi(t+ k0) � dlg re.E3. At least half of the stations with qi(t) > 0 and bi(t) < b have bi(t0) � b + dlg lg(r)e + 6for all t0 2 � . 9
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Figure 1: A possible outome for the random variables �0, �1 and �2. For illustration, weassume that there are no arrivals or suesses during the last k00 steps of the preamble.E4. For all t0 2 � 0(i) and all t00 > t0 suh that t00 2 � � �0 � �1 � �2, either qi(t00) = 0 orbi(t00) � dlgBe.Next, we show that E1{E4 are likely to our.Lemma 7 If n is suÆiently large then Pr(E1) � 10�5.Proof: The expeted number of arrivals in � is �k. Ifm � n1����, thenA = n�+�dlg re2�8 �2�k. By a Cherno� bound, the probability that there are this many arrivals is at moste��k=3 � 10�5. Otherwise, A = 0 and �k = o(1). Thus, Pr(E1) � (1� �=n)nk � 1� �k �1� 10�5. 2Lemma 8 If n is suÆiently large then Pr(E2) � 10�5.Proof: Apply Lemma 6 to eah of the r users with Æ = 4 and j = r. Then Pr(E2) �r dlg rer2=(ln 2) � 10�5. 2Lemma 9 If n is suÆiently large then Pr(E3) � 10�5.Proof: Note that k � 16v lg r. Also note that the probability of a given user i sending atstep t0 when bi(t0) = b+ dlg lg(r)e+ 6 is at most 1=(64v lg r). Thus the probability that useri sends at all in the k steps of � is at most 1=4. By a Cherno� bound, the probability thatover half of the r users with qi(t) > 0 and bi(t) < b send when bi(t0) = b + dlg lg(r)e + 6 forsome t0 2 � is at most e��(r) < 10�5. 2Lemma 10 If n is suÆiently large then Pr(E4) � 10�5.Proof: We an apply Lemma 6 separately to eah of the (up to B) pairs (t0; i) with Æ = 4and j = B. The probability that event E4 does not hold is at most BdlgBeB2=(ln 2) � 10�5. 2We now wish to show that Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5. We begin with thefollowing lemma. 10



Lemma 11 Given any �xed sequene of states X(t); : : : ;X(t+ z) whih does not violate E2or E4, and satis�es t+ z 2 � � �0 � �1 � �2, qi(t+ z) > 0, and bi(t+ z) � b+ dlg lg(r)e+ 6,the probability that user i sueeds at step t+ z is at least 12142b lg r .Proof: The onditions in the lemma imply the following.� There are no users j with qj(t+ z) > 0 and bj(t+ z) < dlgBe (sine E4 holds).� There are at most B users j with bj(t+ z) < dlg re (sine E2 holds and at most B userssueed or have new arrivals).� There are at most r+B users j with bj(t+z) < b (sine r started that way and at mostB sueed or have new arrivals).� There are at most m+B users j with bj(t+ z) < lg � + lgn (for similar reasons).Thus, the probability that user i sueeds is at least2�(b+dlg lg(r)e+6)�1� 1B�B�1� 1r�r�1� 12b�m�r�1� 1�n�n�m�B� 12b lg r27 14 14 14 �1� n�m�B�n �� 12142b lg r : 2Corollary 12 Given any �xed sequene of states X(t); : : : ;X(t + z) whih does not violateE2, E3, or E4, and satis�es t+ z 2 � � �0 � �1 � �2, the probability that some user sueedsat step t+ z is at least (r=2)�B2142b lg r � r218v lg r .Proof: Sine t + z 62 �2, at least r � B of the users i with qi(t) > 0 and bi(t) < b havenot sueeded before step t + z. Sine E3 holds, at least r=2 � B of these have bi(t + z) �b+ dlg lg(r)e+ 6. For all i and i0, the event that user i sueeds at step t+ z is disjoint withthe event that user i0 sueeds at step t+ z. Finally, note that (r=2)�B > r=4 and 2b � 4v.2Lemma 13 If n is suÆiently large then Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5:Proof: If E1 is satis�ed then �2 does not start until there have been at least W suesses.Sine j� � �0 � �1j � k � k0 � Bk00 � vdlg re=2, Corollary 12 shows that the probability ofhaving fewer than W suesses is at most the probability of having fewer than W suessesin vdlg re=2 Bernoulli trials with suess probability r218v lg r . Sine W is at most half of theexpeted number of suesses, a Cherno� bound shows that the probability of having fewerthan W suesses is at most exp(� rvdlg re222v lg r ) � 10�5. 2We onlude Case 2 by observing that p is at least 1�Pr(E1)�Pr(E2)�Pr(E3)�Pr(E4)�Pr(S < W j E1^E2^E3^E4). By Lemmas 7, 8, 9, 10, and 13, this is at least 1� 5� 10�5.11



3.3 Case 3: 0 < m0(X(t)) � n:4 and m(X(t)) < n1����.For every state � suh that 0 < m0(�) � n:4 and m(�) < n1����, we will de�ne k =32m0(�)dlgm0(�)e+dn1����e. We will show that, ifX(t) = �, then E[f(X(t+k))�f(X(t))℄ ���k.The intuition behind the proof in this ase is similar to that of Case 2 exept that we donot have enough small bako� ounters to ahieve W suesses (as in Case 2) even though wemay have too many to make the potential drop in a single step (as in Case 1). We study theevolution of the system over k steps. The bako� ounters are likely to be driven up in the�rst �(m0 logm0) steps. After that, we are likely to have a single suess, whih is enough tomake the potential drop.One again, we will use m as shorthand for m(X(t)) and m0 as shorthand for m0(X(t)).Let � = ft; : : : ; t+ k � 1g, let S be the number of suesses that the system has in � . Let pdenote Pr(S � 1). As in Case 2, E[f(X(t + k)) � f(X(t))℄ � �n2�����k � �n2����p+ kn,and this is at most ��k as long as �p > 9. Thus, we will �nish by �nding a positive lowerbound for p whih is independent of n.Sine m0 > 0, there is a user  suh that b(t) < (1� ���) lgn+1. Let k0 = 32m0dlgm0eand �0 = ft; : : : ; t+ k0 � 1g. We will now de�ne some events, as in Case 2.E1. There are no arrivals during � .E2. Every station with qi(t) > 0 and bi(t) < (1 � � � �) lg n + 1 either sends suessfullyduring �0 or has bi(t+ k0) � dlgm0e.E3. b(t0) < (1� � � �) lgn+ 7 for all t0 2 � .Lemma 14 If n is suÆiently large then Pr(E1) � 10�5.Proof: As in the proof of Lemma 7,Pr(E1) � �1� �n�nk � 1� �k � 1� 10�5: 2Lemma 15 Pr(E2) � 10�5.Proof: We use lemma 5 with Æ = 32 and j = m0 to getPr(E2) � m0 � dlgm0e(m0)16= ln(2) � 10�5: 2Lemma 16 If n is suÆiently large then Pr(E3) � 10�5.
12



Proof: For E3 to be violated, user  must make at least 6 attempts, one eah with bako�ounter d(1� � � �) lgn+ re for r 2 f1; : : : ; 6g. The probability of this happening isPr(E3) �  k6! 6Yr=1 2�d(1����) lgne�r� �ke6 �6� 1n1�����62�P6r=1 r� � 2en1����6n1����23�6� 10�5: 2Lemma 17 Given any �xed sequene of states X(t); : : : ;X(t+ z) whih does not violate E1,E2, or E3 suh that t+ z 2 � � �0 and there are no suesses during steps [t; : : : ; t + z � 1℄,the probability that user  sueeds at step t+ z is at least 1212n1���� .Proof: The onditions in the statement of the lemma imply the following.� q(t+ z) > 0 and b(t+ z) < (1� � � �) lgn+ 7.� There are no users j with bj(t+ z) < dlgm0e.� There are at most m0 users j with bj(t+ z) < (1� � � �) lgn+ 1.� There are at most m users j with bj(t+ z) < lg � + lgn.� There will be no arrivals on step t+ z.The probability of suess for user  is at least2�((1����) lg n+7)�1� 1m0�m0�1�1� 12n1�����m�m0�1� 1�n�n�m� 127n1���� 14 14 12� 1212n1���� : 2Lemma 18 If n is suÆiently large then Pr(S < 1 j E1 ^E2 ^E3) � e�1=212 .Proof: Lemma 17 implies that the probability of having no suesses is at most the proba-bility of having no suesses in j���0j Bernoulli trials, eah with suess probability 1212n1���� .Sine j� � �0j � n1����, this probability is at most�1� 1212n1�����n1���� � e�1=212 : 2We onlude Case 3 by observing thatp � 1� Pr(E1)� Pr(E2)� Pr(E3)� Pr(S < 1 j E1 ^ E2 ^ E3):By Lemmas 14, 15, 16, and 18, this is at least 1� 3� 10�5 � e�1=212 � :0002:13



4 ImprovementsIn this paper, we showed that n-user Binary Exponential Bako� is stable as long as thearrival rate is O(n�(:75+Æ)) for any onstant Æ > 0. A natural question is whether the protoolremains stable for higher arrival rates. In partiular, it would be very interesting to knowwhether it is stable for some onstant arrival rate.Reall Foster's Theorem (Theorem 4) and Fayolle, Malyshev and Menshikov's generalisa-tion of it (Theorem 5) from Setion 3. Both theorems show that the relevant Markov hain ispositive reurrent if and only if there is a potential funtion f satisfying the given onditions.Thus, if it turns out that binary exponential bako� is stable for higher arrival rates, thesame proof tehnique ould be used to prove the theorem.On the other hand, �nding an appropriate potential funtion might get inreasingly dif-�ult as the arrival rate gets higher. Furthermore, the number of ases that need to beonsidered may grow. Using our partiular potential funtion, and our hoie of ases to beonsidered,5 we annot prove stability for rates higher than about n�:75. We suspet thatour analysis would have to be improved substantially to show that the protool is stable forany onstant arrival rate. In partiular, the analysis tehnique that we use in Case 2 seemstoo weak. After the preamble �0, the bako� ounters are suitably high but still we do notshow that a onstant fator of the remaining steps have suesses. Showing this (if indeed itis true!) would require a areful analysis of the situation immediately following eah suess,perhaps along the lines of the \apture" analysis in [7℄.Referenes[1℄ D. Aldous, Ultimate instability of exponential bak-o� protool for aknowledgement-based transmission ontrol of random aess ommuniation hannels, IEEE Trans. Inf.Theory IT-33(2) (1987) 219{233.[2℄ G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topis in the Construtive Theory ofCountable Markov Chains, (Cambridge Univ. Press, 1995)[3℄ L.A. Goldberg and P.D. MaKenzie, Analysis of pratial bako� protools for ontentionresolution with multiple servers, Journal of Computer and Systems Sienes, 58 (1999)232{258.[4℄ L.A. Goldberg, P.D. MaKenzie, M. Paterson and A. Srinivasan, Con-tention resolution with onstant expeted delay, Pre-print (1999) available athttp://www.ds.warwik.a.uk/�leslie/pub.html. (Extends a paper by the�rst two authors in Pro. of the Symposium on Foundations of Computer Siene (IEEE)1997 and a paper by the seond two authors in Pro. of the Symposium on Foundationsof Computer Siene (IEEE) 1995.)[5℄ J. Goodman, A.G. Greenberg, N. Madras and P. Marh, Stability of binary exponentialbako�, J. of the ACM, 35(3) (1988) 579{602.5For example, in Case 1, g(0; 1) is only negative if � � � and g(m;n) is only negative if �+ � � :5. Thisfores � � :25. 14



[6℄ G.R. Grimmet and D.R. Stirzaker, Probability and Random Proesses, Seond Edition.(Oxford University Press, 1992)[7℄ J. H�astad, T. Leighton and B. Rogo�, Analysis of bako� protools for multiple aesshannels, SIAM Journal on Computing 25(4) (1996) 740-774.[8℄ F.P. Kelly, Stohasti models of omputer ommuniation systems, J.R. Statist. So. B47(3) (1985) 379{395.[9℄ F.P. Kelly and I.M. MaPhee, The number of pakets transmitted by ollision detetrandom aess shemes, The Annals of Probability, 15(4) (1987) 1557{1568.[10℄ R.M. Metalfe and D.R. Boggs, Ethernet: Distributed paket swithing for loal om-puter networks. Commun. ACM, 19 (1976) 395{404.[11℄ P. Raghavan and E. Upfal, Stohasti ontention resolution with short delays, SIAMJournal on Computing 28 (1999) 709{719.
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Appendix: Supplementary Calulations for Case 2Here we show the inequality�n2�����k � �n2����Wp+ kn � ��kholds when �p � 213 and n is suÆiently large.Case A: (m � n1����) In this ase, r = m, W = n�+�dlg re2�8, v = n, and k = 4(r +v)dlg re. Then, sine k � 8ndlogme, for large n,�n2�����k � �n2����Wp+ kn� �n2����(�0n1��)�1k � 213n2����W + kn� (�=�0)n1��k � 213n2����n�+�dlogme2�8 + kn� (�=�0)n1��(4(m+ n)dlogme)� 25n2dlogme+ 4(m+ n)dlogmen� 8n2��dlogme � 32n2dlogme+ 8n2dlogme� �16n2dlogme� �2nk� ��k:Case B: (m < n1����, m0 > n:4) In this ase, r = m0, W = dlg re2�8, and v =2dn1����e, and k = 4(r + v)dlg re. Note that by de�nition, m0 < n1����. Then, sinek � 12dn1����edlogm0e, for large n,�n2�����k � �n2����Wp+ kn� �n2����(�0n1��)�1k � 213n2����W + kn� (�=�0)n1��k � 213n2����dlogm0e2�8 + kn� (�=�0)n1��(4(m0 + 2dn1����e)dlogm0e)� 25n2����dlogm0e+4(m+ 2dn1����e)dlogm0en� 12n1��dn1����edlogm0e)� 25n2����dlogm0e+ 12ndn1����edlogm0e� 12n1��dn1����edlogm0e)� 32n2����dlogm0e+ 13n2����dlogm0e� �18n2����dlogm0e� �nk� ��k:
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