
Evolutionary Trees can be Learned in Polynomial Time in theTwo-State General Markov Model�Mary Cryan Leslie Ann Goldberg Paul W. Goldberg.July 20, 1998AbstractThe j -State General Markov Model of evolution (due to Steel) is a stochastic modelconcerned with the evolution of strings over an alphabet of size j . In particular, the Two-State General Markov Model of evolution generalises the well-known Cavender-Farris-Neyman model of evolution by removing the symmetry restriction (which requires thatthe probability that a `0' turns into a `1' along an edge is the same as the probabilitythat a `1' turns into a `0' along the edge). Farach and Kannan showed how to PAC-learn Markov Evolutionary Trees in the Cavender-Farris-Neyman model provided thatthe target tree satis�es the additional restriction that all pairs of leaves have a su�cientlyhigh probability of being the same. We show how to remove both restrictions and therebyobtain the �rst polynomial-time PAC-learning algorithm (in the sense of Kearns et al.)for the general class of Two-State Markov Evolutionary Trees.

�Research Report RR347, Department of Computer Science, University of Warwick, Coventry CV4 7AL,United Kingdom. A preliminary version of this paper appears in the proceedings of FOCS '98. This work waspartially supported by the ESPRIT Projects ALCOM-IT (Project 20244) and RAND-II (Project 21726) andby EPSRC grant GR/L60982. The a�liation of the authors is: Department of Computer Science, Universityof Warwick, Coventry CV4 7AL, United Kingdom, fmaryc,leslie,pwgg@dcs.warwick.ac.uk



1 IntroductionThe j-State General Markov Model of Evolution was proposed by Steel in 1994 [14]. Themodel is concerned with the evolution of strings (such as DNA strings) over an alphabet ofsize j . The model can be described as follows. A j-State Markov Evolutionary Tree consistsof a topology (a rooted tree, with edges directed away from the root), together with thefollowing parameters. The root of the tree is associated with j probabilities �0; : : : ; �j�1which sum to 1, and each edge of the tree is associated with a stochastic transition matrixwhose state space is the alphabet. A probabilistic experiment can be performed using theMarkov Evolutionary Tree as follows: The root is assigned a letter from the alphabet accordingto the probabilities �0; : : : ; �j�1 . (Letter i is chosen with probability �i .) Then the letterpropagates down the edges of the tree. As the letter passes through each edge, it undergoesa probabilistic transition according to the transition matrix associated with the edge. Theresult is a string of length n which is the concatenation of the letters obtained at the n leavesof the tree. A j-State Markov Evolutionary Tree thus de�nes a probability distribution onlength-n strings over an alphabet of size j . (The probabilistic experiment described aboveproduces a single sample from the distribution.1)To avoid getting bogged down in detail, we work with a binary alphabet. Thus, we willconsider Two-State Markov Evolutionary Trees.Following Farach and Kannan [9], Erd�os, Steel, Sz�ekely and Warnow [7, 8] and Ambainis,Desper, Farach and Kannan [2], we are interested in the problem of learning a Markov Evolu-tionary Tree, given samples from its output distribution. Following Farach and Kannan andAmbainis et al., we consider the problem of using polynomially many samples from a MarkovEvolutionary Tree M to \learn" a Markov Evolutionary Tree M 0 whose distribution is closeto that of M . We use the variation distance metric to measure the distance between twodistributions, D and D0 , on strings of length n. The variation distance between D and D0is Ps2f0;1gn jD(s)�D0(s)j. If M and M 0 are n-leaf Markov Evolutionary Trees, we use thenotation var(M;M 0) to denote the variation distance between the distribution of M and thedistribution of M 0 .We use the \Probably Approximately Correct" (PAC) distribution learning model ofKearns, Mansour, Ron, Rubinfeld, Schapire and Sellie [11]. Our main result is the �rstpolynomial-time PAC-learning algorithm for the class of Two-State Markov EvolutionaryTrees (which we will refer to as METs):Theorem 1 Let � and � be any positive constants. If our algorithm is given poly(n; 1=�; 1=�)samples from any MET M with any n-leaf topology T , then with probability at least 1 � �,the MET M 0 constructed by the algorithm satis�es var(M;M 0) � �.Interesting PAC-learning algorithms for biologically important restricted classes of METshave been given by Farach and Kannan in [9] and by Ambainis, Desper, Farach and Kannanin [2]. These algorithms (and their relation to our algorithm) will be discussed more fully inSection 1.1. At this point, we simply note that these algorithms only apply to METs whichsatisfy the following restrictions.Restriction 1: All transition matrices are symmetric (the probability of a `1' turninginto a `0' along an edge is the same as the probability of a `0' turning into a `1'.)1Biologists would view the n leaves as being existing species, and the internal nodes as being hypotheticalancestral species. Under the model, a single experiment as described above would produce a single bit positionof (for example) DNA for all of the n species. 1



Restriction 2: For some positive constant �, every pair of leaves (x; y) satis�esPr(x 6= y) � 1=2� �.We will explain in Section 1.1 why the restrictions signi�cantly simplify the problem of learn-ing Markov Evolutionary Trees (though they certainly do not make it easy!) The maincontribution of our paper is to remove the restrictions.While we have used variation distance (L1 distance) to measure the distance between thetarget distribution D and our hypothesis distributionD0 , Kearns et al. formulated the problemof learning probability distributions in terms of the Kullback-Leibler divergence distance fromthe target distribution to the hypothesis distribution. This distance is de�ned to be the sumover all length-n strings s of D(s) log(D(s)=D0(s)). Kearns et al. point out that the KLdistance gives an upper bound on variation distance, in the sense that the KL distance fromD to D0 is 
(var(D;D0)2). Hence if a class of distributions can be PAC-learned using KLdistance, it can be PAC-learned using variation distance. We justify our use of the variationdistance metric by showing that the reverse is true. In particular, we prove the followinglemma in the Appendix.Lemma 2 A class of probability distributions over the domain f0; 1gn that is PAC-learnableunder the variation distance metric is PAC-learnable under the KL-distance measure.The lemma is proved using a method related to the �-Bayesian shift of Abe and Warmuth [3].Note that the result requires a discrete domain of support for the target distribution, such asthe domain f0; 1gn which we use here.The rest of this section is organised as follows: Subsection 1.1 discusses previous workrelated to the General Markov Model of Evolution, and the relationship between this workand our work. Subsection 1.2 gives a brief synopsis of our algorithm for PAC-learning MarkovEvolutionary Trees. Subsection 1.3 discusses an interesting connection between the problemof learning Markov Evolutionary Trees and the problem of learning mixtures of Hammingballs, which was studied by Kearns et al. [11].1.1 Previous Work and Its Relation to Our WorkThe Two-State General Markov Model [14] which we study in this paper is a generalisation ofthe Cavender-Farris-Neyman Model of Evolution [5, 10, 13]. Before describing the Cavender-Farris-Neyman Model, let us return to the Two-State General Markov Model. We will �xattention on the particular two-state alphabet f0; 1g. Thus, the stochastic transition matrixassociated with edge e is simply the matrix 1� e0 e0e1 1� e1 ! ;where e0 denotes the probability that a `0' turns into a `1' along edge e and e1 denotes theprobability that a `1' turns into a `0' along edge e. The Cavender-Farris-Neyman Modelis simply the special case of the Two-State General Markov Model in which the transitionmatrices are required to be symmetric. That is, it is the special case of the Two-State GeneralMarkov Model in which Restriction 1 (from page 1) holds (so e0 = e1 for every edge e).We now describe past work on learning Markov Evolutionary Trees in the General MarkovModel and in the Cavender-Farris-Neyman Model. Throughout the paper, we will de�ne theweight w(e) of an edge e to be j1� e0 � e1j. 2



Steel [14] showed that if a j-State Markov Evolutionary Tree M satis�es (i) �i > 0 forall i, and (ii) the determinant of every transition matrix is outside of f�1; 0; 1g, then thedistribution of M uniquely determines its topology. In this case, he showed how to recoverthe topology, given the joint distribution of every pair of leaves. In the 2-state case, it su�cesto know the exact value of the covariances of every pair of leaves. In this case, he de�ned theweight �(e) of an edge e from node v to node w to be�(e) = 8<: w(e)pPr(v = 0)Pr(v = 1); if w is a leaf, andw(e)r Pr(v=0) Pr(v=1)Pr(w=0)Pr(w=1) ; otherwise. (1)Steel observed that these distances are multiplicative along a path and that the distance be-tween two leaves is equal to their covariance. Since the distances are multiplicative along apath, their logarithms are additive. Therefore, methods for constructing trees from additivedistances such as the method of Bandelt and Dress [4] can be used to reconstruct the topology.Steel's method does not show how to recover the parameters of a Markov Evolutionary Tree,even when the exact distribution is known and j = 2. In particular, the quantity that heobtains for each edge e is a one-dimensional distance rather than a two-dimensional vectorgiving the two transition probabilities e0 and e1 . Our method shows how to recover theparameters exactly, given the exact distribution, and how to recover the parameters approxi-mately (well enough to approximate the distribution), given polynomially-many samples fromM . Farach and Kannan [9] and Ambainis, Desper, Farach and Kannan [2] worked primarilyin the special case of the Two-State General Markov Model satisfying the two restrictionson Page 1. Farach and Kannan's paper was a breakthrough, because prior to their papernothing was known about the feasibility of reconstructing Markov Evolutionary Trees fromsamples. For any given positive constant �, they showed how to PAC-learn the class ofMETs which satisfy the two restrictions. However, the number of samples required is afunction of 1=�, which is taken to be a constant. Ambainis et al. improved the boundsgiven by Farach and Kannan to achieve asymptotically tight upper and lower bounds on thenumber of samples needed to achieve a given variation distance. These results are elegantand important. Nevertheless, the restrictions that they place on the model do signi�cantlysimplify the problem of learning Markov Evolutionary Trees. In order to explain why this istrue, we explain the approach of Farach et al.: Their algorithm uses samples from a METM , which satis�es the restrictions above, to estimate the \distance" between any two leaves.(The distance is related to the covariance between the leaves.) The authors then relate thedistance between two leaves to the amount of evolutionary time that elapses between them.The distances are thus turned into times. Then the algorithm of [1] is used to approximate theinter-leaf evolutionary times with times which are close, but form an additive metric, whichcan be �tted onto a tree. Finally, the times are turned back into transition probabilities.The symmetry assumption is essential to this approach because it is symmetry that relates aone-dimensional quantity (evolutionary time) to an otherwise two-dimensional quantity (theprobability of going from a `0' to a `1' and the probability of going from a `1' to a `0'). Thesecond restriction is also essential: If the probability that x di�ers from y were allowed toapproach 1=2, then the evolutionary time from x to y would tend to 1. This would meanthat in order to approximate the inter-leaf times accurately, the algorithm would have to getthe distance estimates very accurately, which would require many samples. Ambainis et al. [2]generalised their results to a symmetric version of the j-state evolutionary model, subject to3



the two restrictions above.Erd�os, Steel, Sz�ekely and Warnow [7, 8] also considered the reconstruction of MarkovEvolutionary Trees from samples. Like Steel [14] and unlike our paper or the papers ofFarach et al. [9, 2], Erd�os et al. were only interested in reconstructing the topology of a MET(rather than its parameters or distribution), and they were interested in using as few samplesas possible to reconstruct the topology. They showed how to reconstruct topologies in thej-state General Markov Model when the Markov Evolutionary Trees satisfy (i) Every rootprobability is bounded above 0, (ii) every transition probability is bounded above 0 andbelow 1=2, and (iii) for positive quantities � and �0 , the determinant of the transition matrixalong each edge is between � and 1 � �0 . The number of samples required is polynomialin the worst case, but is only polylogarithmic in certain cases including the case in whichthe MET is drawn uniformly at random from one of several (speci�ed) natural distributions.Note that restriction (iii) of Erd�os et al. is weaker than Farach and Kannan's Restriction 2(from Page 1). However, Erd�os et al. only show how to reconstruct the topology (thus theywork in a restricted case in which the topology can be uniquely constructed using samples).They do not show how to reconstruct the parameters of the Markov Evolutionary Tree, orhow to approximate its distribution.1.2 A Synopsis of our MethodIn this paper, we describe the �rst polynomial-time PAC-learning algorithm for the class ofTwo-State Markov Evolutionary Trees (METs). Our algorithm works as follows: First, usingsamples from the target MET, the algorithm estimates all of the pairwise covariances betweenleaves of the MET. Second, using the covariances, the leaves of the MET are partitioned into\related sets" of leaves. Essentially, leaves in di�erent related sets have such small covariancesbetween them that it is not always possible to use polynomially many samples to discoverhow the related sets are connected in the target topology. Nevertheless, we show that we canclosely approximate the distribution of the target MET by approximating the distributionof each related set closely, and then joining the related sets by \cut edges". The �rst step,for each related set, is to discover an approximation to the correct topology. Since we donot restrict the class of METs which we consider, we cannot guarantee to construct theexact induced topology (in the target MET). Nevertheless we guarantee to construct a goodenough approximation. The topology is constructed by looking at triples of leaves. We showhow to ensure that each triple that we consider has large inter-leaf covariances. We derivequadratic equations which allow us to approximately recover the parameters of the triple,using estimates of inter-leaf covariances and estimates of probabilities of particular outputs.We compare the outcomes for di�erent triples and use the comparisons to construct thetopology. Once we have the topology, we again use our quadratic equations to discover theparameters of the tree. As we show in Section 2.4, we are able to prevent the error in ourestimates from accumulating, so we are able to guarantee that each estimated parameter iswithin a small additive error of the \real" parameter in a (normalised) target MET. Fromthis, we can show that the variation distance between our hypothesis and the target is small.1.3 Markov Evolutionary Trees and Mixtures of Hamming BallsA Hamming ball distribution [11] over binary strings of length n is de�ned by a center (a stringc of length n) and a corruption probability p. To generate an output from the distribution, one4



starts with the center, and then ips each bit (or not) according to an independent Bernoulliexperiment with probability p. A linear mixture of j Hamming balls is a distribution de�nedby j Hamming ball distributions, together with j probabilities �1; : : : ; �j which sum to 1 anddetermine from which Hamming ball distribution a particular sample should be taken. Forany �xed j , Kearns et al. give a polynomial-time PAC-learning algorithm for a mixture of jHamming balls, provided all j Hamming balls have the same corruption probability2.A pure distribution over binary strings of length n is de�ned by n probabilities, �1; : : : ; �n .To generate an output from the distribution, the i'th bit is set to `0' independently withprobability �i , and to `1' otherwise. A pure distribution is a natural generalisation of aHamming ball distribution. Clearly, every linear mixture of j pure distributions can berealized by a j-state MET with a star-shaped topology. Thus, the algorithm given in thispaper shows how to learn a linear mixture of any two pure distributions. Furthermore, ageneralisation of our result to a j-ary alphabet would show how to learn any linear mixtureof any j pure distributions.2 The AlgorithmOur description of our PAC-learning algorithm and its analysis require the following de�ni-tions. For positive constants � and �, the input to the algorithm consists of poly(n; 1=�; 1=�)samples from a MET M with an n-leaf topology T . We will let �1 = �=(20n2), �2 = �1=(4n3),�3 = �42=26 , �4 = �1=(4n), �5 = �2�4=210 , and �6 = �5�32=27 . We have made no e�ort tooptimise these constants. However, we state them explicitly so that the reader can verifybelow that the constants can be de�ned consistently. We de�ne an �4-contraction of a METwith topology T 0 to be a tree formed from T 0 by contracting some internal edges e for which�(e) > 1� �4 , where �(e) is the edge-distance of e as de�ned by Steel [14] (see equation 1).If x and y are leaves of the topology T then we use the notation cov(x; y) to denote thecovariance of the indicator variables for the events \the bit at x is 1" and \the bit at y is 1".Thus, cov(x; y) = Pr(xy = 11) � Pr(x = 1)Pr(y = 1): (2)We will use the following observations.Observation 3 If MET M 0 has topology T 0 and e is an internal edge of T 0 from the root r tonode v and T 00 is a topology that is the same as T 0 except that v is the root (so e goes from v tor) then we can construct a MET with topology T 00 which has the same distribution as M 0. Todo this, we simply set Pr(v = 1) appropriately (from the distribution of M 0). If Pr(v = 1) = 0we set e0 to be Pr(r = 1) (from the distribution of M 0). If Pr(v = 1) = 1 we set e1 to bePr(r = 0) (from the distribution of M 0). Otherwise, we set e0 = Pr(r = 1)(old e1)=Pr(v = 0)and e1 = Pr(r = 0)(old e0)=Pr(v = 1).Observation 4 If MET M 0 has topology T 0 and v is a degree-2 node in T 0 with edge e leadinginto v and edge f leading out of v and T 00 is a topology which is the same as T 0 except that e2The kind of PAC-learning that we consider in this paper is generation. Kearns et al. also show how to doevaluation for the special case of the mixture of j Hamming balls described above. Using the observation thatthe output distributions of the subtrees below a node of a MET are independent, provided the bit at that nodeis �xed, we can also solve the evaluation problem for METs. In particular, we can calculate (in polynomialtime) the probability that a given string is output by the hypothesis MET.5



and f have been contracted to form edge g then there is a MET with topology T 00 which hasthe same distribution as M 0 . To construct it, we simply set g0 = e0(1� f1) + (1� e0)f0 andg1 = e1(1� f0) + (1� e1)f1.Observation 5 If MET M 0 has topology T 0 then there is a MET M 00 with topology T 0 whichhas the same distribution on its leaves as M 0 and has every internal edge e satisfy e0+e1 � 1.Proof of Observation 5: We will say that an edge e is \good" if e0 + e1 � 1. Startingfrom the root we can make all edges along a path to a leaf good, except perhaps the last edgein the path. If edge e from u to v is the �rst non-good edge in the path we simply set e0to 1 � (old e0) and e1 to 1 � (old e1). This makes the edge good but it has the side e�ectof interchanging the meaning of \0" and \1" at node v. As long as we interchange \0" and\1" an even number of times along every path we will preserve the distribution at the leaves.Thus, we can make all edges good except possibly the last one, which we use to get the parityof the number of interchanges correct. 2We will now describe the algorithm. In subsection 2.6, we will prove that with probabilityat least 1� � , the MET M 0 that it constructs satis�es var(M;M 0) � �. Thus, we will proveTheorem 1.2.1 Step 1: Estimate the covariances of pairs of leavesFor each pair (x; y) of leaves, obtain an \observed" covariance dcov(x; y) such that, withprobability at least 1� �=3, all observed covariances satisfydcov(x; y) 2 [cov(x; y)� �3; cov(x; y) + �3]:Lemma 6 Step 1 requires only poly(n; 1=�; 1=�) samples from M .Proof: Consider leaves x and y and let p denote Pr(xy = 11). By a Cherno� bound(see [12]), after k samples the observed proportion of outputs with xy = 11 is within ��3=4of p, with probability at least 1� 2 exp(�k�23=23). For each pair (x; y) of leaves, we estimatePr(xy = 11), Pr(x = 1) and Pr(y = 1) within ��3=4. From these estimates, we can calculatedcov(x; y) within ��3 using Equation 2. 22.2 Step 2: Partition the leaves of M into related setsConsider the following leaf connectivity graph whose nodes are the leaves of M . Nodes x andy are connected by a \positive" edge if dcov(x; y) � (3=4)�2 and are connected by a \negative"edge if dcov(x; y) � �(3=4)�2 . Each connected component in this graph (ignoring the signs ofedges) forms a set of \related" leaves. For each set S of related leaves, let s(S) denote theleaf in S with smallest index. METs have the property that for leaves x, y and z , cov(y; z) ispositive i� cov(x; y) and cov(y; z) have the same sign. (To see this, use the following equation,which can be proved by algebraic manipulation from Equation 2.)cov(x; y) = Pr(v = 1)Pr(v = 0)(1 � �0 � �1)(1 � �0 � �1); (3)where v is taken to be the least common ancestor of x and y and �0 and �1 are the transitionprobabilities along the path from v to x and �0 and �1 are the transition probabilities along6



the path from v to y. Therefore, as long as the observed covariances are as accurate as statedin Step 1, the signs on the edges of the leaf connectivity graph partition the leaves of S intotwo sets S1 and S2 in such a way that s(S) 2 S1 , all covariances between pairs of leaves inS1 are positive, all covariances between pairs of leaves in S2 are positive, and all covariancesbetween a leaf in S1 and a leaf in S2 are negative.For each set S of related leaves, let T (S) denote the subtree formed from T by deleting allleaves which are not in S , contracting all degree-2 nodes, and then rooting at the neighbourof s(S). Let M(S) be a MET with topology T (S) which has the same distribution as M onits leaves and satis�es the following.� Every internal edge e of M(S) has e0 + e1 � 1. (4)� Every edge e to a node in S1 has e0 + e1 � 1.� Every edge e to a node in S2 has e0 + e1 � 1.Observations 3, 4 and 5 guarantee that M(S) exists.Observation 7 As long as the observed covariances are as accurate as stated in Step 1 (whichhappens with probability at least 1� �=3), then for any related set S and any leaf x 2 S thereis a leaf y 2 S such that jcov(x; y)j � �2=2.Observation 8 As long as the observed covariances are as accurate as stated in Step 1 (whichhappens with probability at least 1� �=3), then for any related set S and any edge e of T (S)there are leaves a and b which are connected through e and have jcov(a; b)j � �2=2.Observation 9 As long as the observed covariances are as accurate as stated in Step 1 (whichhappens with probability at least 1 � �=3), then for any related set S , every internal node vof M(S) has Pr(v = 0) 2 [�2=2; 1 � �2=2].Proof of Observation 9: Suppose to the contrary that v is an internal node of M(S)with Pr(v = 0) 2 [0; �2=2) [ (1 � �2=2; 1]. Using Observation 3, we can re-root M(S) at vwithout changing the distribution. Let w be a child of v. By equation 3, every pair of leavesa and b which are connected through (v; w) satisfy jcov(a; b)j � Pr(v = 0)Pr(v = 1) < �2=2.The observation now follows from Observation 8. 2Observation 10 As long as the observed covariances are as accurate as stated in Step 1(which happens with probability at least 1� �=3), then for any related set S , every edge e ofM(S) has w(e) � �2=2.Proof of Observation 10: This follows from Observation 8 using Equation 3. (Recallthat w(e) = j1� e0 � e1j.) 22.3 Step 3: For each related set S , �nd an �4-contraction T 0(S) of T (S).In this section, we will assume that the observed covariances are as accurate as stated in Step 1(this happens with probability at least 1 � �=3). Let S be a related set. With probabilityat least 1 � �=(3n) we will �nd an �4-contraction T 0(S) of T (S). Since there are at most n7



related sets, all �4-contractions will be constructed with probability at least 1� �=3. Recallthat an �4-contraction of M(S) is a tree formed from T (S) by contracting some internaledges e for which �(e) > 1� �4 . We start with the following observation, which will allow usto redirect edges for convenience.Observation 11 If e is an internal edge of T (S) then �(e) remains unchanged if e is redi-rected as in Observation 3.Proof: The observation can be proved by algebraic manipulation from Equation 1 andObservation 3. Note (from Observation 9) that every endpoint v of e satis�es Pr(v = 0) 2(0; 1). Thus, the redirection in Observation 3 is not degenerate and �(e) is de�ned. 2We now describe the algorithm for constructing an �4 -contraction T 0(S) of T (S). Wewill build up T 0(S) inductively, adding leaves from S one by one. That is, when we havean �4-contraction T 0(S0) of a subset S0 of S , we will consider a leaf x 2 S � S0 and buildan �4-contraction T 0(S0 [ fxg) of T (S0 [ fxg). Initially, S0 = ;. The precise order in whichthe leaves are added does not matter, but we will not add a new leaf x unless S0 containsa leaf y such that jdcov(x; y)j � (3=4)�2 . When we add a new leaf x we will proceed asfollows. First, we will consider T 0(S0), and for every edge e0 = (u0; v0) of T 0(S0), we will usethe method in the following section (Section 2.3.1) to estimate �(e0). More speci�cally, wewill let u and v be nodes which are adjacent in T (S0) and have u 2 u0 and v 2 v0 in the�4-contraction T 0(S0). We will show how to estimate �(e). Afterwards (in Section 2.3.2), wewill show how to insert x.2.3.1 Estimating �(e)In this section, we suppose that we have a MET M(S0) on a set S0 of leaves, all of whichform a single related set. T (S0) is the topology of M(S0) and T 0(S0) is an �4-contraction ofT (S0). The edge e0 = (u0; v0) is an edge of T 0(S0). e = (u; v) is the edge of T (S0) for whichu 2 u0 and v 2 v0 . We wish to estimate �(e) within ��4=16. We will ensure that the overallprobability that the estimates are not in this range is at most �=(6n).The proof of the following equations is straightforward. We will typically apply them insituations in which z is the error of an approximation.x+ zy � z = xy + � zy � z��1 + xy� (5)1 + z1� z � 1 + 4z if z � 1=2 (6)1� z1 + z � 1� 2z if z � 0 (7)Case 1: e0 is an internal edgeWe �rst estimate e0 , e1 , Pr(u = 0), and Pr(v = 0) within ��5 of the correct values.By Observation 9, Pr(u = 0) and Pr(v = 0) are in [�2=2; 1 � �2=2]. Thus, our estimate ofPr(u = 0) is within a factor of (1� 2�5=�2) = (1� �42�9) of the correct value. Similarly, ourestimates of Pr(u = 1), Pr(v = 0) and Pr(v = 1) are within a factor of (1 � �42�9) of thecorrect values. Now using Equation 1 we can estimate �(e) within ��4=16. In particular,8



our estimate of �(e) is at most(w(e) + 2�5)s Pr(v = 0)Pr(v = 1)Pr(w = 0)Pr(w = 1) (1 + �42�9)(1� �42�9)� (w(e) + 2�5)s Pr(v = 0)Pr(v = 1)Pr(w = 0)Pr(w = 1)(1 + �42�7)� �(e) + �4=16:In the inequalities, we used Equation 6 and the fact that �(e) � 1. Similarly, by Equation 7,our estimate of �(e) is at least(w(e) � 2�5)s Pr(v = 0)Pr(v = 1)Pr(w = 0)Pr(w = 1) (1� �42�9)(1 + �42�9)� (w(e) � 2�5)s Pr(v = 0)Pr(v = 1)Pr(w = 0)Pr(w = 1)(1� �42�8)� �(e)� �4=16:We now show how to estimate e0 , e1 , Pr(u = 0) and Pr(v = 0) within ��5 . We saythat a path from node � to node � in a MET is strong if jcov(�; �)j � �2=2. It follows fromEquation 3 that if node  is on this path thenjcov(; �)j � jcov(�; �)j (8)jcov(�; �)j � jcov(�; )j jcov(; �)j (9)We say that a quartet (c; b j a; d) of leaves a, b, c and d is a good estimator of the edgee = (u; v) if e is an edge of T (S0) and the following hold in T (S0) (see Figure 1).1. a is a descendent of v.2. The undirected path from c to a is strong and passes through u then v.3. The path from u to its descendent b is strong and only intersects the (undirected) pathfrom c to a at node u.4. The path from v to its descendent d is strong and only intersects the path from v to aat node v.We say that (c; b j a; d) is an apparently good estimator of e0 if the following hold in the�4-contraction T 0(S0).1. a is a descendent of v0 .2. The undirected path from c to a is strong and passes through u0 then v0 .3. The path from u0 to its descendent b is strong and only intersects the (undirected) pathfrom c to a at node u0 .4. The path from v0 to its descendent d is strong and only intersects the path from v0 toa at node v0 . 9
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a?p0 , p1?dFigure 1: Finding Pr(u = 1), e0 and e1Observation 12 If e is an edge of T (S0) and (c; b j a; d) is a good estimator of e then anyleaves x; y 2 fa; b; c; dg have jcov(x; y)j � (�2=2)3.Proof: The observation follows from Equation 8 and 9 and from the de�nition of a goodestimator. 2Lemma 13 If (c; b j a; d) is a good estimator of e then it can be used (along with poly(n; 1=�; 1=�)samples from M(S0)) to estimate e0 , e1 , Pr(u = 0) and Pr(v = 0) within ��5 . (If we usesu�ciently many samples, then the probability that any of the estimates is not within ��5 ofthe correct value is at most �=(12n7)).Proof: Let q0 and q1 denote the transition probabilities from v to a (see Figure 1) and letp0 and p1 denote the transition probabilities from u to a. We will �rst show how to estimatep0 , p1 , and Pr(u = 1) within ��6 . Without loss of generality (by Observation 3) we canassume that c is a descendant of u. (Otherwise we can re-root T (S0) at u without changingthe distribution on the nodes or p0 or p1 .) Let � be the path from u to b and let  be thepath from u to c. We now de�necov(b; c; 0) = Pr(abc = 011)Pr(a = 0)� Pr(ab = 01)Pr(ac = 01); (10)cov(b; c; 1) = Pr(abc = 111)Pr(a = 1)� Pr(ab = 11)Pr(ac = 11):(These do not quite correspond to the conditional covariances of b and c, but they are relatedto these.) We also de�neF = 12 �cov(b; c) + cov(b; c; 0) � cov(b; c; 1)cov(b; c) � ; andD = F 2 � cov(b; c; 0)=cov(b; c):The following equations can be proved by algebraic manipulation from Equation 10, Equa-tion 2 and the de�nitions of F and D.cov(b; c; 0) = Pr(u = 1)Pr(u = 0)(1 � �0 � �1)(1 � 0 � 1)p1(1� p0) (11)cov(b; c; 1) = Pr(u = 1)Pr(u = 0)(1 � �0 � �1)(1 � 0 � 1)p0(1� p1)F = 1 + p1 � p02 (12)10



D = (1� p0 � p1)24 (13)Case 1a: a 2 S1In this case, by Equation 4 and by Observation 10, we have 1 � p0 � p1 > 0. Thus, byEquation 13, we have pD = 1� p0 � p12 : (14)Equations 12 and 14 imply p1 = F �pD (15)p0 = 1� F �pD (16)Also, since Pr(a = 0) = Pr(u = 1)p1 + (1� Pr(u = 1))(1 � p0), we havePr(u = 1) = 12 + F � Pr(a = 0)2pD (17)From these equations, it is clear that we could �nd p0 , p1 , and Pr(u = 1) if we knew Pr(a = 0),cov(b; c), cov(b; c; 0) and cov(b; c; 1) exactly. We now show that with polynomially-manysamples, we can approximate the values of Pr(a = 0), cov(b; c), cov(b; c; 0) and cov(b; c; 1)su�ciently accurately so that using our approximations and the above equations, we obtainapproximations for p0 , p1 and Pr(u = 1) which are within ��6 . As in the proof of Lemma 6,we can use Equations 2 and 10 to estimate Pr(a = 0), cov(b; c), cov(b; c; 0) and cov(b; c; 1)within ��0 for any �0 whose inverse is at most a polynomial in n and 1=�. Note that ourestimate of cov(b; c) will be non-zero by Observation 12 (as long as �0 � (�2=2)3), so wewill be able to use it to estimate F from its de�nition. Now, using the de�nition of F andEquation 5, our estimate of 2F is at most2F + 3�0cov(b; c) � 3�0 (1 + 2F ):By Observation 12, this is at most2F + 3�0(�2=2)3 � 3�0 (1 + 2): (18)The error is at most �00 for any �00 whose is inverse is at most polynomial in n and 1=�. (Thisis accomplished by making �0 small enough with respect to �2 according to equation 18.) Wecan similarly bound the amount that we underestimate F . Now we use the de�nition of Dto estimate D. Our estimate is at most(F + �00)2 � cov(b; c; 0) � �0cov(b; c) + �0 :Using Equation 5, this is at mostD + 2�00F + �002 + �0cov(b; c) + �0 �1 + cov(b; c; 0)cov(b; c) � :11



Once again, by Observation 12, the error can be made within ��000 for any �000 whose isinverse is polynomial in n and 1=� (by making �0 and �00 su�ciently small). It follows thatour estimate of pD is at most pD(1+�000=(2D)) and (since Observation 12 gives us an upperbound on the value of D as a function of �2), we can estimate pD within ��0000 for any�0000 whose inverse is polynomial in n and 1=�. This implies that we can estimate p0 and p1within ��6 . Observation 12 and Equation 3 imply that w(p) � (�2=2)3 . Thus, the estimatefor pD is non-zero. This implies that we can similarly estimate Pr(u = 1) within ��6 usingEquation 17.Now that we have estimates for p0 , p1 , and Pr(u = 1) which are within ��6 of the correctvalues, we can repeat the trick to �nd estimates for q0 and q1 which are also within ��6 . Weuse leaf d for this. Observation 4 implies thate0 = p0 � q01� q0 � q1 and e1 = p1 � q11� q0 � q1 :Using these equations, our estimate of e0 is at mostp0 � q0 + 2�61� q0 � q1 � 2�6 :Equation 5 and our observation above that w(p) � (�2=2)3 imply that the error is at most2�6(�2=2)3 � 2�6 �1 + p0 � q01� q0 � q1� ;which is at most 27�6=�32 = �5 . Similarly, the estimate for e0 is at least e0 � �5 and theestimate for e1 is within ��5 of e1 . We have now estimated e0 , e1 , and Pr(u = 0) within��5 . As we explained in the beginning of this section, we can use these estimates to estimate�(e) within ��4=16.Case 1b: a 2 S2In this case, by Equation 4 and by Observation 10, we have 1 � p0 � p1 < 0. Thus, byequation 13, we have pD = ��1� p0 � p12 � : (19)Equations 12 and 19 imply p1 = F +pD (20)p0 = 1� F +pD (21)Equation 17 remains unchanged. The process of estimating p0 , p1 and Pr(u = 1) (from thenew equations) is the same as for Case 1a. This concludes the proof of Lemma 13. 2Observation 14 Suppose that e0 is an edge from u0 to v0 in T 0(S0) and that e = (u; v)is the edge in T (S0) such that u 2 u0 and v 2 v0 . There is a good estimator (c; b j a; d)of e. Furthermore, every good estimator of e is an apparently good estimator of e0 . (Refer toFigure 2.) 12



u����u0?v����v0?a?b
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?dFigure 2: (c; b j a; d) is a good estimator of e = (u; v) and an apparently good estimator ofe0 = (u0; v0).
u00&%'$u0??b

c u?v?v00&%'$v0?a ?dFigure 3: (c; b j a; d) is an apparently good estimator of e0 = (u0; v0) and a good estimator ofp = (u00; v00). �(p) � �(u; v).Proof: Leaves c and a can be found to satisfy the �rst two criteria in the de�nition ofa good estimator by Observation 8. Leaf b can be found to satisfy the third criterion byObservation 8 and Equation 8 and by the fact that the degree of u is at least 3 (see thetext just before Equation 4). Similarly, leaf d can be found to satisfy the fourth criterion.(c; b j a; d) is an apparently good estimator of e0 because only internal edges of T (S0) can becontracted in the �4-contraction T 0(S0). 2Observation 15 Suppose that e0 is an edge from u0 to v0 in T 0(S0) and that e = (u; v) isan edge in T (S0) such that u 2 u0 and v 2 v0 . Suppose that (c; b j a; d) is an apparently goodestimator of e0 . Let u00 be the meeting point of c, b and a in T (S0). Let v00 be the meetingpoint of c, a and d in T (S0). (Refer to Figure 3.) Then (c; b j a; d) is a good estimator ofthe path p from u00 to v00 in T (S0). Also, �(p) � �(e).Proof: The fact that (c; b j a; d) is a good estimator of p follows from the de�nition of13



good estimator. The fact that �(p) � �(e) follows from the fact that the distances � aremultiplicative along a path, and bounded above by 1. 2Observations 14 and 15 imply that in order to estimate �(e) within ��4=16, we needonly estimate �(e) using each apparently good estimator of e0 and then take the maximum.By Lemma 13, the failure probability for any given estimator is at most �=(12n7), so withprobability at least 1 � �=(12n3), all estimators give estimates within ��4=16 of the correctvalues. Since there are at most 2n edges e0 in T 0(S0), and we add a new leaf x to S0 atmost n times, all estimates are within ��4=16 with probability at least 1� �=(6n).Case 2: e0 is not an internal edgeIn this case v = v0 since v0 is a leaf of T (S0). We say that a pair of leaves (b; c) is agood estimator of e if the following holds in T (S0): The paths from leaves v, b and c meetat u and jcov(v; b)j, jcov(v; c)j and jcov(b; c)j are all at least (�2=2)2 . We say that (b; c) is anapparently good estimator of e0 if the following holds in T 0(S0): The paths from leaves v, band c meet at u0 and jcov(v; b)j, jcov(v; c)j and jcov(b; c)j are all at least (�2=2)2 . As in theprevious case, the result follows from the following observations.Observation 16 If (b; c) is a good estimator of e then it can be used (along with poly(n; 1=�; 1=�)samples from M(S0)) to estimate e0 , e1 , and Pr(u = 0) within ��5 . (The probability thatany of the estimates is not within ��5 of the correct value is at most �=(12n3).)Proof: This follows from the proof of Lemma 13. 2Observation 17 Suppose that e0 is an edge from u0 to leaf v in T 0(S0) and that e = (u; v) isan edge in T (S0) such that u 2 u0. There is a good estimator (b; c) of e. Furthermore, everygood estimator of e is an apparently good estimator of e0 .Proof: This follows from the proof of Observation 14 and from Equation 9. 2Observation 18 Suppose that e0 is an edge from u0 to leaf v in T 0(S0) and that e = (u; v) isan edge in T (S0) such that u 2 u0 . Suppose that (b; c) is an apparently good estimator of e0 .Let u00 be the meeting point of b, v and c in T (S0). Then (b; c) is a good estimator of thepath p from u00 to v in T (S0). Also, �(p) � �(e).Proof: This follows from the proof of Observation 15. 22.3.2 Using the Estimates of �(e).We now return to the problem of showing how to add a new leaf x to T 0(S0). As we indicatedabove, for every internal edge e0 = (u0; v0) of T 0(S0), we use the method in Section 2.3.1 toestimate �(e) where e = (u; v) is the edge of T (S0) such that u 2 u0 and v 2 v0 . If theobserved value of �(e) exceeds 1 � 15�4=16 then we will contract e. The accuracy of ourestimates will guarantee that we will not contract e if �(e) � 1 � �4 , and that we de�nitelycontract e if �(e) > 1� 7�4=8. We will then add the new leaf x to T 0(S0) as follows. We willinsert a new edge (x; x0) into T 0(S0). We will do this by either (1) identifying x0 with a nodealready in T 0(S0), or (2) splicing x0 into the middle of some edge of T 0(S0).14



We will now show how to decide where to attach x0 in T 0(S0). We start with the followingde�nitions. Let S00 be the subset of S0 such that for every y 2 S00 we have jcov(x; y)j � (�2=2)4 .Let T 00 be the subtree of T 0(S0) induced by the leaves in S00 . Let S000 be the subset of S0 suchthat for every y 2 S000 we have jdcov(x; y)j � (�2=2)4 � �3 . Let T 000 be the subtree of T 0(S0)induced by the leaves in S000 .Observation 19 If T (S0 [ fxg) has x0 attached to an edge e = (u; v) of T (S0) and e0 is theedge corresponding to e in T 0(S0) (that is, e0 = (u0; v0), where u 2 u0 and v 2 v0), then e0 isan edge of T 00.Proof: By Observation 14 there is a good estimator (c; b j a; d) for e. Since x is beingadded to S0 (using Equation 8), jcov(x; x0)j � �2=2. Thus, by Observation 12 and Equation 9,every leaf y 2 fa; b; c; dg has jcov(x; y)j � (�2=2)4 . Thus, a, b, c and d are all in S00 so e0 isin T 00 . 2Observation 20 If T (S0 [ fxg) has x0 attached to an edge e = (u; v) of T (S0) and u and vare both contained in node u0 of T 0(S0) then u0 is a node of T 00.Proof: Since u is an internal node of T (S0), it has degree at least 3. By Observation 8and Equation 8, there are three leaves a1 , a2 and a3 meeting at u with jcov(u; ai)j � �2=2.Similarly, jcov(u; v)j � �2=2. Thus, for each ai , jcov(x; ai)j � (�2=2)3 so a1 , a2 , and a3 arein S00 . 2Observation 21 S00 � S000.Proof: This follows from the accuracy of the covariance estimates in Step 1. 2We will use the following algorithm to decide where to attach x0 in T 000 . In the algorithm,we will use the following tool. For any triple (a; b; c) of leaves in S0 [ fxg, let u denote themeeting point of the paths from leaves a, b and c in T (S0[fxg). Let Mu be the MET whichhas the same distribution as M(S0 [fxg), but is rooted at u. (Mu exists, by Observation 3.)Let �c(a; b; c) denote the weight of the path from u to c in Mu . By observation 11, �c(a; b; c)is equal to the weight of the path from u to c in M(S0[fxg). (This follows from the fact thatre-rooting at u only redirects internal edges.) It follows from the de�nition of � (Equation 1)and from Equation 3 that �c(a; b; c) = scov(a; c)cov(b; c)cov(a; b) : (22)If a, b and c are in S000[fxg, then by the accuracy of the covariance estimates and Equations 8and 9, the absolute value of the pairwise covariance of any pair of them is at least �82=210 . Asin Section 2.3.1, we can estimate cov(a; c), cov(b; c) and cov(a; b) within a factor of (1 � �0)of the correct values for any �0 whose inverse is at most a polynomial in n, and 1=�. Thus,we can estimate �c(a; b; c) within a factor of (1 � �4=16) of the correct value. We will takesu�ciently many samples to ensure that the probability that any of the estimates is outsideof the required range is at most �=(6n2). Thus, the probability that any estimate is outsideof the range for any x is at most �=(6n).We will now determine where in T 000 to attach x0 . Choose an arbitrary internal root u0of T 000 . We will �rst see where x0 should be placed with respect to u0 . For each neighbour v0of u0 in T 000 , each pair of leaves (a1; a2) on the \u0" side of (u0; v0) and each leaf b on the \v0"side of (u0; v0) (see Figure 4) perform the following two tests.15
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Figure 4: The setting for Test1(u0; v0; a1; a2; b) and Test2(u0; v0; a1; a2; b) when v0 is an internalnode of T 000 . (If v0 is a leaf, we perform the same tests with v0 = b.).a1 x0x

f ua2 v b
Figure 5: Either Test1(u0; v0; a1; a2; b) fails or Test2(u0; v0; a1; a2; b) fails.� Test1(u0; v0; a1; a2; b): The test succeeds if the observed value of �x(a1; x; b)=�x(a2; x; b)is at least 1� �4=4.� Test2(u0; v0; a1; a2; b): The test succeeds if the observed value of �b(a1; a2; b)=�b(a1; x; b)is at most 1� 3�4=4.We now make the following observations.Observation 22 If x is on the \u side" of (u; v) in T (S000 [ fxg) and u is in u0 in T 000 andv is in v0 6= u0 in T 000 then some test fails.Proof: Since u0 is an internal node of T 000 , it has degree at least 3. Thus, we can constructa test such as the one depicted in Figure 5. (If x0 = u then the �gure is still correct, thatwould just mean that �(f) = 1. Similarly, if v0 is a leaf, we simply have �(f 0) = 1 where f 0is the edge from v to b.) Now we have1�(f) = �x(a1; x; b)�x(a2; x; b) = �b(a1; a2; b)�b(a1; x; b) :However, Test1(u0; v0; a1; a2; b) will only succeed if the left hand fraction is at least 1� �4=4.Furthermore, Test2(u0; v0; a1; a2; b) will only succeed if the right hand fraction is at most1� 3�4=4. Since our estimates are accurate to within a factor of (1 � �4=16), at least one ofthe two tests will fail. 2Observation 23 If x is between u and v in T (S000 [ fxg) and the edge f from u to x0 has�(f) � 1 � 7�4=8 then Test1(u0; v0; a1; a2; b) and Test2(u0; v0; a1; a2; b) succeed for all choicesof a1 , a2 and b. 16
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Figure 6: Test1(u0; v0; a1; a2; b) and Test2(u0; v0; a1; a2; b) succeed for all choices of a1 , a2 andb.a1 @@@a2 ��� f u e v g x0x ba1 @@@a2 ��� f u e v g

b x0xFigure 7: Test1(u0; v0; a1; a2; b) and Test2(u0; v0; a1; a2; b) succeed for all choices of a1 , a2 andb.Proof: Every such test has the form depicted in Figure 6, where again g might be degen-erate, in which case �(g) = 1. Observe that �x(a1; x; b)=�x(a2; x; b) = 1, so its estimate is atleast 1� �4=4 and Test1 succeeds. Furthermore,�b(a1; a2; b)�b(a1; x; b) = �(f)�(g) � �(f) � 1� 7�4=8;so the estimate is at most 1� 3�4=4 and Test2 succeeds. 2Observation 24 If x is on the \v side" of (u; v) in T (S000[fxg) and �(e) � 1�7�4=8 (recallfrom the beginning of Section 2.3.2 that �(e) is at most 1� 7�4=8 if u and v are in di�erentnodes of T 000), then Test1(u0; v0; a1; a2; b) and Test2(u0; v0; a1; a2; b) succeed for all choices ofa1 , a2 and b.Proof: Note that this case only applies if v is an internal node of T (S000). Thus, everysuch test has one of the forms depicted in Figure 7, where some edges may be degenerate.Observe that in both cases �x(a1; x; b)=�x(a2; x; b) = 1, so its estimate is at least 1 � �4=4and Test1 succeeds. Also in both cases�b(a1; a2; b)�b(a1; x; b) = �(e)�(f)�(g) � �(e) � 1� 7�4=8;so the estimate is at most 1� 3�4=4 and Test2 succeeds. 2Now note (using Observation 22) that node u0 has at most one neighbour v0 for which alltests succeed. Furthermore, if there is no such v0 , Observations 23 and 24 imply that x0 canbe merged with u0 . The only case that we have not dealt with is the case in which there isexactly one v0 for which all tests succeed. In this case, if v0 is a leaf, we insert x0 in the middle17



of edge (u0; v0). Otherwise, we will either insert x0 in the middle of edge (u0; v0), or we willinsert it in the subtree rooted at v0 . In order to decide which, we perform similar tests fromnode v0 , and we check whether Test1(v0; u0; a1; a2; b) and Test2(v0; u0; a1; a2; b) both succeedfor all choices of a1 , a2 , and b. If so, we put x0 in the middle of edge (u0; v0). Otherwise, werecursively place x0 in the subtree rooted at v0 .2.4 Step 4: For each related set S , construct a MET M 0(S) which is closeto M(S)For each set S of related leaves we will construct a MET M 0(S) with leaf-set S such thateach edge parameter of M 0(S) is within ��1 of the corresponding parameter of M(S). Thetopology of M 0(S) will be T 0(S). We will assume without loss of generality that T (S) hasthe same root as T 0(S). The failure probability for S will be at most �=(3n), so the overallfailure will be at most �=3.We start by observing that the problem is easy if S has only one or two leaves.Observation 25 If jSj < 3 then we can construct a MET M 0(S) such that each edge pa-rameter of M 0(S) is within ��1 of the corresponding parameter of M(S).We now consider the case in which S has at least three leaves. Any edge of T (S) whichis contracted in T 0(S) can be regarded as having e0 and e1 set to 0. The fact that these arewithin ��1 of their true values follows from the following lemma.Lemma 26 If e is an internal edge of M(S) from v to w with �(e) > 1� �4 then e0 + e1 <2�4 = �1=(2n).Proof: First observe from Observation 9 that Pr(w = 0) 62 f0; 1g and from Observation 10that e0 + e1 6= 1. Using algebraic manipulation, one can see thatPr(v = 1) = Pr(w = 1)� e01� e0 � e1Pr(v = 0) = Pr(w = 0)� e11� e0 � e1 :Thus, by Equation 1, �(e)2 = �1� e0Pr(w = 1)��1� e1Pr(w = 0)� :Since �(e)2 � 1� 2�4 , we have e0 � 2�4 Pr(w = 1) and e1 � 2�4 Pr(w = 0), which proves theobservation. 2Thus, we need only show how to label the remaining parameters within ��1 . Note thatwe have already shown how to do this in Section 2.3.1. Here the total failure probability isat most �=(3n) because there is a failure probability of at most �=(6n2) associated with eachof the 2n edges.2.5 Step 5: Form M 0 from the METs M 0(S)Make a new root r for M 0 and set Pr(r = 1) = 1. For each related set S of leaves, let udenote the root of M 0(S), and let p denote the probability that u is 0 in the distributionof M 0(S). Make an edge e from r to u with e1 = p.18



2.6 Proof of Theorem 1Let M 00 be a MET which is formed from M as follows.� Related sets are formed as in Step 2.� For each related set S , a copy M 00(S) of M(S) is made.� The METs M 00(S) are combined as in Step 5.Theorem 1 follows from the following lemmas.Lemma 27 Suppose that for every set S of related leaves, every parameter of M 0(S) is within��1 of the corresponding parameter in M(S). Then var(M 00;M 0) � �=2.Proof: First, we observe (using a crude estimate) that there are at most 5n2 parametersin M 0 . (Each of the (at most n) METs M 0(S) has one root parameter and at most 4n edgeparameters.) We will now show that changing a single parameter of a MET by at most ��1yields at MET whose variation distance from the original is at most 2�1 . This implies thatvar(M 00;M 0) � 10n2�1 = �=2. Suppose that e is an edge from u to v and e0 is changed. Theprobability that the output has string s on the leaves below v and string s0 on the remainingleaves is Pr(u = 0)Pr(s0 j u = 0)(e0 Pr(s j v = 1) + (1� e0) Pr(s j v = 0))+ Pr(u = 1)Pr(s0 j u = 1)(e1 Pr(s j v = 0) + (1� e1) Pr(s j v = 1)):Thus, the variation distance between M 00 and a MET obtained by changing the value of e0(within ��1) is at most�1Xs Xs0 Pr(u = 0)Pr(s0 j u = 0)(Pr(s j v = 1) + Pr(s j v = 0))� �1 Pr(u = 0)  Xs0 Pr(s0 j u = 0)!  (Xs Pr(s j v = 1)) + (Xs Pr(s j v = 0))!� 2�1:Similarly, if �1 is the root parameter of a MET then the probability of having output s is�1 Pr(s j r = 1) + (1� �1) Pr(s j r = 0):So the variation distance between the original MET and one in which �1 is changed within��1 is at most Xs �1(Pr(s j r = 1) + Pr(s j r = 0)) � 2�1: 2Lemma 28 var(M 00;M) � �=2.Before we prove Lemma 28, we provide some background material. Recall that the weightw(e) of an edge e of a MET is j1 � e0 � e1j and de�ne the weight w(`) of a leaf ` to be theproduct of the weights of the edges on the path from the root to `. We will use the followinglemma. 19



Lemma 29 In any MET with root r, the variation distance between the distribution on theleaves conditioned on r = 1 and the distribution on the leaves conditioned on r = 0 is at most2P`w(`), where the sum is over all leaves `.Proof: We proceed by induction on the number of edges in the MET. In the base casethere are no edges so r is a leaf, and the result holds. For the inductive step, let e be an edgefrom r to node x. For any string s1 on the leaves below x and any string s2 on the otherleaves, Pr(s1s2 j r = 0) = Pr(s2 j r = 0)(e0 Pr(s1 j x = 1) + (1� e0) Pr(s1 j x = 0):Algebraic manipulation of this formula shows that Pr(s1s2 j r = 1)� Pr(s1s2 j r = 0) is(1� e0 � e1) Pr(s2 j r = 1) (Pr(s1 j x = 1)� Pr(s1 j x = 0))+ Pr(s1 j r = 0) (Pr(s2 j r = 1)� Pr(s2 j r = 0)): (23)It follows that the variation distance is at most the sum over all s1s2 of the absolute value ofthe quantity in Equation 23, which is at mostj1� e0 � e1j  Xs2 Pr(s2 j r = 1)! Xs1 jPr(s1 j x = 1)� Pr(s1 j x = 0)j!+  Xs1 Pr(s1 j r = 0)!  Xs2 jPr(s2 j r = 1)� Pr(s2 j r = 0)j! :The result follows by induction. 2Lemma 30 Suppose that m is a MET with n leaves and that e is an edge from node u tonode v. Let m0 be the MET derived from m by replacing e0 with Pr(v = 1) and e1 withPr(v = 0). Then var(m;m0) � n2z, where z is the maximum over all pairs (x; y) of leaveswhich are connected via e in m of jcov(x; y)j.Proof: By Observation 3, we can assume without loss of generality that u is the rootof m. For any string s1 on the leaves below v and any string s2 on the remaining leaves, we�nd (via a little algebraic manipulation) that the di�erence between the probability that moutputs s1s2 and the probability that m0 does isPr(u = 1)Pr(u = 0)(1�e0�e1)(Pr(s2 j u = 1)�Pr(s2 j u = 0))(Pr(s1 j v = 1)�Pr(s1 j v = 0)):Thus, the variation distance between m and m0 is Pr(u = 1)Pr(u = 0)(1� e0� e1) times theproduct of the variation distance between the distribution on the leaves below v conditionedon v = 1 and the distribution on the leaves below v conditioned on v = 0 and the variationdistance between the distribution on the remaining leaves conditioned on u = 1 and thedistribution on the remaining leaves conditioned on u = 0. By Lemma 29, this is at mostPr(u = 0)Pr(u = 1)0@2 X` below v w(`)1A0@2 Xother ` w(`)1A ;which by Equation 3 is 4 X(x; y) connected via e jcov(x; y)j;which is at most 4(n=2)2z = n2z . 220



Lemma 31 If, for two di�erent related sets, S and S0, an edge e from u to v is in M(S)and in M 0(S), then e0 + e1 � n2�2=(n+ 1).Proof: By the de�nition of the leaf connectivity graph in Step 2, there are leaves a; a0 2 Sand b; b0 2 S0 such that the path from a0 to a and the path from b0 to b both go through e =u! v and jdcov(a; a0)j � (3=4)�2 and jdcov(b; b0)j � (3=4)�2;and the remaining covariance estimates amongst leaves a, a0 , b and b0 are less than (3=4)�2 .Without loss of generality (using Observation 3), assume that u is the root of the MET. Letpu;a0 denote the path from u to a0 and use similar notation for the other leaves. By Equation 3and the accuracy of the estimates in Step 1,Pr(u = 0)2 Pr(u = 1)2w(e)2w(pu;a0)w(pv;a)w(pu;b0)w(pv;b) � ((3=4)�2 � �3)2Pr(u = 0)Pr(u = 1)w(pu;a0)w(pu;b0) < (3=4)�2 + �3Pr(v = 0)Pr(v = 1)w(pv;a)w(pv;b) < (3=4)�2 + �3:Thus, w(e) � �1� 2�3(3=4)�2 + �3�sPr(v = 1)Pr(v = 0)Pr(u = 1)Pr(u = 0) :By Equation 1, �(e) � 1� 2�3(3=4)�2 + �3 :The result now follows from the proof of Lemma 26. (Clearly, the bound in the statement ofLemma 31 is weaker than we can prove, but it is all that we will need.) 2Proof of Lemma 28: Let M� be the MET which is the same as M except that every edge ewhich is contained in M(S) and M(S0) for two di�erent related sets S and S0 is contracted.Similarly, let M 00� be the MET which is the same as M 00 except that every such edge hasall of its copies contracted in M 00� . Clearly, var(M;M 00) � var(M;M�) + var(M�;M 00�) +var(M 00�;M 00). By Lemma 31, var(M;M�) + var(M 00�;M 00) � `n2�2 , where ` is the numberof edges in M that are contracted. We now wish to bound var(M�;M 00�). By construction,M�(S) and M�(S0) do not intersect in an edge (for any related sets S and S0). Now supposethat M�(S) and M�(S0) both contain node u. We can modify M� without changing thedistribution in a way that avoids this overlap. To do this, we just replace node u with twocopies of u, and we connect the two copies by an edge e with e0 = e1 = 0. Note that thischange will not a�ect the operation of the algorithm. Thus, without loss of generality, we canassume that for any related sets S and S0 , M�(S) and M�(S0) do not intersect. Thus, M�and M 00� are identical, except on edges which go between the sub-METs M�(S). Now, anyedge e going between two sub-METs has the property that for any pair of leaves, x and yconnected via e, jcov(x; y)j � �2 . (This follows from the accuracy of our covariance estimatesin Step 1.) Thus, by Lemma 30, changing such an edge according to Step 5 adds at most n2�2to the variation distance. Thus, var(M�;M 00�) � `0n2�2 , where `0 is the number of edges thatare modi�ed according to Step 5. We conclude that var(M;M 00) � (2n)n2�2 = �1=2 � �=2. 2Acknowledgements: We thank Mike Paterson for useful ideas and discussions.21
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3 Appendix3.1 Proof of Lemma 2Lemma 2 A class of probability distributions over the domain f0; 1gn that is PAC-learnableunder the variation distance metric is PAC-learnable under the KL-distance measure.Proof: Let K be a polynomial in three inputs and let A be an algorithm which takes asinput K(n; 1=�; 1=�) samples from a distribution D from the class of distributions and, withprobability at least 1 � � , returns a distribution D0 such that var(D;D0) � �. Without lossof generality, we can assume that � is su�ciently small. For example, it will su�ce to have� � 2=15.De�ne algorithm A0 as follows. Let � = �2=(12n). Run A with sample size K(n; 1=�; 1=�)(note that the sample size is polynomial in n, 1=�, and 1=�). Let D0 be the distribution re-turned by A. Let U denote the uniform distribution on f0; 1gn and let D00 be the distributionde�ned by D00(s) = (1� (�))D0(s) + � U(s):With probability at least 1��; var(D;D0) � � . By the de�nition of D00 , var(D0;D00) � 2� .Thus, with probability at least 1 � � , var(D;D00) < 3� . Note that for all s, D00(s) � � 2�n .Let S be the set of all output strings s satisfying D00(s) < D(s). S contains all the stringswhich contribute positively to the KL-distance from D to D00 . Thus,KL(D;D00) � Xs2SD(s)(logD(s)� logD00(s))= Xs2S(D(s)�D00(s))(logD(s)� logD00(s)) +Xs2SD00(s)(logD(s)� logD00(s)):We have seen that var(D;D00) � 3� . Thus, Ps2S(D(s)�D00(s)) � 3� . So, the �rst term is atmost maxs2S (logD(s)� logD00(s))Xs2S(D(s)�D00(s))� 3� maxs2S (logD(s)� logD00(s))� 3� maxs2S (� logD00(s))� 3�(� log(� 2�n))= 3�(n� log(�)):Furthermore, the second term is at mostXs2SD00(s)(logD(s)� logD00(s))= Xs2SD00(s)(log(D00(s) + hs)� logD00(s));where hs = D(s)�D00(s), which is a positive quantity for s 2 S . By concavity of the logarithmfunction, the above quantity is at mostXs2SD00(s)hsh ddx (log(x))ix=D00(s) =Xs2S hs � 3�:23



Thus, KL(D;D00) � 3�(1+n� log �). This quantity is at most � for all n � 1 by the de�nitionof � . 2The method in the proof of Lemma 2 converts a hypothesis distribution which is close(in variation distance) to the target distribution to a hypothesis distribution which is close(in KL-distance) to the target distribution. However, if the original hypothesis is given as a2-state MET, then the modi�ed hypothesis would require a 3-state MET to realize it. Weconclude the paper by explaining how to perform a similar trick using only 2-state METs.The distribution obtained is not quite the same as the one used in the proof of Lemma 2, butit has the properties needed to show that small KL-distance is achieved.Let M be the target Markov Evolutionary Tree. We run the PAC learning algorithm withaccuracy parameter � = �2=(12n3) to obtain MET M 0 . Now we construct a new hypothesisM 00 by adjusting some of the parameters of M 0 as follows:For each edge e = (u; l) of M 0 where l is a leaf, let e0 and e1 be its parameters. If e0 < �then we set e0 = � and if e0 > 1 � � then set e0 = 1 � � . We make the same change to e1 .By the proof of Lemma 27, var(M 0;M 00) � 4n� , since 2n parameters have each been changedby at most � . Hence, with probability at least 1� � , var(M;M 00) � (1 + 4n)� .For each string s 2 f0; 1gn , M 00(s) � �n (where M 00(s) denotes the probability that M 00outputs s). Using a similar argument to the proof of lemma 2,KL(M;M 00) � (1 + 4n)�(1 � log(�n)) = (1 + 4n)�(1� n log �)= (1 + 4n) �212n3 (1� n(2 log �� 3 log n� log 12))which as before is at most � for all n � 1.
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