
On counting homomorphisms to directed acyclic graphs∗

Martin Dyer † Leslie Ann Goldberg‡ Mike Paterson§

October 13, 2006

Abstract

It is known that if P and NP are different then there is an infinite hierarchy of different
complexity classes which lie strictly between them. Thus, unless the P 6=NP? question can
be answered, there will be problems in NP whose precise complexity cannot be resolved.
This situation has led to attempts to identify smaller classes of problems within NP where
dichotomy results may hold: every problem is either in P or is NP-complete. A similar
situation exists for counting problems. If P 6=#P, there is an infinite hierarchy in between
and it is important to identify subclasses of #P where dichotomy results hold. Graph
homomorphism problems are a fertile setting in which to explore dichotomy theorems.
Indeed, Feder and Vardi have shown that a dichotomy theorem for the problem of deciding
whether there is a homomorphism to a fixed directed acyclic graph would resolve their
long-standing dichotomy conjecture for all constraint satisfaction problems. In this paper
we give a dichotomy theorem for the problem of counting homomorphisms to directed
acyclic graphs. Let H be a fixed directed acyclic graph. The problem is, given an input
digraph G, determine how many homomorphisms there are from G to H. We give a
graph-theoretic classification, showing that for some digraphs H, the problem is in P and
for the rest of the digraphs H the problem is #P-complete. An interesting feature of the
dichotomy, which is absent from previously-known dichotomy results, is that there is a
rich supply of tractable graphs H with complex structure.

1 Introduction

It has long been known [11] that, if P and NP are different, there is an infinite hierarchy
of different complexity classes which lie strictly between them. Thus, unless the P 6=NP?
question can be answered, there will be problems in NP whose precise complexity cannot
be resolved. This unsatisfactory situation has led to attempts to identify smaller classes of
problems within NP where dichotomy results may hold: every problem is either in P or is NP-
complete. The first such result was due to Schaeffer [14], for generalised Boolean satisfiability
problems, and there has been much subsequent work. A similar situation exists for counting
problems. The proof of Ladner’s theorem [11] is easily modified to show that, if P 6=#P,

∗Partially supported by the EPSRC grant Discontinuous Behaviour in the Complexity of Randomized
Algorithms. Some of the work was done while the authors were visiting the Mathematical Sciences Research
Institute in Berkeley. A preliminary version of this paper appeared in the Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming (ICALP 2006).

†School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
‡Department of Computer Science, University of Liverpool, Liverpool L69 3BX, United Kingdom.
§Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.

1

there is an infinite hierarchy in between. In consequence, problem classes where counting
dichotomies may exist are of equal interest. The first such result was proved by Creignou
and Hermann [3], again for Boolean satisfiability, and others have followed. The theorem
presented here is of this type: a dichotomy for the class of counting functions determined by
the number of homomorphisms from an input digraph to a fixed directed acyclic graph.

A homomorphism from a (directed) graph G = (V,E) to a (directed) graph H = (V, E) is a
function from V to V that preserves (directed) edges. That is, the function maps every edge
of G to an edge of H.

Hell and Nešetřil[8] gave a dichotomy theorem for the decision problem for undirected graphs H.
In this case, H is an undirected graph (possibly with self-loops). The input, G, is an undi-
rected simple graph. The question is “Is there a homomorphism from G to H?”. Hell and
Nešetřil [8] showed that the decision problem is in P if the fixed graph H has a loop, or
is bipartite. Otherwise, it is NP-complete. Dyer and Greenhill [4] established a dichotomy
theorem for the corresponding counting problem in which the question is “How many ho-
momorphisms are there from G to H?”. They showed that the problem is in P if every
component of H is either a complete graph with all loops present or a complete bipartite
graph with no loops present1. Otherwise, it is #P-complete. Bulatov and Grohe [1] extended
the counting dichotomy theorem to the case in which H is an undirected multigraph. Their
result will be discussed in more detail below.

In this paper, we study the corresponding counting problem for directed graphs. First, con-
sider the decision problem: H is a fixed digraph and, given an input digraph G, we ask “Is
there a homomorphism from G to H?”. It is conjectured [9, Conjecture 5.12] that there is
a dichotomy theorem for this problem, in the sense that, for every H, the problem is either
polynomial-time solvable or NP-complete. Currently, there is no graph-theoretic conjecture
stating what the two classes of digraphs will look like. Obtaining such a dichotomy may be
difficult. Indeed, Feder and Vardi [7, Theorem 13] have shown that the resolution of the
dichotomy conjecture for layered (or balanced) digraphs, which are a small subset of directed
acyclic graphs, would resolve their long-standing dichotomy conjecture for all constraint sat-
isfaction problems. There are some known dichotomy classifications for restricted classes of
digraphs. However, the problem is open even when H is restricted to oriented trees [9], which
are a small subset of layered digraphs.

The corresponding dichotomy is also open for the counting problem in general digraphs,
although some partial results exist [2, 1]. Note that, even if the dichotomy question for the
existence problem were resolved, this would not necessarily imply a dichotomy for counting,
since the reductions for the existence question may not be parsimonious.

In this paper, we give a dichotomy theorem for the counting problem in which H can be any
directed acyclic graph. An interesting feature of this problem, which is different from any
previous dichotomy theorem for counting, is that there is a rich supply of tractable graphs H
with complex structure.

The formal statement of our dichotomy is given below. Here is an informal description.
First, the problem is #P-complete unless H is a layered digraph, meaning that the vertices
of H can be arranged in levels, with edges going from one level to the next. We show (see
Theorem 6.1 for a precise statement) that the problem is in P for a layered digraph H if the
following condition is true (otherwise it is #P-complete). The condition is that, for every
pair of vertices x and x′ on level i and every pair of vertices y and y′ on level j > i, the
product of the graphs Hx,y and Hx′,y′ is isomorphic to the product of the graphs Hx,y′ and
Hx′,y. The precise definition of Hx,y is given below, but the reader can think of it as the
subgraph between vertex x and vertex y. The details of the product that we use (from [5])

1The graph with a singleton isolated vertex is taken to be a (degenerate) complete bipartite graph with no
loops.

2

are given below. The notion of isomorphism is the usual (graph-theoretic) one, except that
certain short components are dropped, as described below. Some fairly complex graphs H
satisfy this condition (see, for example, Figure 5), so for these graphs H the counting problem
is in P.

Our algorithm for counting graph homomorphisms for tractable digraphs H is based on
factoring. A difficulty is that the relevant algebra lacks unique factorisation. We deal with
this by introducing “preconditioners”. See Section 6.

Before giving precise definitions and proving our dichotomy theorem, we note that our proof
relies on two fundamental results of Bulatov and Grohe [1] and Lovász [12]. These will be
introduced below in Section 3.

2 Notation and definitions

Let N0 = {0, 1, 2, 3, . . .}. For m,n ∈ N0, we will write [m,n] = {m,m + 1, . . . , n − 1, n}
and [n] = [1, n]. We will generally let H = (V, E) denote a fixed “colouring” digraph, and
G = (V,E) an “input” digraph. We denote the empty digraph (∅, ∅) by 0.

2.1 Homomorphisms

Let G = (V,E), H = (V, E). If f : V → V, and e = (v, v′) ∈ E, we write f(e) = (f(v), f(v′)).
Then f is a homomorphism from G to H (or an H-colouring of G) if f(E) ⊆ E . We will
denote the number of distinct homomorphisms from G to H by #H(G). Note that #H(0) = 1
for all H.

Let f be a homomorphism from H1 = (V1, E1) to H2 = (V2, E2). If f is also injective, it is
a monomorphism. Then |E1| = |f(E1)| ≤ |E2|. If there exist monomorphisms f from H1 to
H2 and f ′ from H2 to H1, then f is an isomorphism from H1 to H2. Then |E1| = |f(E1)| ≤
|E2| = |f ′(E2)| ≤ |E1|, so |f(E1)| = |E2| which implies f(E1) = E2. If there is an isomorphism
from H1 to H2, we write H1

∼= H2 and say H1 is isomorphic to H2. The relation ∼= is easily
seen to be an equivalence. We will usually use H1 and H2 to denote equivalence classes of
isomorphic graphs, and write H1 = H2 rather than H1

∼= H2.

In this paper, we consider the particular case where H = (V, E) is a directed acyclic graph
(DAG). Thus, in particular, H has no self-loops, and #H(G) = 0 if G is not a DAG.

2.2 Layered graphs

A DAG H = (V, E) is a layered digraph 2 with ` layers if V is partitioned into (`+1) levels Vi

(i ∈ [0, `]) such that (u, u′) ∈ E only if u ∈ Vi−1, u
′ ∈ Vi for some i ∈ [`]. We will allow Vi = ∅.

We will call V0 the top and V` the bottom. Nodes in V0 are called sources and nodes in V` are
called sinks. (Note that the usage of the words source and sink varies. In this paper a vertex
is called a source only if it is in V0. A vertex in Vi for some i 6= 0 is not called a source, even
if it has in-degree 0, and similarly for sinks.) Layer i is the edge set Ei ⊆ E of the subgraph
H [i−1,i] induced by Vi−1 ∪Vi. More generally we will write H [i,j] for the subgraph induced by⋃j

k=i Vk.

Let G` be the class of all layered digraphs with ` layers and let C` be the subclass of G` in
which every connected component spans all ` + 1 levels. If H ∈ C` and G = (V,E) ∈ C`, with
Vi denoting level i (i ∈ [0, `]) and Ei denoting layer i (i ∈ [`]), then any homomorphism from

2This is called a balanced digraph in [7, 9]. However, “balanced” has other meanings in the study of digraphs.

3

G to H is a sequence of functions fi : Vi → Vi (i ∈ [0, `]) which induce a mapping from Ei

into Ei (i ∈ [`]).

We use C` to define an equivalence relation on G`. In particular, for H1,H2 ∈ G`, H1 ≡ H2

if and only if Ĥ1 = Ĥ2, where Ĥi ∈ C` is obtained from Hi by deleting every connected
component that spans fewer than ` + 1 levels.

2.3 Sums and products

If H1 = (V1, E1), H2 = (V2, E2) are disjoint digraphs, the union H1 + H2 is the digraph
H = (V1 ∪ V2, E1 ∪ E2). Clearly 0 is the additive identity and H1 + H2 = H2 + H1. If
G is connected then #(H1 + H2)(G) = #H1(G) + #H2(G), and if G = G1 + G2 then
#H(G) = #H(G1)#H(G2).

The layered cross product [5] H = H1×H2 of layered digraphs H1 = (V1, E1),H2 = (V2, E2) ∈
G` is the layered digraph H = (V, E) ∈ G` such that Vi = V1i × V2i (i ∈ [0, `]), and we have(
(u1, u2), (u′1, u

′
2)
)
∈ E if and only if (u1, u

′
1) ∈ E1 and (u2, u

′
2) ∈ E2. We will usually write

H1 × H2 simply as H1H2. It is clear that H1H2 is connected only if both H1 and H2 are
connected. The converse is not necessarily true. See Figure 1.

× =

Figure 1: A disconnected product

Nevertheless, we have the following lemma.

Lemma 2.1. If H1,H2 ∈ C` and both of these graphs contain a directed path from every
source to every sink then exactly one component of H1H2 spans all `+1 levels. In each other
component level 0 and level ` are empty.

Proof. There is a directed path from every source of H1H2 to every sink. Thus, the sources
and sinks are all in the same connected component.

Note that H1H2 = H2H1, using the isomorphism (u1, u2) 7→ (u2, u1).

If G, H1,H2 ∈ C` then any homomorphism f : G → H1H2 can be written as a product f1×f2

of homomorphisms f1 : G → H1 and f2 : G → H2, and any such product is a homomorphism.
Thus #H1H2(G) = #H1(G) #H2(G). Observe that the directed path P` of length ` gives
the multiplicative identity 1 and that 0H = H0 = 0 for all H. It also follows easily that
H(H1 + H2) = HH1 + HH2, so × distributes over +. The algebra A = (G`,+,×,0,1) is a
commutative semiring. The + operation is clearly cancellative3. We will show in Lemma 3.6
that × is also cancellative, at least for C`. In many respects, this algebra resembles arithmetic
on N0, but there is an important difference. In A we do not have unique factorisation into
primes. A prime is any H ∈ G` which has only the trivial factorisation H = 1H. Here we
may have H = H1H2 = H ′

1H
′
2 with H1,H2,H

′
1,H

′
2 prime and no pair equal, even if all the

graphs are connected.
3This means that H + H1 = H + H2 implies H1 = H2. Similarly for ×.

4

Example 2.2. Let ~K1,m be the usual undirected bipartite clique K1,m, but with all edges
directed from the root vertex, and let ~Km,1 be ~K1,m with all edges reversed. The graphs
H1,H2,H

′
1,H

′
2 will all have three layers. Each has top layer ~K1,m1 , middle layer a disjoint

union of K1,m’s, and bottom layer ~Km3,1. We specify the subgraphs in each layer in the
following table. We show H1 in Figure 2, where all edges are directed downwards.

Figure 2: The graph H1 in Example 2.2

Graph Layer 1 Layer 2 Layer 3

H1
~K1,4

~K1,8 + ~K1,2 + ~K1,1 + ~K1,1
~K12,1

H2
~K1,9

~K1,8 + ~K1,4 + ~K1,2 + ~K1,1 + ~K1,1 + ~K1,1 + ~K1,1 + ~K1,1 + ~K1,1
~K20,1

H ′
1

~K1,6
~K1,8 + ~K1,4 + ~K1,1 + ~K1,1 + ~K1,1 + ~K1,1

~K16,1

H ′
2

~K1,6
~K1,8 + ~K1,2 + ~K1,2 + ~K1,1 + ~K1,1 + ~K1,1

~K15,1

It is clear that H1,H2,H
′
1,H

′
2 are connected, and it is not difficult to show that none of them

has a nontrivial factorisation. However, it is easy to verify that H1H2 = H ′
1H

′
2.

The layered cross product was defined in [5] in the context of interconnection networks. It
is similar to the (non-layered) direct product [10], which also lacks unique factorisation, but
they are not identical. In general, they have different numbers of vertices and edges.

3 Fundamentals

Our proof relies on two fundamental results of Bulatov and Grohe [1] and Lovász [12].

First we give the basic result of Lovász [12]. (See also [9, Theorem 2.11].) If H = (V, E),
G = (V,E) are DAGs, we denote the number of monomorphisms from G to H by ♦H(G).
The following is essentially a special case of Lovász [12, Theorem 3.6], though stated rather
differently. We give a proof since it yields additional information.

Theorem 3.1 (Lovász). If #H1(G) = #H2(G) for all G, then H1 = H2.

Proof. Let f be any homomorphism from G to H. Then f−1 induces a partition I of V into
disjoint sets SI,1, . . . , SI,kI

such that each SI,i (i ∈ [kI]) is independent in G. Each partition I

5

fixes subsets SI,i ⊆ V which map to the same ui ∈ V. Let I be the set of all such partitions.
With the relation I � I ′ whenever I is a refinement of I ′, PG = (I,�) is a poset. Note that
PG depends only on G. We will write ⊥ for the partition into singletons, so ⊥ � I for any
I ∈ I. Let G/I be the digraph obtained from G by identifying all vertices in SI,i (i ∈ [kI]).
Then we have

#H(G) = #H(G/⊥) =
∑
I∈I

♦H(G/I) =
∑
I∈I

♦H(G/I)ζ(⊥, I),

where ζ(I, I ′) = 1 if I � I ′, and ζ(I, I ′) = 0 otherwise, defines the ζ-function of PG. More
generally, the same reasoning gives

#H(G/I) =
∑
I�I′

♦H(G/I ′) =
∑
I′∈I

♦H(G/I ′)ζ(I, I ′).

Now Möbius inversion for posets [13, Ch. 25] implies that the matrix ζ : I × I → {0, 1} has
a unique inverse µ : I × I → Z. It follows directly that

♦H(G) =
∑
I∈I

#H(G/I)µ(⊥, I).

Using the assumption of the theorem, for every G we now have

♦H1(G) =
∑
I∈I

#H1(G/I)µ(⊥, I) =
∑
I∈I

#H2(G/I)µ(⊥, I) = ♦H2(G). (1)

In particular this implies ♦H2(H1) = ♦H1(H1) > 0, so there is a monomorphism f from H1

into H2. By symmetry, there is also a monomorphism f ′ from H2 into H1.

Remark 3.2. In this paper, the digraph H is always a DAG, so it has no self-loops. However,
if we generalise to the situation in which H1 and H2 can have both looped and unlooped
vertices (but every vertex in G is unlooped), as in the usual definition of the general H-
colouring problem [4], the above proof is no longer valid. The reason is that SI,i must be
an independent set if ui is unlooped, but can be arbitrary if ui is looped. Thus PG no
longer depends only on G. However, if H1 and H2 have all their vertices looped, an obvious
modification of the proof goes through. Whether the theorem remains true for H with both
looped and unlooped vertices is, as far as we know, an open question.

Note that, if G ∈ C`, the poset PG is a lattice since it possesses a (unique) element > such
that I � > for all I ∈ I, with G/> = P`. The following variant of Theorem 3.1 restricts
H1,H2 and G to C`.

Theorem 3.3. If H1,H2 ∈ C` and #H1(G) = #H2(G) for all G ∈ C`, then H1 = H2.

The proof follows from the proof of Theorem 3.1 since the only instances of G used in that
proof are of the form H1/I or H2/I and these are in C`. Similar reasoning gives the following
corollaries.

Corollary 3.4. Suppose Hk = (Vk, Ek) (k = 1, 2). If there is any G with #H1(G) 6= #H2(G),
there is a G such that 0 < |V | ≤ maxk=1,2 |Vk|.

Proof. Clearly G must be non-empty. Assume |V1| ≤ |V2|. If |V1| < |V2|, taking G0 = ({v0}, ∅)
gives #H1(G0) = |V1| 6= |V2| = #H2(G0), so we may take |V | = 1 ≤ |V2|. Otherwise, since
H1 6= H2, either ♦H2(H1) 6= ♦H1(H1) or ♦H2(H2) 6= ♦H1(H2). In the former case, we can
use Equation 1 with G = H1 to see that one of the H1/I must be such that #H1(H1/I) 6=
#H2(H1/I). In the latter case, one of the H2/I must be such that #H2(H2/I) 6= #H1(H2/I).
But all the graphs H1/I, H2/I have at most maxi=1,2 |Vi| vertices.

6

Corollary 3.5. Suppose H1 = (V1, E1),H2 = (V2, E2) ∈ C`. If there is any G ∈ C` with
#H1(G) 6= #H2(G), then there is such a G such that 0 < |V | ≤ maxk=1,2 |Vk|.

Therefore we can find a witness to the predicate ∃G : #H1(G) 6= #H2(G), if one exists,
among the graphs of the form H1/I and H2/I.

Lemma 3.6. If H1H = H2H for H1,H2,H ∈ C`, then H1 = H2.

Proof. Suppose G ∈ C`. Since H ∈ C`, #H(G) 6= 0. Also, since H1 and H2 are in C`

and H1H = H2H, #H1(G)#H(G) = #H2(G)#H(G) so #H1(G) = #H2(G). Now use
Theorem 3.3.

Here is another similar lemma that we will need. Recall that ≡ denotes the equivalence
relation on G` which ignores “short” components.

Lemma 3.7. If H1,H2,H ∈ C` and each of these contains a directed path from every source
to every sink and H1H ≡ H2H then H1 = H2.

Proof. Suppose G ∈ C`. Since H ∈ C`, #H(G) 6= 0. Let Ĥ1 be the single full component of
H1H from Lemma 2.1. Similarly, let Ĥ2 be the single full component of H2H. Then since
G ∈ C`,

#Ĥ1(G) = #H1H(G) = #H1(G)#H(G)

and
#Ĥ2(G) = #H2H(G) = #H2(G)#H(G).

So since #Ĥ1(G) = #Ĥ2(G) by the equivalence in the statement of the lemma, we have
#H1(G) = #H2(G). Now use Theorem 3.3.

The second fundamental result is a theorem of Bulatov and Grohe [1, Theorem 1], which
provides a powerful generalisation of a theorem of Dyer and Greenhill [4].

Let A = (Aij) be a k× k matrix of non-negative rationals. We view A as a weighted digraph
such that there is an edge (i, j) with weight Aij if Aij > 0. Given a digraph G = (V,E),
Eval(A) is the problem of computing the partition function

ZA(G) =
∑

σ:V→{1,...,k}

∏
(u,v)∈E

Aσ(u)σ(v). (2)

In particular, if A is the adjacency matrix of a digraph H, ZA(G) = #H(G). Thus Eval(A)
has the same complexity as #H. If A is symmetric, corresponding to a weighted undirected
graph, the following theorem characterises the complexity of Eval(A).

Theorem 3.8 (Bulatov and Grohe). Let A be a non-negative rational symmetric matrix.

(1) If A is connected and not bipartite, then Eval(A) is in polynomial time if the row
rank of A is at most 1; otherwise Eval(A) is #P-complete.

(2) If A is connected and bipartite, then Eval(A) is in polynomial time if the row rank
of A is at most 2; otherwise Eval(A) is #P-complete.

(3) If A is not connected, then Eval(A) is in polynomial time if each of its connected
components satisfies the corresponding condition stated in (1) or (2); otherwise
Eval(A) is #P-complete.

7

4 Reduction from acyclic H to layered H

Let H = (V, E) be a DAG. Clearly #H is in #P. We will call H easy if #H is in P and hard
if #H is #P-complete. We will show that H is hard unless it can be represented as a layered
digraph. Essentially, we do this using a “gadget” consisting of two opposing directed k-paths
to simulate the edges of an undirected graph and then apply Theorem 3.8. To this end, let
Nk(u, u′) be the number of paths of length k from u to u′ in H. Say that vertices u, u′ ∈ V
are k-compatible if, for some vertex w, there is a length-k path from u to w and from u′ to w.
We say that H is k-good if, for every k-compatible pair (u, u′), there is a rational number λ
such that Nk(u, v) = λNk(u′, v) (∀v ∈ V).

Lemma 4.1. If there is a k such that H is not k-good then #H is #P-complete.

Proof. Fix k, u, and u′ such that u and u′ are k-compatible, but there is no λ. Let A be the
adjacency matrix of H and let A′ = Ak(Ak)T . Note that (Ak)u,w = Nk(u, w).

First, we show that Eval(A′) is #P-hard. Note that A′ is symmetric with non-negative
rational entries. Let A′′ be the square sub-matrix of A′ corresponding to the connected
component containing u and u′. Note that u and u′ are in the same connected component
since they are k-compatible. Also, there are loops on vertices u and u′, so A′′ is not bipartite.
To show that Eval(A′) is #P-complete, we need only show that the rank of A′′ is bigger
than 1. To do this, we just need to find a 2 × 2 submatrix that is non-singular, i.e., with
nonzero determinant. Take the principal submatrix indexed by rows u and u′ and columns u
and u′. The determinant is(∑

w Nk(u,w)2
) (∑

w Nk(u′, w)2
)
− (
∑

w Nk(u, w)Nk(u′, w))2.

By Cauchy-Schwartz, the determinant is non-negative, and is zero only if λ exists, which we
have assumed not to be the case. Thus Eval(A′) is #P-complete.

Now we use the hardness of Eval(A′) to show that Eval(A) is #P-hard. To do this, take an
undirected graph G which is an instance of Eval(A′). Construct a digraph G′ by taking every
edge {v, v′} of G and replacing it with a digraph consisting of a directed length-k path Pk

from v to a new vertex w and a directed length-k path Pk from v′ to w. Note that Eval(A)
on G′ is the same as Eval(A′) on G. Thus Eval(A) is #P-complete, and #H has the same
complexity.

Remark 4.2. We have used the path Pk as a gadget in the above reduction, in order to
simulate an edge of an undirected graph. We can use any other DAG G having a single
source and single sink in the same way, and we do that below.

Remark 4.3. The statement of Lemma 4.1 is not symmetrical with respect to the direction
of edges in H. However, let us define the digraph HR to be that obtained from H by reversing
every edge. Then #HR and #H have the same complexity. To see this, simply observe that
#HR(GR) = #H(G) for all G.

We are now in a position to prove the main result of this section.

Lemma 4.4. If H is a DAG, but it cannot be represented as a layered digraph, then #H is
#P-hard.

Proof. Suppose that H contains two paths of different lengths from u to u′. Choose k > 0,
the length of the short path as small as possible. Choose k′ > k, the length of the long path,
as large as possible subject to the choice of k. Suppose that k edges of the long path take
us from u to b and that k edges of the long path take us from a to u′. We claim that H has

8

no length-k path from a to b. Since u and a are k-compatible, Lemma 4.1 will then give the
conclusion.

If k′ ≥ 2k, the claim follows from the fact that H has no cycles. (Either a = b or there
is a path from b to a on the long path.) If k′ < 2k then the claim follows from the choice
of k′. If there were a length-k path from a to b then we could go from u to a following the
long path, from a to b on a k-edge path and from b to u′ again following the long path. The
concatenation of these paths would have length greater than k′.

5 A structural condition for hardness

We can now formulate a sufficient condition for hardness of a layered digraph H = (V, E) ∈ G`.
Suppose s ∈ Vi and t ∈ Vj for i < j. If there is a directed path in H from s to t, we let Hst

be the subgraph of H induced by s, t, and all components of H [i+1,j−1] to which both s and
t are incident. Otherwise, we let Hst = 0.

Lemma 5.1. If there exist x, x′ ∈ V0, y, y′ ∈ V` such that HxyHx′y′ 6≡ Hxy′Hx′y, and at most
one of Hxy,Hxy′ ,Hx′y,Hx′y′ is 0, then #H is #P-complete.

Proof. If exactly one of Hxy,Hxy′ ,Hx′y,Hx′y′ is 0 then Lemma 4.1 applies. Suppose that
none of Hxy,Hxy′ ,Hx′y,Hx′y′ is 0. Note that x, x′, y and y′ are all in the same component
of H and that this component is in C`. By Lemma 2.1, HxyHx′y′ contains a single component
Hxy;x′y′ that spans all ` + 1 levels. So if G ∈ C`, #HxyHx′y′(G) = #Hxy;x′y′(G). Similarly,
Hxy′Hx′y contains a single component Hxy′;x′y that spans all `+1 levels and #Hxy′Hx′y(G) =
#Hxy′;x′y(G). By the assumption in the lemma, Hxy;x′y′ 6= Hxy′;x′y. So, by Theorem 3.3, there
is a Γ ∈ C` such that

#Hxy;x′y′(Γ) 6= #Hxy′;x′y(Γ). (3)

We can assume without loss of generality that Γ has a single source and sink since Hxy;x′y′ and
Hxy′;x′y do. By Corollary 3.5, we can also ensure that Γ has at most |V| vertices. Equation (3)
implies

#Hxy(Γ)#Hx′y′(Γ) 6= #Hxy′(Γ)#Hx′y(Γ). (4)

We now follow the proof of Lemma 4.1, replacing the path gadget with Γ as indicated in
Remark 4.2. The matrix A is indexed by sources u of H and sinks w. Auw is #Huw(Γ). Then
A′ = AAT so A′

uu′ =
∑

w AuwAu′w.

As in the proof of Lemma 4.1, we first show that Eval(A′) is #P-hard. Let A′′ be the square
submatrix corresponding to the connected component containing x and x′. Note that they
are in the same connected component since Γ ∈ C` and Hx,y 6= 0 and Hx′y 6= 0 so Axy 6= 0
and Ax′y 6= 0. Consider the principal submatrix indexed by rows x and x′ and columns x and
x′. The determinant is (∑

w

A2
xw

)(∑
w

A2
x′w

)
−

(∑
w

AxwAx′w

)2

.

As before, this is zero only if there is a λ such that Axw = λAx′w for all w and this is false
by (4) which says AxyAx′y′ 6= Axy′Ax′y. Thus, the rank of A′′ is bigger than 1 and Eval(A′)
is #P-complete.

Now let B be the adjacency matrix of H. Reduce Eval(A′) to Eval(B) as follows. Take
an undirected graph G which is an instance of Eval(A′). Construct a digraph G′ by taking
every edge {v, v′} of G and replacing it with a digraph consisting of a copy of Γ with source v

9

and a copy of Γ with source v′ with the sinks identified. Note that Eval(B) on G′ is the same
as Eval(A′) on G. Thus Eval(B) is #P-complete, and #H has the same complexity.

Clearly checking the condition of the Lemma and carrying out the search for the gadget Γ
both require only constant time (since the size of H is a constant). Note that if x, x′, y, y′

are not all in the same component of H then at least two of Hxy,Hx′y′ ,Hxy′ ,Hx′y are 0, so
Lemma 5.1 has no content.

x

y

x′

y′

x

y

x′

y

H Hxy Hxy′

Figure 3: The graph of Example 5.2

Example 5.2. Consider the H in Figure 3. We have HxyHx′y′ = Hxy and Hxy′Hx′y = Hx′y.
Clearly Hxy and Hx′y are not isomorphic, so #H is #P-complete. A suitable gadget is
Γ = Hxy. The following table gives #Hxy(Γ), #Hxy′(Γ), #Hx′y(Γ) and #Hx′y′(Γ). Since
this matrix has rank 2 and is indecomposable, we can prove #P-completeness using Γ as a
gadget.

y y′

x 4 1
x′ 2 1

We may generalise Lemma 5.1 as follows.

Lemma 5.3. If there exist x, x′ ∈ Vi, y, y′ ∈ Vj (0 ≤ i < j ≤ `) such that HxyHx′y′ 6≡
Hxy′Hx′y, and at most one of Hxy,Hxy′ ,Hx′y,Hx′y′ is 0, then #H is #P-complete.

Proof. If `′ = j − i, consider any G having `′ layers. For k = 0, 1, . . . , ` − `′, let Hk be the
subgraph of H induced by Vk ∪ Vk+1 · · · ∪ Vk+`′ . Then

#H(G) =
`−`′∑
k=0

#Hk(G),

so colouring with H is equivalent to colouring with the graph H ′ = (V ′, E ′) =
∑`−`′

k=0 Hk ∈ G′`.
But x, x′ are in V ′0, and c, d in V ′`′ . The result now follows from Lemma 5.1.

Note that the “N” of Bulatov and Dalmau [2] is the special case of Lemma 5.3 in which
j = i + 1, Hxy = Hxy′ = Hx′y′ = 1, and Hx′y = 0. More generally, any structure with
Hxy,Hxy′ ,Hx′y′ 6= 0 and Hx′y = 0 is a special case of Lemma 5.3, so is sufficient to prove
#P-completeness. Such a structure is equivalent to the existence of paths from x to y, x to

10

s

y

x

t

Figure 4: An easy H with no st path

y′ and x′ to y′, when no path from x′ to y exists. We call such a structure an “N”, since it
generalises Bulatov and Dalmau’s [2] construction.

Lemma 5.4. If H ∈ C` is connected and not hard, then there exists a directed path from
every source to every sink.

Proof. Clearly, by Lemma 5.3, H must be N-free. Since it is connected, there is an undirected
path from any x ∈ V0 to any y ∈ V`. Suppose that the shortest undirected path from x to y
is not a directed path. Then some part of it induces an N in H, giving a contradiction.

Lemma 5.4 cannot be generalised by replacing “source” with “node (at any level) with inde-
gree 0” and replacing “sink” similarly, as the graph in Figure 4 illustrates.

We will call four vertices x, x′, y, y′ in H, with x, x′ ∈ Vi and y, y′ ∈ Vj (0 ≤ i < j ≤ `), a
Lovász violation4 if at most one of Hxy,Hxy′ ,Hx′y,Hx′y′ is 0 and HxyHx′y′ 6≡ Hxy′Hx′y. A
graph H with no Lovász violation will be called Lovász-good. We show next that this property
is preserved under the layered cross product.

Lemma 5.5. If H,H1,H2 ∈ C` and H = H1H2 then H is Lovász-good if and only if both H1

and H2 are Lovász-good.

Proof. Let Hk = (Vk, Ek) with levels Vk,i (k = 1, 2; i ∈ [0, `]) and H = (V, E) with levels Vi

(i ∈ [0, `]). Suppose xk, x
′
k ∈ Vk,i, yk, y

′
k ∈ Vk,j (k = 1, 2; 0 ≤ i < j ≤ `), not necessarily

distinct. We will write, for example, x1x2 ∈ Vi for product vertices and H1
x,y for (H1)x,y.

Then

Hx1x2,y1y2Hx′
1x′

2,y′1y′2
= H1

x1,y1
H2

x2,y2
H1

x′
1,y′1

H2
x′
2,y′2

(5)

and Hx1x2,y′1y′2
Hx′

1x′
2,y1y2

= H1
x1,y′1

H2
x2,y′2

H1
x′
1,y1

H2
x′
2,y2

(6)

Now, if H1
x1,y1

H1
x′
1,y′1

≡ H1
x1,y′1

H1
x′
1,y1

and H2
x2,y2

H2
x′
2,y′2

≡ H2
x2,y′2

H2
x′
2,y2

, then (5) and (6) imply
Hx1x2,y1y2Hx′

1x′
2,y′1y′2

≡ Hx1x2,y′1y′2
Hx′

1x′
2,y1y2

. This if H1 and H2 are Lovász-good, so is H.

Conversely, suppose without loss of generality that H1 is not Lovász-good, and that

H1
x1,y1

H1
x′
1,y′1

6≡ H1
x1,y′1

H1
x′
1,y1

.

Taking x′2 = x2, y′2 = y2 for any vertices x2 ∈ V2,i, y2 ∈ V2,j such that H2
x2,y2

6= 0, from (5)
and (6) we have

Hx1x2,y1y2Hx′
1x2,y′1y2

= H1
x1,y1

H1
x′
1,y′1

(H2
x2,y2

)2

4The name derives from the isomorphism theorem (Theorem 3.1) of Lovász.

11

Figure 5: A Lovász-good H

and
Hx1x2,y1y2Hx′

1x2,y′1y2
= H1

x1,y′1
H1

x′
1,y1

(H2
x2,y2

)2.

First, suppose that none of H1
x1,y1

,H1
x′
1,y′1

,H1
x1,y′1

,H1
x′
1,y1

is 0. Let Z1 be the full component of
H1

x1,y1
H1

x′
1,y′1

according to Lemma 2.1. Similarly, let Z2 be the full component of H1
x1,y′1

H1
x′
1,y1

.
Let Z = (H2

x2,y2
)2. To show that H is not Lovász-good, we wish to show Z1Z 6≡ Z2Z. By

Lemma 3.7, this follows from Z1 6= Z2.

Finally, suppose that exactly one of H1
x1,y1

,H1
x′
1,y′1

,H1
x1,y′1

,H1
x′
1,y1

is 0. Then exactly one of
Hx1x2,y1y2Hx′

1x2,y′1y2
and Hx1x2,y1y2Hx′

1x2,y′1y2
is 0, so they are not equivalent under ≡ and H

is not Lovász-good.

The requirement of H being Lovász-good is essentially a “rank 1” condition in the algebra A
of Section 2.3, and therefore resembles the conditions of [1, 4]. However, since A lacks unique
factorisation, difficulties arise which are not present in the analyses of [1, 4]. But a more
important difference is that, whereas the conditions of [1, 4] permit only trivial easy graphs,
Lovász-good graphs can have complex structure. See Figure 5 for a small example.

6 Main theorem

We can now state the dichotomy theorem for counting homomorphisms to directed acyclic
graphs.

Theorem 6.1. Let H be a directed acyclic graph. Then #H is in P if H is layered and
Lovász-good. Otherwise #H is #P-complete.

The proof of Theorem 6.1 will use the following lemma, which we prove later.

Lemma 6.2. Suppose H ∈ C` is connected, with a single source and sink, and is Lovász-good.
There is a polynomial-time algorithm for the following problem. Given a connected G ∈ C`

with a single source and sink, compute #H(G).

Proof of Theorem 6.1. We have already shown in Lemma 4.4 that any non-layered H is hard.
We have also shown in Lemma 5.3 that H is hard if it is not Lovász-good. Suppose H ∈ G`

is Lovász-good. We will show how to compute #H(G).

First, we may assume that G is connected since, as noted in Section 2.3, if G = G1 +G2 then
#H(G) = #H(G1)#H(G2). We can also assume that H is connected since, for connected G,
#(H1 + H2)(G) = #H1(G) + #H2(G), but H1 and H2 are Lovász-good if H1 + H2 is.

12

So we can now assume that H ∈ C` is connected and G is connected. If G has more than `+1
non-empty levels then #H(G) = 0. If G has fewer than ` non-empty levels then decompose
H into component subgraphs H1, H2, . . . as in the Proof of Lemma 5.3, and proceed with
each component separately. So we can assume without loss of generality that both H and G
are connected and in C`.

Now we just add a new level at the top of H with a single vertex, adjacent to all sources of
H and a new level at the bottom of H with a single vertex, adjacent to all sinks of H. We
do the same to G. Then we use Lemma 6.2.

Before proving Lemma 6.2 we need some definitions. Suppose H is a connected graph in C`.
For a subset S of sources of H, let H

[0,j]
S be the subgraph of H [0,j] induced by those vertices

from which there is an (undirected) path to S in H [0,j]. We say that H is top-j disjoint if, for
every pair of distinct sources s, s′, H

[0,j]
{s} and H

[0,j]
{s′} are disjoint. We say that H is bottom-j

disjoint if the reversed graph HR from Remark 4.3 is top-j disjoint. Finally, We say that H
is fully disjoint if it is top-(`− 1) disjoint and bottom-(`− 1) disjoint.

We will say that (Q,U,D) is a good factorisation of H if Q, U and D are connected Lovász-
good graphs in C` such that

• QH ≡ UD,
• Q has a single source and sink,
• U has a single sink, and
• D has a single source.

Remark 6.3. The presence of the “preconditioner” Q in the definition of a good factorisation
is due to the absence of unique factorisation in the algebra A. Our algorithm for computing
homomorphisms to a Lovász-good H works by factorisation. However, it is possible to have
a non-trivial Lovász-good H which is prime. A simple example can be constructed from the
graphs H1,H2,H

′
1,H

′
2 of Example 2.2, by identifying the sources in H1,H

′
1 and in H2,H

′
2,

and the sinks in H1,H
′
2 and in H ′

1,H2. The resulting 2-source, 2-sink graph has no nontrivial
factorisation.

We use the following operations on a Lovász-good connected digraph H ∈ C`.

Local Multiplication: Suppose that U is a connected Lovász-good single-sink graph in Cj

on levels 0, . . . , j for j ≤ `. Let C be a Lovász-good connected component in H [0,j] with no
empty levels. Then Mul(H,C, U) is the graph constructed from H by replacing C with the
full component of UC. (Note that there is only one full component, by Lemma 5.4 and 2.1.)

Local Division: Suppose S ⊆ V0, and that (Q,U,D) is a good factorisation of H
[0,j]
S . Then

Div(H,Q,U, D) is the graph constructed from H by replacing H
[0,j]
S with D.

We can now state our main structural lemma.

Lemma 6.4. If H ∈ C` is connected, and Lovász-good, then it has a good factorisation
(Q,U,D).

We prove Lemma 6.4 below in Section 7. In the course of the proof, we give an algorithm
for constructing (Q,U,D). We now describe how we use Lemma 6.4 (and the algorithm) to
prove Lemma 6.2.

Proof of Lemma 6.2. The proof is by induction on `. The base case is ` = 2. (Note that
calculating #H(G) is easy in this case.) For the inductive step, suppose ` > 2. Let H ′ denote

13

the part of H excluding levels 0 and ` and let G′ denote the part of G excluding levels 0
and `. Using reasoning similar to that in the proof of Theorem 6.1, we can assume that
G′ is connected and then that H ′ is connected. Since H is Lovász-good, so is H ′. Now by
Lemma 6.4 there is a good factorisation (Q′, U ′, D′) of H ′.

Let S ⊆ V1 be the nodes in level 1 of H that are adjacent to the source and T ⊆ V`−1 be the
nodes in level ` − 1 of H that are adjacent to the sink. Note that V1 is the top level of U ′

and V`−1 is the bottom level of D′.

Construct Q from Q′ by adding a new top and bottom level with a new source and sink.
Connect the new source and sink to the old ones. Construct D from D′ by adding a new top
and bottom level with a new source and sink. Connect the new source to the old one and
the new sink to T . Finally, construct U from U ′ by adding a new top and bottom level with
a new source and sink. Connect the new source to S and the new sink to the old one. See
Figure 6. Note that (Q,U,D) is a good factorisation of H. To see that QH ≡ UD, consider
the component of Q′H ′ that includes sources and sinks. (There is just one of these. Since H ′

is Lovász-good, it has a directed path from every source to every sink by Lemma 5.4. So does
Q′. Then use Lemma 2.1.) This is isomorphic to the corresponding component in D′U ′ since
(Q′, U ′, D′) is a good factorisation of H ′. The isomorphism maps S in H ′ to a corresponding
S in U ′ and now note that the new top level is appropriate in QH and DU . Similarly, the
new bottom level is appropriate.

Q′ × H ′

S

T

≡ D′

T

× U ′

S

Figure 6: A good factorisation of H

Now let’s consider how to compute #Q(G). In any homomorphism from G to Q, every node
in level 1 of G gets mapped to the singleton in level 1 of Q. Thus, we can collapse all level 1
nodes of G into a single vertex without changing the problem. At this point, the top level
of G and Q are not doing anything, so they can be removed, and we have a sub-problem
with fewer levels. So #Q(G) can be computed recursively. The same is true for #D(G) and
#U(G).

Since G ∈ C`, #QH(G) = #Q(G)#H(G). Also, since components without sources and sinks
cannot be used to colour G (which has the full ` layers), this is equal to #D(G)#U(G). Thus,
we can output #H(G) = #D(G)#U(G)/#Q(G).

That concludes the proof of Theorem 6.2, so it only remains to prove Lemma 6.4. The proof
will be by induction, and we will need the following technical lemmas in the induction.

Lemma 6.5. Suppose that H is Lovász-good, top-(j − 1) disjoint, S ⊆ V0 and H
[0,j]
S is

connected. If (Q,U,D) is a good factorisation of H
[0,j]
S , then Div(H,Q,U, D) is Lovász-good.

Proof. Suppose to the contrary that H̃ = Div(H,Q,U, D) contains a Lovász violation x, x′, y, y′,

14

with x, x′ in level i, and y, y′ in level k. Since D is Lovász-good, we may assume without loss
that x is in D, with i < j, and that k > j. Thus y, y′ are not in D. Let Q̃, Ũ be Q[i,j], U [i,j],
both extended downwards by a single path to level k. There are two cases.

If x′ is in D, Lemma 5.5 gives us a Lovász violation in H̃Ũ [i,k]. (By the proof of Lemma 5.5,
this involves nodes at level i and k.) This gives us a Lovász violation in H [i,k]Q̃[i,k] since these
graphs are isomorphic except for components that don’t extend down to y and y′. Finally, by
Lemma 5.5, we find a Lovász violation in H [i,k], and hence in H, which gives a contradiction.

If x′ is not in D, then let H∗ be Mul(H̃,D,U). Let w be some vertex on level i of Ũ which
has a directed path to the sink z of Ũ . Now by construction

H∗
xw,yH

∗
x′,y′ ≡ H̃xyH̃x′y′(Ũwz),

H∗
xw,y′H

∗
x′,y ≡ H̃xy′H̃x′y(Ũwz).

Because these graphs all have single sources and sinks (at levels i and k), we can apply
Lemma 3.7 to cancel and find a Lovász violation xw, y, x′, y′ in H∗.

Then do a local multiplication multiplying the component of x′ by Q and again, in the same
way, we find a Lovász violation xw, y, x′w′, y′ in the resulting graph, H∗∗

Now since DU ≡ QH
[0,j]
S and since xw does have a path down to level j of H∗∗, the component

containing xw in H∗∗[0,j] is isomorphic to the corresponding component in QH [0,j]. Thus, the
same Lovász violation exists in Q̃H (where now we extend the tail of Q all the way down to
level ` of H.

Now to get a Lovász violation in H itself, we use the reasoning from the proof of Theorem 5.5.
Say the Loász violation is xQxH , yQyH , x′Qx′H , y′Qy′H . Then

(Q̃H)[i,k]
xQxHyQyH

(Q̃H)[i,k]
x′

Qx′
Hy′Qy′H

≡ QxQyQHxHyH Qx′
Qy′Q

Hx′
Hy′H

,

(Q̃H)[i,k]
xQxHy′Qy′H

(Q̃H)[i,k]
x′

Qx′
H ,yQyH

≡ QxQy′Q
HxHy′H

Qx′
QyQ

Hx′
HyH

.

And since Q is Lovász-good, the first of these is equivalent to QxQy′Q
HxHyH Qx′

QyQ
Hx′

Hy′H
.

Now if we had
HxHyH Hx′

Hy′H
≡ HxHy′H

Hx′
HyH

we could multiply both sides by QxQy′Q
Qx′

QyQ
to get

(Q̃H)[i,k]
xQxHyQyH

(Q̃H)[i,k]
x′

Qx′
Hy′Qy′H

≡ (Q̃H)[i,k]
xQxHy′Qy′H

(Q̃H)[i,k]
x′

Qx′
H ,yQyH

which is a contradiction since this was a Lovász violation.

Lemma 6.6. Suppose that H and U are Lovász-good. Then Mul(H,C, U) is Lovász-good.

Proof. Suppose M = Mul(H,C, U) is not Lovász-good. By Lemma 5.5, the full component
of UC is Lovász-good, so there is a Lovász violation in levels i and k of M with i ≤ j and
k > j. Also, one of the relevant vertices in level i is in the component from UC in the local
multiplication.

First, suppose that both of the relevant vertices in level i are in this component. Then there
is a Lovász violation (the same one) in ÛH, where Û extends U with a path. Now restricting

15

attention to levels i–k, Lemma 5.5 shows that there is a Lovász violation in H or Û (hence
U), which is a contradiction.

Second, suppose that only one of the relevant vertices in level i is in the component from CU
in the local multiplication. Then the Lovász violation can be written

M
[i,k]
UxCx,yM

[i,k]
x′,y′ 6≡ M

[i,k]
UxCx,y′M

[i,k]
x′,y

and expanding the product, letting Û denote the extension of U downwards with a path to
node s on level k, this is

Û
[i,k]
Ux,sH

[i,k]
Cx,yH

[i,k]
x′,y′ 6≡ Û

[i,k]
Ux,sH

[i,k]
Cx,y′H

[i,k]
x′,y .

But this gives us a Lovász violation in H, which is a contradiction.

7 Proof of Lemma 6.4

A top-dangler is a component in H [1,`−1] that is incident to a source but not to a sink.
Similarly, a bottom-dangler is a component in H [1,`−1] that is incident to a sink but not to a
source. (Note that a bottom-dangler in H is a top-dangler in HR.)

The proof of Lemma 6.4 will be by induction. The base case will be ` = 1, where it is easy to
see that a connected Lovász-good H must be a complete bipartite graph. The ordering for
the induction will be lexicographic on the following criteria (in order).

1. the number of levels,

2. the number of sources,

3. the number of top-danglers,

4. the number of sinks,

5. the number of bottom-danglers.

Thus, for example, if H ′ has fewer levels than H then H ′ precedes H in the induction. If H ′

and H have the same number of levels, the same number of sources and the same number of
top-danglers but H ′ has fewer sinks then H ′ precedes H in the induction.

The inductive step will be broken into five cases. The cases are exhaustive but not mutually
exclusive – given an H we will apply the first applicable case.

Case 1: H is top-(j − 1) disjoint and has a top-dangler with depth at most j − 1.

Case 2: For j < `, H is top-(j − 1) disjoint, but not top-j disjoint, and has no top-dangler
with depth at most j − 1.

Case 3: H is top-(`− 1) disjoint and has no top-dangler and is bottom-(j − 1) disjoint and
has a bottom-dangler with height at most (j − 1).

Case 4: For j < `, H is top-(` − 1) disjoint and has no top-dangler and is bottom-(j − 1)
disjoint, but not bottom-j disjoint, and has no bottom-dangler with height at most
(j − 1).

Case 5: H is fully disjoint. and has no top-danglers or bottom-danglers.

16

7.1 Case 1: H is top-(j − 1) disjoint and has a top-dangler with depth at most
j − 1.

Let R be a top-dangler with depth j′ where j′ < j (meaning that it is a component in
H [1,...,`−1] that is incident to a source but not to a sink, and that levels j′ + 1, . . . , ` − 1 are
empty and level j′ is non-empty). Note that since H is top-(j−1) disjoint, R must be adjacent
to a single source, v, in H. This follows from the definition of top-(j − 1) disjoint, and from
the fact that R has depth at most j − 1.

Construct H ′ from H by removing R. Note that H ′ is connected. By construction (from H),
H ′ is Lovász-good, and has no empty levels. It precedes H in the induction order since it
has the same number of levels, the same number of sources and one fewer top-dangler. By
induction, it has a good factorisation (Q′, U ′, D′) so Q′H ′ ≡ U ′D′.

Construct D̂ as follows. On layers 1, . . . , j′, D̂ is identical to D′. On layers j′ + 2, . . . , `, D̂ is
a path. Every node in level j′ is connected to the singleton vertex in level j′+1. Then clearly
D̂Q′H ′ ≡ ÛD′ where Û is the single full component of D̂U ′. (There is just one of these. Since
D̂ is Lovász-good, it has a directed path from every source to every sink by Lemma 5.4. So
does U ′. Then use Lemma 2.1.) Note that Û has a single sink.

Let R′ be the graph obtained from R by adding the source v. Let R′′ be Q′[0,j′]R′. Form U ′′

from R′′ and Û by identifying v with the appropriate source of Û . (Note that Û has the same
sources as H). Then D̂Q′H ≡ U ′′D′.

Thus, we have a good factorisation (Q,U,D′) of H by taking Q to be the full component
of D̂Q′ and U to be the full component of U ′′. To see that it is a good factorisation, use
Lemma 5.5 to show that Q and U are Lovász-good.

7.2 Case 2: For j < `, H is top-(j − 1) disjoint, but not top-j disjoint, and has no
top-dangler with depth at most j − 1.

Partition the sources of H into equivalence classes S1, . . . , Sk so that the graphs H
[0,j]
Si

are
connected and pairwise disjoint. See Figure 7. Since H is not top-j disjoint, some equivalence
class, say S1, contains more than one source.

. . .

V`

Vj

V0

Ĥ

S1 S2 Sk

H

Figure 7: H

. . .

V`

Vj

V0

D̂

s S2 Sk

H ′

Figure 8: H ′

Let Ĥ denote H
[0,j]
S1

. Ĥ is shorter than H, so it comes before H in the induction order. It is
connected by construction of the equivalence classes, and it is Lovász-good by virtue of being
a subgraph of H. By induction we can construct a good factorisation (Q̂, Û , D̂) of Ĥ. Let

17

H ′ = Div(H, Q̂, Û , D̂). See Figure 8.

H ′ comes before H in the induction order because it has the same number of levels, but fewer
sources. To see that H ′ is connected, note that H is connected and Ĥ is connected. Since
(Q̂, Û , D̂) is a good factorisation), we know D̂ is connected, so H ′ is connected. By Lemma 6.5,
H ′ is Lovász-good. By induction, we can construct a good factorisation (Q′, U ′, D′) of H ′.

Let s be the (single) source of D̂. By construction, the sources of U ′ are {s} ∪ S2 ∪ · · · ∪ Sk.
See Figure 9.

Q′ ×
. . .

H ′

s S2 Sk

≡
D′ ×

. . .

U ′

s S2 Sk

Figure 9: Q′H ′ ≡ D′U ′

Let C1, . . . , Cz be the connected components of U ′[0,j]. Let C1 be the component containing s.
Since the H

[0,j]
Si

are connected and pairwise disjoint, and Q′ has a single source, there is a
single connected component of (Q′H ′)[0,j] containing all of Si (and no other sources) so (see
Figure 9) there is a single connected component of U ′[0,j] containing all of Si (and no other
sources). For convenience, call this Ci.

If z > k then components Ck+1, . . . , Cz do not contain any sources. (They are due to danglers
in U ′, which in this case are nodes that are not descendants of a source.)

Now consider U1 = Mul(U ′, C1, Û). U1 is the graph constructed from U ′ by replacing C1 with
the full component of C1Û . For i ∈ {2, . . . , z}, let Ui = Mul(Ui−1, Ci, Q̂). Uz is the graph
constructed from U ′ by replacing C1 with the full component of C1Û and replacing every
other Ci with the full component of CiQ̂.

Let Q̃ extend Q̂ down to level ` with a single path. We claim that

Q′Q̃H ≡ UzD
′. (7)

To establish Equation (7), note that on levels [j, . . . , `] the left-hand side is

(Q′Q̃H)
[j,`]

≡ (Q′H ′)[j,`].

Any components of Q′H ′ that differ from U ′D′ do not include level `, so this is equivalent to

(U ′D′)[j,`] ≡ (UzD
′)[j,`],

which is the right-hand side. So focus on levels 0, . . . , j.

From the left-hand side, look at the component (Q′Q̃H)
[0,j]

S1
. Note that it is connected. It is

(Q′[0,j]Q̂Ĥ)
[0,j]

S1
≡ (Q′[0,j]ÛD̂)

[0,j]

S1
≡ ((D′[0,j]

U ′[0,j]){s}Û)
[0,j]

S1
≡ (D′Uz)

[0,j]
S1

,

18

which is the right-hand side.

Then look at the component S2.

(Q′Q̃H)
[0,j]

S2
≡ (Q′[0,j]Q̂H [0,j])S2

≡ ((D′[0,j]U ′[0,j])S2Q̂)
[0,j]

S2
≡ (D′Uz)

[0,j]
S2

.

The other components containing sources (which are the only components that we care about)
are similar.

Having established (7), we observe that (Q,U,D′) is a good factorisation of H where Q is
the full component of Q′Q̃ and U is the full component of Uz. Use Lemma 5.5 to show Q is
Lovász-good and Lemma 6.6 to show that Uz is.

7.3 Case 3: H is top-(`− 1) disjoint and has no top-dangler and is bottom-(j − 1)
disjoint and has a bottom-dangler with height at most (j − 1).

We apply an analysis similar to Section 7.1 to the reversed graph from Remark 4.3. Let HR

be an instance in Case 3. Thus H is top-(j − 1) disjoint and has a top-dangler with depth
at most j − 1. Also, H is bottom-(` − 1) disjoint and has no bottom dangler. Apply the
transformation in Section 7.1 to H. This produces as inductive instance H ′. As we noted in
Section 7.1, H ′ precedes H in the induction order since it has the same number of levels, the
same number of sources and one fewer top-dangler. Crucially, H ′ has the same number of
sinks as H and the same number of bottom-danglers as H. (We have not added any.) Thus,
H ′R precedes HR in the inductive order. It has one fewer bottom-dangler and everything
else is the same. Then the good factoring (Q,U,D) of H that we produce gives us a good
factoring (QR, DR, UR) of HR.

7.4 Case 4: For j < `, H is top-(` − 1) disjoint and has no top-dangler and is
bottom-(j−1) disjoint, but not bottom-j disjoint, and has no bottom-dangler with
height at most (j − 1).

We apply an analysis similar to Section 7.2 to the reversed graph from Remark 4.3. Let HR

be an instance in Case 4. The reversed graph H is bottom-(` − 1)-disjoint with no bottom-
dangler. For some j < `, it is top-(j−1)-disjoint, but not top-j disjoint and has no top-dangler
with depth at most j − 1. Apply the analysis in Case 3. This produces a recursive instance
H ′ with fewer sources. H ′ has the same number of levels as H. Furthermore, H ′ has the
same number of sinks as H and the same number of bottom-danglers. Thus, H ′R has fewer
sinks than HR, but the same number of levels, sources, and top-danglers. So it precedes HR

in the induction order. Then the good factoring (Q,U,D) of H that we produce gives us a
good factoring (QR, DR, UR) of HR.

7.5 Case 5: H is fully disjoint and has no top-danglers or bottom-danglers.

In the fully disjoint case, the subgraphs Hst (s ∈ V0, t ∈ V`) satisfy

Hst ∩Hs′t′ =

{s}, if s = s′, t 6= t′;
{t}, if s 6= s′, t = t′;
∅, if s 6= s′, t 6= t′.

(8)

Hst 6= 0 and HstHs′t′ ≡ Hst′Hs′t, since H is Lovász-good. We assume without loss that
|V0| > 1 and |V`| > 1, since otherwise (1,H,1) or (1,1,H) is a good factorisation. See
Figure 10.

19

V`

V0
s1 s2 sk.

t1 t2 tk′

Hs1t1

.

Figure 10: Fully disjoint case

Choose any s∗ ∈ V0, t
∗ ∈ V`, and let Q = Hs∗t∗ . Note that Q is connected with a single source

and sink, and is Lovász-good because H is Lovász-good. Let D be the subgraph
⋃

t∈V`
Hs∗t of

H, and let U be the subgraph
⋃

s∈V0
Hst∗ of H. These are both connected and Lovász-good

since H is. Clearly D has a single source and U has a single sink. Also QH ≡ DU follows
from (8) and from the fact that there are no top-danglers or bottom-danglers and

(DU)s∗s,tt∗ = Ds∗tUst∗ ≡ Hs∗tHst∗ = Hs∗t∗Hst = QHst (s ∈ V0; t ∈ V`), (9)

where we have used the fact that H is Lovász-good. Thus (Q,U,D) is a good factorisation
of H.

References

[1] A. Bulatov and M. Grohe, The complexity of partition functions, in Automata, Languages
& Programming: 31st International Colloquium, Lecture Notes in Computer Science
3142, pp. 294–306, 2004.

[2] A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint
satisfaction problem, in Proc. 44th IEEE Symposium on Foundations of Computer Sci-
ence, IEEE, pp. 562–572, 2003.

[3] N. Creignou and M. Hermann, Complexity of generalized satisfiability counting problems,
Information and Computation 125 (1996), 1–12.

[4] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random
Structures & Algorithms 17 (2000), 260–289.

[5] S. Even and A. Litman, Layered cross product: a technique to construct interconnection
networks. Networks 29 (1997), 219–223.

[6] T. Feder and M. Vardi, Monotone monadic SNP and constraint satisfaction, in Proc.
25th Annual ACM Symposium on Theory of Computing, ACM Press, 1993, pp. 612–622.

[7] T. Feder and M. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory, SIAM J. Comput.
28 (1998) 57–104.

[8] P. Hell and J. Nešetřil, On the complexity of H-coloring, Journal of Combinatorial
Theory Series B 48 (1990), 92–110.

[9] P. Hell and J. Nešetřil, Graphs and homomorphisms, Oxford University Press, 2004.

20

[10] W. Imrich and S. Klavžar, Product graphs: structure and recognition, Wiley, New York,
2000.

[11] R. Ladner, On the structure of polynomial time reducibility, Journal of the Association
for Computing Machinery 22 (1975), 155–171.

[12] L. Lovász, Operations with structures, Acta. Math. Acad. Sci. Hung., 18 (1967), 321–328.

[13] J. van Lint and R. Wilson, A course in combinatorics (2nd ed.), CUP, Cambridge, 2001.

[14] T. Schaefer, The complexity of satisfiability problems, in Proc. 10th Annual ACM Sym-
posium on Theory of Computing, ACM Press, 1978, pp. 216–226.

21

