
Contention Resolution with Constant Expeted DelayLeslie Ann GoldbergUniversity of WarwikandPhilip D. MaKenzieLuent TehnologiesandMike PatersonUniversity of WarwikandAravind SrinivasanLuent TehnologiesWe study ontention resolution in a multiple-aess hannel suh as the Ethernet hannel. Inthe model that we onsider, n users generate messages for the hannel aording to a probabilitydistribution. Raghavan and Upfal have given a protool in whih the expeted delay (time toget servied) of every message is O(log n) when messages are generated aording to a Bernoullidistribution with generation rate up to about 1=10. Our main results are the following protools:(a) one in whih the expeted average message delay is O(1) when messages are generated aord-ing to a Bernoulli distribution with a generation rate smaller than 1=e, and (b) one in whih theexpeted delay of any message is O(1) for an analogous model in whih users are synhronized(i.e., they agree about the time), there are potentially an in�nite number of users, and messagesare generated aording to a Poisson distribution with generation rate up to 1=e. (Eah messageonstitutes a new user.)To ahieve (a), we �rst show how to simulate (b) using n synhronized users, and then showhow to build the synhronization into the protool.Categories and Subjet Desriptors: F.2 [Theory of Computation℄: Analysis of Algorithmsand Problem Complexity; G.3 [Mathematis of Computing℄: Probability and StatistisGeneral Terms: Theory, ProbabilityAdditional Key Words and Phrases: Multiple-aess hannel, Ethernet, ontention resolution,Markov hains1. INTRODUCTIONA multiple-aess hannel is a broadast hannel that allows multiple users to om-muniate with eah other by sending messages onto the hannel. If two or moreusers simultaneously send messages, then the messages interfere with eah other(ollide), and the messages are not transmitted suessfully. The hannel is notentrally ontrolled. Instead, the users use a ontention-resolution protool to re-solve ollisions. Although the most familiar multiple-aess hannels are loal-area networks (suh as the Ethernet network) whih are implemented using able,multiple-aess hannels are now being implemented using a variety of tehnologiesinluding optial ommuniations. Thus, good ontention-resolution protools anbe used for ommuniation between omputers on loal-area networks, for ommu-



2 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanniation in optial networks, and (therefore) for simulating shared-memory parallelomputers (suh as PRAMs) on optial networks.Raghavan and Upfal onsidered the model in whih n users generate messages a-ording to a Bernoulli distribution with total generation rate up to about 1/10 [Ragha-van and Upfal 1999℄. (More details about the arrival distribution are given in Se-tion 1.1.) They gave a protool in whih the expeted delay (time to get servied)of every message is O(logn). Using the same model, we present a protool in whihthe expeted average message delay is O(1) provided that the total generation rateis suÆiently small (less than 1=e).1 We derive our result by onsidering an anal-ogous model in whih users are synhronized (i.e., they agree about the time), thenumber of users is potentially in�nite, and messages arrive aording to a Poissondistribution with parameter up to about 1=e. Eah message onstitutes a new user.We give a protool in whih the expeted delay of any message is O(1). The syn-hronizing of our users allows our protool to use di�erent time steps for di�erentpurposes. Thus, for example, those time steps that are equal to 1 modulo 2 ouldbe used for messages making their �rst attempt, time steps equaling 2 modulo 4an be used for messages making their seond attempt, and so on. The partitioningof time steps is what makes it possible to have bounded expeted delay.One we have proved that the expeted delay of eah message is O(1), we showhow to simulate the protool using n synhronized users. Here eah user is respon-sible for a potentially in�nite number of messages (rather than for a single message)and the diÆult part is dealing with all of the messages in onstant time.The analysis of our n-user protool requires the n users to have synhronizedloks. We next show how to simulate the synhronized loks (for reasonably longperiods of time) by building synhronization into the protool. Thus, our �nal pro-tool onsists of \normal" phases in whih the users are synhronized and operatingas desribed above and \synhronization phases" in whih the users are synhro-nizing. The synhronization phases are robust in the sense that they an handlepathologial situations (suh as users starting in the middle of a synhronizationphase). Thus, we are able to ahieve onstant expeted message delay even formodels in whih users are allowed to start and stop (see Setion 1.1 for details).1.1 The Multiple-Aess Channel ModelFollowing previous work on multiple-aess hannels, we work in a time-slottedmodel in whih time is partitioned into intervals of equal length, alled steps. Duringeah step, the users generate messages aording to a probability distribution. Forour model with in�nitely-many users, we assume the probability distribution isPoisson, while, for our models with �nitely-many users, we assume the probabilitydistribution is Bernoulli (for eah user). Thus, eah user generates at most onemessage per step. During eah step, eah user may attempt to send at most onemessage to the hannel. If more than one attempt is made during a given timestep, the messages ollide and must be retransmitted. If just a single user attemptsto send to the hannel, it reeives an aknowledgment that the transmission wassuessful. Users must queue all unsuessful messages for retransmission and they1Note that the delay of a message depends upon both: (a) randomness in the input (messagearrivals), and (b) randomness in the algorithm.



Contention Resolution with Constant Expeted Delay � 3use a ontention-resolution protool to deide when to retransmit. Note that wedo not plae any bound on the amount of omputation a user may perform at thebeginning of a step. That is, we are ounting ommuniation steps, not omputationsteps.In the Synhronized In�nitely-Many Users Model, there is a single parameter �.The number of messages generated at eah step is determined aording to a Poissondistribution with parameter �. Eah message is deemed to be a new user. After auser has sent its message suessfully, it leaves the system.There are two variants of the Finitely-Many Users Model. In both variants, thereare n users. The �rst variant (whih we onsider in Setion 3) is the SynhronizedFinitely-Many Users Model. In this model, the n users are synhronized and they allrun for the entire time that the protool is running. When we onsider this model,we will need to onsider two message-arrival distributions. Our main results willhold for the f�ig1�i�n-Bernoulli arrival distribution, whih is de�ned as follows.Eah user i is assoiated with a positive probability �i and it generates a messageindependently with probability �i during eah time step. Our results hold whenPi �i is at most � for some � < 1=e. The f�ig1�i�n-Bernoulli arrival distributionis a natural message-arrival distribution whih has been studied previously and itwill help the reader to keep this distribution in mind. However, in order to makeour proofs go through, we must also onsider a more tehnial generalization ofthis distribution, namely a f�ig1�i�n-dominated arrival distribution. In suh adistribution, we require that for every user i, every time step t, and every event Eonerning|the arrival of messages at steps other than t, and/or|the arrival of messages at users other than i,the probability, onditioned on event E, that user i generates a message at step t isat most �i. Note that the f�ig1�i�n-Bernoulli arrival distribution is a f�ig1�i�n-dominated arrival distribution, but there are also other, less natural, f�ig1�i�n-dominated arrival distributions.The seond variant of the Finitely-Many Users Model is alled the Unsynhro-nized Finitely-Many Users Model. In this model, the n users are not synhronizedand are allowed to start and stop over time, provided that eah user runs for at leasta ertain polynomial number of steps every time it starts. The starting and stop-ping times should not depend upon the progress of the protool. (The motivationfor allowing users to start and stop is to model mahine rashes.) See Setion 4for details. We generalize the de�nitions of f�ig1�i�n-Bernoulli and f�ig1�i�n-dominated distributions so that they apply to this model by stipulating that nomessages are generated at users whih are stopped. As stated above, for our mainresults, we will be most interested in the f�ig1�i�n-Bernoulli distribution, withPi �i < 1=e. The result of Raghavan and Upfal applies to any f�ig1�i�n-Bernoulliarrivals distribution in whih Pi �i � �0 where �0 � 1=10.In the Synhronized In�nitely-Many Users Model we will show that the expeteddelay of any message is O(1). In the Unsynhronized Finitely-Many Users Modelwe will show only that the expeted average delay of messages is O(1). To be



4 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanpreise, let Wi be the delay of the ith message, and letWavg = limm!1 1m mXi=1 Wi:(Intuitively, Wavg is the average waiting time of messages in the system.) We willshow that if the message generation rate is suÆiently small (less than 1=e), thenE[Wavg℄ = O(1).The multiple-aess hannel model that we have desribed is aknowledgment-based beause the only information that a user reeives about the state of thehannel is the history of its own transmission attempts. (In the UnsynhronizedFinitely-Many Users Model, we also assume that the users all know some upperbound on the number of simultaneous live users.) Other models have been on-sidered. One popular model is the ternary feedbak model in whih, at the endof eah time step, eah user reeives information indiating whether zero, one, ormore than one messages were sent to the hannel at that time step. Stable pro-tools are known [Greenberg et al. 1987; Vvedenskaya and Pinsker 1983℄ for thease in whih � is suÆiently small (at most 0:4878 � � �). However, Tsybakov andLikhanov [Tsybakov and Likhanov 1987℄ have shown that, in the in�nitely-manyusers model, no protool ahieves a throughput better than 0.568. (That is, in thelimit, only a 0.568 fration of the time-steps are used for suessful sends.) By on-trast, Pippenger [Pippenger 1981℄ has shown that if the exat number of messagesthat tried at eah time step is known to all users, there is a stable protool for every� < 1. We believe that the weaker aknowledgment-based model is more realistifor purposes suh as PRAM emulation and optial routing and we follow [H�astadet al. 1996; MaKenzie et al. 1998; Raghavan and Upfal 1999℄ in fousing on thismodel heneforth.In this paper we onentrate on the dynami ontention-resolution problem inwhih messages arrive aording to a probability distribution. Other work [MaKen-zie et al. 1998℄ has foussed on the stati senario in whih a given set of users startwith messages to send. Similar stati ontention-resolution problems arise in opti-al routing [Anderson and Miller 1988; Ger�eb-Graus and Tsantilas 1992; Goldberget al. 1997℄ and in simulating shared memory omputers on distributed networks[Dietzfelbinger and Meyer auf der Heide 1993; Goldberg et al. 1999; MaKenzieet al. 1998℄.1.2 Previous workThere has been a tremendous amount of work on protools for multiple-aesshannels. Here we will only disuss theoretial results onerning dynami protoolsin the aknowledgment-based model that we use. We refer the reader to the papersited here and in Setion 1.1 for work on protools using di�erent assumptions ormodels.The multiple-aess hannel �rst arose in the ontext of the ALOHA system,whih is a multi-user ommuniation system based on radio-wave ommunia-tion [Abramson 1973℄. As we noted earlier, it also arises in the ontext of loal-areanetworks. For example, the Ethernet protool [Metalfe and Boggs 1976℄ is a pro-tool for multiple-aess hannels. Muh researh on multiple-aess hannels wasspurred by ALOHA, espeially in the information theory ommunity; see, for ex-



Contention Resolution with Constant Expeted Delay � 5ample, the speial issue of IEEE Trans. Info. Theory on this topi [IEEE Trans.on Information Theory 1985℄.We now give an informal desription of a ommon idea that runs through mostknown protools for our problem; this is merely a rough sketh, and there are manyvariants. In the In�nitely-Many Users Model, onsider a newly-born message P . Pould try using the hannel a few times with some fairly high probability. If it issuessful, it leaves the system; if not, then P ould guess that its trial probabilitywas \too high", and try using the hannel with lower and lower probability until itsuessfully leaves the system.One way to formalize this is via bako� protools, whih are parameterized by anon-dereasing funtion f : Z+ ! Z+, where Z+ denotes the set of non-negativeintegers. In the In�nitely-Many Users Model, a message P that has made i � 0unsuessful attempts at the hannel, will pik a number r uniformly at randomfrom f1; 2; : : : ; f(i)g, and will next attempt using the hannel r time steps fromthen. If suessful, P will leave the system, otherwise it will inrement i and repeatthe proess. In the Finitely-Many Users Model, eah user queues its messages andonduts suh a protool with the message at the head of its queue; one thismessage is suessful, the failure ount i is reset to 0. If f(i) = (i + 1)�(1) or2i, then suh a protool is naturally termed a polynomial bako� protool or abinary exponential bako� protool, respetively. (The funtion f , if it exists, mustbe hosen judiiously: if it grows too slowly, the messages will tend to try usingthe hannel too often, thus leading to frequent ollisions and hene long messagelifetimes. But if f grows too quikly, the messages will tend to use the hannel tooinfrequently, and again the throughput rate will su�er as messages are retained inthe system.)For our model of interest, the dynami setting with aknowledgment-based pro-tools, the earliest theoretial results were negative results for the UnsynhronizedIn�nitely-Many Users Model. Kelly [Kelly 1985℄ showed that, for any � > 0, anybako� protool with a bako� funtion f(i) that is smaller than any exponentialfuntion is unstable in the sense that the expeted number of suessful transmis-sions to the hannel is �nite. Aldous [Aldous 1987℄ showed, for every � > 0, thatthe binary exponential bako� protool is unstable in the sense that the expetednumber of suessful transmissions in time steps [1; t℄ is o(t) and that the expetedtime until the system returns to the empty state is in�nite.In striking ontrast to Kelly's result, the important work of [H�astad et al. 1996℄showed, among other things, that in the Unsynhronized Finitely-Many UsersModel, for all f�ig1�i�n-Bernoulli distributions with Pi �i < 1, all superlinearpolynomial bako� protools are stable in the sense that the expeted time to re-turn to the empty state and the expeted average message delay are �nite. However,they also proved that the expeted average message delay in suh a system is 
(n).Raghavan and Upfal showed that, for any f�ig1�i�n-Bernoulli distribution withPi �i up to about 1=10, there is a protool in whih the expeted delay of anymessage is O(log(n)) [Raghavan and Upfal 1999℄. It is also shown in [Raghavanand Upfal 1999℄ that, for eah member P of a large set of protools that inludesall known bako� protools, there exists a threshold �P < 1 suh that if � > �Pthen E[Wave℄ = 
(n) must hold for P .



6 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan1.3 Our resultsWe �rst onsider the Synhronized In�nitely-Many Users Model and give a protoolin whih the expeted delay of any message is O(1) for message generation rates upto 1=e. (Note that this arrival rate threshold of 1=e is higher than the threshold ofapproximately 1=10 allowed in [Raghavan and Upfal 1999℄. We argue in Setion 5that handling arrival rates greater than 1=e is a hallenging problem.) As far as weknow, our protool is the �rst aknowledgment-based protool whih is provablystable in the sense of [H�astad et al. 1996℄. An interesting point here is that ourresults are omplementary to those of [H�astad et al. 1996℄: while the work of [H�astadet al. 1996℄ shows that (negative) results for the In�nitely-Many Users Model mayhave no bearing on the Finitely-Many Users Model, our results suggest that betterintuition and positive results for the Finitely-Many Users Model may be obtainedvia the In�nitely-Many Users Model.Our in�nite-users protool is simple. We onstrut an expliit, easily omputableolletion fSi;t : i; t = 0; 1; 2; : : :g of �nite sets of nonnegative integers Si;t where,for all i and t, every element of Si;t is smaller than every element of Si+1;t. Amessage born at time t whih has made i (unsuessful) attempts to send to thehannel so far, piks a time r uniformly at random from Si;t, and tries using thehannel at time r. If it sueeds, it leaves the system. Otherwise, it inrementsi and repeats this proess. We give bounds on the probability that the delay ofthe message is high and we use these bounds to show that the expeted numberof messages (and hene the expeted total storage size) in the system at any giventime is O(1), improving on the O(logn) bound of [Raghavan and Upfal 1999℄.One we have proved that the expeted delay of eah message is O(1), we showhow to simulate the In�nitely-Many Users Protool using n synhronized users,ahieving low expeted delay for a variety of message-arrival distributions.Finally, we onsider the Unsynhronized Finitely-Many Users Model. Our earlieranalysis required synhronized loks and we show how to simulate this for reason-ably long periods of time by building synhronization into our �nal protool. Thesynhronization is ompliated by the fat that the model allows users to start andstop over time.The struture of our �nal protool is simple. Most of the time, the users aresimulating our In�nitely-Many Users Protool from Setion 2. The users oasion-ally enter a synhronizing phase to make sure that the loks are synhronized(or to resynhronize after a user enters the system). Note that the synhronizingphase has some probability of (undetetably) failing, and thus it must be repeatedperiodially to guarantee onstant expeted message delay.We note here that although we ahieve onstant expeted message delay, theonstant is quite large, and the requirements on starting and stopping times arequite severe (in an n-user system, users must run without stopping for at least 8n71steps after they start). Thus our result for the Unsynhronized Finitely-Many UsersModel should be onsidered a theoretial result, rather than a pratial result.The idea of the \synhronization phase" was inspired by the \reset state" idea of[Raghavan and Upfal 1999℄. The key idea that allowed [Raghavan and Upfal 1999℄to ahieve low expeted delay is to have users detet \bad events" and to enter a\reset state" when bad events our. In some sense, the struture of our protool



Contention Resolution with Constant Expeted Delay � 7(normal phases, oasionally interrupted by synhronization phases) is similar tothe struture of [Raghavan and Upfal 1999℄. However, there are major di�erenesbetween them. One di�erene is that, beause lak of synhronization annot bereliably deteted, synhronizing phases must be entered periodially even whenno partiular bad event is observed. Another di�erene is that users in a resetstate are only allowed to send messages with very low probability, and this helpsother users to aess the hannel. However, our synhronization phase is designedto aomplish the more diÆult task of synhronizing the users (this is neededto obtain onstant expeted delay rather than logarithmi expeted delay), andaomplishing this task requires many transmissions to the hannel, whih preventaess to the hannel by the other users. Thus, synhronization phases are ostlyin our protool. A third di�erene is that in [Raghavan and Upfal 1999℄ a normalphase always tends towards low expeted delay. When bad situations arise, thereis a good probability of them being aught, thus ausing a reset state to our. Inour protool, a normal phase tends towards even lower (onstant) expeted delayif the users are synhronized. However, if they are not synhronized, the normalphase does not neessarily tend towards low expeted delay, and there is no sureway to detet that the users are unsynhronized. Thus, the bad situation an onlybe remedied during the next time the users start a synhronizing phase, whih maybe after quite a long time! Fortunately, the e�ets of this type of behavior an bebounded, so we do ahieve onstant expeted message delay.The synhronizing phase of our protool is somewhat ompliated, beause itmust synhronize the users even though ommuniation between users an onlybe performed through aknowledgments (or lak thereof) from the multiple-aesshannel. The analysis of our protool is also ompliated due to the very dynaminature of the protool, with possibilities of users missing synhronizing phases,trying to start a synhronizing phase while one is already in progress, and so on.Our synhronizing phases are robust, in the sense that they an handle these typesof events, and eventually the system will return to a normal synhronized state.1.4 OutlineIn Setion 2 we onsider the Synhronized In�nitely-Many Users Model. Sub-setion 2.1 gives notation and preliminaries. Subsetion 2.2 gives our protool.Subsetions 2.3 and 2.4 bound the expeted delay of messages. In Setion 3 weonsider the Synhronized Finitely-Many Users Model and show how to simulateour protool on this model, ahieving bounded expeted delay for a large lass ofinput distributions. In Setion 4 we onsider the Unsynhronized Finitely-ManyUsers Model. Subsetion 4.1 gives notation and preliminaries. Subsetion 4.2 givesour protool. In Setion 4.3 we prove the key features of our protool, namely, amessage generated at a step in whih no users start or stop soon before or afterwill have onstant expeted delay, and a message generated at a step in whih auser starts soon before or after will have an expeted delay of O(n37) steps. InSetion 4.4 we show that our protool ahieves onstant expeted message delay fora fairly general multiple aess hannel model, with users starting and stopping.



8 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan2. THE INFINITELY-MANY USERS PROTOCOL2.1 Notation and PreliminariesFor any ` 2 Z+, we denote the set f1; 2; : : : ; `g by [`℄; logarithms are to the basetwo, unless spei�ed otherwise. In any time interval of a protool, we shall say thata message P sueeded in that interval if it reahed the hannel suessfully duringthat interval.Theorem 1 presents the Cherno�-Hoe�ding bounds [Cherno� 1952; Hoe�ding1963℄; see, e.g., Appendix A of [Alon et al. 1992℄ for details.Theorem 1. Let R be a random variable with E[R℄ = � � 0 suh that either:(a) R is a sum of a �nite number of independent random variables X1; X2; : : :with eah Xi taking values in [0; 1℄, or (b) R is Poisson. Then for any � � 1,Pr[R � ��℄ � H(�; �), where H(�; �) := (e��1=��)�:Fat 1 is easily veri�ed.Fat 1. If � > 1 then H(�; �) � e���=M� , where M� is positive and monotonedereasing for � > 1.We next reall the \independent bounded di�erenes tail inequality" of MDi-armid [MDiarmid 1989℄. (The inequality is a development of the \Azuma mar-tingale inequality"; a similar formulation was also derived by Bollob�as [Bollob�as1988℄.)Lemma 1. ([MDiarmid 1989, Lemma 1.2℄) Let x1; : : : ; xn be independentrandom variables, with xk taking values in a set Ak for eah k. Suppose that the(measurable) funtion f :QAk ! R (the set of reals) satis�esjf(x)� f(x0)j � k whenever the vetors x and x0 di�er only in the kth oordinate.Let Y be the random variable f(x1; : : : ; xn). Then for any t > 0,Pr �jY � E[Y ℄j � t� � 2 exp �� 2t2ÆPnk=1 2k�:Remark 1. The proof of Lemma 1 in [MDiarmid 1989℄ atually shows the strongerresult that maxfPr �Y �E[Y ℄ � t℄; Pr �Y � E[Y ℄ � �t℄g � exp �� 2t2ÆPnk=1 2k�.Suppose (at most) s messages are present in a stati system, and that we haves time units within whih we would like to send out a \large" number of them tothe hannel, with high probability. We give an informal sketh of our ideas. Anatural sheme is for eah message independently to attempt using the hannel ata randomly hosen time from [s℄. Sine a message is suessful if and only if noother message hose the same time step as it did, the \ollision" of messages is adominant onern; the number of suh olliding messages is studied in the followinglemma.Lemma 2. Suppose at most s balls are thrown uniformly and independently atrandom into a set of s bins. Let us say that a ball ollides if it is not the only ball inits bin. Then, (i) for any given ball B, Pr[B ollides ℄ � 1� (1� 1=s)s�1 < 1�1=e,and (ii) if C denotes the total number of balls that ollide then, for any Æ > 0,Pr[C � s(1� 1=(e(1 + Æ)))℄ � F (s; Æ); where F (s; Æ) := e�sÆ2=(2e2(1+Æ)2):



Contention Resolution with Constant Expeted Delay � 9Proof. Part (i) is diret. For part (ii), number the balls arbitrarily as 1; 2; : : : .Let Xi denote the random hoie for ball i, and C = f(X1; X2; : : :) be the numberof olliding balls. It is easily seen that, for any plaement of the balls and for anymovement of any desired ball (say the ith) from one bin to another, we have i � 2,in the notation of Lemma 1. Invoking Lemma 1 and the remark following it, weonlude the proof.Lemma 2 suggests an obvious improvement to our �rst sheme if we have manymore slots than messages. Suppose we have s messages in a stati system and `available time slots t1 < t2 < � � � < t`, with s � `=(e(1 + Æ)) for some Æ > 0. Let`i(Æ) := `e(1 + Æ) �1� 1e(1 + Æ)�i�1 for i � 1; (1)thus, s � `1(Æ). The idea is to have eah message try using the hannel at somerandomly hosen time from fti : 1 � i � `1(Æ)g. The number of remaining messagesis at most s(1 � 1e(1+Æ) ) � `2(Æ) with high probability, by Lemma 2(ii). Eahremaining message attempts to use the hannel at a randomly hosen time fromfti : `1(Æ) < i � `1(Æ) + `2(Æ)g; the number of messages remaining is at most `3(Æ)with high probability (for s large). The basi \random trial" user of Lemma 2is thus repeated a suÆiently large number of times. The total number of timeslots used is at most P1j=1 `j(Æ) = `, whih was guaranteed to be available. Infat, we will also need a version of suh a senario where some number z of suhprotools are run independently, as onsidered by De�nition 1. Although we needa few parameters for this de�nition, the intuition remains simple.De�nition 1. Suppose `, m and z are positive integers, Æ > 0, and we are givensets of messages P1; P2; : : : ; Pz and sets of time slots T1; T2; : : : ; Tz suh that: (i)Pi \ Pj = � and Ti \ Tj = � if i 6= j, and (ii) jTij = ` for all i. For eah i 2 [z℄, letTi = fti;1 < ti;2 < � � � < ti;`g. De�ne `0 = 0, and `i = `i(Æ) as in (1) for i � 1.Then, RT(fPi : i 2 [z℄g; fTi : i 2 [z℄g;m; z; Æ) denotes the performane of zindependent protools E1; E2; : : : ; Ez (\RT" stands for \repeated trials"). Eah Eihas m iterations, and its jth iteration is as follows: eah message in Pi that ollidedin all of the �rst (j � 1) iterations piks a random time from fti;p : `0 + `1 + � � �+`j�1 < p � `0 + `1 + � � �+ `jg, and attempts using the hannel then.Remark 2. Note that the fat that distint protools Ei are independent followsdiretly from the fat that the sets Ti are pairwise disjoint.The following useful lemma shows that, for any �xed Æ > 0, two desirable fatshold for RT provided jPij � `1(Æ) for eah i (where ` = jTij), if ` and the numberof iterations m are hosen large enough: (a) the probability of any given messagenot sueeding at all an be made smaller than any given small positive onstant,and (b) the probability of there remaining any given onstant fator of the originalnumber of messages an be made exponentially small in `.Lemma 3. For any given positive �, Æ and � (� � 1=2), there exist �nite positivem(�; Æ; �), `(�; Æ; �) and p(�; Æ; �) suh that, for any m � m(�; Æ; �), any ` � `(�; Æ; �),any z � 1, and `i = `i(Æ) de�ned as in (1), the following hold if we performRT(fPi : i 2 [z℄g; fTi : i 2 [z℄g;m; z; Æ), provided jPij � `1 for eah i.



10 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan(i) For any message P , Pr[P did not sueed ℄ � �.(ii) Pr[in total at least `z� messages were unsuessful℄ � ze�`�p(�;Æ;�).Proof. Let P 2 Pi. Let nj(i) denote the number of unsuessful elementsof Pi before the performane of the jth iteration of protool Ei, in the notationof De�nition 1. Let Aj be the \bad" event that paket P was unsuessful in thejth iteration of protool Ei, and let Bj be the \bad" event that nj+1 � `j+1. Byassumption, we have n1(i) � `1. Thus, for any j 2 [m℄,Pr[9j0 2 [j℄ : Bj0 ℄ � Xj02[j℄Pr[Bj0 j B1 ^ B2 ^ � � � ^ Bj0�1℄ � Xj02[j℄F (`j0 ; Æ); (2)by part (ii) of Lemma 2.We now upper-bound the probability of P failing throughout as follows:Pr24 ^j2[m℄Aj35 � Pr[9j 2 [m� 1℄ : Bj ℄ + Pr240� ^j2[m�1℄(Aj ^ Bj)1A ^ Am35� Xj2[m�1℄F (`j ; Æ) + Pr240� ^j2[m�1℄(Aj ^ Bj)1A ^ Am35 (by (2))� Xj2[m�1℄F (`j ; Æ) + Yj2[m℄Pr24Aj j ^j02[j�1℄(Aj0 ^ Bj0)35� Xj2[m�1℄F (`j ; Æ) + (1� 1=e)m; (3)sine for eah j, Pr[Aj j Vj02[j�1℄(Aj0 ^ Bj0)℄ < 1� 1=e by part (i) of Lemma 2.Also, (2) yields Pr[nm+1(i) � `m+1℄ � Xj2[m℄F (`j ; Æ): (4)The bounds (3) and (4) imply that if we pikm(�; Æ; �) > log(�=2)= log(1� 1=e)and then hoose `(�; Æ; �) large enough, we an ensure part (i). Also, if we pikm(�; Æ; �) � log(�e(1 + Æ))= log(1 � 1=(e(1 + Æ))) and then hoose `(�; Æ; �) largeenough and p(�; Æ; �) appropriately, we also obtain (ii).A variant. The following small hange in RT will arise in Lemmas 7 and 8.Following the notation of De�nition 1, for eah i 2 z, there may be one knowntime ti;g(i) 2 Ti whih is \marked out": messages in Pi annot attempt using thehannel at time ti;g(i). To aommodate this, we modify RT slightly: de�ne j = j(i)to be the unique value suh that `0 + `1 + � � � + `j�1 < g(i) � `0 + `1 + � � � + `j .Then any message in Pi that ollided in all of the �rst (j � 1) iterations will,in the jth iteration, attempt using the hannel at a time hosen randomly fromfti;p : (p 6= g(i)) and `0 + � � �+ `j�1 < p � `0 + � � �+ `jg. All other iterations arethe same as before for messages in Pi, for eah i.



Contention Resolution with Constant Expeted Delay � 11We now sketh why Lemma 3 remains true for this variant, if we take m(�; Æ; �)and `(�; Æ; �) slightly larger and redue p(�; Æ; �) to a slightly smaller (but still posi-tive) value. We start by stating the analogue of Lemma 2, whih applies to the vari-ant. (The proof that the analogue is orret is the same as the proof of Lemma 2.)Note that, for s � 2, 1� (1� 1=s)s � 1� 1=e+K0=s, for some absolute onstantK0 > 0.Lemma 20 There are positive onstantsK0;K1;K2 suh that the following holds.For s � 2, suppose at most s+ 1 balls are thrown uniformly and independently atrandom into s bins. Then (i) for any given ball B, Pr[B ollides℄ = 1�(1� 1=s)s �1 � 1=e +K0=s, and (ii) if C denotes the total number of balls that ollide then,for any Æ > 0,Pr[C � s(1� 1=(e(1 + Æ)))℄ � G(s; Æ); where G(s; Æ) := K1e�K2sÆ2=(1+Æ)2 :Now note that the proof of Lemma 3 applies to the variant by using Lemma 20 inplae of Lemma 2.2.2 The protoolWe present the ideas parameterized by several onstants. Later we will hoosevalues for the parameters to maximize the throughput. There will be a trade-o�between the maximum throughput and the expeted waiting time for a message;a di�erent hoie of parameters ould take this into onsideration. The onstantswe have hosen guarantee that our protool is stable in the sense of [H�astad et al.1996℄ for � < 1=e.From now on, we assume that � < 1=e is given. Let � � 3 be any (say, thesmallest) positive integer suh that� � (1� 2=�)=e: (5)We de�ne Æ0 by 1 + Æ0 = 1e�+ 1=� : (6)Note that Æ0 > 0 by our assumptions on � and �.Three important onstants, b; r and k, shape the protool; eah of these is apositive integer that is at least 2. At any time during its lifetime in the protool,a message is regarded as residing at some node of an in�nite tree T , whih isstrutured as follows. There are ountably in�nitely many leaves ordered left-to-right, with a leftmost leaf. Eah non-leaf node of T has exatly k hildren, wherek > r : (7)As usual, we visualize all leaves as being at the same (lowest) level, their parentsbeing at the next higher level, and so on. (The leaves are at level 0.) As will beseen in P3 below, the parameters b and r give, respetively, the \apaity" of eahleaf node and the fator by whih this size inreases from eah level to the next.Note that the notions of left-to-right ordering and leftmost node are well-de�nedfor every level of the tree. T is not atually onstruted; it is just for exposition.We assoiate a �nite nonempty set of non-negative integers Trial(v) with eah node



12 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanv. De�ne L(v) := minfTrial(v)g, R(v) := maxfTrial(v)g, and the apaity ap(v) ofv, to be jTrial(v)j. A required set of properties of the Trial sets is the following:P1. If u and v is any pair of distint nodes of T , then Trial(u) \ Trial(v) = �;P2. If u is either a proper desendant of v, or if u and v are at the same level withu to the left of v, then R(u) < L(v).P3. The apaity of all nodes at the same level is the same. Let ui be a generinode at level i. Then, ap(u0) = b and ap(ui) = r � ap(ui�1) = bri, for i � 1.Suppose we have suh a onstrution of the Trial sets. (Note (P1): in parti-ular, the Trial set of a node is not the union of the sets of its hildren.) Eahmessage P injeted into the system at some time step t0 will initially enter theleaf node u0(P ) where u0(P ) is the leftmost leaf suh that L(u0(P )) > t0. ThenP will move up the tree if neessary, in the following way. In general, supposeP enters a node ui(P ) at level i, at time ti; we will be guaranteed the invariant\Q: ui(P ) is an anestor of u0(P ), and ti < L(ui(P ))." P will then run proto-ol RT(Pui(P );Trial(ui(P ));m; 1; Æ0), where Pui(P ) is the set of messages enteringui(P ) and m is a suitably large integer to be hosen later. If it is suessful, P will(of ourse) leave the system, otherwise it will enter the parent ui+1(P ) of ui(P ), atthe last time slot (element of Trial(ui(P ))) at whih it tried using the hannel andfailed, while running RT(Pui(P );Trial(ui(P ));m; 1; Æ0). (P knows what this timeslot is: it is the mth step at whih it attempted using the hannel, during thisperformane of RT.) Invariant Q is established by a straightforward indution oni, using Property P2. Note that the set of messages Pv entering any given nodev perform protool RT(Pv ;Trial(v);m; 1; Æ0), and, if v is any non-leaf node withhildren u1; u2; : : : ; uk, then the trials at its k hildren orrespond to RT(fPu1 ; : : : ;Pukg; fTrial(u1); : : : ;Trial(uk)g;m; k; Æ0); by Properties P1 and P3. Thus, eahnode reeives all the unsuessful messages from eah of its k hildren; an unsu-essful message is imagined to enter the parent of a node u, immediately after itfound itself unsuessful at u. Figure 1 illustrates some of these ideas. A fragmentof the tree with (unreasonable) parameters k = 4, r = 1, b = 3, is shown. For eahnode u, the set Trial(u) is the set of shaded squares in the orresponding retangle.In this example, jTrial(u)j = 3 for all u. Paket P enters the sequene of nodesu0(P ); u1(P ); u2(P ); : : : .The intuition behind the advantages o�ered by the tree is roughly as follows. Notethat in a multiple-aess hannel problem, a solution is easy if the arrival rate isalways lose to the expetation (e.g., if we always get at most one message per step,then the problem is trivial). The problem is that, with probability 1, in�nitely oftenthere will be \bulk arrivals" (bursts of a large number of input messages within ashort amount of time); this is a key problem that any protool must onfront. Thetree helps in this by ensuring that suh bursty arrivals are spread over a few leavesof the tree and are also handled independently, sine the orresponding Trial setsare pairwise disjoint. One may expet that, even if several messages enter one hildof a node v, most of the other hildren of v will be \well-behaved" in not gettingtoo many input messages. These \good" hildren of v are likely to suessfullytransmit most of their input messages, thus ensuring that, with high probability,not too many messages enter v. Thus, bursty arrivals are likely to be smoothed



Contention Resolution with Constant Expeted Delay � 13out, one the orresponding messages enter a node at a suitable level in the tree.In short, our assumption on time-agreement plays a symmetry-breaking role.Informally, if the proportion of the total time dediated to nodes at level 0 is 1=s,where s > 1, then the proportion for level i will be approximately (r=k)i=s. (Reallthe parameters r and k: the apaity of eah tree node at level i is bri, and k is thenumber of hildren of eah non-leaf node.) Sine the sum of these proportions forall i an be at most 1, we require s � k=(k � r); we will takes = k=(k � r) : (8)More preisely, the Trial sets are onstruted as follows; it will be immediate thatthey satisfy Properties P1, P2, and P3. First de�nes = �=(�� 1); k = 4�2; and r = 4�: (9)We remark that though we have �xed these onstants, we will use the symbolss; k and r (rather than their numerial values) wherever possible. Also, ratherthan present the value of b right away, we will hoose b at the end of the proof ofTheorem 2; we will require thatb is divisible by �� 1. (10)For i � 0, letFi = fj > 0 : 9h 2 [�� 1℄ suh that j � h�i (mod �i+1)g: (11)Note that Fi is just the set of all j whih, when written in base �, have zeroes intheir i least signi�ant digits, and have a non-zero in their (i+1)st least signi�antdigit. Hene, the sets Fi form a partition of Z+. For any non-negative integer j,any positive multiple z of �j , and any positive integer x, let �(z; j; x) denote thexth smallest element of Fj that is at least as large as z. We an hek that�(z; j; x) = z +�j(x + � x�� 1�� 1) if z is a multiple of �j+1: (12)Suppose z is not a multiple of �j+1; let z + z0�j be the smallest multiple of �j+1that is greater than z. If x � �, then �(z; j; x) = �(z + z0�j ; j; x� z0), whih, by(12), is at most the right-hand-side of (12). Thus,�(z; j; x) � z +�j(x+ � x�� 1�� 1) if x � �. (13)Let vi be a generi node at level i; if it is not the leftmost node in its level, letui denote the node at level i that is immediately to the left of vi. We will ensurethat all elements of Trial(vi) lie in Fi. (For any large enough interval I in Z+, thefration of I lying in Fi is roughly (� � 1)=�i+1 = (r=k)i=s; this was what wemeant informally above, regarding the proportion of time assigned to level i of thetree being (r=k)i=s.)We now de�ne Trial(vi) by indution on i and from left-to-right within the samelevel, as follows. If i = 0, then if v0 is the leftmost leaf, we set Trial(v0) to be thesmallest ap(v0) elements of F0; else we set Trial(v0) to be the ap(v0) smallestelements of F0 larger than R(u0). If i � 1, let w be the rightmost hild of vi. Ifvi is the leftmost node at level i, we let Trial(vi) be the ap(vi) smallest elements



14 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanTable 1. Main parametersParameter(s) Brief explanation� < 1=e Message arrival rate� � 3 Positive integer suh that � � (1 � 2=�)=eÆ0 > 0 1 + Æ0 = (e�+ 1=�)�1r = 4�, b Capaity of nodes at level i is bri; b is divisible by �� 1k = 4�2 Number of hildren of eah non-leaf nodes Equals k=(k � r) = �=(�� 1)a = e(1 + Æ0), d > 1 Constants used in analysisof Fi that are larger than R(w); else de�ne Trial(vi) to be the ap(vi) smallestelements of Fi that are larger than maxfR(ui); R(w)g. In this ase, we an showthat R(w) � R(ui), as follows. Suppose for a ontradition that R(w) < R(ui);let vi be the leftmost node at its level with this property. Thus, letting w0 be therightmost hild of ui, Trial(ui) is the set of bri smallest elements of Fi larger thanR(w0). So, de�ning z to be the smallest multiple of �i that is larger than R(w0),we have R(ui) = �(z; i; bri); hene,R(ui) � z +�i(bri + � bri�� 1�� 1): (14)Next, the number of elements of Fi�1 lying in the interval (R(w0); z℄ is at most�� 2; sine vi has k hildren, eah of apaity bri�1, we see thatR(w) � �(z; i� 1; kbri�1 � (�� 2))= z +�i�1(kbri�1 � (�� 2) + �kbri�1 � (�� 2)�� 1 �� 1); (15)by (12). So, to prove that R(w) � R(ui), it suÆes to show that the l.h.s. of (14) isat most the r.h.s. of (15), whih redues to showing that d(kbri�1 +1)=(�� 1)e �� � dbri=(�� 1)e. This inequality follows from (9) and (10).Sine z < R(w0) + �i and b is divisible by � � 1, (14) shows that R(ui) <R(w0) + b�iri ��=(�� 1), whih equals R(w0) + sbki. Thus, for all i � 1,R(vi) < R(w) + sbki: (16)Before proeeding to analyze the protool, we remind the reader that at any timestep at most one node of the tree is ative; some of the messages residing at thisnode at this time are attempting to transmit at this time.2.3 Waiting times of messagesOur main random variable of interest is the time that a generi message P willspend in the system, from its arrival. Leta = e(1 + Æ0) (17)and d be a onstant greater than 1.The main parameters presented so far an be found in Table 1.De�nition 2. For any node v 2 T , the random variable load(v), the load of v, isde�ned to be the number of messages that enter v. For any positive integer t, node



Contention Resolution with Constant Expeted Delay � 15v at level i is de�ned to be t-bad if and only if load(v) > bridt�1=a: Node v is saidto be t-loaded if it is t-bad but not (t + 1)-bad. It is alled bad if it is 1-bad, andgood otherwise.It is not hard to verify that, for any given t � 1, the probability of being t-badis the same for any nodes at the same level in T . This is beause the Trial setsof di�erent nodes are disjoint, the message arrival distributions at di�erent leavesare i.i.d., and sine messages move (if at all) only from tree nodes to their parentnodes. This brings us to the next de�nitions.De�nition 3. For any (generi) node ui at level i in T and any positive integer t,pi(t) denotes the probability that ui is t-bad.De�nition 4. (i) The failure probability q is the maximum probability that amessage entering a good node will not sueed during the funtioning of that node.(ii) For any message P , let u0(P ); u1(P ); u2(P ); : : : be the nodes of T that ui isallowed to pass through, where the level of ui(P ) is i. Let Ei(P ) be the event thatP enters ui(P ).If a node u at level i is good then, in the notation of Lemma 3, its load is at most`1(Æ0), where ` = ap(u); hene, Lemma 3(i) shows that, for any �xed q0 > 0,q < q0 an be ahieved by making b and the number of iterations m large enough.Note that the distribution of Ei(P ) is independent of its argument. This is be-ause the arrival distributions at di�erent leaves are i.i.d, and beause eah non-leafnode treats the messages arriving from its di�erent hildren symmetrially. (Thus,in partiular, Ei(P ) is independent of the leaf node at whih P arrived.) Hene,for any i � 0, we may de�ne fi := Pr[Ei(P )℄ for a generi message P . Suppose Pwas unsuessful at nodes u0(P ); u1(P ); : : : ; ui(P ). Let A(i) denote the maximumtotal amount of time P ould have spent in these (i + 1) nodes. We �rst boundA(0). Sine b is a multiple of �� 1, we an hek that the xth leaf of the tree fromthe left has its L(�) value equaling (x� 1) � (b=(�� 1)) ��+ 1, and its R(�) valueequaling x � (b=(� � 1)) � � � 1. Thus, if the arrival time of P was an integer ofthe form z�+ z0, where 0 � z0 � �� 1, then P will enter a leaf whose R(�) valueis: (i) (z + 1) � (b=(� � 1)) � � � 1 if z0 = 0, and (ii) (z + 2) � (b=(� � 1)) � � � 1if z0 6= 0. Thus, the maximum time spent by P before leaving the leaf level, is atmost 2b�=(�� 1) = 2sb. So, A(0) � 2sb. For i � 1, A(i) � kA(i� 1)+ (k=r)isbri,using (16). Hene, A(i) � (i+ 2)sbki for all i. (18)The simple, but ruial, Lemma 4 is about the distribution of an importantrandom variable W (P ), the time that P spends in the system.Lemma 4. (i) For any message P , Pr[W (P ) > A(i)℄ � fi+1 for all i � 0, andE[W (P )℄ �P1j=0 A(j)fj . (ii) For all i � 1, fi � qfi�1 + pi�1(1):Proof. Part (i) is immediate, using the fat that, for a non-negative integer-valued random variable Z, E[Z℄ =P1i=1 Pr[Z � i℄. For part (ii), note thatfi = fi�1 Pr[Ei j Ei�1℄: (19)Letting i = Pr[ui�1(P ) was good j Ei�1℄,Pr[Ei j Ei�1℄ = i Pr[Ei j ui�1(P ) was good ^ Ei�1℄ +



16 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan(1� i) Pr[Ei j ui�1(P ) was bad ^ Ei�1℄� Pr[Ei j ui�1(P ) was good ^ Ei�1℄ +Pr[ui�1(P ) was bad j Ei�1℄� q +Pr[ui�1(P ) was bad j Ei�1℄� q +Pr[ui�1(P ) was bad℄=Pr[Ei�1℄:Thus, by (19), fi � fi�1q +Pr[ui�1(P ) was bad℄ = qfi�1 + pi�1(1).2.4 The improbability of high nodes being heavily loadedAs is apparent from Lemma 4, our main interest is in getting a good upper boundon pi(1). However, to do this we will also need some information about pi(t) fort � 2, and hene De�nition 3. The basi intuition is that if a node is good then,with high probability, it will suessfully shedule \most" of its messages; this isformalized by Lemma 3(ii). In fat, Lemma 3(ii) shows that, for any node u inthe tree, the good hildren of u will, with high probability, pass on a total of \notmany" messages to u, sine the funtioning of eah of these hildren is independentof the other hildren.To estimate pi(t), we �rst handle the easy ase of i = 0. Reall that if X1 andX2 are independent Poisson random variables with means �1 and �2 respetively,then X1 + X2 is Poisson with mean �1 + �2. Thus, u0 being t-bad is a simplelarge-deviation event for a Poisson random variable with mean sb�. If, for everyt � 1, we de�ne �t := dt�1=(sa�) and ensure that �t > 1 by guaranteeingsa� < 1; (20)then Theorem 1 shows thatp0(t) = Pr[u0 is t-bad℄ � H(sb�; �t) : (21)Our hoies for s and a validate (20): see (6), (17), (9) and (5).We now onsider how a generi node ui at level i � 1 ould have beome t-bad,for any given t. The resulting reurrene yields a proof of an upper bound for pi(t)by indution on i. The two ases t � 2 and t = 1 are overed by Lemmas 5 and 6respetively. We require d2 + k � 1 � dr ; (22)this is satis�ed by de�ning d = 2�:Lemma 5. For i � 1 and t � 2, if a node ui at level i in T is t-bad, then at leastone of the following two onditions holds for ui's set of hildren: (i) at least onehild is (t+ 1)-bad, or (ii) at least two hildren are (t� 1)-bad. Thus,pi(t) � kpi�1(t+ 1) +�k2� (pi�1(t� 1))2 :Proof. Suppose that ui is t-bad but that neither (i) nor (ii) holds. Then uihas at most one hild v that is either t-loaded or (t � 1)-loaded, and none ofthe other hildren of ui is (t � 1)-bad. Node v an ontribute a load of at mostbri�1dt=a messages to ui; the other hildren ontribute a total load of at most



Contention Resolution with Constant Expeted Delay � 17(k � 1)bri�1dt�2=a. Thus the hildren of ui ontribute a total load of at mostbri�1dt�2(d2 + k � 1)=a, whih ontradits the fat that ui is t-bad, sine (22)holds.In the ase t = 1, a key role is played by the intuition that the good hildren ofui an be expeted to transmit muh of their load suessfully. We now �x q andm, and plae a lower bound on our hoie of b. Note that (22) implies r > d. De�ne�1; �2 > 0 by �1 = minf r � da(k � 1) ; 12g and �2 = minf rak ; 12g :For q, we treat it as a parameter that satis�es0 < q < 1=k: (23)(Lemmas 7 and 8 will require that q be suÆiently small.) In the notation ofLemma 3, we de�ne m = maxfm(q; Æ0; �1);m(q; Æ0; �2)g (24)and require b � maxf`(q; Æ0; �1); `(q; Æ0; �2)g: (25)Lemma 6. For any i � 1, pi(1) is at mostkpi�1(2) +�k2� (pi�1(1))2 + k(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1) + ke�bri�1p(q;Æ0;�2):Proof. Suppose that ui is 1-bad. There are two possibilities: that at least onehild of ui is 2-bad or that at least two hildren are 1-bad. If neither of theseonditions holds, then either (A) ui has exatly one hild whih is 1-loaded with noother hild being bad, or (B) all hildren are good.In ase (A), the k � 1 good hildren must ontribute a total of at leastap(ui)a � ap(ui�1)da = bri�1(r � d)a � bri�1(k � 1)�1messages to ui. In the notation of Lemma 3, z = k�1, ` = bri�1 and � = �1. Sinethere are k hoies for the 1-loaded hild, Lemma 3(ii) shows that the probabilityof ourrene of ase (A) is at mostk(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1):In ase (B), the k good hildren ontribute at least ap(ui)=a = bri=a. By a similarargument, the probability of ourrene of ase (B) is at mostke�bri�1p(q;Æ0;�2):The inequality in the lemma follows.Next is a key theorem that proves an upper bound for pi(t), by indution on i.We assume that our onstants satisfy the onditions (7, 8, 17, 20, 22, 23, 24, 25).



18 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanTheorem 2. For any �xed � < 1=e and any q 2 (0; 1=k), there is a suÆientlylarge value of b suh that the following holds. There are positive onstants �; � and, with �; � > 1, suh that8i � 0 8t � 1; pi(t) � e��i�t�1 :Before proving Theorem 2, let us see why this shows the required propertythat E[W (P )℄, the expeted waiting time of a generi message P , is �nite. Theo-rem 2 shows that, for large i, pi�1(1) is negligible ompared to qi and hene, byLemma 4(ii), fi = O(qi). Hene, Lemma 4(i) ombined with the bound (18) showsthat, for any hoie q < 1=k, E[W (P )℄ is �nite (and good upper tail bounds anbe proven for the distribution of W (P )). Thus (23) guarantees the �niteness ofE[W (P )℄.Proof. (Of Theorem 2.) This is by indution on i. If i = 0, we use inequal-ity (21) and require that H(sb�; �t) � e��t�1 : (26)From (20), we see that �t > 1; thus by Fat 1, there is some M = M�t suh thatH(sb�; �t) � e��tsb�=M : Therefore to satisfy inequality (26), it suÆes to ensurethat dt�1b=(aM) � �t�1:We will do this by hoosing our onstants so as to satisfyd � � and b � aM : (27)We will hoose � and � to be fairly lose to (but larger than) 1, and so the �rstinequality will be satis�ed. Although  will have to be quite large, we are free tohoose b suÆiently large to satisfy the seond inequality.We proeed to the indution for i � 1. We �rst handle the ase t � 2, and thenthe ase t = 1.Case I: t � 2. By Lemma 5, it suÆes to show thatke��i�1�t +�k2�e�2�i�1�t�2 � e��i�t�1 :It is straightforward to verify that this holds for some suÆiently large , provided� > � and 2 > �� : (28)We an pik � = 1 + � and � = 1 + 2� for some small positive �, � < 1, to satisfy(28).Case II: t = 1. The �rst term in the inequality for pi(1) given by Lemma 6 is thesame as for Case I with t = 1; thus, as above, an appropriate hoie of onstantswill make it muh smaller than e��i . Similarly, the seond term in the inequalityfor pi(1) an be handled by assuming that � < 2 and that  is large enough. The�nal two terms given by Lemma 6 sum tok(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1) + ke�bri�1p(q;Æ0;�2): (29)We wish to make eah summand in (29) at most, say, e��i=4. We just need toensure thatbri�1p(q; Æ0; �1) � �i + ln(4k2) and bri�1p(q; Æ0; �2) � �i + ln(4k) : (30)



Contention Resolution with Constant Expeted Delay � 19Sine r > �, both of these are true for suÆiently large i. To satisfy these in-equalities for small i, we hoose b a suÆiently large multiple of � � 1 to satisfy(10,25,27,30), ompleting the proof of Theorem 2.It is now easily veri�ed that onditions (7,8,20,22,27,28) are all satis�ed. Thus,we have presented stable protools for � < 1=e.Theorem 3. Fix any � < 1=e. In the Synhronized In�nitely-Many UsersModel, our protool guarantees an expeted waiting time of O(1) for every mes-sage.We also get a tail bound as a orollary of Theorem 2:Corollary 1. Let `0 be a suÆiently large onstant. Fix any � < 1=e and1 > 1. We an then design our protool suh that, for any message P , in additionto having E[W (P )℄ = O(1), we also have for all ` � `0 that Pr[W (P ) � `℄ � `�1.Proof. Using (18), we see that if W (P ) � ` then P enters j levels wherePji=1(i+ 2)ki > `=(2sb), so j(j + 2)kj � `=(2sb). This implies thatj � � logk � `2sb�� 2 logk logk � `2sb��:As we mentioned in the paragraph preeding the proof of Theorem 2, fj = O(qj).Thus, Pr[W (P ) � `℄ = O(qlogk(`=(2sb))�2 logk logk(`=(2sb))):The result follows by designing the protool with q � k�21 for a suÆiently largepositive onstant 2.Remark 3. In pratie, the goal is often simply to ensure that the probability thatany given paket is delivered to the hannel is at least 1 � � for some onstant �.By the orollary, we an ahieve this goal by trunating eah paket after (1=�)1=1steps, or equivalently by trunating the in�nite tree after O(logk(1=�)) levels.3. THE SYNCHRONIZED FINITELY-MANY USERS PROTOCOLWe transfer to the Synhronized Finitely-Many Users Model (see Setion 1.1). Here,we shall let � =Pi �i be any onstant smaller than 1=e, and show how to simulatethe In�nitely-Many Users Protool on n synhronized users. Suppose for the mo-ment that eah message an do its own proessing independently (this assumptionwill be removed shortly). With this assumption, the di�erene between the synhro-nized in�nitely-many users model whih we have been onsidering and the synhro-nized �nitely-many users model is that, instead of being a Poisson distribution withparameter �, the input arrival distribution an be any f�ig1�i�n-dominated distri-bution (see Setion 1.1). Although the arrivals may not be independent, the strongondition in the de�nition of \f�ig1�i�n-dominated distribution" allows us to ap-ply Theorem 1(a) to the message arrivals (using stohasti domination). Therefore,(21) still holds in the synhronized �nitely-many users model.We need to avoid the assumption that eah message is proessed separately. ThediÆulty is that eah user must be responsible for a potentially unbounded numberof messages and must manage them in onstant time at eah step. We �rst sketh



20 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanhow to manage the messages and then give further details. Eah user f maintains,for eah i � 0, a linked list L(f; i) of the messages belonging to it that are at level iof the tree. If it is the turn of messages at level i of the tree to try in the urrent timestep t, then eah user f will ompute the probability pf;t of exatly one messagein L(f; i) attempting to use the hannel in our Synhronized In�nitely-Many UsersProtool. Then, eah f will independently send the message at the head of L(f; i)to the hannel with probability pf;t. (The reader may have notied that, in orderto simulate faithfully our in�nitely-many users protool, f should also alulate theprobability rf;t that more than one message in L(f; i) attempts to use the hannel.It should send a dummy message to the hannel with probability rf;t. This solutionworks, but we will show at the end of this setion that dummy messages are notneessary.)We now present the details of this message-management sheme. Let all theparameters suh as k;�, et., be as de�ned in Setion 2. For eah t 2 Z+, de�neative(t) to be the index of the least signi�ant digit of t that is nonzero, if t iswritten in base �. Reall from (11) that if the urrent time is t then the messagesin L(fj ; ative(t)), taken over all users fj , are preisely those that may attemptusing the hannel at the urrent step. Thus, if ative(t) = i, eah user f �rst needsaess to the head-pointer of L(f; i) in O(1) time. For this, it suÆes if f ountstime in base � and has an in�nite array whose ith element is the head-pointer ofL(f; i). However, suh stati in�nite storage is not required: f an ount time inbase � using a linked list, where the ith element of the list additionally ontainsthe head-pointer of L(f; i). This list an be augmented with pointers to jump oversubstrings (of the base-� representation of t) that are omposed of only � � 1,so that f an maintain t and ative(t) in O(1) time. We leave the tedious butstraightforward details of this to the reader. (Alternatively, as mentioned in theremark following Corollary 1, we may simply trunate the tree to a ertain �niteheight, if we only desire that eah message reahes the hannel with suÆientlyhigh probability. Then, of ourse, f may simply have a �nite array that ontainshead-pointers to the L(f; i).) Thus, we assume that f an aess the head-pointerto L(f; ative(t)) in O(1) time.Eah user f also maintains two other types of lists. List L0(f; t) ontains messagesthat arrive at f at time t, and whih are waiting to enter the next leaf of the tree.Eah user f will also maintain lists L̂(f; i; j), for eah positive integer i and forj = 1; 2; : : : ; k; the use of these lists is as follows. Suppose v is the node of leveli that has an L(�) value greater than the urrent time by the smallest positiveamount. (That is, v is the node of level i that will beome ative soonest inthe future.) Then, L̂(f; i; j) ontains messages of f that were unsuessful at thejth hild of v. In slight variane with the In�nitely-Many Users Protool, whena message is unsuessful at a node u at some level i, it does not immediatelymove to its parent; instead, when we reah time R(u), the list L(f; i) is renamedL̂(f; i+ 1; j), where j is suh that u is the jth hild of its parent.Eah list L;L0; L̂ will also have its ardinality at its head. In addition, it will havea pointer to its last element, so that onatenating two suh lists an be done inO(1) time. The lists L0 and L will also have the important property that the rankof any message P in the list order is uniformly distributed. For eah f , we maintainthese properties as follows. To establish this property for L0(f; t), we shall require



Contention Resolution with Constant Expeted Delay � 21the following assumption on the message arrivals: in eah step t, the messagesarriving at user f arrive in random order (among eah other) and, when arriving,they inrement jL0(f; t)j and get appended to the head of L0(f; t). Next, we showthe \random ordering" property for the lists L(f; i) by indution on i. For the basease i = 0, the disussion preeding (18) shows that any message waits at mostthe onstant amount b0 = b�=(� � 1) of time before entering a leaf. Thus, whenthe urrent time equals L(u) for some leaf u, f must de�ne L(f; 0) to be the unionof at most b0 lists L0(f; t). The user f an just generate a random permutation of[b0℄ and onatenate the lists L0(f; t) in the permuted order; sine eah L0(f; t) israndomly ordered, so is the omputed L(f; 0). Similarly, suppose by indution thatthe lists L(f; i) are randomly ordered for some i; this implies that so are the listsL̂(f; i+ 1; j), for all f and j. When the urrent time equals L(u) for some node uat level i+1, f an just generate a random permutation of [k℄ and onatenate thelists L̂(f; i+ 1; j) (j = 1; 2; : : : ; k) in the permuted order to produe L(f; i+ 1).We need to show the probability omputations to be done by f . Reall that theset of messages Pv entering a node v perform protool RT(Pv ;Trial(v);m; 1; Æ0).Suppose f is managing its messages at node v in level i of the tree at time step t.Let Trial(v) = ft1 < t2 < � � � < t`g. Reall from De�nition 1 that the messages inPv proeed in m iterations. Suppose f is onduting the jth iteration at time t;thus, t 2 S := ftp : `0 + `1 + � � �+ `j�1 < p � `0 + `1 + � � �+ `jg:User f needs to ompute the probability pf;t of exatly one message in L(f; i)attempting to use the hannel. We show how to do this, for eah tp suh that(Pj�1h=0 `h) < p � (Pjh=0 `h). Reall that f knows the value of N := jL(f; i)j = jPv j:this is present at the head of L(f; i). At time step tq where q = 1 + b(Pj�1h=0 `h),f generates a random integer r1 2 f0g [ [N ℄, wherePr[r1 = j℄ = �Nj �� 1jSj�j �1� 1jSj�N�j :Note that r1 has the same distribution as the number of messages in L(f; i) thatwould have attempted using the hannel at step tq in our Synhronized In�nitely-Many Users Protool. At time step tq, if r1 = 1, f will send the message at thehead of L(f; i) to the hannel. Similarly, if t = tq+1, f will generate a randominteger r2 2 f0g [ [N � r1℄ suh thatPr[r2 = j℄ = �N � r1j �� 1jSj � 1�j �1� 1jSj � 1�N�r1�j :One again, r2 has the same distribution as the number of messages in L(f; i) thatwould have attempted using the hannel at step tq+1; as before, f will send themessage at the head of L(f; i) to the hannel at time step tq+1 if and only if r2 = 1.It is immediate that, at eah step, f orretly omputes the probability of a \uniquesend".At this point, it is lear that the in�nitely-many users protool an be simulatedby �nitely-many users provided that the users send \dummy messages" as explainedpreviously. We now argue that sending dummy messages is unneessary beause theprotool is \deletion resilient" in the sense that if an adversary deletes a message



22 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan(for example, one that would have ollided with a dummy), the expeted lifetimeof other messages an only shorten. Formally, we must show that the simulatedsystem without dummy messages evolves with no worse probabilities than in thein�nite ase. We observe from our proof (for the Synhronized In�nitely-ManyUsers Model) that it suÆes to show the following analogue of Lemma 2. We needto show that if the number of available time slots (elements of the set S) is at leastas high as Pj jL(fj ; i)j (the sum taken over all users fj), then: (a) for any f andany message P 2 L(f; i), the probability that P sueeds in the jSj time slots aboveis greater than 1=e, and (b) the total number of olliding messages C satis�es thetail bound in part (ii) of Lemma 2.It is not hard to see that the probability of a ollision in any one of the timesteps above is at most 1=e. Thus (b) follows by the same proof as for part (ii)of Lemma 2. So, let us show (a) now. Let jL(f; i)j = N , and let M 2 [N; jSj℄denote Pj jL(fj ; i)j. In any given step among the jSj steps, the probability that fsuessfully transmitted a message, is at leastNjSj �1� 1jSj�M�1 � NjSj �1� 1jSj�jSj�1 > NejSj :Thus, by linearity of expetation, the expeted number of suessful transmissionsby f is more than N=e. One again by linearity of expetation, this equals the sumof the suess probabilities of the messages in L(f; i), eah of whih is the same bysymmetry. Thus, for any given message P 2 L(f; i), P sueeds with probabilitymore than 1=e.This ompletes the proof for the Synhronized Finitely-Many Users Model.3.1 A VariantWe will take n to be suÆiently large (if n is smaller than a ertain onstant, we anuse the protool of [H�astad et al. 1996℄, whih an handle any arrival rate � < 1).We will assume without loss of generality that n is even; if n is odd, just add adummy user whih gets no messages and does nothing.Let P be a protool (with onstants to be determined in order to meet ourrequirements below) running on n ompletely synhronized users whih simulatesthe Synhronized In�nitely-Many Users Protool from Setion 2 for n2 � 1 stepsthen skips a step and ontinues; this \skip" happens at every step of the formjn2 � 1, where j 2 Z+. Inputs might, however, arrive during the skipped step. Tosimplify P , note from (5) that we an take � to be even. Now (11) shows that, forall i � 1, all elements of Fi will be even; thus, sine all skipped steps (whih areof the form jn2 � 1) are odd sine n is even, we see that no skipped step ours inthe Trial set of nodes at level i � 1. Thus, the skipped steps our only during thetime slots assigned to the nodes at the leaf level. Sine the Trial sets of the leaveshave ardinality b and as we may take n > pb, we have that suh \marked out"(skipped) steps our at most one in the Trial set of any leaf. Thus, as long as bis suÆiently large (and n is hosen larger), the \variant" disussed after Lemma 3shows that P is essentially the same as the Synhronized In�nitely-Many UsersProtool as far as our analysis is onerned.We prove the following two useful lemmas about P . In both lemmas, P is runfor at most n40 steps.



Contention Resolution with Constant Expeted Delay � 23Lemma 7. Suppose � < 1=e and that P is run with a f�ig1�i�n-dominatedarrival distribution for � � n40 steps. Then the expeted delay of any message thatarrives is O(1). Furthermore, the probability that any of the messages that arriveduring the � steps has delay more than n7=2 is at most n�60.Proof. As disussed above, we an handle P just as if it were the SynhronizedIn�nitely-Many Users Protool. Then by Corollary 1, we an hoose the onstantsfor the protool so that the probability that any given message has a delay exeedingn7=2 is at most (2=n7)1 (when n is large) for any desired 1. There are at most n�messages generated, so the probability that there exists suh a message is at mostn�(2=n7)1 , whih is suÆiently small if 1 is suÆiently large (say, at least 18).Lemma 8. Suppose � < 1=e and that P is run with a f�ig1�i�n-dominatedarrival distribution for � � n40 steps. Suppose further that a message arrives atuser p at step t0 � � . Then the expeted delay of any message that arrives is O(1).Furthermore, the probability that any message has delay more than n7=2 is at mostn�60.Proof. The only plae where the proof in Setion 2 uses the arrival distributionis in bound (21). We argued at the beginning of this setion that (21) still holdsfor any f�ig1�i�n-dominated arrival distribution. We now show that a similarbound holds even if the arrival distribution is onditioned on a message arrivingat user p at step t0 � � . Reall that a leaf u0 is t-bad if and only if its load(the number of arrivals in the relevant period of sb steps) exeeds bdt�1=a. Thenumber of arrivals in sb steps is at most 1 plus the sum of nsb random variablesXi;j where, for 1 � i � n and 1 � j � sb, Xi;j is a random variable that hasvalue 1 with probability at most �i (even onditioned on other arrivals) and value 0otherwise. Using stohasti domination, we an apply Theorem 1. We let �0t =(bdt�1 � a)=(asb�). Sine sa� < 1 (20), b an be hosen suÆiently large to make�0t > 1. By Theorem 1, the probability that the sum of the random variables exeeds((dbt�1)=a)�1 = (sb�)�0t is at most H(sb�; �0t). Thus, in plae of (21), we now have\Pr[u0 is t-bad℄ � H(sb�; �0t)". A small further hange to be made to our proof forthe Synhronized In�nitely-Many Users Protool is, in the sentene following (26),to de�ne M =M�0t . The whole proof goes through now.4. THE UNSYNCHRONIZED FINITELY-MANY USERS PROTOCOL4.1 Notation and PreliminariesIn our basi model, we have n users whih an start and stop at arbitrary steps,with the onstraint that eah time a user starts, it runs for at least a ertainpolynomial number of steps. (For the onstant expeted message delay results inSetion 4.4, we require this polynomial to be 8n71; however, n33 is suÆient for allproofs in Setion 4.3. No attempt has been made to optimize these polynomials.)The starting and stopping times are not allowed to depend upon the progress ofthe protool. Thus, these starting and stopping times an be viewed as beingdetermined in advane of the running of the protool.2 Reall that n is taken to2Spei�ally, this models \normal" faults, and disallows \adversarial" faults, in whih startingand stopping times are adaptively hosen (depending on the history of the system) in order toause delays.



24 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanbe suÆiently large and that � =Pi �i < 1=e.4.2 The ProtoolThe users typially simulate protool P from Setion 3. However, the starting andstopping of users auses the system to beome unsynhronized, so the protoolsynhronizes itself from time to time.Here is an informal desription of our protool. In the normal state a user main-tains a bu�er B of size n7 and an unbounded queue Q, eah ontaining messagesto be sent. When a message is generated it is put into B. For eah message m 2 Bthe user maintains a variable trial(m) whih ontains the next step on whih theuser will attempt to send m. The step trial(m) will be hosen using protool P .When P is \skipping a step" our protool will take the opportunity to try to sendsome messages from Q: at suh steps, with probability 1=(3n), the user attemptsto send the �rst message in Q. Eah user also maintains a list L whih keeps trakof the results (either \failure" or \suess") of the (up to n2) most reent messagesending attempts from Q.A user goes into a synhronizing state if any message has remained in the bu�erfor n7 steps or if L is full (ontains n2 results) and only ontains failures. It alsogoes into a synhronizing state from time to time even when these events do notour. (It synhronizes if it has been simulating P for at least n40 steps, and itsynhronizes with probability n�30 on any given step.) If the user does go into asynhronizing state, it transfers all messages from B to the end of Q.In the synhronizing state, a user ould be in one of many possible stages, and itsations depend on the stage that it is in. It will always put any generated messagesinto the queue. Also, it sends only dummy messages in the synhronizing state.(The dummy messages are used for synhronizing. Real messages that arrive duringthe synhronization phase must wait until the next normal phase to be sent.3) Thesequene of synhronization stages whih a user goes through is as follows.De�nition: Let W = 12n4.JAMMING The user starting the synhronization jams the hannel by sendingmessages at every step. In this way, it signals other users to start synhronizingalso.FINDING LEADER Eah user sends to the hannel with probability 1=n oneah step. The �rst user to sueed is the leader.ESTABLISHING LEADER In this stage, a user has deided it is the leader,and it jams the hannel so no other user will deide to be the leader.SETTING CLOCK In this stage, a user has established itself as the leader,and it jams the hannel one every 4W steps, giving other users a hane tosynhronize with it.COPYING CLOCK In this stage, a user has deided it is not the leader, andit attempts to opy the leader's lok by polling the hannel repeatedly to �ndthe synhronization signal (namely, the jamming of the hannel every 4W steps3Of ourse, there is no harm in using real messages for synhronizing, but this does not improvethe provable results, so we prefer to use dummy messages for synhronizing in order to keep theexposition lear.



Contention Resolution with Constant Expeted Delay � 25by the leader). Spei�ally, it sends to the hannel with probability 1=(3n) oneah step and, if it sueeds, it knows that the urrent step (mod 4W ) does notorrespond to the leader's lok. After many attempts, it should be left withonly one step (mod 4W ) that ould orrespond to the leader's lok. At theend of this stage, it synhronizes its lok to the leader's lok.WAITING This stage is used by a user after COPYING CLOCK in order tosynhronize with the leader's lok. The user idles during this stage.POLLING A user in this stage is simply \biding its time" until it swithes to anormal stage. While doing so, it attempts to send to the hannel oasionally(with probability 1=(3n) on eah step) in order to detet new users whih mightbe joining the system and re-starting a synhronization phase. If new users aredeteted, the user re-starts the synhronization phase. Otherwise, it begins thenormal phase of the protool.The length of eah of these stages is very important in terms of ahieving both ahigh probability of synhronization and a high level of robustness. The high proba-bility of synhronization is ahieved by making the \preliminary" stages (i.e., JAM-MING, FINDING LEADER, and ESTABLISHING LEADER) of length �(W ) (thisis long enough to guarantee all users in a normal state will detet a synhronization),and the \synhronizing" stages (i.e., SETTING CLOCK, COPYING CLOCK, andWAITING) of length �(Wn2) (this gives users enough time to determine theleader's lok modulo 4W with high probability). The high level of robustnessis ahieved by the following properties:(1) the lengths of the \preliminary" and \synhronizing" stages are as above,(2) only the preliminary stages an ause the hannel to be jammed,(3) the \synhronizing" stages annot detet a new synhronization ourring,(4) the POLLING stage is of length �(Wn3) (longer than all of the other stagesombined), and(5) the POLLING stage is able to detet new synhronizations.The di�ering lengths of time for the \preliminary", \synhronizing" and POLLINGstages, and the fat that only the POLLING stage ould ause another synhro-nization to our, guarantee that bad events as desribed at the end of Setion 1.3annot our, even when up to n users are starting at di�erent times (and stoppingperiodially).Whenever a user joins the multiple-aess hannel, it starts the protool withstate = SYNCHRONIZING, syn stage = JAMMING, lok = 0, and L empty.We now give the details of the protool.ProtoolAt eah step doIf (state = NORMAL) all Proedure NormalElse all Proedure Synhronizing



26 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanProedure NormalIf a message m is generatedPut m in BChoose trial(m) by ontinuing the simulation of PIf ((lok mod n2) = n2 � 1) all Proedure Queue StepElse all Proedure Normal StepProedure Begin SynMove all of the messages in B to QEmpty Lstate SYNCHRONIZING, syn stage JAMMING, lok 0Proedure Normal StepIf (lok � n40 or any message in B has waited more than n7 steps)Call Proedure Begin SynElse With Probability n�30, all Proedure Begin SynOtherwiseIf more than one message m in B has trial(m) = lokFor eah m 2 B with trial(m) = lokChoose a new trial(m) by ontinuing the simulation of PIf exatly one message m in B has trial(m) = lokSend mIf m sueeds, remove it from BElse hoose a new trial(m) by ontinuing the simulation of Plok lok + 1Proedure Queue StepWith probability 1=(3n)If (Q is empty) send a dummy messageElse Send the �rst message in QIf the outome is \suess", remove the message from QAdd the outome of the send to LOtherwise add \failure" to LIf (jLj = n2 and all of the entries of L are \failure")Call Proedure Begin SynElse lok lok + 1Proedure SynhronizingIf a message arrives, put it in QIf (syn stage = JAMMING) all Proedure JamElse If (syn stage = FLEADER) all Proedure Find LeaderElse If (syn stage = ESTABLISHING LEADER) all Proedure Establish LeaderElse If (syn stage = SETTING CLOCK) all Proedure Set ClokElse If (syn stage = COPYING CLOCK) all Proedure Copy ClokElse If (syn stage = WAITING) all Proedure WaitElse If (syn stage = POLLING) all Proedure Poll



Contention Resolution with Constant Expeted Delay � 27Proedure JamSend a dummy messageIf (lok < W=2� 1), lok lok + 1Else syn stage FLEADER, lok 0Proedure Find LeaderWith probability 1=nSend a dummy messageIf it sueedssyn stage ESTABLISHING LEADER, lok 0If (lok < W � 1) lok lok + 1Else for i = 0 to 4W � 1possibletime[i℄ Yessyn stage COPYING CLOCK, lok 0Proedure Establish LeaderSend a dummy messageIf (lok < 2W � 1) lok lok + 1Else syn stage SETTING CLOCK, lok 0Proedure Set ClokIf (lok = 0 mod 4W )Send a dummy messageIf (lok < 20Wn2 � 1) lok lok + 1Else syn stage POLLING, lok 0Proedure Copy ClokWith probability 1=(3n)Send a dummy messageIf it sueedspossibletime[lok mod 4W ℄ NoIf (lok < 20Wn2 � 1) lok lok + 1Else If possibletime[j℄ = Yes for exatly one j,lok �jIf (j = 0) syn stage POLLINGElse syn stage WAITINGElse syn stage POLLING, lok 0Proedure Waitlok lok + 1If (lok = 0), syn stage POLLING



28 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanProedure PollWith Probability 1=(3n)Send a dummy messageAdd the outome of this send to the end of LOtherwise Add \failure" to LIf (jLj = n2 and all of the entries of L are \fail")Empty Lsyn stage JAMMING, lok 0Else If (lok < Wn3 � 1), lok lok + 1Else Empty Lstate NORMAL, lok 04.3 The Main ProofStep 0 will be the step in whih the �rst user starts the protool. Users will start andstop (perhaps repeatedly) at ertain predetermined times throughout the protool.We say that the sequene of times at whih users start and stop is allowed if everyuser runs for at least n33 steps eah time it starts. Just before any step, t, we willrefer to the users that are running the protool as live users. We will say that thestate of the system is normal if all of these users are in state NORMAL. We willsay that it is good if(1) it is normal, and(2) for some C < n40 � n7, every user has lok = C, and(3) every user with jLj � n2=2 has a suess in the last n2=2 elements of L, and(4) no message in any user's bu�er has been in that bu�er for more than n7=2steps.We say that the state is a starting state if the state is good and every lok = 0.We say that it is synhronizing if|every user has state = NORMAL, or has state = SYNCHRONIZING with eithersyn stage = JAMMING or syn stage = POLLING, and|some user has state = SYNCHRONIZING with syn stage = JAMMING andlok = 0.We say that the system synhronizes at step t if it is in a normal state just beforestep t and in a synhronizing state just after step t. We say that the synhronizationis arbitrary if every user with state = SYNCHRONIZING, syn stage = JAMMINGand lok = 0 just after step t had its lok < n40, had no message waiting morethan n7 steps in its bu�er, and either had jLj < n2 or had a suess in L, justbefore step t.De�nition: The interval starting at any step t is de�ned to be the period [t; : : : ; t+n33 � 1℄.De�nition: An interval is said to be produtive for a given user if at least n29=2messages are sent from the user's queue during the interval, or the queue is emptyat some time during the interval.



Contention Resolution with Constant Expeted Delay � 29De�nition: An interval is said to be light for a given user if at most n17 messagesare plaed in the user's queue during the interval.De�nition: Step t is said to be an out-of-syn step if either the state is normaljust before step t, but two users have di�erent loks, or the state was not normaljust before any step in [t� 13n7 + 1; : : : ; t℄. (Intuitively, an out-of-syn step is theresult of an \unsuessful" synhronizing phase.)Proedure Normal Step simulates protool P from Setion 3. Thus, from anystarting state until a synhronization, our system simulates P . This implies that oursystem stops simulating P when a user starts up, sine that user will immediatelystart a synhronization. Then P is simulated again one a starting state is reahed.We will use the following lemma.Lemma 9. Given a random variable X taking on non-negative values, and anytwo events A and B, E[X j A ^B℄ � E[X j B℄=Pr[A j B℄.Proof. E[X j B℄ = E[X j A ^ B℄ Pr[A j B℄ + E[X j A ^ B℄ Pr[A j B℄.Lemmas 10 to 14 outline the analysis of the normal operation of the synhroniza-tion phase of our protool.Lemma 10. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t+W . If the system isin a synhronizing state just before step t, then every live user sets syn stage toFLEADER just before some step in [t; : : : ; t+W ℄.Proof. A user an have state = SYNCHRONIZING and syn stage = JAMMINGfor onlyW=2 steps. Also, every user with state = SYNCHRONIZING, syn stage =POLLING, and lok < Wn3 � n2 will set syn stage to JAMMING after at mostn2 steps; every user with state = SYNCHRONIZING, syn stage = POLLING,and lok � Wn3 � n2 will either set syn stage to JAMMING within n2 steps,or swith to state = NORMAL within n2 steps, and set syn stage to JAMMINGafter at most an additional n4 steps (sine when state = NORMAL, a queue stepis taken only one every n2 steps); and every user with state = NORMAL willset syn stage to JAMMING after at most n4 steps. The lemma follows by notingthat n2 + n4 < W=2, and that a user remains in syn stage = JAMMING for W=2steps.Lemma 11. Suppose that the protool is run with a sequene of user start/stoptimes in whih no users start or stop between steps t and t+4W . If every user setssyn stage = FLEADER before some step in [t; : : : ; t+W ℄ then, with probability atleast 1 � e�n3 , exatly one user sets syn stage = SETTING CLOCK just beforesome step in [t + 2W + 1; : : : ; t + 4W ℄ and every other user sets syn stage =COPYING CLOCK just before some step in [t+W; : : : ; t+ 2W ℄.Proof. At most one leader is eleted sine, after being eleted it does not allowany users to aess the hannel for 2W steps. Also no user will have syn stage =FLEADER just before step t+ 2W , sine syn stage = FLEADER for at most Wsteps.Suppose P is the last user to set syn stage = FLEADER. Then as long as noleader has been eleted, the probability that P is eleted at a given step is at least(1=n)(1� (1=n))n�1 � 1=(en). Thus the probability that no leader is eleted is



30 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanat most (1� 1=(en))W , whih is at most e�n3 . Then the leader will spend 2Wsteps with syn stage = ESTABLISHING LEADER before setting syn stage toSETTING CLOCK, while eah of the other users will diretly set syn stage toCOPYING CLOCK.Lemma 12. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps � � 3W and � + 20Wn2. Ifexatly one user sets syn stage = SETTING CLOCK just before step � in [t +2W; : : : ; t + 4W ℄ and every other user sets syn stage = COPYING CLOCK justbefore some step in [� � 3W; : : : ; � ℄, then, with probability at least 1� 4Wne�n, allusers set syn stage = POLLING with lok = 0 just before step � + 20Wn2.Proof. The statement in the lemma is learly true for the user that sets syn stage =SETTING CLOCK. Suppose that P is some other user. For eah i in the range0 � i < 4W , if P 's lok = i mod 4W when the leader's lok = 0 mod 4W ,possibletime[i℄ will be Yes. If not, P has at least b(20Wn2 � 3W )=(4W ) hanesto set possibletime[i℄ to No, i.e., it has that many hanes to poll when its lok =i mod 4W and the leader has already set syn stage = SETTING CLOCK. Now,5n2� 1 = b(20Wn2� 3W )=(4W ). The probability that P is suessful on a givenstep is at least 23 ( 13n ), and so the probability that it is unsuessful in 5n2� 1 stepsis at most (1� 29n )5n2�1 � e�n. The lemma follows by summing failure probabilitiesover all users and moduli of 4W .Lemma 13. Suppose that the protool is run with a sequene of user start/stoptimes in whih no users start or stop between steps � and � +Wn3. If all users setsyn stage = POLLING with lok = 0 just before step � then, with probability atleast 1�Wn4e�n=10, all users set state = NORMAL and lok = 0 just before step� +Wn3.Proof. Say a sequene of n2=2 steps is bad for user P if P does not have asuessful transmission on any step in the sequene. Then the probability that agiven user P is the �rst to set syn stage = JAMMING is at most the probabil-ity that it has a bad sequene of n2=2 steps, assuming all other users still havesyn stage = POLLING. This is at most the probability that it either does notsend, or is bloked on eah step of the sequene, whih is at most�1� 13n + 13n �13��n2=2 = �1� 29n�n2=2 � e�n=10:The lemma follows from summing over all steps (atually this overounts the num-ber of sequenes of n2=2 steps) and all users.Lemma 14. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t+13n7. If the system is ina synhronizing state just before step t then, with probability at least 1�2Wn4e�n=10,there is a t0 in [t+12n7; : : : ; t+13n7℄ suh that it is in the starting state just beforestep t0.Proof. The lemma follows from Lemmas 10, 11, 12 and 13.Lemmas 15 to 19 outline the analysis of the robustness of the synhronizationphase. Lemma 15 shows that no matter what state the system is in (i.e., pos-



Contention Resolution with Constant Expeted Delay � 31sibly normal, possibly in the middle of a synhronization), if some user starts asynhronization (possibly beause it just started) then, within W=2 steps, everyuser will be in an early part of the synhronization phase. Then Lemma 16 showsthat with high probability, within a reasonable amount of time, all users will bebeyond the stages where they would jam the hannel, and furthermore there is alow probability of any going bak to those stages (i.e., a low probability of anysynhronization starting). Finally, Lemma 17 shows that soon all users will be inthe polling stage. At this point, as shown in Lemma 18, they will either all proeedinto the normal state, or if a synhronization is started, they will all detet it andwith high probability proeed into a good state as in Lemma 14.Note that these lemmas require the assumption that no users start or stop. Thisis beause they are used for showing that the system returns to a normal state fromany situation, even from a bad situation suh as a user just having started in themiddle of a synhronization phase. If another user starts before the system returnsto normal, then we would again use these lemmas to show that the system willreturn to normal within a reasonable amount of time after that user started.Lemma 15. If the protool is run and some user sets syn stage = JAMMINGjust before step t, and that user does not stop for W=2 steps, then there is a t0 in[t; : : : ; t+ (W=2)℄ suh that just before step t0 no user has state = NORMAL, andevery user that has syn stage = POLLING has lok �W=2.Proof. Every user P that has state = NORMAL or syn stage = POLLINGjust before step twill detet the hannel being jammed and set state = SYNCHRONIZINGand syn stage = JAMMING just before some step in [t + 1; : : : ; t + (W=2)℄. Thelemma follows.Lemma 16. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t + 5nW . If, justbefore step t, no user has state = NORMAL and every user with syn stage =POLLING has lok �W=2, then, with probability at least 1� 5Wn2e�n=10, thereis a t0 in [t; : : : ; t + 5nW ℄ suh that, just before step t0, eah user has state =SYNCHRONIZING with syn stage set to SETTING CLOCK, COPYING CLOCK,WAITING, or POLLING. Furthermore, if a user has syn stage = POLLING, ithas lok � 5nW +W=2 and either it has lok � n2=2 or it has had a suess inthe last n2=2 steps.Proof. Say a user is alm at a given step if it has state = SYNCHRONIZING,and syn stage set to SETTING CLOCK, COPYING CLOCK, WAITING, or POLLING,and if syn stage = POLLING then its lok is at most W=2 + 5nW . Note thateah user is unalm for at most 4W steps in t; : : : ; t+ 5nW , so there is a sequeneof W steps in t; : : : ; t + 5nW in whih every user is alm. Let t0 be the randomvariable denoting the (n2=2 + 1)st step in this sequene.Say a sequene of n2=2 steps is bad for a user P if P has syn stage = POLLINGjust before every step in the sequene, and all of its transmissions during the se-quene are bloked by other alm users. The probability that a user with syn stage =POLLING adds a failure to L on a given step, either due to not transmitting or dueto being bloked by a alm user, is at most 1�1=(3n)+(1=(3n))(1=3) = 1�2=(9n).Thus, the probability that a given sequene of n2=2 steps is bad for a given user is at



32 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanmost (1� 2=(9n))n2=2 � e�n=10. Thus, with probability at least 1� 5Wn2e�n=10,no sequene of n2=2 steps in t; : : : ; t+ 5nW is bad for any user. In partiular, thesequene of n2=2 steps preeding t0 is not bad for any user, so any user that hassyn stage = POLLING just before step t0 with lok > n2=2 has a suess in thesequene of n2=2 steps preeding t0.Lemma 17. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t+5nW+(W=2)+20Wn2.If some user sets syn stage = JAMMING just before step t then, with probabilityat least 1� 21Wn3e�n=10, there is a t0 in [t; : : : ; t+ 5nW + (W=2) + 20Wn2℄ suhthat, just before step t0, eah user has syn stage = POLLING.Proof. We know by Lemmas 15 and 16 that, with probability at least 1 �5Wn2e�n=10, there is a � in [t; : : : ; t+5nW + (W=2)℄ suh that, just before step � ,eah user has state = SYNCHRONIZING and syn stage set to SETTING CLOCK,COPYING CLOCK, WAITING, or POLLING. Furthermore, if a user has syn stage= POLLING, it has lok � 5nW +W=2, and either it has lok � n2=2 or it hashad a suessful poll in the last n2=2 polls.Unless a user sets syn stage = JAMMING in the next 20Wn2 steps, therewill be a step t0 suh that eah user has syn stage = POLLING. But to setsyn stage = JAMMING, a user with syn stage = POLLINGmust be unsuessfulin all transmission attempts during some n2=2 onseutive steps. For a single userand a single set of n2=2 onseutive steps, the probability of this is at most e�n=10(as in the proof of Lemma 13). For all users and all possible sets of n2=2 onseutivesteps in �; : : : ; �+20Wn2, this probability is bounded by 20Wn3e�n=10. The lemmafollows.Lemma 18. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t+Wn3 + 13n7. If thesystem is in a state in whih every user has state = NORMAL or syn stage =POLLING just before step t then, with probability at least 1�2Wn4e�n=10, there isa t0 in [t; : : : ; t+Wn3 +13n7℄ suh that the system is in a normal state just beforestep t0.Proof. If no user sets syn stage = JAMMING during steps [t; : : : ; t+Wn3�1℄then the system reahes a normal state before step t +Wn3. Otherwise, supposethat some user sets syn stage = JAMMING just before step t00 � t +Wn3 � 1.By Lemma 14, with probability at least 1 � 2Wn4e�n=10, the system will enter astarting state by step t00 + 13n7.Observation 1. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts between steps t and t+21Wn2� 1. Suppose that nouser sets syn stage = JAMMING during steps t; : : : ; t + 21Wn2 � 1. Then everyuser has state = NORMAL or syn stage = POLLING just before step t+21Wn2.To see why this observation is true, onsider the interval of steps t; : : : ; t+21Wn2�1. Note that one a user has state = NORMAL or syn stage = POLLING(during this interval) it won't hange state or syn stage (sine that would ausesyn stage = JAMMING). The observation then follows from the fat that theumulative amount of time that any user an spend in any syn stage besides



Contention Resolution with Constant Expeted Delay � 33POLLING is less than 21Wn2. (JAMMING takes at most W=2 steps, FLEADERtakes at mostW steps, ESTABLISHING LEADER takes at most 2W steps, SETTING CLOCKor COPYING CLOCK takes at most 20Wn2 steps, and WAITING takes at most4W steps.)Lemma 19. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t+n8. Given any systemstate just before step t, with probability at least 1 � 3Wn4e�n=10, there is a t0 in[t; : : : ; t+ n8℄ suh that the system is in a normal state just before step t0.Proof. The lemma follows from Lemmas 17 and 18, and Observation 1.Lemmas 20{23 and Theorem 4 show that if the protool is run with a f�ig1�i�n-dominated message arrivals distribution then the system is usually in a good state(i.e., synhronized and running the P protool), and thus the expeted time thatmessages wait in the bu�er is onstant.Lemma 20. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops during steps t; : : : ; t+ n31=4� 1. Given anysystem state just before step t, with probability at least 1� 6Wn4e�n=10, there is at0 in [t; : : : ; t+ n31=4℄ suh that the system is in a starting state just before step t0.Proof. By Lemma 19, no matter what state the system is in at step t, withprobability at least 1 � 3Wn4e�n=10 it will be in a normal state within n8 steps.Then the probability that it does not enter a synhronizing state within n31=8 stepsis at most (1 � n�30)(n31=8)�(n29=8) � e�n=10. Then by Lemma 14, one it entersa synhronizing state, with probability at least 1 � 2Wn4e�n=10 it will be in astarting state within 13n7 steps. The lemma follows diretly from summing failureprobabilities.Lemma 21. Suppose that the protool is run with a sequene of user start/stoptimes in whih no user starts or stops between steps t and t + n31 � 2n8. Givenany system state just before step t, with probability at least 1 � 4Wn4e�n=10 thereis a t0 in [t; : : : ; t+ n31 � 2n8℄ suh that the system is in a synhronizing state justbefore step t0.Proof. From Lemma 19, with probability at least 1� 3Wn4e�n=10, the systemwill be in a normal state at some time steps in [t; : : : t+ n8℄. One the system is ina normal state, on every step exept one out of every n2 steps, with probability atleast n�30 a user will swith to a synhronizing state. The probability of this nothappening in the next n31 � 3n8 steps is at most (1� n�30)(n31�3n8�n29) � e�n=2.The lemma follows from summing the failure probabilities.Arrival distribution. For the remainder of this subsetion, we will assume (with-out further mention) that the arrival distribution is f�ig1�i�n-dominated distribu-tion.Lemma 22. Let � be a non-negative integer less than n40�n7. Suppose that nouser starts or stops between steps t and t + � . If the system is in a starting statejust before step t then, with probability at least 1 � (13:5)n�22, the system is in agood state just before step t+ � .



34 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanProof. Consider the following experiment, in whih the protool is started in astarting state just before step t and run aording to the experiment.i tresyning  falseDo foreverSimulate a step of the protoolIf (resyning = false)If some message has waited more than n7=2 stepsFAIL2If some user with jLj � n2=2 has no suess in the last n2=2 elements of LFAIL1If the new state of the system is synhronizingIf (i � t+ � � 13n7), FAIL3Elseresyning  truej  0ElseIf (the new state of the system is a starting state)resyning  falsej  j + 1If ((j � 13n7) and (resyning = true)), FAIL4i = i+ 1If (i � t+ �), SUCCEEDFrom the de�nition of a good state (see the beginning of Setion 4.3), if none offFAIL1; : : : ;FAIL4g ours then the system is in a good state just before step t+� .As in the proof of Lemma 12, the probability that a given element of L is \suess"is at least 2=(9n), so the probability that FAIL1 ours is at most �ne�n=9. ByLemma 7, and the fat that at most n40=W starting states our in the experiment(so P is started at most n40=W times), the probability that FAIL2 ours is at most(n40=W )n�60 < n�24. In the experiment, the loks of the users never reah n40.If the state is normal, all users have the same value of , every user with jLj �n2=2 has a suess in the last n2=2 elements of L, and every user has no messagethat has waited more than n7=2 steps, then the probability that a given user setsstate = SYNCHRONIZING on a given step is at most n�30. Thus, the probabilitythat FAIL3 ours is at most 13n�22. By Lemma 14, the probability of failingto suessfully restart after a given synhronization state is at most 2Wn4e�n=10.Hene, the probability of FAIL4 ourring is at most 2�Wn4e�n=10.De�nition: Let T = n31.Lemma 23. Suppose that no user starts or stops between steps t and t+T . Givenany system state just before step t, with probability at least 1� 14n�22, the systemis in a good state just before step t+ T .Proof. The lemma follows from Lemma 21, Lemma 14, and Lemma 22.



Contention Resolution with Constant Expeted Delay � 35Theorem 4. Suppose that no user starts or stops during steps [t�T; : : : ; t+n7℄.Given any system state just before step t� T , suppose that a message is generatedat step t. The expeted time that the message spends in the bu�er is O(1).Proof. Let X be the time that the message spends in the bu�er and let G bethe event that the state just before step t is good and has lok less than T . SineX is always at most n7, E[X ℄ � n7 Pr[G℄ + E[X j G℄. Now, Pr[G℄ is at most theprobability that the state just before step t is not good plus the probability that thestate just before step t has lok at least T . By Lemma 20, the latter probability isat most 6Wn4e�n=10, and, by Lemma 23, the former probability is at most 14n�22.Thus, E[X ℄ � O(1) + E[X j G℄. Then E[X j G℄ = Pt0 E[X j Gt0 ℄ Pr[Gt0 j G℄,where Gt0 is the event that the good state just before step t has lok t0 < T .Let At0 be the event that a message p0 is born in step t0 of the P protool. LetB be the event that, prior to that step t0 (in the P protool), no message haswaited more than n7 steps, and at step t0 no message in the bu�er has waitedmore than n7=2 steps. Let Y be the random variable denoting the number ofsteps required to transmit p0 (in P). Then E[X j Gt0 ℄ � E[Y j At0 ^ B℄. (Itwould be equal exept that in our protool, it is possible for a message to betransferred to the queue before it is suessfully sent from the bu�er.) So byLemma 9, E[X j Gt0 ℄ � E[Y j At0 ^ B℄ � E[Y j At0 ℄=Pr[B j At0 ℄. Then byLemma 8, E[X j Gt0 ℄ � 2E[Y j At0 ℄ � O(1), 8t0 < T . Thus E[X j G℄ = O(1).The remaining results in Subsetion 4.3 show that the probability of a messageentering a queue is low, the probability of a queue being very full is low, and therate at whih the messages are sent from the queue is high enough that the expetedtime any given message spends in the queue is low. (Note that most messages willspend no time in the queue.)Lemma 24. Suppose that the protool is run with an allowed sequene of userstart/stop times. The probability that there is a t0 in [t; : : : ; t + n32℄ suh that thesystem is in a starting state just before step t0 is at least 1 � 6Wn4e�n=10, givenany system state just before step t.Proof. Divide the interval of n32 steps into subintervals of n31=4 steps eah.Sine at most n users an start or stop during the interval, and those that startontinue for the remainder of the interval, there must be a subinterval in whih nousers start or stop. The result follows from Lemma 20.Lemma 25. Suppose that the protool is run with a given allowed sequene ofuser start/stop times in whih no user starts or stops between steps t � T andt + n7=2. Given any system state just before step t � T , suppose that a messageR arrives at user P at step t. The probability that R enters the queue is at most16n�22.Proof. Let X be the event that R enters the queue. Let G be the event thatjust before step t the state is good and has lok less than T . Then by Lemma 23and Lemma 20, Pr[X ℄ � 1Pr[G℄ + Pr[X j G℄ � 14n�22+6Wn4e�n=10 +Pr[X j G℄.Note that Pr[X j G℄ = Pt0 Pr[X j Gt0 ℄ Pr[Gt0 j G℄, where Gt0 is the event thatthe good state just before step t has lok t0. Consider the following experiment(the orresponding intuition and analysis are presented after its desription; so



36 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanthe reader is asked to �rst skip to the end of the desription and then study thedesription as needed):i 0Do foreverIf i = t0Add a message R to user PSimulate a step of the protool (exept for the arbitrary synhronizations)If some message has been in a bu�er more than n7=2 stepsFAIL1If some user with jLj � n2=2 has no suess in the last n2=2 elements of LFAIL1ElseSimulate a step of the protool (exept for the arbitrary synhronizations)If (i < t0) and some message has waited more than n7 stepsFAIL1If (i > t0) and some message has waited more than n7 stepsFAIL3If some user with jLj � n2 has no suess in the last n2 elements of LFAIL1i = i+ 1If (i � t0 + n7=2)If message Q has been sent, SUCCEEDElse FAIL2This experiment models the system beginning at a start state, and going fort0+n7=2 � T+n7=2 steps, but assumes that there are no arbitrary synhronizations,and that there is a message R generated at P at lok t0. The experiment fails atstep i = t0 if the system enters a state whih is not good at that point. It fails at astep i < t0 or t0 < i < t0 + n7=2 if the system does a non-arbitrary synhronizationat that point. It fails at step i = t0 + n7=2 if the message R has not been sentsuessfully. Let A be the event that FAIL1 ours, B be the event that FAIL2ours, C be the event that FAIL3 ours, and S be the event that the experimentdoes not fail during steps 1; : : : ; t0. The probability that R is still in the bu�erafter step t + n7=2 + 1, or the real system synhronizes before step t + n7=2 + 1,onditioned on the fat that the state just before step t is good and has lok t0and on the fat that message R is generated at P at step t0, is at most the sumof (1) Pr[C j S℄, (2) Pr[A j S℄, (3) Pr[B j S℄, and (4) the probability that there isan arbitrary synhronization during steps t; : : : ; t+ n7=2� 1. Probability (4) is atmost n(n7=2)(n�30) = n�22=2. Now note that Pr[A j S℄ � Pr[A℄=Pr[S℄. By theproof of Lemma 22 (using Lemma 8),Pr[S℄ � 1� [n40(ne�n=9) + n�60℄ � 12and Pr[A℄ � n40(ne�n=9) + n�60:Thus Pr[A j S℄ � 3n�60.



Contention Resolution with Constant Expeted Delay � 37Note also that Pr[B j S℄ � Pr[B℄=Pr[S℄. By Lemma 8, Pr[B℄ � n�60. (This anonly be dereased by a queue step ausing a synhronization.) Then Pr[B j S℄ �2n�60.Finally, Pr[C j S℄ = 0, sine all messages at step t0 have waited for at most n7=2steps, and the experiment stops at step t0 + n7=2.Thus, Pr[X j G℄ � n�22, whih ompletes the proof.Lemma 26. Let j be an integer in [0; : : : ; 14℄. Suppose that no user starts orstops during steps t; : : : ; t+n14+j�1. If the system is in a starting state just beforestep t then the probability that the system enters a synhronizing state during stepst; : : : ; t+ n14+j � 1 is at most 2n�15+j.Proof. The probability that an arbitrary synhronization ours during stepst; : : : ; t + n14+j � 1 is at most n � n�30 � n14+j = n�15+j . Following the proof ofLemma 22, we see that the probability that a non-arbitrary synhronization oursduring these steps is at most n�60 + n15+je�n=9. (The probability that a messagewaits in a bu�er more than n7 steps is at most n�60 by Lemma 7 and the probabilitythat some user gets n2 failures on L is at most n14+j � n � e�n=9.)Lemma 27. Suppose that no user starts or stops during the interval [t; : : : ; t +n33 � 1℄. If the system is in a starting state just before step t then the probabilitythat either some step in the interval is an out-of-syn step or that the system is in astarting state just before more than n7 steps in the interval is at most 3Wn11e�n=10.Proof. If the system is in a starting state x times, where x > n7, then at leastx�n7=2 of these must be followed by fewer than 2n26 steps before the next synhro-nization phase. By Lemma 26, the probability of fewer than 2n26 steps ourringbetween a starting state and the next synhronization phases is at most 2n�2. Thus,the probability of this happening after at least x� n7=2 of the x starting states isat most 2x(2n�2)x�n7=2 whih is at most 2�n7=2.If the system is in a starting state just before at most n7 steps in the interval, thenthe only time that the system ould have an out-of-syn step during the interval isduring at most n7�1 subintervals whih start with a synhronizing state and end ina starting state. By the proof of Lemma 14, the probability that a given subintervalontains an out-of-syn step is at most 2Wn4e�n=10. Thus, the probability that anout-of-syn step ours in the interval is at most n7(2Wn4e�n=10).Lemma 28. Suppose that the protool is run with a given allowed sequene of userstart/stop times after step t, and a given system state just before step t. Divide theinterval starting at step t into bloks of n4 steps. The probability that the intervalhas more than 27n11 bloks ontaining non-normal steps is at most 7Wn12e�n=10.Proof. Reall that the interval starting at step t is de�ned to be the period[t; : : : ; t+n33� 1℄, and that we are assuming that eah user runs at least n33 stepseah time it starts. Let S ontain the �rst step of the interval and eah step duringthe interval in whih a user starts or stops. Then jSj � 2n+1. Let S0 ontain S plusfor eah step s 2 S, all steps after s until the system returns to a normal state. ByLemma 19, with probability at least 1� (2n+ 1)(3Wn4e�n=10), S0 an be overedby 2n+1 sequenes of at most n8 steps eah. Then the set S0 partitions the othersteps in the interval into at most 2n+1 subintervals, suh that the state is normal



38 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanjust before eah subinterval, and no users start or stop during any subinterval. Weperform the following analysis for eah of these subintervals.By Lemma 14, one the system enters a synhronizing state, with probability atleast 1� 2Wn4e�n=10 it will be in a starting state within 13n7 steps. One the sys-tem is in a starting state, by Lemma 27 with probability at least 1� 3Wn11e�n=10,it will enter a synhronizing state at most n7 + 1 times, and eah synhronizingphase will last at most 13n7 steps.In total, the probability of not performing as stated above is at most(2n+ 1)(3Wn4e�n=10 + 2Wn4e�n=10 + 3Wn11e�n=10) � 7Wn12e�n=10:Finally, the set S0 an interset at most (2n+1)((n8=n4)+1) bloks of size n4. Then,in eah of the 2n + 1 subintervals of steps between those of S0, there are at mostn7 + 2 synhronizing phases, eah of whih an interset at most ((13n7=n4) + 1)bloks of size n4. Altogether, at most 27n11 bloks of size n4 will ontain non-normal steps.Corollary 2. Let x be an integer in the range 0 � x � n29 � 54n11. Supposethat the protool is run with a given allowed sequene of user start/stop times afterstep t, and a given system state just before step t. Fous on a partiular non-empty queue at step t. The probability that the queue remains non-empty for thenext xn4+54n15 steps, but fewer than x messages are delivered from it during thisperiod, is at most 7Wn12e�n=10.Proof. Divide the next xn4 + 54n15 � n33 steps into bloks of size n4. ByLemma 28, with probability at least 1 � 7Wn12e�n=10, at most 54n11 of thesebloks will either ontain a non-normal step, or preede a blok whih ontains anon-normal step. The orollary follows by noting that if blok i ontains all normalsteps and no synhronization is started in blok i + 1, then a message must havebeen sent from the queue during blok i.Lemma 29. Suppose that the protool is run with a given allowed sequene ofuser start/stop times after step t, and a given system state just before step t. Thenthe probability that the interval starting at t is light for a given user is at least1� 8Wn12e�n=10.Proof. As in the proof of Lemma 28, with probability at least 1�7Wn12e�n=10,the non-normal steps ould be overed by at most (2n + 1) + (2n + 1)(n7 + 2)subintervals of at most n8 steps eah, and eah of the subintervals would ontributeat most n8 + n7 messages to the queue (inluding the at most n7 that ould betransferred from the user's bu�er). If this were the ase, at most 3n16 messageswould be plaed in the queue during the interval.Lemma 30. Suppose that the protool is run with a given allowed sequene ofuser start/stop times after step t, and a given system state just before step t. Theprobability that the interval starting at t is produtive for a given user is at least1� 7Wn12e�n=10.Proof. Follows from Corollary 2.Lemma 31. Suppose that the protool is run with a given allowed sequene ofuser start/stop times before step t. The probability that more than n17+j(n33+n7)



Contention Resolution with Constant Expeted Delay � 39messages are in a queue just before step t is at most e�jn=30 for j � 1 and at moste�n=30 for j = 0.Proof. For every non-negative integer j, we will refer to the interval [t � (j +1)n33+1; : : : ; t�jn33℄ as \interval j". Choose k suh that the queue was empty justbefore some step in interval k, but was not empty just before any steps in intervals 0to (k� 1). We say that interval j is \bad" if it is not both produtive and light forthe user. The size of the queue inreases by at most n33 + n7 during any interval,sine the user generates at most one message during eah step. If interval k is notbad, then the queue size inreases by at most n17 during interval k. If interval jis not bad for j < k, then the queue size dereases by at least n29=2� n17 duringinterval k. Thus, if b of intervals 0 to k are bad, then the size of the queue justbefore step t is at most(k + 1)(n33 + n7)� (k + 1� b)(n33 + n7 + n29=2� n17) + n17:This quantity is at most n17 + i(n33 + n7) unless b > i=2 + k=(8n4). Thus, theprobability that the queue has more than n17 + i(n33 + n7) messages just beforestep t is at most the probability that, for some non-negative integer k, more than(i=2)+(k=(8n4)) of intervals 0 to k are bad. By Lemmas 29 and 30, the probabilitythat a given interval is bad is at most 16Wn12e�n=10. Let X = 16Wn12e�n=10.Then, for i � 1, the failure probability is at mostXk�0� kb(i=2) + (k=(8n4))+ 1�Xb(i=2)+(k=(8n4))+1� Xk�0(16en4X)b(i=2)+(k=(8n4))+1� Xk�0(16en4X)(i=2)+(k=(8n4))� (16en4X)i=2Xk�0(16en4X)k=(8n4)� (16en4X)i=28n4Xk�0(16en4X)k� 2(8n4)(16en4X)i=2 � e�in=30:For i = 0, this probability is at mostXk�0� kbk=(8n4)+ 1�Xbk=(8n4)+1 � Xk�0(16en4X)bk=(8n4)+1� (16en4X)Xk�0(16en4X)bk=(8n4)� 2(8n4)(16en4X) � e�n=30:Lemma 32. Suppose that the protool is run with a given allowed sequene ofuser start/stop times after step t+ n32. Suppose that no users start or stop duringsteps [t � T; : : : ; t + n32℄ and that the system state just before step t � T is given.



40 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanThe probability that an out-of-syn step ours before a starting step after t is atmost 4Wn11e�n=10.Proof. By Lemma 20, the probability of not having a start state just beforeany step in the subinterval [t � T; : : : ; t � T=2℄ is at most 6Wn4e�n=10. Then by(the proof of) Lemma 27, the probability of having an out-of-syn step before stept + n32 is at most 3Wn11e�n=10. Finally, by Lemma 20, the probability of nothaving a start state in the subinterval [t; : : : ; t+ T=2℄ is at most 6Wn4e�n=10. Thelemma follows by summing the failure probabilities.Lemma 33. Suppose that the protool is run with a given allowed sequene ofuser start/stop times after step t, and a given system state just before step t inwhih queue Q ontains at least x messages. Then the expeted time until at leastx messages have been sent from Q is O(xn4 + n15).Proof. Our �rst ase is when x � n29=2. Let A be the event that at leastx messages are sent in steps t; : : : ; t + xn4 + 54n15 � 1. We refer to the interval[t+ xn4 + 54n15 + (k � 1)n33; : : : ; t+ xn4 + 54n15 + kn33 � 1℄ as \interval k". LetCk be the event that interval k is produtive. Let Ex be the expeted time to sendthe x messages. Using Corollary 2 and Lemma 30,Ex � (xn4 + 54n15) + n33 Pr[A℄ +Xk>1 n33 Pr[ ^1�i�k�1Ci℄� xn4 + 54n15 +Xk�1n33(7Wn12e�n=10)k= O(xn4 + n15):Our seond and last ase is when x > n29=2. Let r = d2x=n29e. Note that afterr produtive intervals, at least x messages will be sent. Let Dk be the event thatintervals 1 to k do not ontain at least r produtive intervals, but that intervals 1to (k + 1) do ontain r produtive intervals.Ex � Xk�r(k + 1)n33Pr[Dk℄� n33(2r + Xk�2r(k + 1)Pr[Dk℄)� n33(2r + Xk�2r(k + 1)� kk � r�(7Wn12e�n=10)k�r)� n33(2r + Xk�2r(k + 1)2k(7Wn12e�n=10)k�r)= O(n33r) = O(xn4):Theorem 5. Suppose that the protool is run with a f�ig1�i�n-dominated ar-rival distribution, a given allowed sequene of user start/stop times in whih nousers start or stop during steps [t � n33; : : : ; t + n33℄. Suppose that a message isgenerated at step t. The expeted time that the message spends in the queue is O(1).



Contention Resolution with Constant Expeted Delay � 41Proof. Let I` be the interval [t � `n33 + 1; : : : ; t � (` � 1)n33℄. Let A0 be theevent that the size of the queue is at most n17� 1 just before step t�n33+1, and,for i � 1, let Ai be the event that the size of the queue just before step t� n33 +1is in the range [n17+ (i� 1)(n33+n7); n17+ i(n33+n7)� 1℄. Let B the event thatinterval I1 is light. Let C be the event that the message enters the queue. Let t0be the random variable denoting the smallest integer suh that t0 � t and the stateof the system just before step t0 is a starting state. Let t00 be the random variabledenoting the smallest integer suh that t00 � t and step t00 is out-of-syn. Let Fbe the event that t0 < t00. Let X be the random variable denoting the amount oftime that the message spends in the queue. All probabilities in this proof will beonditioned on the fat that no users start or stop during steps [t�n33; : : : ; t+n33℄.We start by bounding Pi�1 E[X j Ai ^ C℄ Pr[Ai ^ C℄. By Lemma 31, Pr[Ai℄ �e�(maxfi�1;1g)n=30 so Pr[Ai ^ C℄ � e�(maxfi�1;1g)n=30. By Lemma 33,E[X j Ai ^ C℄ � E[t0 � t j Ai ^ C℄ + O(n4(n17 + (i+ 1)(n33 + n7))):(This inequality holds beause, given that Ai holds, there are at most n17+ i(n33+n7) messages in the queue before interval I1 and at most n33+n7 get added duringinterval I1.) By Lemma 24, E[t0�t j Ai^C℄ is at mostPj�1 n32(6Wn4e�n=10)j�1 =O(n32). Thus, E[X j Ai ^ C℄ = (i+ 1)O(n37). Thus,Xi�1 E[X j Ai ^ C℄ Pr[Ai ^ C℄ �Xi�1 e�(maxfi�1;1g)n=30(i+ 1)O(n37) = O(1):We now bound E[X j A0 ^ B ^ C℄ Pr[A0 ^ B ^ C℄. By Lemma 29, Pr[B℄ �8Wn12e�n=10, so Pr[A0 ^ B ^ C℄ � 8Wn12e�n=10. As above, E[X j A0 ^ B ^ C℄ =O(n37), soE[X j A0 ^B ^ C℄ Pr[A0 ^ B ^ C℄ � (8Wn12e�n=10)O(n37) = O(1):Next, we bound E[X j A0^F ^C℄ Pr[A0^F ^C℄. By Lemma 32, the probabilityof F is at most 4Wn11e�n=10, so Pr[A0 ^ F ^ C℄ � 4Wn11e�n=10. As above,E[X j A0 ^ F ^ C℄ is at most E[t0 � t j A0 ^ F ^ C℄ + O(n37). Sine C ours,the system is in a synhronization state just before some state in [t; : : : ; t + n7℄.Sine F ours, there is an out-of-syn step in [t; : : : ; t+14n7℄. By Lemma 24, theexpeted time from this out-of-syn step until a starting state ours is at mostPj�1 n32(6Wn4e�n=10)j�1 = O(n32). Thus, E[t0 � t j A0 ^ F ^ C℄ = O(n32) andE[X j A0 ^ F ^ C℄ = O(n37). Thus,E[X j A0 ^ F ^ C℄ Pr[A0 ^ F ^ C℄ � (4Wn11e�n=10)O(n37) = O(1):Finally, we bound E[X j A0 ^ B ^ F ^ C℄ Pr[A0 ^ B ^ F ^ C℄. By Lemma 25,the probability of C is at most 16n�22, so Pr[A0 ^ B ^ F ^ C℄ � 16n�22. We nowwish to bound E[X j A0 ^ B ^ F ^ C℄. Sine A0 and B hold, the size of the queuejust before step t is at most 2n17. Suppose that t0 > t+ 2n21 + 13n7. Then, sineF holds, no step in t; : : : ; t+2n21+13n7 is out-of-syn. Suppose �rst that no stepin t; : : : ; t + 2n21 + 13n7 is out-of-syn and that the state is normal before eahstep in t; : : : ; t + 2n21. Then all of the loks will be the same, so at least 2n17messages will be sent from the queue during this period. Suppose seond that nostep in t; : : : ; t + 2n21 + 13n7 is out-of-syn, but that the state is not normal just



42 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasanbefore some step in [t; : : : ; t + 2n21℄. Then sine no state in t; : : : ; t + 2n21 + 13n7is out-of-syn, t0 � t+ 2n21 +13n7. Finally, suppose that t0 � t+ 2n21 +13n7. ByLemma 33, E[X j A0 ^B ^C ^ F ℄ is at most t0 � t+O(n4 � 2n17) = O(n21). Thus,E[X j A0 ^ B ^ F ^ C℄ Pr[A0 ^B ^ F ^ C℄ � 16n�22O(n21) = O(1):Observation 2. When the protool is run, every message spends at most n7 stepsin the bu�er.Theorem 6. Suppose that the protool is run with a f�ig1�i�n-dominated ar-rival distribution and a given allowed sequene of user start/stop times. Supposethat a message is generated at step t. Then the expeted time that the messagespends in the queue is O(n37).Proof. Let X be the random variable denoting the size of the queue just beforestep t. By Lemma 31, for i � 1, the probability that X > n17 + i(n33 + n7) is atmost e�in=30. Given a partiular value of X , Lemma 33 shows that the expetedtime to send the message is O(Xn4+n15). Thus, the overall expeted time to sendthe message isO(n4(n17+n33+n7)+n15)+Xi�2 O(n4(n17+i(n33+n7))+n15)e�(i�1)n=30 = O(n37):4.4 Final ResultsFor v 2 [n℄, let Tv be the set of steps in whih user v is running.Theorem 7. Suppose that the protool is run with a f�ig1�i�n-Bernoulli arrivaldistribution and a given sequene of user start/stop times in whih eah user runsfor at least 8n71 steps every time it starts. Then E[Wavg℄ = O(1).Proof. First note that the sequene of user start/stop times is allowed. LetR be the set of steps within n33 steps of the time that a user starts or stops.Lemma 34 proves that if the f�ig1�i�n-Bernoulli arrival distribution is onditionedon having at most m messages arrive by time t, the resulting arrival distributionis a f�ig1�i�n-dominated distribution. Therefore, the system desribed in thestatement of the theorem satis�es the onditions of Lemma 35 with (from Theorem 4and Theorem 5) C 0 = O(1) and (from Theorem 6 and Observation 2) C = O(n37).From the ondition given in the statement of this theorem, we an see thatS = maxv2V lim supt!1 jR \ Tv \ [t℄jjTv \ [t℄j � n�37:(The worst ase for S is when a user runs for 8n71 + 6(n� 1)n33 + 2n33 steps, andthe other n� 1 users have [ending, starting, ending, starting℄ times[2in33; 2(n� 1)n33 +2in33; 2(n� 1)n33 +2in33 +8n71; 4(n� 1)n33 +2in33+8n71℄;for 1 � i � n� 1. Then jRj = 8(n� 1)n33+2n33, inluding the n33 steps just afterthe user starts and the n33 steps just before the user stops.) The theorem thenfollows from Lemma 35. (Note that C and C 0 are atually funtions of �, but � isa onstant.)



Contention Resolution with Constant Expeted Delay � 43Lemma 34. Consider the distribution obtained from the f�ig1�i�n-Bernoulli ar-rivals distribution by adding the ondition that at most m messages arrive by step t.The resulting arrival distribution is a f�ig1�i�n-dominated distribution.Proof. Let Av;t0 denote the probability that a message arrives at user v attime t0 (under the f�ig1�i�n-Bernoulli arrivals distribution). Let E be any eventonerning the arrival of messages at steps other than t0 or at users other than v.Let C be the event that at most m messages arrive during steps 1; : : : ; t. We wishto show that Pr[Av;t0 j C ^ E℄ � �v . If t0 > t then Pr[Av;t0 j C ^ E℄ = �v bythe independene of the f�ig1�i�n-Bernoulli arrivals distribution, so suppose thatt0 � t. Let E0 denote the part of event E onerning arrivals at steps 1; : : : ; t. By theindependene of the f�ig1�i�n-Bernoulli arrivals distribution, Pr[Av;t0 j C ^ E℄ =Pr[Av;t0 j C ^E0℄. Let W be the set ontaining every possible sequene of messagearrivals during steps 1; : : : ; t with the arrival at user v and step t0 omitted. Let W 0be the set of elements of W whih satisfy E0 and have fewer than m arrivals andlet W 00 be the set of elements of W whih satisfy E0 and have exatly m arrivals.Pr[Av;t0 j C ^ E0℄ = Xw2W Pr[Av;t0 j w ^ C ^E0℄ Pr[w j C ^ E0℄= Xw2W 0 Pr[Av;t0 j w ^ C℄ Pr[w j C ^ E0℄+ Xw2W 00 Pr[Av;t0 j w ^ C℄ Pr[w j C ^ E0℄= Xw2W 0 Pr[Av;t0 j w℄ Pr[w j C ^E0℄= �v Xw2W 0 Pr[w j C ^ E0℄ � �v :Lemma 35. Suppose that, for every m and t, a protool running on n users hasthe property: for all users v, if a message P is generated at user v at step t 2 R andis one of the �rst m messages generated, then the expeted time before message P issent is at most C, and if a message P is generated at user v at step t 2 R and is oneof the �rst m messages generated, then the expeted time before message P is sent isat most C 0. Then E[Wavg℄ � 2(SC+C 0), where S = maxv2V lim supt!1 jR\Tv\[t℄jjTv\[t℄j .Proof. Reall that � = Pv2V �v , that �v > 0 for all v 2 V and that Wavg =limm!1 1mPmi=1Wi, where Wi is the delay of the ith message generated in thesystem.E[Wavg℄ = E" limm!1 1m mXi=1Wi# � E"lim supm!1 1m mXi=1 Wi# = lim supm!1 1m mXi=1 E[Wi℄:Now let Ai;v;t be the event that the ith message is generated at user v at step t.Then mXi=1 E[Wi℄ = mXi=1Xt�0 Xv2V E[Wi j Ai;v;t℄ Pr[Ai;v;t℄



44 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. Srinivasan= Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t℄:Let Bm;v;t be the event that one of the �rst m messages is generated at user v atstep t. Now, the properties of the protool given in the lemma are equivalent tothe following: for any v 2 V , m and t 2 Tv,mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ � C; if t 2 R, andmXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ � C 0; if t 2 R.Sine, for i � m, Pr[Ai;v;t℄ = Pr[Ai;v;t ^Bm;v;t℄ = Pr[Ai;v;t j Bm;v;t℄ Pr[Bm;v;t℄,mXi=1 E[Wi℄ = Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t℄= Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ Pr[Bm;v;t℄= Xv2V Xt2Tv Pr[Bm;v;t℄ mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄� Xv2V 0� Xt2R\Tv Pr[Bm;v;t℄C + Xt2R\Tv Pr[Bm;v;t℄C 01A :Let �t =Pv02V �v0 jTv0 \ [t℄j, i.e. the expeted number of messages generated in thesystem through time t. Note that Pr[Bm;v;t℄ � �v, and, for m < �t, Pr[Bm;v;t℄ ��v expf�(�t �m)2=(2�t)g, by a Cherno� bound. Then for any T � � Tv,Xt2T�Pr[Bm;v;t℄ � Xt2T�;�t<2m�v + Xt2T�;�t�2m�v expf�(�t �m)2=(2�t)g� �v jT � \ ft : �t < 2mgj+ �v Xt2T�;�t�2m expf�(�t �m)=4g� �v jT � \ ft : �t < 2mgj+ �vXi�0 expf�(m+ i�v)=4g� �v jT � \ ft : �t < 2mgj+ �ve�m=4Xi�0(e��v=4)i� �v jT � \ ft : �t < 2mgj+O(1):Consequently,E[Wavg℄ � lim supm!1 1m mXi=1 E[Wi℄� lim supm!1 1m Xv2V [C(�v jR \ Tv \ ft : �t < 2mgj+O(1))



Contention Resolution with Constant Expeted Delay � 45+C 0(�v jR \ Tv \ ft : �t < 2mgj+O(1))℄� C(lim supm!1 1m Xv2V �v jR \ Tv \ ft : �t < 2mgj)+C 0(lim supm!1 1m Xv2V �v jR \ Tv \ ft : �t < 2mgj):We bound the fator multiplied by C as follows.lim supm!1 1m Xv2V (�v jR \ Tv \ ft : �t < 2mgj)= lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm � jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �� lim supm!1 �maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �Xv2V �v jTv \ ft : �t < 2mgjm� �lim supm!1 maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj � lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm !� �maxv2V lim supm!1 jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj ��lim supm!1 2mm �� maxv2V lim supt!1 jR \ Tv \ [t℄jjTv \ [t℄j � 2 = 2S:We bound the fator multiplied by C 0 as follows.lim supm!1 1m Xv2V (�v jR \ Tv \ ft : �t < 2mgj) � lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm� lim supm!1 2mm = 2:5. CONCLUSIONS AND OPEN PROBLEMSWe have given a protool whih ahieves onstant expeted delay for eah messagein the Synhronized In�nitely-Many Users Model with � < 1=e. We have also givena protool whih ahieves onstant expeted average delay in the UnsynhronizedFinitely-Many Users Model for any f�ig1�i�n-Bernoulli message-arrivals distribu-tion in whih Pi �i < 1=e. Several open questions remain:|Can we get good delay versus arrival rate tradeo�s in our models? Are there�ne-tunings of the protools or onstants whih ensure short delays for \small"values of �?|In the in�nitely-many senders models onsidered, is there a protool whih isstable in the sense of [H�astad et al. 1996℄ for all � < 1? If not, then what is thesupremum of the allowable values for �, and how an we design a stable protoolfor all allowed values of �? We have shown protools that guarantee stability forall � < 1=e. Here is a heuristi argument as to why this may indeed be a limit.



46 � L. A. Goldberg, P. D. MaKenzie, M. Paterson, and A. SrinivasanAssume that we have a stati system with some h users (messages), where eventhe value of h is known to all users. If all users follow the same protool, theoptimal probability of \suess" (exatly one message attempting the hannel)in one time step is ahieved if eah message attempts using the hannel withprobability 1=h: in this ase, the suess probability is h�(1=h)�(1�1=h)h�1 � 1=efor large h. Thus, even if the users are given the additional information on theexat number of messages, it may be that 1=e is the best probability of suesspossible. This seems to suggest that if the arrival rate � is more than 1=e, thenthe system annot be stable (sine the average arrival rate will be more thanthe average rate of departure). Is this intuition orret? What is a \minimal"assumption that will ensure a stable protool for all � < 1? (As desribed in theintrodution, some suÆient onditions are desribed in [Pippenger 1981; H�astadet al. 1996℄ for ertain models inluding �nitely-many users models.)|For whih arrivals distributions are our protools stable? We have shown that ourUnsynhronized Finitely-Many Users Model protool is stable for any f�ig1�i�n-Bernoulli message-arrivals distribution in whih Pi �i < 1=e, that our Synhro-nized Finitely-Many Users Model protool is stable for any f�ig1�i�n-dominatedarrivals distribution with Pi �i < 1=e, and that our Synhronized In�nitely-Many Users Model protool is stable for Poisson arrivals with � < 1=e. Webelieve that our Synhronized In�nitely-Many Users Model protool is also sta-ble for other input distributions.For example, suppose that the distribution of inoming messages to the systemhas substantially weaker random properties than the independent Poisson dis-tribution. Our protool an still ahieve E[Wave℄ = O(1). From the paragraphimmediately following the statement of Theorem 2, we see that pi(1) = O(qi)will suÆe to maintain the property that E[Wave℄ = O(1); the strong (doublyexponential) deay of pi(1) as i inreases is unneessary. In turn, by analyzingthe reurrenes presented by Lemmas 5 and 6, we an show that rather than thestrong bound of (26), it suÆes ifPr[u0 is t-bad℄ � k�3(2k2)�t: (31)We an then proeed to show that pi(1) = O(qi) by showing, via indution oni as above, that pi(t) � k�(i+3)(2k2)�t; the proof an then be onluded asbefore. The bound in (31) just deays singly exponentially in t, as opposed tothe doubly-exponential deay we had for Poisson arrivals. Thus, our approahwill work with message-arrival distributions that have substantially weaker tailproperties than independent Poisson.ACKNOWLEDGMENTSWe thank Mihael Kalantar for explaining the pratial side of this problem, Prab-hakar Raghavan and Eli Upfal for sending us an early version of their paper [Ragha-van and Upfal 1999℄, and the partiipants of a seminar at Carnegie-Mellon Univer-sity, whose questions and omments helped us larify some points. Our thanks alsoto the referees for their helpful suggestions.
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