
Analysis of Practical Backo� Protocols for ContentionResolution with Multiple Servers�Leslie Ann Goldbergy Philip D. MacKenziezJanuary 20, 1998AbstractBacko� protocols are probably the most widely used protocols for contention resolution inmultiple access channels. In this paper, we analyze the stochastic behavior of backo� protocolsfor contention resolution among a set of clients and servers, each server being a multiple accesschannel that deals with contention like an Ethernet channel. We use the standard model inwhich each client generates requests for a given server according to a Bernoulli distributionwith a speci�ed mean. The client-server request rate of a system is the maximum over allclient-server pairs (i; j) of the sum of all request rates associated with either client i or server j.(Having a sub-unit client-server request rate is a necessary condition for stability for single-server systems.) Our main result is that any superlinear polynomial backo� protocol is stablefor any multiple-server system with a sub-unit client-server request rate. Our result is the �rstproof of stability for any backo� protocol for contention resolution with multiple servers. (Themultiple-server problem does not reduce to the single-server problem, because each client canonly send a single message at any step.) Our result is also the �rst proof that any weaklyacknowledgment based protocol is stable for contention resolution with multiple servers andsuch high request rates. Two special cases of our result are of interest. Hastad, Leighton andRogo� have shown that for a single-server system with a sub-unit client-server request rate anymodi�ed superlinear polynomial backo� protocol is stable. These modi�ed backo� protocols aresimilar to standard backo� protocols but require more random bits to implement. The specialcase of our result in which there is only one server extends the result of Hastad, Leighton andRogo� to standard (practical) backo� protocols. Finally, our result applies to dynamic routingin optical networks. Speci�cally, a special case of our result demonstrates that superlinearpolynomial backo� protocols are stable for dynamic routing in optical networks.1 IntroductionWe study the problem of contention resolution with multiple clients and multiple servers. Weassume that each server handles contention as follows: when multiple clients attempt to access theserver at the same time, none succeed. This is the contention-resolution mechanism that is usedin an Ethernet channel. Speci�cally, a client attempts to access an ethernet channel by sending amessage to the channel. If no other messages are sent to the channel at the same time then theclient's message is received and the client receives an acknowledgment. Otherwise, the message is�Most of this work was performed at Sandia National Laboratories and was supported by the U.S. Department ofEnergy under contract DE-AC04-76DP00789.yDepartment of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.leslie@dcs.warwick.ac.ukzDepartment of Math and Computer Science, Boise State University, Boise, ID, 83725. philmac@cs.idbsu.edu.1



not received and the client must retransmit the message. The clients in the system use a contention-resolution protocol to decide when to retransmit. During the time that a client is trying to sendone message, it may generate more messages that it needs to send. These messages are stored in abu�er. An important feature of a good contention-resolution protocol is that, even when messagesare generated fairly frequently, the size of the bu�ers that are used remain bounded.We use the standard model in which each client generates requests for a given server accordingto a Bernoulli distribution with a speci�ed mean. Following H�astad, Leighton and Rogo� [3], wesay that a contention-resolution protocol is stable for the speci�ed request rates if the expectationof the average waiting time incurred by a message before it is successfully delivered is �nite and theexpectation of the time that elapses before the system returns to the initial state (in which thereare no messages waiting in the bu�ers) is also �nite. It is easy to see that if a protocol is not stablethen the bu�ers that it requires to store waiting messages grow larger and larger over time and theamount of time that it takes to send each message increases without bound.1.1 Related Previous WorkThe most popular protocol that is used for contention-resolution on an Ethernet is the BinaryExponential Backo� Protocol of Metcalfe and Boggs [4]. In this protocol each client maintains acounter, b, which keeps track of the number of times that the client has tried to send its messageand failed. After it unsuccessfully tries to send a message, it chooses t uniformly at random fromthe set f1; : : : ; 2bg and it retransmits after t steps. (In practice, a truncated Binary ExponentialBacko� Protocol is usually used, in which t is chosen uniformly at random from f1; : : : ; 2minf10;bgg.Many works refer to this truncated version as \Binary Exponential Backo�.")Most of the previous results on contention-resolution protocols concern systems in which thenumber of clients is in�nite. As [3] explains, these results have limited relevance to the �nite case.It has not been shown that the Binary Exponential Backo� Protocol is stable for Ethernets witha �nite number of clients. However, there are some related results. In [2], Goodman, Greenberg,Madras and March modify the protocol as follows. If a client has unsuccessfully tried to send amessage then on each successive step (until the message is successfully delivered), it retransmits themessage with probability 2�b. (The decision as to whether to retransmit the message is independentof all previous decisions.) This Modi�ed Binary Exponential Backo� Protocol is similar to theoriginal protocol, but it is not implemented in practice because it requires too many random bits(a random number is required at every time-step). [2] shows that the modi�ed protocol is stableas long as the sum of the request rates, which we refer to as �, is su�ciently small. (The de�nitionof stability that is used in [2] is actually slightly weaker than the one that we use above.) [3] showsthat if � > 1=2, the modi�ed protocol is unstable. However, it shows that any Modi�ed SuperlinearPolynomial Backo� Protocol (in which a client re-transmits with probability (b+ 1)��) is stable aslong as � > 1 and � < 1.In [5], Raghavan and Upfal consider the problem of contention resolution with multiple servers,each of which handles contention in the same way as an Ethernet channel. Note that this problemdoes not reduce to multiple instances of the single-server problem because each client can sendonly one message on each time step. Thus, we cannot obtain a stable protocol for the K-serverproblem by combining K copies of a stable single-server protocol because the \combination" couldrequire a client to send as many as K di�erent messages (to K di�erent servers) during a singletime step, which is not allowed in our model. Raghavan and Upfal describe a contention-resolutionprotocol that is stable as long as the sum of the request rates associated with any client or serveris bounded from above by a constant �0 < 1. The expected waiting time of a message in theirprotocol is O(logN). This is much smaller than the expected waiting time of messages in any2



backo� protocol, which they show to be 
(N). However, their protocol is more complicated thana backo� protocol and �0 may be small compared to 1, so their protocol may not be stable for highrequest rates. Furthermore, like the modi�ed backo� protocols, their protocol requires randomnumber generation on each time step. For these reasons, it seems likely that backo� protocols willcontinue to be used in practice for contention resolution with multiple servers.1.2 Our ResultsThe client-server request rate of a system is the maximum over all client-server pairs (i; j) of thesum of all request rates associated with either client i or server j. Having a sub-unit client-serverrequest rate is a necessary condition for stability for single-server systems. Our main result is thatany superlinear polynomial backo� protocol is stable for any multiple-server system with a sub-unitclient-server request rate.Our result extends the previous results in the following ways. First, our result is the �rststability proof that applies to standard (un-modi�ed) backo� protocols. This is important becausethe standard protocols are used in practice1. The special case of our result in which there is justone server extends the result of [3] to standard (practical) backo� protocols. Second, our result isthe �rst stability proof for any backo� (or modi�ed backo�) protocol for contention resolution withmultiple servers. Thus, our result generalizes the result of [3] to the multiple-server case.We say that a contention-resolution protocol is weakly acknowledgment based if each clientdecides whether to transmit on a given step without knowing anything about the other clientsother than the number of clients in the system and the results of its own previous transmissions.Our result is the �rst proof that any weakly acknowledgment based protocol is stable for contentionresolution with multiple servers and such high request rates.One application of our result is the following: When N processors are connected via a completeoptical network (as in the OCPC model [1, 6]), the resulting communication system consists ofN clients and N servers. Each processor is associated with one client and one server. The servershandle contention resolution using the same mechanism as in our client-server model: If a singlemessage is sent to a server during a time step it succeeds. However, if two or more messages are sentto a server at the same time they do not succeed. For example, the contention-resolution mechanismcould be implemented by assigning a unique wavelength to each server. Thus, the special case ofour result in which the number of clients is equal to the number of servers shows that if the sum ofthe request rates associated with a given processor is less than 1 then any superlinear polynomialbacko� protocol can be used to route messages in a complete optical network.2 The ProtocolThere are many ways to generalize the ethernet backo� protocol to a multiple server protocol. Weconsider the following generalization, which is natural (and perhaps easiest to analyze).We have N clients and K servers. For each client i and each server j we have a queue Qi;j whichcontains the messages that the client i has to send to server j. We use the notation qi;j;t to denotethe length of Qi;j before step t. (qi;j;1 = 0.) We de�ne a backo� counter whose value before step tis bi;j;t (bi;j;1 = 0). The protocol at step t is as follows. With probability �i;j, a message arrives atQi;j at step t. If a message arrives and qi;j;t = 0 then Qi;j decides to send on step t. If qi;j;t > 0then Qi;j decides to send on step t only if it previously decided to retransmit on step t. If client i1Although standard protocols are used in practice, the system that arises in practice is more complicated thanthe one that we study because of issues such as message length, synchronization and so on. See [3] for the details.3



has exactly one queue that decides to send, it sends a message from that queue (otherwise, it doesnot send any messages). After step t, the variables qi;j;t+1 are set to be the new queue lengths. IfQi;j decided to send on step t but it was not successful (i.e., either client i did not actually sendthe message, or more than one message was sent to server j (we refer to either of these events asa collision at queue Qi;j)), then it sets bi;j;t+1 to bi;j;t + 1 and it chooses an integer ` uniformly atrandom from f1; : : : ; b(bi;j;t+1 + 1)�cg and it decides to retransmit on step t+ `. If Qi;j successfullysent on step t then it sets bi;j;t+1 to be 0.In order to simplify the analysis of the above protocol, we use the following equivalent formula-tion: For each queue Qi;j, we also de�ne a step counter whose value before step t is si;j;t (si;j;1 = 1).Then in the new formulation of the protocol, if qi;j;t > 0 then Qi;j decides to send on step t withprobability s�1i;j;t. (This decision is made independently of other decisions.) After step t, the stepcounters are updated as follows. If qi;j;t > 0 but Qi;j did not decide to send on step t then si;j;t+1is set to si;j;t � 1. If Qi;j decided to send on step t but it was not successful then it sets si;j;t+1to b(bi;j;t+1 + 1)�c. If Qi;j successfully sent on step t then it sets si;j;t+1 to be 1. (To see that thisformulation is equivalent, note that the probability that Qi;j retransmits on a step t0 in the ranget+ 1; : : : ; t+ b(bi;j;t+1 + 1)�c after a collision at step t is 1=b(bi;j;t+1 + 1)�c. Thus, each step in therange is equally likely to be chosen.)3 The Proof of StabilityFollowing [3], assume that the system starts in the initial state in which there are no messageswaiting in the bu�ers and let Tret be the number of steps until the system returns to this state.Let Li be the number of messages in the system after step i, and let Lavg = limn!1(1=n)Pni=1 Li.Let Wavg denote the average waiting time incurred by a message before it is successfully delivered.Recall that a contention-resolution protocol is stable for a given set of request rates if Ex[Wavg]and Ex[Tret] are �nite when the system is run with those request rates. By a result of Stidham [7],the fact that Ex[Wavg] is �nite follows from the fact that Ex[Lavg] is �nite.The main result of our paper is that the protocol described in Section 2 is stable as long as� > 1 and the system has a sub-unit client-server request rate. The condition that the systemhave a sub-unit client-server request rate is necessary in a single-server system. For the worst casemultiple-server system (a system with the same number of clients and servers), the condition mayreduce the usable bandwidth by up to a factor of 2.The starting point for our proof is the proof of [3], so we begin by briey describing their proof.We use the notation of [3] in our proof whenever it is possible to do so.3.1 The Stability Proof of H�astad, Leighton and Rogo�The proof of [3] analyzes the behavior of a Markov chain which models the single-server system.The current state of the chain contains the current queue lengths and backo� counters for all ofthe clients. The probabilities of transitions in the chain are de�ned by the protocol. The authorsde�ne a potential function which assigns a potential to each state in the chain. If the chain is instate s just before step t, the potential of state s is de�ned to bePOT(s) = NXi=1 qi;t + NXi=1 (bi;t + 1)�+1=2 �N:The potential function is used to prove that Ex[Tret] and Ex[Lavg] are �nite.4



The proof in [3] has two parts. The bulk of the proof establishes the fact that there areconstants �, d and V such that for any state s with potential at least V , there is a tree of depthat most d of descendant states over which the decrease in the square of the potential is at least�POT(s). The proof of this fact has three cases.1. If state s contains a queue Qi that will send and succeed with overwhelming probability, thenthe authors consider the complete tree of depth 1, and show that the expected decrease in thesquare of the potential is su�ciently large.2. Otherwise, if state s contains a queue Qi with a big backo� counter then the tree that theyconsider is the complete tree of depth 1 or 2. Since the backo� counter of Qi is big, the potentialdecreases signi�cantly if Qi succeeds in sending a message. They show that this happenswith su�ciently high probability that the expected decrease in the square of the potential issu�ciently large.3. In the remaining case, they show that with reasonably high probability, a long queue (whichwe call the control queue) takes over and dominates the server for a long time, sending manymessages. Speci�cally, the tree that they consider consists of long paths in which the controlqueue dominates the server (the potential decreases signi�cantly on these paths) and of shortbranches o� of the long paths in which something goes wrong and the control queue loses control.The potential may increase on these short branching paths. However, it turns out that it doesnot increase too much, so over the tree, the expected decrease in the square of the potential issu�ciently large.The second (easier) part of their proof shows that, given the fact that each state with su�cientlylarge potential has a tree as described above, Ex[Lavg] and Ex[Tret] are �nite.3.2 Overview of our Stability Proof and Comparison to The Proof of H�astadet al.Following [3], we view our protocol as being a Markov chain in which states are 3KN -tuplescontaining the queue lengths, backo� counters and step counters associated with each queue. Thetransition probabilities between the states are de�ned by the protocol. This Markov chain is easilyseen to be time invariant, irreducible, and aperiodic. We use a potential function argument to showthat Ex[Tret] and Ex[Lavg] are �nite. In order to show that Ex[Lavg] is �nite we show that theexpected average potential is bounded. According to our potential function, each state just beforestep t has the following potential associated with it.POTt = NXi=1 KXj=1[qi;j;t + (bi;j;t + 1)�+ 12 � s1� 14�i;j;t ]:The use of step counters in our potential function is motivated by the following problem (whichwe describe in the single server case). Suppose that s is a state with two queues Q1 and Q2 thathave step counters equal to 1, but huge backo� counters. In this case, with probability 1, Q1 andQ2 collide on this step, and increase their backo� counters. If the potential function of [3] wereused, this would cause a massive increase in potential. This is not the case with our potentialfunction.Our proof is structurally similar to that of [3] in that we �rst show that for every state s withPOT(s) � V there is a tree of depth at most V � 1 rooted at s such that the expected decrease inthe square of the potential over the tree is at least POT(s) and from this we prove that Ex[Tret]and Ex[Lavg] are �nite. Our proof of the �rst part is broken up into cases. However, we do not usethe same cases as [3]. For instance, our potential function prevents us from considering the �rst5



case of [3] in which a single queue sends and succeeds with overwhelming probability. The problemis that this single queue only reduces the potential by 1, whereas the step counters of the otherqueues cause a larger increase in potential.The �rst case that we consider is the case in which every backo� counter in s is small. Supposethat Q1;1 is the longest queue in s. (We call Q1;1 the control queue.) In the single-server case,[3] �nds a tree of depth U rooted at s such that with reasonably high probability, Q1;1 sendssuccessfully on most of the U steps. When this occurs, the potential goes down because almost Umessages are sent whereas at most �U messages are received. (The tree is de�ned in such a waythat the backo� counters, which start small, do not increase the potential by too much)In the K-server case this approach does not su�ce. First of all, it could be the case that almostall of the messages start at queue Q1;1, so it is the only queue that can dominate a server during theU steps. However, even though Q1;1 sends a message on most of the U steps, about K�U messagesare received on the U steps, so the potential increases (assuming K > ��1). One possible solutionto this problem involves modifying the potential function to give di�erent \weights" to messagesdepending upon the distribution of queue sizes or backo� counters. However, this solution seemsto cause other di�cult problems, and thus does not seem to help.Our solution to the problem is approximately as follows. We de�ne a tree of descendant states ofdepth U such that with reasonably high probability Q1;1 successfully sends on most of the U steps,and the part of the potential that is attributed to client 1 and server 1 goes down. Next, we wishto prove that the part of the potential that is attributed to the queues that do not have client 1or server 1 (we refer to these queues as free queues) does not go up too much over the tree. Thisproblem is complicated by the fact that the free queues interact with the other queues as theMarkov chain runs, so there are dependence issues. In order to deal with the dependence of thecontrol queue and the other queues with client or server 1 on the free queues, we let M denotethe Markov chain that describes our protocol and we de�ne several Markov chains that are similarto M but do not depend upon the behavior of the free queues. Next, we de�ne the states in ourtree in terms of the chains that are similar to M rather than in terms of M itself. We prove thatM is related to the other chains, and we use this fact to prove that we still expect the potentialthat is attributed to client 1 and server 1 to decrease over the tree. We now wish to prove thatwe do not expect the potential of the free queues to go up much over the tree. The de�nition ofthe tree has nothing to do with behavior of the free queues, so the problem is equivalent to �ndingan upper bound on the expected potential of the free queues at a given step, t. In order to �ndsuch a bound, we have to deal with dependences because the queues that are not free can a�ectthe behavior of the free queues. If we (temporarily) ignore the dependences by pretending that thefree queues are not disturbed by the other queues, our problem reduces to bounding the expectedpotential of a smaller client-server system at step t. To deal with the dependence, we de�ne astochastic process which is a Markov chain extended by certain \interrupt steps". We show thateven with the interrupt steps, the expected potential of the free queues does not increase too muchby step t. The details are given in Case 1 of our proof.Cases 2 and 3 of our proof are similar to cases in the proof of [3]. In both cases, s containsa backo� counter that is su�ciently large such that, with su�ciently high probability, the queuewith the large backo� counter sends and succeeds and decreases the square of the potential.Our fourth (and �nal) case is motivated by a problem that can occur when s has a queue Qi;jwith a big backo� counter. In the single-server case, [3] either �nds a queue Qi0;j0 that will suc-cessfully send with overwhelming probability, or shows that with su�ciently high probability Qi;jsends successfully within 1 or 2 steps (as in our Cases 2 and 3). As discussed above, even if Qi0;j0sends successfully, the potential may not decrease. However, Qi0;j0 might prevent Qi;j from sendingsuccessfully. Thus, the approach of [3] does not su�ce in the multiple-server case. We solve this6



problem by showing that unless it is su�ciently likely that Qi;j (or some other queue with a bigbacko� counter) sends successfully within some reasonable number of steps (in which case we arein Case 2 or 3), we can identify a control queue that dominates its server as in Case 1. This doesnot su�ce, however, because there may be free queues with big backo� counters. Although we canguarantee that at any given step t the expected potential of the free queues does not increase toomuch (even if they have large backo� counters), we do not know of a way to guarantee that at anygiven step t the expected square of the potential does not increase too much in this case. We solvethis problem by identifying several control queues rather than just one, so that the free queuesnever have big backo� counters. Unfortunately, we cannot ensure that all of our control queuesdecide to send at the beginning of our tree. In order to make sure that the potential goes down,we must make sure that with reasonably high probability these delayed control queues succeedwhenever they �nally do send. (Otherwise, they may never send again and the potential wouldgo up.) To ensure this, we identify temporary control queues which dominate their servers for awhile, blocking any queues that may send messages which collide with the messages of the delayedcontrol queues. After a temporary control queue stops being a control queue it becomes a freequeue. Thus, we also have delayed free queues and we have to argue about the increase in thesquare of the potential of the delayed free queues as well as that of the ordinary free queues. Thissituation is described in Case 4 of our proof.3.3 PreliminariesFact 3.1 Given r � 1, and given x; y � 0 where jx=yj < 1, (x+ y)r � yr + dredr+1eyr�1xProof: The quantity �rk� is de�ned as follows: rk! = ( r(r�1)���(r�k+1)k(k�1)���1 ; integer k � 0;0; integer k < 0.The Binomial theorem says that if jx=yj < 1 then (x + y)r = Pk �rk�xkyr�k. We use the followingobservations to bound the sum.1. If k > r then j�rk�xkyr�kj � j� rk+1�xk+1yr�(k+1)j.2. If r is not an integer then for any odd positive integer i, � rdre+i� < 0 and � rdre+i+1� > 0.Thus, (x+ y)r �Pdrek=0 �rk�xkyr�k. This quantity is at mostyr + xyr�1 dreXk=1 rk!which is at most yr + xyr�1dredr+1e. 23.4 Lemmas about Markov ChainsIn the following lemma, � > 1 is a constant, and we assume U is large enough so that the analysisholds.Lemma 3.1 Let c be a su�ciently large constant. Consider a Markov chain with states corre-sponding to pairs of positive integers and transitions from (i; j) to (i; j � 1) with probability 1 � 1jand from (i; j) to (i+1; b(i+1)�c) with probability 1j . If the initial state is (b1; s1) with s1 � b�1 and7



t � U steps are taken, then with probability greater than 1�O((logU)�1) the state (b2; s2) reachedat step t satis�es b�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ) � cU1� 14(�+1) .Proof: Note thatb�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ) = (b�+ 122 � b�+ 121 ) + (s1� 14�1 � s1� 14�2 );and that when at most U steps are taken, either s1 � s2 in which case s1� 14�1 �s1� 14�2 � 0 or s1 > s2in which case (s1� 14�1 � s1� 14�2 ) � (s1 � s2)1� 14� � U1� 14� :So in general, we simply need to show that b�+ 122 � b�+ 121 � O(U1� 14(�+1) ).For a given state (i; j), we say i is the level of the state. We proceed in three cases.Case 1: b1 < U1=(�+1)For the �rst 13U ��+1 steps after one reaches a level of at least U 1�+1 , the probability of anotherincrease in level is at most 2U� ��+1 . Then in U of these steps, the expected number of increasesin level is at most 2U1� ��+1 = 2U 1�+1 . Using a Cherno� bound, the probability of over twice thatmany is at most 2�
(U1=(�+1)) � O((logU)�1). Also, the number of increases at other steps afterone reaches a level of at least U 1�+1 can be at most 3U1� ��+1 = 3U 1�+1 , since there are at least13U ��+1 steps between any of those steps. Thus with probability 1�O((logU)�1), b2 < 8U 1�+1 , andthus b�+ 122 � b�+ 121 � O(U1� 12(�+1) ):Case 2: b1 � U1=� logUIf s1 � 12U(logU)�, then the probability of any increase in level at any of U steps is at mostU(4U�1(logU)��) � O((logU)�1). If there is no increase in level, then b2 = b1.If s1 < 12U(logU)�. then there might be a large possibility of an increase in level. If this increaseoccurs, we are essentially in the situation above, so with probability at least 1�O((logU)�1), therewill be no further increases in level. Then b�+1=22 � b�+1=21 is bounded by O(b��1=21 ), buts1� 14�2 � s1� 14�1 � (b(b1 + 2)�c � U)1� 14� � (12U(logU)�)1� 14�� (b1 + 1)�� 14 � U1� 14� � (12U(logU)�)1� 14�� 14b�� 141Thus b�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ) � O(1):Finally, if there is no increase in level, then b2 = b1.Case 3: U1=(�+1) < b1 < U1=(�) logUUsing a Cherno� bound (similar to Case 1), we can show that with probability at least 1 �O((logU)�1), there will be at most O(maxfUb��1 ; log logUg) increases in levels in at most U steps.Using Fact 3.1, we see that if Ub��1 � log logU then b�+1=22 � b�+1=21 is bounded byO(b��1=21 log logU) � O(U1�1=(2�)(logU)�+1=2 log logU) � O(U1�1=(2(�+1)):Similarly, if log logU � Ub��1 then b�+1=22 � b�+1=21 is bounded byO(b��1=21 Ub��1 ) � O(Ub�1=21 ) � O(U1�1=(2(�+1)):8



2 Let f be the function de�ned by f(x) = dx+ 12e8�dx+ 32 e.Lemma 3.2 Consider a Markov chain with states corresponding to pairs of positive integers andtransitions from (i; j) to (i; j � 1) with probability 1 � 1j and from (i; j) to (i + 1; b(i + 1)�c) withprobability 1j . If the initial state is (b1; s1) with s1 � b�1 , and t < ((b1 + 1)=f(�))1=8 steps are taken,then any state (b2; s2) reached at step t satis�es b�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ) � s1.Proof: Let x be the number of transitions that cause an increase in level. If x = 0 then b2 = b1 sothe quantity has an upper bound of s1. Otherwise, the quantity is at most(b1 + t)�+ 12 � (b(b1 + 1)�c � t)1� 14� � b�+ 121 + s1� 14�1 :Now, (b(b1 + 1)�c � t)1� 14� is at least ((b1 + 1)� � (b1 + 1)1=8)1� 14� which is at least (b1 + 1)(��1=8)(1� 14� )which is at least (b1 + 1)(��1=2)(b1 + 1)(1=8). We can use the bound on t in the statement of thelemma to show that this is at least (b1 + 1)(��1=2)td�+ 12ed�+ 32 e.By Fact 3.1, (b1 + t)�+ 12 � b�+ 121 is at most b1(��1=2)td�+ 12ed�+ 32 e. The bound follows. 2Corollary 3.1 Consider a Markov chain with states corresponding to pairs of positive integers andtransitions from (i; j) to (i; j � 1) with probability 1 � 1j and from (i; j) to (i + 1; b(i + 1)�c) withprobability 1j . If the initial state is (b1; s1) with s1 � b�1 , and 1 step is taken, then any state (b2; s2)reached at step t satis�es b�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ) � s1 + f(�)�+1=2.Lemma 3.3 Consider a Markov chain with states corresponding to pairs of positive integers andtransitions from (i; j) to (i; j � 1) with probability 1 � 1j and from (i; j) to (i + 1; b(i + 1)�c) withprobability 1j . If the initial state is (b1; s1) with s1 � b�1 , and (b2; s2) denotes the state after onestep is taken, and B+ denotes b�+ 122 � s1� 14�2 � (b�+ 121 � s1� 14�1 ), then Ex(B+) � 2f(�)�+1=2.Proof: B+ � (b1 + 1)�+ 12+b�1 (1� 14� ). If (b1+1) � f(�), this is at most f(�)�+ 12+f(�)�. Otherwise,we use Lemma 3.2 to show that, when the level increases, B+ is at most s1. The probability thatthe level increases is 1=s1. If the level does not increase, then B+ is at most �(s1 � 1)1� 14� + s1� 14�1which is at most 1. 2A natural concept about Markov Chains we use is that of a tree of descendent states from agiven state s. Let the root node be ((s); t0). Now for each node ((s; r1; r2; : : : ; r); i) at level i, andfor each transition r ! r0 in the Markov chain, let ((s; r1; r2; : : : ; r; r0); i + 1) be a child of thatnode. When there is no confusion, we often refer to a node simply by the last state in its list ofstates. Assuming there is a potential function de�ned on the states of the Markov chain, we de�nethe potential of a node to be the potential of the last state in its list.De�nition: We say a Markov Chain with non-negative potentials assigned to each state is V -good if it satis�es the following properties.1. If a state s has potential POT(s) � V then there is a tree of depth at most V � 1 rootedat s such that the expected decrease in the square of the potential over the tree is at leastPOT(s).2. For any state s, every transition from s is to a state with potential at most maxf2V; 2POT(s)g3. The number of states with potential less than 2V is at most 2V .9



4. From each state s with POT(s) � V we can de�ne a canonical path of length at most 2Vto the unique state with potential 0 such that when the chain starts at s the probability thatthe path is taken is at least 2�V 3 .Lemma 3.4 Given a V -good Markov chain, let TretV(s) denote the �rst step during which thepotential is at most V at the start of the step, given that the chain starts at s. (If POT(s) � Vthen TretV(s) = 1.) Then starting at any state s,Ex24TretV(s)Xt=1 POTt35 � 2V (POT(s))2;.Proof: (We model this proof after that in [3].) As in [3], since TretV(s) might be in�nite, a priori,we de�ne a modi�ed system that is terminated after T steps, meaning the system goes to the uniquestate of potential 0 at step T and stays there. We then proveE(s; T ) = Ex24min(T;TretV(s))Xt=1 POTt35is bounded from above by 2V POT(s)2 by induction on T .This is true for T = 1, since POT1 = POT(s). This is also true for any s with POT(s) � V ,since then TretV(s) = 1.For the induction step, assume that E(s; T 0) � 2V POT(s)2 for all T 0 < T and any s withPOT(s) � V . We then bound E(s; T ) as follows.Let the leaf s0 of the tree of descendent states appear with probability ps0 , have potentialPOT(s0) and be at depth ds0 . Let POT0(s0) denote the sum of POTt over the ds0 steps taken toreach leaf s0. Since the potential can at most double at each step,POT0(s0) � POT(s) ds0Xj=0 2j � 2ds0+1POT(s):Then following [3], we can see thatE(s; T ) � Xs0 ps0(2ds0+1POT(s) +E(s0; T � ds0))� 2V POT(s) + 2V Xs0 ps0(POT(s0))2� 2V POT(s) + 2V POT(s)2 � 2V POT(s)= 2V POT(s)2:As in [3], this implies the lemma. 2Lemma 3.5 Given a V -good Markov chain, if we start at state s with POT(s) � V then theexpected potential at step t is at most (2V )222V .Proof: For any state s0, consider the partial tree of descendent states from s0 in which, for everynode, all proper ancestors of that node have potential greater than V . Let St(s0) be the set of nodesat level t of this tree. Let E0(s0; t) = Pv2St(s0) pvPOT(v), where pv is the probability of reaching10



node v from s0. Let E(s0) = Ex[PTretV (s0)i=1 POTi]. Then E(s0) = PtE0(s; t). By Lemma 3.4,E(s0) � 2V (POT(s))2. and thus PtE0(s0; t) � 2V (POT(s))2.Let E(s; t) be the expected potential after t steps when starting in state s. We would like toprove for all t that when POT(s) � V , E(s; t) � (2V )222V . Let T be the full depth t tree ofdescendent states of s. Note E(s; t) is the sum over leaves of this tree of the probability of reachingthe leaf times the potential of that leaf. For any node v 2 T , let dv be the depth of v, and let pvbe the probability of reaching node v. Note that if Q is a set of nodes in T such that each leaf v inT has an ancestor v0 in Q and every node on the path from v to v0 has potential greater than V ,E(s; t) � Xv02QE0(v0; t� dv0)pv0 :Since the root of T has potential at most V , for every leaf v in T there is exactly one nodea(v) which is the closest ancestor to v whose parent has potential at most V . We let Q = fa(v) :v is a leaf of Tg, and note that it satis�es the conditions above.Now we let ps0;i be the probability of being in state s0 at level i of T . (Note that this is the sumof probabilities of being in any node at level i of T with state s0.) Let S be the set of all stateswith potential at most 2V . ThenE(s; t) � Xv02QE0(v0; t� dv0)pv0= tXi=0 Xs02SE0(s0; t� i)ps0;i� Xs02S tXi=0E0(s0; t� i)= Xs02S tXi=0E0(s0; i)� Xs02S 2V (2V )2� (2V )222V :2 For the next lemma we extend a Markov chain with interrupt steps, which are steps in which weexternally modify the transition probabilities of the chain. (Each step could modify the chain in adi�erent way.) The timing and modi�cation of these interrupt steps will be de�ned independentlyof the chain itself.Lemma 3.6 Consider a V -good Markov chain extended with a set of interrupt steps M , such thatthis extended Markov chain has the property that for any state s, the expected increase in potentialin one step is at most z, whether or not the step is an interrupt step. If we start at state s then theexpected potential at step t of this extended Markov chain is at most POT(s)+(jM j+z)((2V )222V +z).Proof: We prove this result for every set M which has the property stated in the lemma, byinduction on jM j. Let E(s; t;M) be the expected potential after t steps when starting in state swith a set of interrupt steps M . For the base case, let M = ;. We prove by induction on t thatE(s; t; ;) � POT(s) + (2V )222V . For t � V , E(s; t; ;) � POT(s) + V , and when POT(s) < V ,E(s; t; ;) � (2V )222V , by Lemma 3.5. 11



Now we must prove that the result holds for any s and t with POT(s) � V and t > V . We canassume that the result holds for all t0 with t0 < t. Since POT(s) � V , we have a tree T of depth atmost V � 1 such that the expected change in potential is at most zero. Let S contain each leaf inT . For a leaf s0 of T , let ps0 be the probability of reaching that leaf, and let ds0 be the distance ofthat leaf from the root. Now we haveE(s; t; ;) � Xs02S ps0E(s0; t� ds0 ; ;)� Xs02S ps0(POT(s0) + (2V )222V )� POT(s) + (2V )222V ;Now that the base case for jM j = 0 is established, we need to prove the result for jM j > 0assuming the result to be true for any t given that there are less than jM j interrupt steps. (Notethat we prove a slightly stronger result for the case jM j = 0 than for jM j > 0.)Let t1 be the time of the �rst interrupt step in M . Then E(s; t1 � 1; ;) � POT(s) + (2V )222V ,and thus E(s; t1; ;) � POT(s)+(2V )222V +z, Now we examine the complete tree of states of deptht1. Call this tree T , and let S be the set of leaves of T .E(s; t;M) � Xs02S ps0E(s0; t� t1;M � ft1g)� Xs02S ps0(POT(s0) + (jM j � 1 + z)((2V )222V + z))� E(s; t1; ;) + (jM j � 1 + z)((2V )222V + z)� POT(s) + (jM j+ z)((2V )222V + z)2Def: POTavg = limn!1 1nPni=1 POTi.The following lemma is similar to one in [3].Lemma 3.7 Given a V -good Markov chain, Ex(POTavg) � 22V (2V )2 and Ex(Tret) � (2V (2V )2 +2V )2V 3 .Proof: Let s0 be the state with potential zero. Let Tret(s) be the number of steps taken to reachs0 when starting from s. Let pi(s) be the probability of not reaching a state with potential at mostV within i steps when starting in state s. (For convenience, let p�1(s) = 1.) Then by Lemma 3.4,for any s with POT(s) � 2V , Ex[TretV(s)] =Xi�0 pi(s) � 2V (2V )2:Let Z = maxs:POT(s)�V fEx[Tret(s)]g. We will determine an upper bound for Z.From each state s with POT(s) � V we can de�ne a canonical path of length at most 2Vto s0 such that when the chain starts at s the probability that the path is taken is at least 2�V 3 .If the path is not taken then the chain will make a transition from the path, ending in some states0 where POT(s0) � 2V . Let ps!s0 be the probability that s0 is the �rst step o� the canonical pathfrom s to s0. Let p be the probability that s goes to s0 in the canonical way, and notice that this12



will take at most V steps. Then for any s with POT(s) � V ,Ex[Tret(s)] � 2pV +Xs0 [2V +Xi�0(pi(s0) + Z(pi�1(s0)� pi(s0))]ps!s0� 2pV + 2(1� p)V +Xs0 Xi�0(pi(s0) + Z(pi�1(s0)� pi(s0))]ps!s0� 2pV + 2(1� p)V +Xs0 [2V (2V )2 + Z]ps!s0� 2V + (1� p)[2V (2V )2 + Z]:Then we get Z � 2V +(1�p)[2V (2V )2+Z], from which we derive the bound Z � p�1[2V +2V (2V )2].The result for Ex[Tret] follows by noting that p � 2�V 3 .The bound on Ex[Tret] implies that the a V -good Markov chain is stationary. From Lemma 3.5,when starting from s0, the expected potential at any step t is at most 22V (2V )2. Then we getEx[POTavg] = Ex[ limn!1 1n nXi=1POTi]= Ex[lim infn!1 1n nXi=1POTi]� lim infn!1 Ex[ 1n nXi=1POTi]= lim infn!1 1n nXi=1Ex[POTi]� 22V (2V )2:The second equality relies on the fact that the limit exists with probability one (and an eventwith probability zero doesn't a�ect the expectation), which can be shown using the strong ergodictheorem for stationary processes . The �rst inequality comes from Fatou's Lemma since the randomvariables are always non-negative. 23.5 The ProofNow we are ready to prove stability of the N client, K server system as de�ned in the introduction.Theorem 3.1 Suppose that we have an N client, K server system and message bound � < 1.Then there is a constant V such that the system corresponds to a V -good Markov chain.From Lemma 3.7 we get the following corollary.Corollary 3.2 Suppose that we have an N client, K server system and message bound �. Thenthere is a constant V such that Ex(POTavg) � 22V (2V )2 and Ex(Tret) � (2V (2V )2 + V )2V 3 .Proof: [of Theorem 3.1] We proceed by induction on K. The case K = 0 is trivial with V = 1 soassume that the theorem holds for any K 0 server N 0 client system with K 0 < K (more speci�cally,with constant VK0;N 0;�). We will show that it holds for a K server N client system. That is, wemust de�ne a constant V such that the Markov chain is V -good. (Note that we only need to provethe Theorem holds for large N , since this will imply the Theorem for smaller N , using the sameV .) 13



Given large enough V , Conditions 2 and 3 follow directly from the de�nition of the ethernetsystem. Condition 4 also follows directly from the de�nition. Suppose that s is a state withPOT(s) � V . The canonical path of length at most 2V from s to the unique state with potential 0is de�ned as follows. First, no new messages arrive in the system during the walk on the path.Second, during the �rst V steps of the path, every non-empty queue decides to send. If there arestill messages in the system after the �rst V steps then, during the remainder of the path, thequeues take turns sending. (First, Q1;1 sends until it is out of messages and then Q1;2, and so on.)Since the system has at most V messages in state s, the path has at most 2V steps. The probabilitythat no messages arrive is therefore at least (1� �)2KV . Since the backo� counters in state s areat most 2V �1 the probability that every non-empty queue decides to send during the �rst V stepsis at least (4V )��V KN . The probability that the proper queue sends during the remaining steps isat least (4V )��V . By the end of the �rst V steps, the step counter of every non-empty queue is atleast V (actually, it is larger). Therefore, the probability that the other queues don't send duringthe remaining steps is at least 2�KNV . Condition 4 follows.The rest of this subsection proves that Condition 1 holds for a V which will depend on N ,K, �, and V 0 = maxK0<K;N 0<N VK0;N 0;�. That is, we seek to prove that if a state s has potentialPOT(s) � V then there is a tree of depth at most V �1 rooted at s such that the expected decreasein the square of the potential over the tree is at least POT(s). In order to help the reader follow theproof, we note that the variables that we will use in the proof will satisfy the following inequality.11� �; �;K;N; V 0 � Z �W � R � B � U � V:We will assume in the proof that each variable is chosen to be su�ciently large with respect tothe smaller variables. We will have W = R=2 and Z =W 1=(2�) � 2.Fix a state s with POT(s) � V and suppose that the Markov chain is in state s right beforestep t0. We show that Condition 1 holds by splitting the analysis into cases, depending upon which(if any) of the following properties hold.1. every backo� counter bi;j;t0 is less than B,2. there is a backo� counter bi;j;t0 � Z such that with probability at least(1� �)K58�KN4(bi;j;t0 + 5)��2�KN ;queue Qi;j succeeds at least once during steps t0; : : : ; t0 + 4 and every other queue Qi0;j0 decidesto send on step t (for t 2 ft0; : : : ; t0 + 4g) only if si0;j0;t � 8.3. there is a backo� counter bi;j;t0 � B such that with probability at least(1� �)K(4+R)8�KN4(bi;j;t0 +R+ 4)��R�2�KNR;queue Qi;j succeeds at least once during steps t0; : : : ; t0 +R+ 3 and every other queue Qi0;j0decides to send on step t (for t 2 ft0; : : : ; t0 +R+ 3g) only if si0;j0;t � R2�.In our analysis we use the following random variables: We let Q+i;j (Q�i;j) denote the increase(decrease) in potential due to the queue length of Qi;j over a path in the tree of descendentstates. We let B+i;j (B�i;j) denote the increase (decrease) in potential due to the combination ofbacko� counter and step counter for Qi;j over a path in the tree of descendent states. Then we letQ+ =PNi=1PKj=1Q+i;j, and we de�ne Q�, B+, and B� analogously. We let � denote the change inpotential over a path in the tree of descendant states and we let � denote the change in the squareof the potential over a path in the tree of descendant states.We will use the following notation. Let �i;j;t and ��i;j;t be random variables which are uniformlydistributed over the unit interval. We can now describe our protocol in terms of these variables.14



We will say that a message arrives at Qi;j at step t if �i;j;t � �i;j. If qi;j;t > 0 then Qi;j decides tosend on step t if ��i;j;t � s�1i;j;t. The progress of the Markov chain describing our protocol (which wecall M) depends only the values of the � and �� variables. Thus, the branching at depth t in ourtree depends on the values of the random variables �i;j;t and ��i;j;t. In three of our cases, the statesthat we use for our tree are combinations of the states of Markov chains that are similar to Mrather than states ofM itself. (In Cases 2 and 3, all of the chains start in state s at step t0 and runwith the � and �� values that are associated with the path in the tree. In Case 1, we argue aboutstep t0 separately, and the chains then start in a �xed state s0 (dependent on s) at step t0 + 1.)In order to de�ne the states that we consider in our tree, we de�ne, for every queue Qi;j, a newMarkov chainMi;j. In the chainMi;j , queue Qi;j follows the protocol, but all of the messages thatit sends collide with messages sent by some external source. None of the other queues participate.We use the notation q+i;j;t, b+i;j;t and s+i;j;t to denote the queue lengths and counters when Mi;j isrun. The progress of Mi;j is a function of the random variables �i;j;t and ��i;j;t. We let B++i;j denotethe increase in potential over a path in the tree due to the combination of the backo� counter andthe step counter for Qi;j when Mi;j is run. (Since B++i;j denotes an increase in potential whenMi;j is run (rather than when M is run), we use q+i;j;t, b+i;j;t and s+i;j;t in place of qi;j;t, bi;j;t andsi;j;t in the potential function when we calculate B++i;j . At all other times, when we speak of thepotential function, we mean the original potential function, which depends upon qi;j;t, bi;j;t andsi;j;t.) For every queue Qd;d, we de�ne a new Markov chain Md. In the chain Md, the queues infQi;j j i = d or j = dg follow the protocol, but the other queues do not participate. We use thenotation qdi;j;t, bdi;j;t and sdi;j;t to denote the queue lengths and counters when Md is run. Note thatif all of the chains are started at step t0 then q+i;j;t0+1 = qi;j;t0+1 = qdi;j;t0+1. Similarly, each queuehas the same initial counters for all three chains. Recall that in Case 1, we start the individualchains in a �xed state s0 at step t0 + 1. Thus, in Case 1 q+i;j;t0+1 = qi;j;t0+1 = qdi;j;t0+1. Similarly, atstep t0 + 1, each queue has the same counters for all three chains.3.5.1 Case 1Property 1 holds: When the Markov chain is started in state s right before step t0 with POT(s) � V ,every backo� counter bi;j;t0 is less than B.Without loss of generality, we assume that Q1;1 is the largest queue in state s. We call Q1;1the control queue and any other queue with client or server 1 a slave queue. We call the otherqueues free queues. Recall that our goal is to show that there is a tree of depth at most V � 1rooted at s such that the expected decrease in the square of the potential (over the tree) is at leastPOT(s). We will let U denote the depth of this tree. (We will choose U such that q1;1;t0 � U .)As we stated above, the branching in the tree depends upon the values of the � and �� variables,so by �xing the values of the variables �i;j;t and ��i;j;t for all i and j and all t � t0 + U � 1 we�x a path p of length U . We de�ne �(p) as follows: For every slave queue Qi;j, and every stept > t0 + 4, if Qi;j has b+i;j;t � R1=� and it decides to send on step t in Mi;j, then t is in �0i;j(p). Let�0(p) = ft j Qi;j is a slave ^ t 2 �0i;j(p)g. Let �(p) = �0(p) [ ft + 1 � t0 + U � 1 j t 2 �0(p)g. Let�k(p) denote the kth step in �. We say that path p is good if it satis�es the following conditions.1. At step t0, no message is received at any queue, the control queue decides to send inM, everyother queue Qi;j with q+i;j;t0 > 0 and s+i;j;t0 � 5 decides to send inM, and no other queue Qi;jdecides to send in M.2. At step t0 + 1, no message is received at the control and slave queues, the control queuedecides to send in M1, every slave queue Qi;1 with q+i;1;t0+1 > 0 and s+i;1;t0+1 � 4 decides tosend in Mi;1, and no other slave queue Qi;j decides to send in Mi;j .15



At step t0 + 2, no message is received at the control and slave queues, the control queuedecides to send in M1, every slave queue Q1;j with q+1;j;t0+2 > 0 and s+1;j;t0+2 � 3 decides tosend in M1;j, and no other slave queue Qi;j decides to send in Mi;j.At step t0 + 3, no message is received at the control and slave queues, the control queuedecides to send in M1, every slave queue Qi;1 with q+i;1;t0+3 > 0 and s+i;1;t0+3 � 3 decides tosend in Mi;1, and no other queue Qi;j decides to send in Mi;j.3. At step t0 + 4, no messages are received at the control and slave queues, the control queuedecides to send in M1, and every slave queue Qi;j does not decide to send in Mi;j4. For each slave Q1;j, and each t 2 �01;j(p), t 6= t0 mod 2. Also, for each slave Qi;1, and eacht 2 �0i;1(p), t = t0 mod 2.5. For every step �k(p) 2 �(p), ��1;1;�k(p) � (k + 1)��.6. If t is in �(p), and Qi;j is a slave queue with b+i;j;t > R1=�, then Qi;j does not decide to sendon step t in Mi;j. If t is not in �(p) and Qi;j is a slave queue with b+i;j;t > R1=� which decidesto send on step t in Mi;j then, for any t0 in the range t � 2� � 1; : : : ; t, there is no slavequeue Qi0;j0 with b+i0;j0;t0 > R1=� that decides to send on step t0 in Mi0;j0 .7. If Qi;j is a slave or control queue then for every t in the range t0 � t < t0 + U , ��i;j;t >2(U1=� log(U))��.8. For every slave queue Qi;j and any t in the range t0 � t � t0 + U , we have (b+i;j;t + 1)�+ 12 �s+i;j;t1� 14� � ((b+i;j;t0 + 1)�+ 12 � s+i;j;t01� 14� ) � 2cU1� 14(�+1) where c is the constant de�ned inLemma 3.19. For any t in the range t0 + 5 � t < t0 + U , the number of messages received by the controland slave queues during steps t0 + 5; : : : ; t is at most �(t� t0 � 4) + U1=2 logU .The tree that we consider will be the tree consisting of every good path of length U plus everychild of every internal node of such a path. We will show that for this tree Ex[�] � �POTt0 . Thekey to showing this will be to prove that with su�cient probability a good path is taken when thechain is run. The properties in the de�nition of \good" deal with the Markov ChainsMd andMi;j .However, we will prove that in the internal nodes of our tree, the state ofM is related to the statesof Md and Mi;j . Thus, we will be able to show that for this tree Ex[�] � �POTt0 .We start by proving a lemma which establishes some of the relationships between M, M1 andMi;j.Claim 3.1 If n is a node in the tree at level t � t0 +1 (i.e., step t is just about to take place) andthe parent of n is in good path p, then1. For any slave queue Qi;j, qi;j;t = q+i;j;t = q1i;j;t, bi;j;t = b+i;j;t = b1i;j;t and si;j;t = s+i;j;t = s1i;j;t.2. q1;1;t � q11;1;t, b1;1;t � b11;1;t and s1;1;t � s11;1;t.3. If t > t0 + 4 then b11;1;t � 1 + j�0(p) \ ft0; : : : ; t� 1gj.Proof: The proof is by induction on t. First note that the actions of every queue is forced at stept0, and thus there is only one node s0 at step t0 +1 in any good path. Then the base case includesthe �ve steps t 2 ft0 + 1; : : : ; t0 + 5g The case t = t0 + 1 is clear because the queue lengths andcounters have the same values before step t0 + 1 in all of the chains. To see that Item 1 holds forsteps t0+2 to t0+4, note that any slave queue that decides to send collides with the control queue.16



Speci�cally, in step t0 + 2, only queues that client-conict with Q1;1 decide to send, and in stepst0+1 and t0+3 only queues that server-conict with Q1;1 decide to send, and in steps t0+1, t0+2and t0 + 3, Q1;1 decides to send. To see that Item 1 holds for t = t0 + 5 note that the slave queuesdo not decide to send on step t0 + 4.To see that Item 2 holds for steps t0 + 2 through t0 + 5 we consider the possible cases. Inde�ning the cases, we observe that for any t, if Item 2 has been established for step t� 1, then ifQ1;1 decides to send on step t in M1, Q1;1 also decides to send on step t in M. Also, if Item 1 andItem 2 have been established for step t� 1, then if Q1;1 sends and succeeds at step t in M1 thenQ1;1 sends and succeeds at step t in M. (Note that Item 2 was established for step t0 + 1.) Thecases are:a. Q1;1 sends and succeeds in M.b. Q1;1 decides to send in M and fails and does not decide to send in M1.c. Q1;1 decides to send and fails in M and M1.d. Q1;1 does not decide to send in M or M1.It is clear that Item 2 holds in Cases a, c, and d. Finally, we note that Case b cannot occur onsteps t0+1 through t0+4 since Q1;1 decides to send on those steps in M1, and inductively Item 2can be established for steps t0 + 2 through t0 + 5. To see that Item 3 holds for t = t0 + 5, we notethat b11;1;t0+5 is 0.We now do the induction step. In order to establish Item 1, we want to show that if a slavequeue Qi;j sends on step t (for t > t0+4) then it collides inM and inM1. We consider two cases.If t 2 �(p) (suppose that t = �k(p)), then, by property 4 and property 6, if j = 1, then no slavequeue Q1;j0 decides to send on step t. Whether or not j = 1, by property 5, ��1;1;t � (k + 1)��.Also, (by Item 3, inductively), b11;1;t � k, so s11;1;t � (k + 1)�. By Item 2, inductively, s1;1;t � s11;1;t,so the control queue decides to send on step t in M and M1. Thus, Qi;j has a collision. Nowsuppose t 62 �(p). We will show that b11;1;t = 0. (To do this, we can assume inductively that fort0 < t, if t0 62 �(p), then b11;1;t0 = 0.) Consider the maximum t0 < t where either t0 2 �(p), someslave sent at step t0, or t0 = t0+5. If t0 2 �(p), then t0+1 62 �(p), so no slave queue sends at step t0,but by property 5 and the argument used above, Q1;1 sends and succeeds at step t0 in M1. Thusb11;1;t = 0. If t0 = t0 + 5, then Q1;1 sends and succeeds at step t0 in M1, and therefore b11;1;t = 0.Otherwise, by property 6, t0 < t � 2�, and inductively b11;1;t0 = 0, so b11;1;t0+1 = 1. But then Q1;1sends and succeeds by step t� 1, so b11;1;t = 0. Thus, (since the queue size of the control queue isat least U), it decides to send on step t and Qi;j has a collision.In order to establish Item 2, we want to rule out Case b, in which Q1;1 decides to send at step tin M and fails and does not decide to send in M1. We have already shown, in the analysis in thepreceding paragraph, that Q1;1 sends in M1 on every step in �(p). So suppose that t 62 �(p). Bythe same argument as in the preceding paragraph, we can show that b11;1;t = 0 unless there is somet0 < t, where some slave sends on step t0 62 �(p) and t0 � t � 2�. So either no slave sends at stept, in which case Q1;1 will succeed if it decides to send, or else some slave sends at step t, and byproperty 6, b11;1;t = 0 (and thus Q1;1 decides to send in M1). Thus, Case b does not occur.In order to establish Item 3, we note that we have already shown that Q1;1 sends in M1 onevery step in �(p), and that it succeeds on the last step of every consecutive block of steps in �(p).Furthermore, Q1;1 succeeds on step t0 + 4. By property 6 (and, inductively, by Item 1), Q1;1 canhave at most 1 collision inM1 just before the consecutive block of steps from �(p). Item 3 follows.2 As in [3], we will use the equalityEx[�] = 2POTt0 � Ex[�] + Ex[�2]:17



Thus it is su�cient to show that Ex[�] � �1 and Ex[�2] � POTt0 . Let E be the event that agood path is taken when the chains are run. (That is, E is the event that all the conditions in thede�nition of \good" hold for U steps.) Let Ei be the event that condition i holds for U steps. LetU 0 = maxfU1=2 logU;U1=� logU;U1�1=(4(�+1)) ; U1�1=(4�) log��1=4 Ug, and note U 0 = o(U).Call two paths in the tree equivalent if and only if every queue has the same � and �� values atstep t0, and every control and slave queue has the same sequence of � and �� values over the theremaining transitions in the paths. This notion of equivalence is clearly an equivalence relation.Furthermore, if one path in the tree ends at level t (i.e., if t < t0 + U , there is no good pathcontinuing on from the node at level t, but there is a good path continuing on from the node atlevel t� 1), then every equivalent path also ends at level t.Let M0 denote the Markov chain in which the free queues run the protocol (after step t0), andno other queues participate. By induction, there is a constant V 0 such that M0 is V 0-good. Nowsuppose that we �x a sequence of � and �� values for the control and slave queues and we run M.If we just look at the free queues during this run, we can think of this as being a run of M0, inwhich M0 is extended by the set of interrupt steps I which is determined by the sequence of �and �� values for the control and slave queues (and the � and �� values of the queues at step t0).Lemma 3.3 shows that when M0 is extended by I, the expected increase in potential in any onestep (other than step t0) is at most 3KNf(�)�+1=2. (The expected increase due to each backo�and step counter is at most 2f(�)�+1=2 and the expected increase due to each queue is at most 1.)If the �xed sequence of � and �� values is such that the path taken is in the tree (i.e, all of theproperties continue to hold (except possibly after the last step)), then the number of interrupt stepsin I is at most KNU1=� log(U). (To see this, note that, by Claim 3.1, every slave queue collidesevery time it sends (except possibly the last time it sends). Furthermore, since Property 7 holds, aslave queue does not send once its backo� counter is U1=� log(U) � 1 (except possibly on the laststep). Therefore, the slave queues provide at most KNU1=� log(U) interruptions.)Claim 3.2 Suppose that we �x a particular equivalence class of paths of length at least t, and wecondition on the event that whenM is run for t steps, starting with step t0, one of the paths from thisequivalence class is taken. Then the expected potential of the free queues, after the t steps, is at mostthe potential of the free queues at step t0+1 plus ((KNU1=� logU)+3KNf(�)�+1=2)((2V 0)222V 0 +3KNf(�)�+1=2).Proof: We view the free queues as forming a Markov chain M0 which is extended by the set ofinterrupts I that is determined by the set of � and �� values associated with the equivalence class.We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step isat most 3KNf(�)�+1=2 and the number of interruptions is at most (KNU1=� logU). 2Claim 3.3 There is a function f1 such thatEx[� j E] � �(1� �)U + U 0 � f1(�;K;N; V 0; R):Proof: Given E and Claim 3.1, there are at most[(K +N � 1)U1=� logU ]2�steps on which the control queue does not broadcast successfully. (Each of the K + N � 1 slavequeues provides at most U1=� logU interrupts. For any run of interrupts in �(p), the control queuesends successfully after the last step of that run (which is still in �(p)). For any interrupts not in�(p), the control queue sends within 2� steps. Therefore, at leastU � [(K +N � 1)U1=� log(U)]2�18



messages are sent successfully. By Property 9, the number of messages that are received by thecontrol and slave queues is at most �U +U1=2 logU . By Property 8 and Claim 3.1, the increase inpotential due to the backo� counters and step counters of the slave queues is at most 2cU1� 14(�+1) .By Claim 3.1, the backo� counter of the control queue is at most (K + N � 1)(R1=� + 1) + 1,so the increase in potential due to the backo� counter and step counter of the control queueis at most ((K +N � 1)(R1=� + 1) + 2)�+1=2. Claim 3.2 shows that for each equivalence classof paths, the expected potential of the free queues increases by at most ((KNU1=� logU) +3KNf(�)�+1=2)((2V 0)222V 0 +3KNf(�)�+1=2) during steps t0+1; : : : ; t0+U �1. By Corollary 3.1,it increases by at most KN(5 + f(�)�+1=2) on step t0. 2Claim 3.4Pr(E) � 2((1 � �)=3)5+(K+N�1)(R1=�+1)5�5(KN�1)(B + 5)�5�((2(K +N � 1)(R1=� + 1) + 1)!)��:Proof: We can divide the calculation as follows.Pr(E) = Pr(E1) Pr(E2 j E1) Pr(E3 j E1 ^E2) Pr(E4 j E1 ^E2 ^E3) Pr(E5 j 4̂i=1Ei) Pr( 9̂j=6Ej j 5̂i=1Ei):Now we analyze each probability in turn. Clearly, Pr(E1) � (1 � �)K(B + 1)��5�(KN�1). Notethat every slave Q1;j with q1;j;t0+1 > 0 has s1;j;t0+1 > 1 and every slave Qi;1 with qi;1;t0+2 > 0has si;1;t0+2 > 1 and every slave Q1;j with q1;j;t0+3 > 0 has s1;j;t0+3 > 1. Thus, Pr(E2 j E1) �(1��)3(B+4)�3�4�3(K+N�1). Note that every slave Qi;j has si;j;t0+4 > 1. Thus, Pr(E3 j E1^E2) �(1� �)(B + 5)��2�(K+N�1).The next probability essentially requires two separate arguments, one to lower bound the prob-ability of each slave queue receiving its �rst message at either an odd or even step, and one to lowerbound the probability of it attempting each send (until its backo� counter exceeds R1=�) at eitheran odd or even step.In the �rst argument, note that we must show that Qi;j receives its �rst message at either anodd or even step. (If �i;j = 0, then Qi;j never receives any messages and we can disregard it.) If�i;j � 12 , then it receives a message at step t0 + 5 (an odd step) with probability at least 12 , and itreceives its �rst message at step t0 + 6 with probability at least 12(1� �i;j) � 12 (1� �). If �i;j < 12 ,let � be the probability that a message is �rst received on an odd step (noting that the �rst steppossible is t0 + 5, an odd step). Then it can be easily shown that a message is �rst received on aneven step with probability (1 � �i;j)�. Thus � + (1 � �i;j)� = 1, implying � = (2 � �i;j)�1. Since0 < �i;j < 12 and 12 < � < 23 , (1� �i;j)� > 14 .In the second argument, we must show that slave queue Qi;j attempts each send (until its backo�counter exceeds R1=�) at either an odd or even step, assuming that if it is empty, it attempts its �rstsend at the correct step. First, we deal with the �rst step of the slave queues Qi;j with qi;j;t0+5 > 0.If Q1;j is a slave queue with q1;j;t0+5 > 0 and s1;j;t0+5 = 1 then it sends on step t0 + 5, which is�ne. Every other slave queue Qi;j with qi;j;t0+5 > 0 has si;j;t0+5 � 2. Since si;j;t0+5 � 2, there isa step of the correct parity in the range t0 + 5; : : : ; t0 + si;j;t0+5 + 4. Let t0 be the last such step.The probability that Qi;j does not send before step t0 is at least 1=si;j;t0+5 and the probabilitythat it sends on step t0, given that it did not send earlier, is at least 1=3. We now consider stepsafter t0+5. If Qi;j collides at step t� 1, we have si;j;t = b(bi;j;t+1)�c. By Claim 3.1, a slave queuenever succeeds, so si;j;t � 2 and we can use the same argument that we used for the �rst step.Thus, since the relevant step counters are at most (R1=� + 1)�, we havePr(E4 j E1 ^E2 ^E3) �  14(1� �) 1(R1=� + 1)�!(K+N�1)(R1=�+1) :19



Using Claim 3.1, we see that for any good path p, j�0(p)j � (K+N�1)(R1=�+1). Thus, j�(p)j �2(K+N � 1)(R1=�+1). We conclude that Pr(E5 j V4i=1Ei) � ((2(K +N � 1)(R1=� + 1) + 1)!)��.Next, we note that Pr(V9j=6Ej j V5i=1Ei) is at least1� Pr(E6 j 5̂i=1Ei)� Pr(E7 j 5̂i=1Ei)� Pr(E8 j 5̂i=1Ei)� Pr(E9 j 5̂i=1Ei)We calculate Pr(E6 j V5i=1Ei), by considering the following game. Suppose that we have U � 2boxes, which are labeled t0+5; : : : ; t0+U�1. Each box will represent one time-step. Note that �(p)is completely determined by the values of the variables ��i;j;t for slave queues Qi;j with b+i;j;t � R1=�.We look at these variables, and place a blank pebble in each box that represents a time-step in �(p).If slave queue Qi;j had b+i;j;t0+5 > R1=� then we choose a random number ` between 1 and si;j;t0+5and we put pebble Pi;j in box t0 + 4 + `. (This choice of the random number is dependent uponthe values ��i;j;t0+5; ��i;j;t0+6; : : :) Otherwise, we use the values of the same �� variables that we usedto identify �(p) and we identify the integer t such that b+i;j;t > R1=� and b+i;j;t�1 � R1=� and we putpebble Pi;j in box t� 1. To play the game we now consider the boxes in order. When we considerbox t we check whether it contains a pebble, Pi;j. If so, we choose a random number ` between 1and b(bi;j;t+1 + 1)�c and we put Pi;j in box t+ `. (This choice of the random number is dependentupon the values ��i;j;t+1; ��i;j;t+2; : : :) We lose the game if any box other than box t0+5 ever containsmore than one pebble, or if any two boxes t 6= t0+ 5 and t0 6= t0 +5 ever contain pebbles and havejt� t0j � 2�. Otherwise, we win. One can see that winning this game corresponds exactly to havingcondition E4 hold. Note that the �� values that we use to play the game are independent of the�� values that we used to show that the probabilities that E1{E5 hold. The probability that Pi;jcauses a loss is at most the sum of2(K +N � 1)(R1=� + 1) + (2�+1 + 1)(K +N � 1)R(this is an upper bound on the probability that Pi;j hits another pebble on its initial placement),and Xb�R1=�+1 2(K +N � 1)(R1=� + 1) + (2�+1 + 1)(K +N � 1)b(b+ 1)�c :The sum is O((K +N � 1)R(1=�)�1). Since there are at most K +N � 1 pebbles, the probabilityof losing is O((K +N � 1)2R(1=�)�1).Let H = min(1=6; (B + 4)��; (2(K +N � 1)(R1=� + 1) + 1)��). During the proof that E1-E5hold with su�ciently high probability we sometimes forced �i;j;t values to be large. The only timesthat we forced �i;j;t values to be small, we only forced them to be as small as H. Thus,Pr(E7 j 5̂i=1Ei) � (K +N � 1)U2 (U1=� logU)��=H� 2(K +N � 1)(logU)��=H:The portion of (b+i;j;t + 1)�+ 12 � s+i;j;t1� 14� � ((b+i;j;t0 + 1)�+ 12 � s+i;j;t01� 14� )20



that is caused by backo� counters before they exceed R1=� is at most KN(R1=� + 1)�+1=2. For theremaining portion, we use Lemma 3.1, to conclude that the the probability that the portion due toany one queue exceeds cU1� 14(�+1) is O((logU)�1). Thus,Pr(E8 j 5̂i=1Ei) � O((K +N � 1)(logU)�1):For the last calculation, note that the conditioning in the calculation of E4 only a�ects thearrival of the �rst K+N � 1 messages. For the remaining messages, let Mt be the number of othermessages received at control and slave queues during steps t0 + 5; : : : ; t. The expected value of Mtis at most �t� t0 � 4. By a Cherno� boundPr(Mt � �(t� t0+4)+U1=2 logU j E1 ^E2 ^E3) � 2 exp(�2(U1=2 logU)2=U) � 2 exp(�2 log2 U):Thus Pr(E9 j 5̂i=1Ei) � 2U exp(�2 log2 U):Assuming that U and R are su�ciently large compared to N and K we have shownPr( 9̂j=6Ej j 5̂i=1Ei) � 12 :The claim follows. 2Claim 3.5 There is a positive function f2 such that Ex[� j E] � U 0 � f2(�;K;N; V 0; R).Proof: Let �0 denote the change in potential over all but the last step of a path in the tree ofdescendant states and let �00 denote the change in potential during the last step of a path in thetree of descendant states. Clearly, � = �0 + �00.The proof of Claim 3.3 shows that Ex[�0 j E] � U 0 � f1(�;K;N; V 0; R).Suppose that p is a path of length t that doesn't satisfy E. We will calculate an upper bound onthe amount that the potential could increase on step t0+t�1. (Thus, we are upper bounding �00 forthis path.) The increase due to messages arriving at slave and control queues is at most K+N �1.The increase due to the backo� counter and step counter of queue Qi;j is at most(bi;j;t0+t�1 + 2)�+1=2 � (bi;j;t0+t�1 + 1)�+1=2 + (bi;j;t0+t�1 + 1)��1=4:Using Fact 3.1, this is at mostd�+ 1=2ed�+3=2e2(bi;j;t0+t�1 + 1)��1=4:Since the parent of the last node in p is part of a good path, b1;1;t0+t�1 � (K +N � 1)(R1=� + 1) + 1and for every slave queue Qi;j, bi;j;t0+t�1 � U1=� log(U) � 1. Thus, as long as U is big enoughcompared to K, N and R, the increase in potential due to the backo� counters and step countersof control and slave queues is at most d�+ 1=2ed�+3=2e2KNU 0.Finally, we use the fact (from Lemma 3.3) that the expected increase in potential of the freequeues in any one step is at most 3KNf(�)�+1=2. 2Claim 3.6 Ex[�] � �1. 21



Proof: Ex[�] � Ex[� j E] Pr[E] + Ex[� j E]. The claim follows from Claims 3.3, 3.4, and 3.5provided that U is su�ciently large compared to �, K, N , V 0, R, B, and 1=(1 � �). 2Claim 3.7 Ex[�2] � POTt0 .Proof: Since each queue Qi;j can gain at most U messages and has bi;j;t0 � B, � � KN(U +(B + U + 1)�+1=2). Thus, as long as V is su�ciently large compared to �, K, N , B, and U ,Ex[�2] � V � POTt0 . 23.5.2 Case 2Property 2 holds: When the Markov chain is started in state s right before step t0 with POT(s) � V ,there is a backo� counter bi;j;t0 � Z such that with probability at least(1� �)K58�KN4(bi;j;t0 + 4)��2�KN ;queue Qi;j succeeds at least once during steps t0; : : : ; t0 + 4 and every other queue Qi0;j0 decides tosend on step t (for t 2 ft0; : : : ; t0 + 4g) only if si0;j0;t � 8.Without loss of generality, let Q1;1 be the queue Qi;j described in Property 2 and let E be theevent that queue Q1;1 succeeds at least once during steps t0; : : : ; t0 + 4 and every other queue Qi;jdecides to send on step t (for t 2 ft0; : : : ; t0 + 4g) only if si;j;t � 8. Recall that our goal is to showthat there is a tree of depth at most V �1 rooted at s such that the expected decrease in the squareof potential (over the tree) is at least POT(s). The tree that we will consider is the complete treeof depth 5. We consider steps t0 through t0 + 4 and analyze POT2t0+5 � POT2t0 . ClearlyEx[POT2t0+5 � POT2t0 ] = Ex[POT2t0+5 � POT2t0 jE] Pr[E] + Ex[POT2t0+5 � POT2t0 jE] Pr[E]We start by computing a lower bound for the decrease in potential in the event that E occurs.Let g(�) denote (5d� + 1=2ed�+3=2e)8 First, we show that for every queue Qi;j except Q1;1, whenE occurs, B+i;j � (g(�) + 6)�+ 12 . This is easy to see in the case that bi;j;t0 < g(�). If bi;j;t0 � g(�)then either Qi;j doesn't send (in which case B+i;j = 0) or Qi;j sends and succeeds (in which caseB+i;j � 5�+1=2 or Qi;j decides to send and collides, in which case it never decides to send again andB+i;j is at most(bi;j;t0 + 2)�+1=2 � (bi;j;t0 + 1)�+1=2 � (b(bi;j;t0 + 2)�c � 4)1�1=(4�) + s1�1=(4�)i;j;t0Using Fact 3.1, this is at mostd�+ 1=2ed�+3=2e(bi;j;t0 + 1)��1=2 � (b(bi;j;t0 + 2)�c � 4)1�1=(4�) + s1�1=(4�)i;j;t0which is at most si;j;t0 since bi;j;t0 � g(�).For Q1;1, when E occurs, B�1;1 � (b1;1;t0 +1)�+ 12 � (b1;1;t0 +1)�� 14 � 5�+1=2. Q+ � KN5. Thus,when E occurs, since b1;1;t0 � Z and Z is su�ciently large compared to �, K and N , the potentialdecreases by at least 12(b1;1;t0 + 1)�+ 12 .Thus, POT2t0+5 � POT2t0 is at most�(b1;1;t0 + 1)�+ 12POT(s) + 14(b1;1;t0 + 1)2�+1 � �12(b1;1;t0 + 1)�+ 12POT(s)22



since POT(s) � (3=4)(b1;1;t0 + 1)�+ 12 . Using the lower bound on the probability of E from thestatement of Property 2 and the fact that b1;1;t0 � Z and that Z is su�ciently large compared to �,K, N and 1=(1 � �), we �nd thatEx[POT2t0+5 � POT2t0 jE] Pr[E] � �12(b1;1;t0 + 1) 14POT(s):Using the facts Q+ � 5KN , Q� � 0, and B� � 0, we see thatEx[POT2t0+5 � POT2t0 j E] Pr[E] � Ex[(POTt0 + 5KN +B+)2 � POT2t0 j E] Pr[E]:Clearly, this is at most[(5KN)2 + 10KN � POTt0 + 2(POTt0 + 5KN)Ex[B+ j E] + Ex[(B+)2 j E]] � Pr[E]:We can bound the last two expectations by noting that Ex[Y jE] Pr[E] � Ex[Y ].Recall that we de�ned B+ to be PNi=1PKj=1B+i;j. Thus, Ex[B+] = Pi;j Ex[B+i;j]. Similarly,Ex[(B+)2] =Pi;j Ex[(B+i;j)2] + 2Pfi;jg6=fi0;j0g Ex[B+i;jB+i0;j0]: We will now proceed to bound Ex[B+i;j],Ex[(B+i;j)2] and Ex[B+i;jB+i0;j0 ] when bi;j;t0 (or bi0;j0;t0) is large.Claim 3.8 Fix any sequence of values for the � and �� variables. Then, for every queue Qi;j suchthat bi;j;t0 � 100, when M and Mi;j are run with these � and �� values, B+i;j � B++i;j .Proof: Until the �rst successful transmission by Qi;j in M, bi;j;t = b+i;j;t and si;j;t = s+i;j;t. (Thusif Qi;j does not have any successful transmissions in M, then the claim holds.) Assuming the �rstsuccessful transmission in M is at step t0, bi;j;t0+1 = 0 and si;j;t0+1 = 1, but b+i;j;t0+1 � 100 ands+i;j;t0+1 � 100�. In the next 5� t0 steps, bi;j;t < 5 but b+i;j;t � 100. Then(b+i;j;t0+5 + 1)�+ 12 � (s+i;j;t0+5)1� 14� � 100� � 5�+ 12 � (bi;j;t0+5 + 1)�+ 12 � (si;j;t0+5)1� 14� :2Claim 3.9 Ex[B+i;j ] � Z 18 =(KN).Proof: If bi;j;t0 � (10�)16�, then B+i;j � ((10�)16� + 6)�+1=2 � (20�)32�2 � Z 18 =(KN). Otherwise,we use Claim 3.8 to show that Ex[B+i;j] � Ex[B++i;j ] and we bound Ex[B++i;j ] as follows. If Qi;j doesn'tsend during the 5 steps then B++i;j � 5. Otherwise, we know by Lemma 3.2 that B++i;j � si;j;t0 .The probability that Qi;j sends during the 5 steps is min(1; 5=si;j;t0). Therefore, Ex[B++i;j ] �5 + (5=si;j;t0)si;j;t0 � 10 � Z1=8=(KN). 2Claim 3.10 Ex[(B+i;j)2] � (POT(s) + Z 14 )=(KN)Proof: If bi;j;t0 � (10�)16�, then we follow the proof of claim 3.9 to show that (B+i;j)2 � Z 14 =(KN).Otherwise, we use Claim 3.8 to show that Ex[(B+i;j)2] � Ex[(B++i;j )2] and we bound Ex[(B++i;j )2] asin claim 3.9 to get 25 + 5si;j;t0 . Since si;j;t0 � (bi;j;t0 + 1)� and 10� < b1=(16�)i;j;t0 , Ex[(B++i;j )2] is atmost (bi;j;t0 + 1)�+1=16 which is at most POT(s)=KN . 2Claim 3.11 Ex[B+i;jB+i0;j0 ] � Z 14 =(KN)2 23



Proof: If bi;j;t0 � (10�)16� then we follow the proof of Claim 3.9 to show that B+i;j � Z 18 =(KN).We conclude that Ex[B+i;jB+i0;j0] � [Z 18 =(KN)]Ex[B+i0;j0 ] so the result follows from Claim 3.9. Onthe other hand, if bi;j;t0 > (10�)16� and bi0;j0;t0 > (10�)16�, then we use Claim 3.8 to show thatB+i;j � B++i;j and B+i0;j0 � B++i0;j0 . Thus, Ex[B+i;jB+i0;j0] � Ex[B++i;j B++i0;j0]. But B++i;j and B++i0;j0 areindependent, so the result follows from Claim 3.9 2Recall that our goal was to bound Ex[POT2t0+5 � POT2t0 ] and that we have shown that this isat most�12(b1;1;t0 + 1) 14POT(s) + (5KN)2 + 10KN � POT(s) + 2(POT(s) + 5KN)Ex[B+] + Ex[(B+)2]:Claim 3.9 shows that Ex[B+] � Z 18 and Claims 3.10 and 3.11 show that Ex[(B+)2] � POT(s)+Z 14 + 2Z 14 . Using the facts that POT(s) � Z3=8, that b1;1;t0 � Z and that Z is large comparedto N and K we �nd that Ex[POT2t0+5 � POT2t0 ] is at most �POT(s).3.5.3 Case 3Property 3 holds: When the Markov chain is started in state s right before step t0 with POT(s) � V ,there is a backo� counter bi;j;t0 � B such that with probability at least(1� �)K(4+R)8�KN4(bi;j;t0 +R+ 4)��R�2�KNR;queue Qi;j succeeds at least once during steps t0; : : : ; t0 +R+ 3 and every other queue Qi0;j0 decidesto send on step t (for t 2 ft0; : : : ; t0 +R+ 3g) only if si0;j0;t � R2�.Without loss of generality, let Q1;1 be the queue Qi;j described in Property 3 and let E bethe event that queue Q1;1 succeeds at least once during steps t0; : : : ; t0 +R+ 3 and every otherqueue Qi;j decides to send on step t (for t 2 ft0; : : : ; t0 + R + 3g) only if si;j;t � R2�. Recallthat our goal is to show that there is a tree of depth at most V � 1 rooted at s such that theexpected decrease in the square of potential (over the tree) is at least POT(s). The tree that wewill consider is the complete tree of depth R + 4. We consider steps t0 through t0 + R � 3 andanalyze POT2t0+R+4 � POT2t0 . ClearlyEx[POT2t0+R+4 � POT2t0 ] = Ex[POT2t0+R+4 � POT2t0 jE] Pr[E] + Ex[POT2t0+R+4 � POT2t0 jE] Pr[E]We start by computing a lower bound for the decrease in potential in the event that E occurs.First, we show that for every queue Qi;j except Q1;1, when E occurs, B+i;j � (R2 +R+ 4)�+ 12 . Thisis easy to see in the case that bi;j;t0 < R2. If bi;j;t0 � R2 then either Qi;j doesn't send (in whichcase B+i;j = 0) or Qi;j sends and succeeds (in which case B+i;j � R�+1=2 or Qi;j decides to send andcollides, in which case it never decides to send again and B+i;j is at most(bi;j;t0 + 2)�+1=2 � (bi;j;t0 + 1)�+1=2 � (b(bi;j;t0 + 2)�c � (R+ 3))1�1=(4�) + s1�1=(4�)i;j;t0Using Fact 3.1, this is at mostd� + 1=2ed�+3=2e(bi;j;t0 + 1)��1=2 � (b(bi;j;t0 + 2)�c � (R+ 3))1�1=(4�) + s1�1=(4�)i;j;t0which is at most si;j;t0 since bi;j;t0 � R2 and R is su�ciently large.For Q1;1, when E occurs, B�1;1 � (b1;1;t0 + 1)�+ 12 � (b1;1;t0 + 1)�� 14 � (R+ 4)�+1=2. Q+ �KN(R+ 4). Thus, when E occurs, since B � b1;1;t0 and B is su�ciently large compared to R, K,and N , the potential decreases by at least 12(b1;1;t0 + 1)�+ 12 .24



Thus, POT2t0+R+4 � POT2t0 is at most�(b1;1;t0 + 1)�+ 12POT(s) + 14(b1;1;t0 + 1)2�+1 � �12(b1;1;t0 + 1)�+ 12POT(s)since POT(s) � (3=4)(b1;1;t0 + 1)�+ 12 . Using the lower bound on the probability of E from thestatement of Property 2 and the fact that B � b1;1;t0 and B is su�ciently large compared to R, K,and N , we �nd thatEx[POT2t0+R+4 � POT2t0 jE] Pr[E] � �12(b1;1;t0 + 1) 14POT(s):Using the facts Q+ � (R+ 4)KN , Q� � 0, and B� � 0, we see thatEx[POT2t0+R+4 � POT2t0 j E] Pr[E] � Ex[(POTt0 + (R+ 4)KN +B+)2 � POT2t0 j E] Pr[E]:Clearly, this is at most[((R+4)KN)2+2(R+4)KN �POTt0 +2(POTt0 +(R+4)KN)Ex[B+ j E]+Ex[(B+)2 j E]] �Pr[E]:We can bound the last two expectations by noting that Ex[Y jE] Pr[E] � Ex[Y ].Recall that we de�ned B+ to be PNi=1PKj=1B+i;j. Thus, Ex[B+] = Pi;j Ex[B+i;j]. Similarly,Ex[(B+)2] =Pi;j Ex[(B+i;j)2] + 2Pfi;jg6=fi0;j0g Ex[B+i;jB+i0;j0]: We will now proceed to bound Ex[B+i;j],Ex[(B+i;j)2] and Ex[B+i;jB+i0;j0 ] when bi;j;t0 (or bi0;j0;t0) is large.Claim 3.12 Fix any sequence of values for the � and �� variables. Then, for every queue Qi;j suchthat bi;j;t0 � (2R)2, when M and Mi;j are run with these � and �� values, B+i;j � B++i;j .Proof: Until the �rst successful transmission by Qi;j in M, bi;j;t = b+i;j;t and si;j;t = s+i;j;t. (Thusif Qi;j does not have any successful transmissions in M, then the claim holds.) Assuming the �rstsuccessful transmission in M is at step t0, bi;j;t0+1 = 0 and si;j;t0+1 = 1, but b+i;j;t0+1 � (2R)2 ands+i;j;t0+1 � (2R)2�. In the next R+ 4� t0 steps, bi;j;t < R but b+i;j;t � (2R)2. Then(b+i;j;t0+R+4+1)�+ 12 � (s+i;j;t0+R+4)1� 14� � (2R)2� � R�+ 12 � (bi;j;t0+R+4+1)�+ 12 � (si;j;t0+R+4)1� 14� :2Claim 3.13 Ex[B+i;j] � B 18 =(KN).Proof: If bi;j;t0 � (2�R)16�, then B+i;j � ((2�R)16� + R + 1)�+1=2 � (4�R)32�2 � B 18 =(KN).Otherwise, we use Claim 3.12 to show that Ex[B+i;j] � Ex[B++i;j ] and we bound Ex[B++i;j ] as follows.If Qi;j doesn't send during the R+4 steps then B++i;j � R+ 4. Otherwise, we know by Lemma 3.2that B++i;j � si;j;t0. The probability that Qi;j sends during the R+4 steps is min(1; (R+4)=si;j;t0).Therefore, Ex[B++i;j ] � R+ 4 + ((R+ 4)=si;j;t0)si;j;t0 � 2(R + 4) � B1=8=(KN). 2Claim 3.14 Ex[(B+i;j)2] � (POT(s) +B 14 )=(KN)Proof: If bi;j;t0 � (2�R)16�, then we follow the proof of claim 3.13 to show that (B+i;j)2 �B 14 =(KN). Otherwise, we use Claim 3.12 to show that Ex[(B+i;j)2] � Ex[(B++i;j )2] and we boundEx[(B++i;j )2] as in claim 3.13 to get (R+ 4)2 + (R + 4)si;j;t0 . Since si;j;t0 � (bi;j;t0 + 1)� and2�R < b1=(16�)i;j;t0 , Ex[(B++i;j )2] is at most (bi;j;t0 + 1)�+1=16 which is at most POT(s)=KN . 225



Claim 3.15 Ex[B+i;jB+i0;j0 ] � B 14 =(KN)2Proof:If bi;j;t0 � (2�R)16� then we follow the proof of Claim 3.13 to show that B+i;j � B 18 =(KN).We conclude that Ex[B+i;jB+i0;j0 ] � [B 18 =(KN)]Ex[B+i0;j0] so the result follows from Claim 3.13. Onthe other hand, if bi;j;t0 > (2�R)16� and bi0;j0;t0 > (2�R)16�, then we use Claim 3.12 to show thatB+i;j � B++i;j and B+i0;j0 � B++i0;j0 . Thus, Ex[B+i;jB+i0;j0] � Ex[B++i;j B++i0;j0]. But B++i;j and B++i0;j0 areindependent, so the result follows from Claim 3.13 2Recall that our goal was to bound Ex[POT2t0+R+4 � POT2t0 ] and that we have shown that thisis at most�12(b1;1;t0+1) 14POT(s)+((R+4)KN)2+2(R+4)KN �POT(s)+2(POT(s)+(R+4)KN)Ex[B+]+Ex[(B+)2]:Claim 3.13 shows that Ex[B+] � B 18 and Claims 3.14 and 3.15 show that Ex[(B+)2] � POT(s)+B 14 + 2B 14 . Using the facts that POT(s) � B3=8, that b1;1;t0 � B and that B is large comparedto N , K and R we �nd that Ex[POT2t0+(R+4) � POT2t0 ] is at most �POT(s).3.5.4 Case 4None of Properties 1{3 hold. In order to de�ne the terms that we need for this case, we considera run of the chain for steps t0; : : : ; t0 + 3 in which no messages arrive and Qi;j decides to send onstep t if qi;j;t > 0 and si;j;t � 8�t+t0. Note that if qi;j;t0+4 > 0 and si;j;t0+4 = 1 then Qi;j succeededin sending on step t0 + 3 (so bi;j;t0+4 = 0). If qi;j;t0+4 > 0 and si;j;t0+4 > 1 then si;j;t0+4 > 4.We use the following de�nitions. We say that queue Qi;j is forced on step t if qi;j;t > 0 andsi;j;t = 1. We say that it is almost forced if qi;j;t > 0 and si;j;t � 2. We say that queue Qi;j isshort if qi;j;t0+4 < R=2. Otherwise, we say that it is long. If j 6= j0 we say that Qi;j client-conictswith queue Qi;j0. If i 6= i0 we say that Qi;j server-conicts with queue Qi0;j If Qi;j client-conictsor server-conicts with Qi0;j0 then we say that Qi;j conicts with queue Qi0;j0. A queue Qi;j isa potentially active queue if qi;j;t0+4 = 0 and �i;j > 1=R2. A queue Qi;j is a working queue ifqi;j;t0+4 > 0 and si;j;t0+4 < R2�. A queue is called a potentially working queue if it is a potentiallyactive queue or a working queue. A queue Qi;j is a blocking queue if it is potentially active or ithas qi;j;t0+4 > 0 and bi;j;t0+4 < R2=� � 2.In the appendix we will show that we can split the queues into categories so that the followingconditions (which we call the Case 4 conditions) are satis�ed.1. There will be three categories of control queues: solid control queues, delayed control queues,and temporary control queues. No two control queues will conict. Every queue that conictswith a control queue is called a slave of that control queue. (A queue can be the slave of up totwo control queues.) Every queue that is not a control queue or a slave is a free queue.2. Slaves are not blocking queues. If a slave Qi;j has bi;j;t0+4 � B then Qi;j is a slave of a solid ordelayed control queue.3. Every solid control queue Qi;j is long and has bi;j;t0+4 = 0 and si;j;t0+4 = 1.4. Every delayed control queue Qi;j is long and has bi;j;t0+4 < Z. If Qi0;j is a working slave of Qi;j,then either qi0;j;t0+4 = 1 and �i0;j � 1=R2, or there is a temporary or solid control queue Qi0;j0with qi0;j0;t0+4 � min(R=2; si;j;t0+4 � 2; si0;j;t0+4 � 1). If Qi;j0 is a working slave of Qi;j, theneither qi;j0;t0+4 = 1 and �i;j0 � 1=R2, or there is a temporary or solid control queue Qi0;j0 withqi0;j0;t0+4 � min(R=2; si;j;t0+4 � 2; si;j0;t0+4 � 1).6. If Qi;j is a temporary control queue then bi;j;t0+4 = 0, si;j;t0+4 = 1 and qi;j;t0+4 � 2.7. Every free queue Qi;j has bi;j;t0+4 < B. 26



We now show that if the Case 4 conditions are satis�ed, there is a tree of depth at most V � 1rooted at s such that the expected decrease in the square of the potential over the tree is at leastPOT(s). We will let W denote the depth of this tree.In our proof, we use the following terminology. We refer to solid and delayed control queuesas permanent control queues and we refer to slaves of these control queues as permanent slaves.All other slaves are called temporary slaves. We refer to temporary slaves and temporary controlqueue as delayed free queues. Without loss of generality, we assume that the permanent controlqueues are queues Q1;1 through Qr;r, and that the temporary control queues are queues Qr+1;r+1through Qr0;r0 , ordered by qd;d;t0+4 in decreasing order (i.e., qr0;r0;t0+4 � qr+1;r+1;t0+4). If Qi;j is aslave queue and m = minfi; jg then we refer to Qm;m as the primary control queue of Qi;j. Weassociate a threshold value hi;j with each queue Qi;j as follows. If Qi;j is a permanent control queuethen hi;j = t0+W . If it is a temporary control queue then hi;j = t0+4+min(W 1=2; qi;j;t0+4). If itis a free queue then hi;j = t0 + 4. The threshold value of each slave is equal to the threshold valueof its primary control queue. If hi;j < t0+W then we will say that Qi;j is a free queue at the startof step hi;j.As in Case 1, the branching in our tree depends on the values of the � and �� variables, so by�xing the values of the variables �i;j;t and ��i;j;t for all i and j and all t � t0 +W � 1, we �x a pathp of length U . We make the following de�nitions for path p: For every slave queue Qi;j, let ti;jdenote the �rst step after t0 + 3 on which Qi;j decides to send. If ti;j < hi;j then let �0i;j(p) = ti;jand put ti;j in �0(p). Otherwise, let �0i;j(p) =1. Let �(p) = �0 [ ft+ 1 � t0 +W � 1 j t 2 �0(p)g.Let �k(p) denote the kth step in �(p). Let td denote the �rst step after step t0+3 at which controlqueue Qd;d decides to send. If td < t0 + 4 +W 1=2 then let �d(p) = td. Otherwise, let �d(p) = 1.We say that path p is good if it satis�es the following properties.1. On each step t, (t0 � t � t0+3), no messages arrive and Qi;j decides to send i� qi;j;t > 0 andsi;j;t � 8� t+ t0.2. For each delayed control queue Qd;d, if sd;d;t0+4 � (KN)3 then �d(p) = t0 + 4. Otherwise,�d(p) � t0 + sd;d;t0+4 + 2.3. For each slave queue Qi;j, if Qi;j client-conicts with a solid or temporary control queue andsi;j;t0+4 � (KN)3 then �0i;j(p) = t0 + 4. If si;j;t0+4 � (KN)3 but Qi;j doesn't client-conictswith a solid or temporary control queue then �0i;j(p) = t0 + 5. If si;j;t0+4 > (KN)3 and�0i;j(p) < hi;j then t0 + 6 � �0i;j(p) � t0 + si;j;t0+4 + 3.4. Consider two slave queues Qi;j and Qi0;j0 such that qi;j;t0+4 > 0 and qi0;j0;t0+4 > 0. If �0i;j(p) =�0i0;j0(p) then either �0i;j(p) = t0 + 4, �0i;j(p) = t0 + 5, or �0i;j(p) =1.5. For each delayed control queue Qd;d and each slave Qi;j, either �d(p) = t0+4 or �d(p) 6= �0i;j(p).6. If for a control queue Qd;d, �d(p) < �k(p) < hd;d, then ��d;d;�k(p) � (k + 1)��.7. If Qi;j is a slave queue and qi;j;t0+4 > 0 then for all t (t0+4 � t < hi;j), ��i;j;t > 2(W logW )�1.8. If Qi;j is a slave queue and qi;j;t0+4 = 0 then for all t (t0+4 � t < hi;j), �i;j;t > 2(W logW )�1.9. During the �rst t steps, the number of messages received by the permanent control andpermanent slave queues is at most r(�t+W 1=2 logW ).The tree that we consider will be the tree consisting of every good path of length W plus everychild of every internal node of such a path. We will show that for this tree, Ex[�] � �POTt0 . Thekey to showing this will be to prove that with su�cient probability a good path is taken when thechain is run.First, we prove some claims about good paths.27



Claim 3.16 On any good path p, each delayed control queue Qd;d succeeds the �rst time that itdecides to send after step t0 + 3.Proof: This follows from Property 5 unless �d(p) = t0 + 4. By Property 3, the only slaves thatsend on step t0 + 4 client-conict with a solid or temporary control queue, so they cannot collidewith Qd;d. 2Claim 3.17 On any good path p, every slave queue Qi;j decides to send at most once during stepst0 + 4; : : : ; hi;j � 1. Every control queue Qd;d decides to send on steps �d; : : : ; hd;d � 1.Proof: We start by observing that, if a slave Qi;j is not working, then, by Property 7 and Prop-erty 8, it will not decide to send at all during steps t0 + 4; : : : ; hi;j � 1. If a working slave Qi;jhas qi;j;t0 = 1 and �i;j � (2W )�2, then, by Properties 7 and 8, after it decides to send once, itwill not decide to send again. Every remaining slave conicts with a temporary control queue or asolid control queue. If one of the remaining slaves decides to send and does not succeed, then byProperty 7, it will not decide to send again.We will prove by induction on t that if a remaining slave Qi;j �rst decides to send on stepminft; hi;j � 1g it has a collision. Furthermore, every control queue Qd;d decides to send on steps�d; : : : ;minft; hd;d � 1g.The base case is t = t0 + 4, which holds by the de�nition of �d, the fact that each solid andtemporary control queue Qd;d has qd;d;t0+4 > 0 and sd;d;t0+4 = 1, and Property 3.For the inductive case, consider step t + 1. Suppose that for control queue Qd;d, t+ 1 < hd;d.Then qd;d;t+1 > 0. If t + 1 = �d then Qd;d decides to on step t + 1 by de�nition. Suppose thatt + 1 > �d. By induction, Qd;d decides to send on step t. If t 62 �(p) or t is the last step in aconsecutive block of steps in �(p), then Qd;d succeeded on step t so sd;d;t+1 = 1 and Qd;d decides tosend on step t+1. Otherwise, we use Claim 3.16 to show that every delayed control queue succeedsthe �rst time that it decides to send after step t0+3. Therefore, for any control queue Qd;d, bd;d;t+1is at most the number of collisions that it had during steps t0 + 4; : : : ; t. Thus, by induction,bd;d;t+1 � j�0(p) \ ft0 + 4; : : : ; tgj and, therefore, sd;d;t+1 � (j�0(p) \ ft0 + 4; : : : ; tgj+ 1)�. ByProperty 6, Qd;d decides to send on step t+ 1.We now show that if Qi;j is a remaining slave and it �rst decides to send on step t+ 1 < hi;j ,it has a collision.The �rst case that we consider is the case t + 1 = t0 + 5. In this case Qi;j collides with thesolid or temporary control queue that it server-conicts with. (If Qi;j client-conicts with a solidor temporary or solid control queue it will instead send on step t0+4. Note that the control queuedecides to send on step t0 + 5 since hd;d � t0 + 6. Furthermore, nothing that client-conicts withit sends.)The other case that we consider is the case in which t+ 1 > t0 + 5. By Property 4, Qi;j doesnot send at the same step as any other slave queue. If Qi;j conicts with a solid control queue Qd;d,then since no other slave queue sends at the same step as Qi;j, it will be blocked by Qd;d. If Qi;jconicts with a temporary control queue Qd;d and sends before step hd;d then since no other slavequeue sends at the same step as Qi;j, it will be blocked by Qd;d. The remaining case to consideris when the primary control queue of Qi;j is a delayed control queue Qd;d, Qi;j also conicts withtemporary control queue Qd0;d0 , but Qi;j sends after hd0;d0 . Now, by the de�nition of delayed controlqueue, qd0;d0;t0 � sd;d;t0+4 � 2 so hd0;d0;t0 � t0 + sd;d;t0+4 + 2. Thus, the step on which Qi;j sends isat least step t0 + sd;d;t0+4 + 2. By Property 2, Qd;d sends by this step, so Qi;j has a collision. 2Claim 3.18 On any good path p, every control queue decides to send by step t0 + 3 +W 1=2.28



Proof: Every solid or temporary control queue decides to send on step t0 + 4. If Qd;d is a delayedcontrol queue then bd;d;t0+4 < Z =W 1=2� � 2 so sd;d;t0+4 < W 1=2. 2As in [3], we will use the equalityEx[�] = 2POT(s) � Ex[�] + Ex[�2]:Thus it is su�cient to show that Ex[�] � �1 and Ex[�2] � POT(s). Let E1 be the event thata good path is taken when the chain is run. (That is, E1 is the event that all conditions in thede�nition of \good" hold for W steps.) Let Di be the event that condition i holds for U steps.For each queue Qi;j, let E2;i;j be the event that Qi;j decides to send at step t (t0 + 4 � t < hi;j)with bi;j;t > (W logW )1=� � 1 and si;j;t > (bi;j;t + 1)�=2. Let E2 = Si;j E2;i;j. Let E3 be the eventE1 _E2. Let W 0 = maxfW 1=2 logW;W 1=� log2W;W 1�1=(4�(�+1))); (W logW )1�1=(4�)g, and notethat W 0 = o(W ).Call two paths in the tree equivalent i� every queue Qi;j has the same � and �� values fromstep t0 through step t0 + hi;j � 1. This notion of equivalence is clearly an equivalence relation.Furthermore, if one path in the tree ends at step t (i.e., if t < t0 + W , there is no good pathcontinuing on from the node at level t, but there is a good path continuing on from the node atlevel t� 1), then every equivalent path also ends at step t. (This is because the � and �� values ofa queue Qi;j on or after step hi;j are not considered in any of the properties.)Let � be the set of hi;j values for all queues Qi;j. By the de�nition of the hi;j values, j�j � K.Assume � is ordered, and let �k be the kth element of �. During steps �k; : : : ; �k+1 � 1, there willbe a certain set of queues Qi;j (dk � i � N , dk � j � K) for some dk which are the free queues.Let M0 denote the Markov chain in which these free queues run the protocol and no other queuesparticipate. By induction, there is a constant V 0 such that M0 is V 0-good. Now suppose that we�x the sequence of � and �� values for the control and slave queues and we �rst run M for stepst0; : : : ; �k�1 and we then runM for steps �k; : : : ; �k+1�1. If we just look at the free queues duringsteps �k; : : : ; �k+1 � 1, we can think of this as being a run of M0, starting at step �k, in which M0is extended by the set of interrupt steps I which is determined by the sequence of � and �� valuesfor the control and slave queues. Lemma 3.3 shows that when M0 is extended by I, the expectedincrease in potential in any one step is O(KN). If the �xed sequence of � and �� values is suchthat all of the properties continue to hold (except possibly after the last step) then the number ofinterrupt steps in I is at most KN + 1. (To see this, note that each slave sends at most once in agood path.) Let Ft denote the set of free queues at the start of step t.Claim 3.19 Suppose that we �x a particular equivalence class of paths of length at least t, and wecondition on the event that when M is run for t steps, starting with step t0, one of the paths fromthis equivalence class is taken. Then the expected potential of the queues in Ft after the t steps isat most the original potential of the queues in Ft plus O(KN) +O(K2N)((2V 0)222V 0 +O(KN)) +(O(KN)�+3=2)W 1=2.Proof: Note that each queue Qi;j in Ft satis�es all of the properties in the de�nition of goodduring steps t0; : : : ; hi;j � 1. (Otherwise, the paths would end before step hi;j, so Qi;j would notbecome free.)By Lemma 3.3, the expected increase in the potential of the queues in Ft during steps t0 throught0 + 3 is at most O(KN).Suppose that t0 > t0 +3 and that Qi;j is a queue in Ft that is not free at the start of step t0. IfQi;j is a control queue then its potential goes up by at most 2 + (KN + 1)�+1=2 on step t0. (Thisfollows from Claim 3.17, since each slave sends at most once prior to step t0.) If Qi;j is a slave29



queue then bi;j;t0 > R2=� � 2. If it sends on step t0, then since it does not violate property 7,si;j;t0 � (W logW )=2. By de�nition, the change in its potential is at most1 + (bi;j;t0 + 2)�+1=2 � b(bi;j;t0 + 2)�c1�1=(4�) � (bi;j;t0 + 1)�+1=2 + s1�1=(4�)i;j;t0 :By Fact 3.1, this is at most1 + d�+ 1=2ed�+3=2e(bi;j;t0 + 1)��1=2 � b(bi;j;t0 + 2)�c1�1=(4�) + s1�1=(4�)i;j;t0 :Since bi;j;t0 is su�ciently large with respect to �, this is at most1� (1=2)(bi;j;t0 + 1)��1=4 � s1�1=(4�)i;j;t0 :Clearly, this is negative, so the potential goes down.There are at most KN queues in Ft, and (by Claim 3.18) at most W 1=2 steps after step t0 + 3before a delayed free queue becomes a free queue.To �nish the proof of the claim, we will prove that during steps �k; : : : ; �k+1 � 1, the poten-tial of the current free queues (those queues that are free at the start of step �k) increases byO(KN)((2V 0)222V 0 +O(KN)). Since j�j � K, this will prove the claim.We view the current free queues as forming a Markov chain M0 which is extended by the set ofinterrupts I 0 that is determined by the set of � and �� values associated with the equivalence class.We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step isO(KN) and the number of interruptions is at most KN + 1. 2Claim 3.20 There is a function f1 such thatEx[�jE1] � �r[(1� �)W �W 0 � f1(N;K; V 0)]:Proof: Given E1, we use Claims 3.18 and 3.17 to show that each permanent control queue suc-cessfully broadcasts for all but at most KN + W 1=2 + 4 steps. Thus, we send at least r(W �(KN +W 1=2 + 4)) messages. By Property 9, we receive at most r(�W +W 1=2 logW ) messages inthe permanent control and permanent slave queues. By Claim 3.17, the increase in potential dueto the backo� and step counter of a permanent control queue is at most (KN + 1)�+1=2. We canfollow the proof of Claim 3.19 to show that if a permanent slave decides to send, its potential goesdown. Thus, the increase in potential due to the backo� and step counter of a permanent slaveis at most W 1�1=(4�). Thus for each path the potential attributed to the permanent control andpermanent slave queues decreases by at leastr((1� �)W � (W 1=2 logW +KN +W 1=2 + 4) +O(NW 1�1=(4�))):Last, from Claim 3.19, for each possible equivalence class, the expected potential of the free and de-layed free queues increases by at most O(KN)+O(K2N)((2V 0)222V 0+O(KN))+(O(KN)�+3=2)W 1=2.2Claim 3.21 There is a positive function f2 such thatPr(E1) � 1f2(N;K; �) :30



Proof: We can divide the calculation as followsPr(E1) = 9Yi=1Pr(Di j i�1̂j=1Dj):Now we analyze each probability in turn. We know Pr(D1) � (1� �)4K8�4KN ,Since for each delayed control queue Qd;d, 4 � sd;d;t0+4 �W 1=2, Pr(D2jD1) � (KN)�3.Note that the number of slaves is at most KN , and for each slave Qi;j, si;j;t0+4 � 4. Then theprobability that a slave Qi;j with si;j;t0+4 � (KN)3 sends at the appropriate step (t0 +4 or t0 +5)is at least 12(KN)�3, and that a slave Qi;j with si;j;t0+4 > (KN)3 sends by step t0 + si;j;t0+4 + 3 isat least 12 . Thus Pr(D3 j D1 ^D2) � (2KN)�3KN .Given Property 3, for each slave Qi;j with si;j;t0+4 > (KN)3, the probability of conicting withany of the other slaves is at most (KN)�2. Thus Pr(D4 j D1 ^D2 ^D3) � 1� (KN)�1.Given Properties 1 through 4, the probability that no delayed control queue sends at step t0+5is at least 1�K(KN)�3. Then the probability that some slave queue �rst sends at a step in whichone of the at most K delayed control queues �rst send (except for steps t0 + 4 and t0 + 5) is atmost (KN)(K=((KN)3 �KN)). Thus,Pr(D5jD1 ^D2 ^D3 ^D4) � (1�K(KN)�3)(1� (KN)(K=((KN)3 �KN)) � 12 :Since j�(p)j � 2KN , and the number of control queues is at most K, Pr(D6jV5i=1Di) �((2KN + 1)!)��K .It is easily seen that Pr(D7jV6i=1Di) � 1� 2KNW (W logW )�1 � 12 .In the proofs that D1 through D7 hold with su�ciently high probability we forced some of the�i;j;t values to be large. The only times that we forced �i;j;t values to be small, we only forced them tobe as small as (KN)�3. Thus, the probability that a given queue fails to satisfy Property 8 on a givenstep is at most 2(KN)3=(W logW ) and Pr(D8jV7i=1Di) � 1�KNW (2(KN)3(W logW )�1) � 12 .For the last calculation, let Mt be the number of messages received by the permanent controland permanent slave queues by step t. The conditioning on D7 only helps, so the expected valueof MT is at most r�t. By a Cherno� boundPr(Mt � r�T + rW 1=2 logW j 8̂i=1Di) � 2 exp(�2(rW 1=2 logW )2=(rW )) � 2 exp(�2r log2W ):Thus Pr(D9j 8̂i=1Di) � 1� 2W exp(�2r log2W ) � 12 :The claim follows. 2Claim 3.22 There is a positive function f4 such that Ex[� j E3] �W 0 � f4(N;K; V 0).Proof: Consider a group of equivalent paths G that satisfy E3. Let �0 denote the change inpotential over all but the last step, and let �00 denote the change in potential of the last step.Clearly � = �0 + �00. The proof of Claim 3.20 shows that Ex[�0 j E3] �W 0 � f1(N;K; V 0). To bound�00, note that in the last step in the path, the expected increase in potential of the free queuesis at most O(KN). Also note that the increase in potential due to messages arriving is at mostKN . Now we bound the increase in potential due to backo� counters and step counters of thenon-free queues. Assuming that a queue does not fail in a send, the potential increase associated31



with the backo� and step counters of that queue is bounded by 1 (i.e., the step counter decreasesby 1). Since E2 does not hold, a queue that sends and fails must have either si;j;t � 12(bi;j;t + 1)�or bi;j;t � (W logW )1=� � 1. If bi;j;t � (W logW )1=� � 1 then the potential increases by at most(W logW )1�1=(4�). Otherwise, since si;j;t � 12(bi;j;t+1)� and bi;j;t > (W logW )1=��1, the potentialactually decreases on a failed send. Thus the potential increase of the last step due to queues thatsend and fail is at most O(KN(W logW )1�1=(4�)). 2Claim 3.23 There is a positive function f3 such that Ex[�jE2] Pr[E2] �W 0 � f3(K;N; V 0).Proof: First, we observe that if E2;i;j is satis�ed then bi;j;t0 > (W logW )1=� � 2. (To seethis, suppose instead that bi;j;t0 � (W logW )1=� � 2. Then if E2;i;j holds, for some t we have(W logW )1=� � 2 � bi;j;t � (W logW )1=� � 3 (either this is true for t = t0 or there is a collision atstep t� 1). Then si;j;t � b((W logW )1=� � 2)�c. So if Qi;j sends after step t then Property 7 willbe violated so the path will end. )Let B be the set of queues Qi;j with bi;j;t0 > (W logW )1=� � 2.Let �0 denote the change in potential over all but the last step and �00 denote the change inpotential of the last step. Clearly � = �0 + �00. As in the proof of Claim 3.22, Ex[�0 j E3] �W 0 � f1(N;K; V 0), at most KN messages arrive on the last step, and the potential due to backo�counters and step counters of queues that are not in B go up by at most O(KN(W logW )1�1=(4�))on the last step. Let �000 denote the increase on in potential on the last step due to the backo�counters and step counters of queues in B.We wish to bound Ex[�000 j E2] Pr[E2]. We do this as follows. For each queue Qi;j in B, letb�(Qi;j) = ( bi;j;t0 ; if bi;j;t0 > (W logW )1=� � 1 and si;j;t0 > (bi;j;t0 + 1)�=2;bi;j;t0 + 1; otherwise.(Note that E2;i;j will occur if Qi;j sends with backo� counter at least b�(Qi;j) but that it will notoccur because of Qi;j sending with a smaller backo� counter. Also note that Qi;j will never soundwith backo� counter bigger than b�(Qi;j) because it will violate Property 7 when it sends withbacko� counter b�(Qi;j), so the path will end.) Let the queues in B be Q1; : : : ; Qm, ordered suchthat b�(Q1) � � � � � b�(Qm). Let Si be the event that Qi attempts to send once it has attained abacko� counter of b�(Qi). ThenEx[�000jE2] Pr[E2] � mXi=1 Ex[�000jSi ^ i�1̂j=1Sj] Pr[Si ^ i�1̂j=1Sj]� mXi=1 Ex[�000jSi ^ i�1̂j=1Sj] Pr[Si]If Qi attempts to send once it has attained backo� counter b�(Qi) then its potential increasesby at most (b�(Qi) + 2)�+1=2 � (b�(Qi) + 1)�+1=2 + (b�(Qi) + 1)��1=4:Using Fact 3.1, we �nd that if Si ^ Vi�1j=1 Sj then �000 = O(KN(b�(Qi) + 1)��1=4). Once Qi hasreached backo� counter b�(Qi), its step counter will be at least 14(b�(Qi)+1)� for the next W steps,and thus Pr[Si] � 4W (b�(Qi) + 1)��. 32



Plugging this into the equations above, we obtainEx[�000jE2] � mXi=1(O(KN(b�(Qi) + 1)�� 14 ))W (b�(Qi) + 1)��� O((KN)2(W (b�(Qi) + 1)� 14 ))� O((KN)2(W ((W logW )1=� � 1)� 14 ))� O(W 0(KN)2):2Claim 3.24 Ex[�] � �1.Proof: Using the previous claims we haveEx[�] = Ex[�jE1] Pr[E1] + Ex[�jE2] Pr[E2] + Ex[�jE3] Pr[E3]� [�r(1� �)W + rW 0 � f1] 1f2 +W 0(f3 + f4)� �(1� �)W 1f2 +W 0(f1 + f3 + f4)� �1;assuming W is large enough. 2Claim 3.25 Ex[(�)2] � POT.Proof: If Qi;j is a free queue or a delayed free queue then bi;j;t0 < B. Therefore, the potential dueto Qi;j increases by at most O((B +W )�+1=2).Suppose that Qi;j is a permanent control queue or a permanent slave, but that E2;i;j does nothold. Using the proofs of Claims 3.20 and 3.22, we see that the potential due to queue Qi;j increasesby at most O(W 0 � f1(N;K; V 0)).Thus, as long as V is su�ciently large compared to N , K, V 0, B and W , Ex[�2 j E1 _E3] � V .To bound Ex[(�)2 j E2] Pr(E2) we follow the proof of Claim 3.23.Ex[(�)2jE2] Pr(E2) � mXi=1 Ex[(�)2jSi ^ i�1̂j=1Sj] Pr[Si ^ i�1̂j=1Sj]� mXi=1 Ex[(�)2jSi ^ i�1̂j=1Sj] Pr[Si]As before, Pr[Si] � 4W (b�(Qi) + 1)��. Given that Si ^Vi�1j=1 Sj ,� � O((B +W )�+1=2) + O(W 0 � f1(N;K; V 0)) + O(KN(b�(Qi) + 1)��1=4):Thus,Ex[(�)2jE2] Pr(E2) � mXi=1 [O((B +W )�+1=2 +W 0 � f1(N;K; V 0) + (b�(Qi) + 1)��1=4)]2W (b�(Qi) + 1)��� f(B;W;N;K)(b�(Q1) + 1)�:The claim follows since POTt0 = 
((b�(Q1))�+1=2) and V is su�ciently large with respect toB, W , N , and K. 2This Concludes the proof of Theorem 3.1. 233
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A Establishing the Case 4 ConditionsIn the following case analysis, we show that if we are in Case 4 then we can split the queues intocategories so that the Case 4 conditions are satis�ed.First, we note that since we are in Case 4, none of properties 1{3 hold. That is, when theMarkov chain is started in state s right before step t0 with POT(s) � V , there is not a backo�counter bi;j;t0 � Z such that with probability at least(1� �)K58�KN4(bi;j;t0 + 5)��2�KN ;queue Qi;j succeeds at least once during steps t0; : : : ; t0 + 4 and every other queue Qi0;j0 decides tosend on step t (for t 2 ft0; : : : ; t0+4g) only if si0;j0;t � 8. There is a backo� counter bi;j;t0 � B, butfor every such backo� counter, it is not the case that with probability at least(1� �)K(4+R)8�KN4(bi;j;t0 +R+ 4)��R�2�KNR;queue Qi;j succeeds at least once during steps t0; : : : ; t0 +R+ 3 and every other queue Qi0;j0 decidesto send on step t (for t 2 ft0; : : : ; t0 +R+ 3g) only if si0;j0;t � R2�.Suppose that bi;j;t0 � B. We will show that unless we are in Case 2 or Case 3, we can identify asolid or delayed control queue that conicts with Qi;j. In order to do so, we need some de�nitions.We will say that a queue Qi0;j0 which conicts with Qi;j is a solid candidate if qi0;j0;t0+4 > 0,si0;j0;t0+4 = 1, and (therefore) bi0;j0;t0+4 = 0. We will say that Qi0;j0 is a delayed candidate if itis long and has no conicting blocking queues and has bi0;j0;t0+4 < Z, and satis�es the followingconditions.1. If Qi00;j0 is a working queue then either qi00;j0;t0+4 = 1 and �i00;j0 � 1=R2, or there is aqueue Qi00;j00 which does not conict with a blocking queue and has si00;j00;t0+4 = 1 andqi00;j00;t0+4 � min(R=2; si0;j0;t0+4 � 2; si00;j0;t0+4 � 1):2. If Qi0;j00 is a working queue then either qi0;j00;t0+4 = 1 and �i0;j00 � 1=R2, or there is aqueue Qi00;j00 which does not conict with a blocking queue and has si00;j00;t0+4 = 1 andqi00;j00;t0+4 � min(R=2; si0;j0;t0+4 � 2; si0;j00;t0+4 � 1):We say that a solid candidate is clear if it has no conicting blocking queues and we say that it isunclear otherwise. Note that each client and each server has at most one candidate, so if candidatesare made into control queues then these control queues will not conict. (To see this, note that eachsolid candidate succeeded on step t0 +3, so solid candidates cannot conict with each other. Solidcandidates and delayed candidates are blocking, so they cannot conict with delayed candidates.)Note that clear solid candidates and delayed candidates do not conict with blocking queues.We now consider the possible cases (split by the number and type of solid candidates that exist):1. If there is no solid candidate then we are in Case 3. Consider the run of the chain for stepst0; : : : ; t0 + 3 that we described earlier. Suppose that on step t0 + 4, no message arrives, Qi;jdecides to send if qi;j;t0+4 > 0, and every other queue decides to send only if it is forced. Theprobability of this event is at least (1� �)K(5)(8)�KN4(bi;j;t0 + 5)��2�KN . Since there areno solid candidates, Qi;j succeeds if it decides to send on step t0 + 4. Furthermore, everyqueue Qi0;j0 other than Qi;j only decides to send on step t with si0;j0;t � R2�.2. If Qi0;j0 is a long clear solid candidate then we can make Qi0;j0 a solid control queue.35



3. IfQi0;j0 is an unclear solid candidate and there is no other solid candidate then we are in Case 3.Consider the run of the chain for step t0; : : : ; t0 + 3 that we described earlier. Suppose thatno messages arrive on steps t0 + 4; : : : ; t0 + 6. If qi0;j0;t0+4 = 1, then no other queues thatconict with either Qi0;j0 or Qi;j decide to send on steps t0 + 4 through t0 + 6 and after onestep qi0;j0;t0+5 = 0. Therefore, Qi;j can decide to send on step t0 + 6, and it will succeed.Therefore, suppose that qi0;j0;t0+4 > 1. If there is a blocking queue Qi0;j00 then Qi0;j0 and Qi0;j00decide to send on steps t0 + 4 and t0 + 5. Otherwise, there is a blocking queue Qi00;j0 . Ifthere is a blocking queue that client-conicts with Qi00;j0 then on step t0 + 4 Qi00;j0 decides tosend and every blocking queue that client-conicts with Qi00;j0 decides to send. On step t0+5Qi0;j0 and Qi00;j0 decide to send. Otherwise, Qi0;j0 and Qi00;j0 decide to send on steps t0 + 4and t0 + 5. On step t0 + 6, Qi;j decides to send if qi;j;t0+6 > 0. On each of the steps, everyother queue decides to send only if it is forced. The probability of this event is at least(1� �)K(7)(8)�KN4(bi;j;t0 + 7)��R�2�KN(3). Note that Qi;j succeeds if it decides to send onstep t0 + 6. Furthermore, every queue Qi00;j00 other than Qi;j only decides to send on step twith si00;j00;t � R2�.4. If there are two unclear solid candidates, Qi;j0 and Qi0;j, then we are in Case 3. Consider therun of the chain for step t0; : : : ; t0 + 3 that we described earlier. Suppose that no messagesarrive on steps t0 + 4; : : : ; t0 + 6. If qi;j0;t0+4 = 1 or qi0;j;t0+4 = 1 then we can treat Qi;j0 andQi0;j separately, using the analysis of the previous case. Also, if Qi;j0 conicts with blockingqueue Qi00;j00 and Qi0;j conicts with blocking queue Qi000;j000 , with i000 6= i, i000 6= i00 and i00 6= i0,then again we can treat Qi;j0 and Qi0;j separately, using the analysis of the previous case.Otherwise, note that i000 6= i, since Qi;j cannot be a blocking queue (because bi;j;t0+4 � B).Thus, for every blocking queue Qi000;j000 that conicts withQi0;j and every blocking queue Qi00;j00that conicts with Qi;j0, either i000 = i00 or i00 = i0. Note that no blocking queue client-conictswith Qi;j0 in this case.If there is a blocking queue Qi0;j0, then suppose no messages arrive on steps t0+4; : : : ; t0+9.On step t0 + 4, Qi;j0 , Qi0;j, Qi0;j0 decide to send, along with any working queues that client-conict with Qi;j0 or Qi0;j. On step t0 + 5, Qi0;j decides to send, along with any workingqueues that server-conict with Qi0;j. (Note that after step t0 + 5, any working queue Qi�;jthat server-conicts with Qi0;j has si�;j;t0+6 � 5.) On step t0 + 6 and t0 + 7, Qi0;j and Qi0;j0decide to send, along with any blocking queues that client-conict with Qi0;j. On step t0+8,Qi;j0 and Qi0;j0 decide to send, along with any forced queues, unless qi;j0;t0+8 = 0, in whichcase just Qi0;j0 decides to send. On step t0 + 9, Qi;j decides to send if qi;j;t0+9 > 0. (Notethat no queue conicting with Qi;j is forced at step t0 + 9. On each of the steps, every otherqueue decides to send only if it is forced.The remaining possibility is that Qi;j0 conicts with blocking queue Qi00;j0 and Qi0;j conictswith blocking queue Qi00;j such that i00 6= i and i00 6= i0. (Note that there are no otherblocking queues that conict with Qi;j0 or Qi0;j, or the situation could have been handledpreviously.) Suppose that no messages arrive on steps t0 + 4; : : : ; t0 + 10. For t in the ranget0+4 � t � t0+6, Qi00;j and Qi00;j0 decide to send on step t. Qi;j0 decides to send on step t ifqi;j0;t > 0 and Qi0;j decides to send on step t if qi0;j;t > 0. On step t0 + 4 any working queuethat client conicts with Qi;j0, Qi0;j or Qi00;j decides to send. On step t0 + 5 any workingqueues that server-conict with Qi;j0 or Qi0;j decide to send. On steps t0 + 5 and t0 + 6, anyblocking queues that client-conict with Qi00;j decide to send. If qi0;j;t0+7 = 0 then we proceedas follows. if qi0;j;t0+7 > 0 then Qi0;j and Qi00;j0 decide to send on step t0 + 7. On step t0 + 8,Qi;j decides to send if qi;j;t0+8 > 0. On each of the steps, every other queue decides to send36



only if it is forced. (Note that no queue that conicts with Qi;j is forced at step t0 + 8.) Ifqi0;j;t0+7 > 0 then Qi0;j and Qi00;j decide to send on steps t0 + 7 and t0 + 8. If qi0;j;t0+9 > 0then Qi0;j and Qi00;j0 decide to send on step t0 + 9. On step t0 + 10, Qi;j decides to send ifqi;j;t0+10 > 0. On each of the steps, every other queue decides to send only if it is forced.(Note that no queue that conicts with Qi;j is forced at step t0 + 10.)The probability of this event is at least (1� �)K(11)(8)�KN4(bi;j;t0 + 11)��R�2�KN(7). Notethat every queue Qi00;j00 other than Qi;j only decides to send on step t with si00;j00;t � R2�.5. If Qi0;j0 is an unclear solid candidate and Qi00;j00 is a short clear solid candidate then we are inCase 3. Consider the run of the chain for steps t0; : : : ; t0+3 that we described earlier. Supposethat on steps t0+4; : : : ; t0+ b(R� 1)=2c+8 no messages arrive. Suppose that on step t0+4,every working queue that client-conicts with Qi00;j00 decides to send. On step t0 + 5, Qi00;j00decides to send and every working queue that server-conicts with Qi00;j00 decides to send. Fort in the range ft0+6; : : : ; t0+ b(R� 1)=2c+6g, Qi00;j00 decides to send on step t if qi00;j00;t > 0.(Thus Qi00;j00 will empty its queue by step t0 + b(R � 1)=2c + 6g.)If Qi0;j0 client-conicts with Qi;j and with another blocking queue Qi;j00 then Qi0;j0 and Qi;j00decide to send on steps t0 + 4; : : : ; t0 + b(R � 1)=2c + 6 and so do any queues that client-conict with them and are almost forced. Qi;j decides to send on step t0 + b(R� 1)=2c+7 ifqi;j;t0+b(R�1)=2c+7 > 0. If Qi0;j0 server-conicts with Qi;j and client-conicts with a blockingqueue Qi0;j00 then on steps t0 + 4; : : : ; t0 + b(R � 1)=2c + 5, Qi0;j0 and Qi0;j00 decide to sendand so does any other queue that client-conicts with them and is almost forced. On stept0+b(R�1)=2c+6, Qi0;j0 decides to send and so does any queue that server-conicts with Qi;jand is almost forced. On step t0 + b(R � 1)=2c + 7 Qi0;j00 decides to send and so does Qi;j ifqi;j;t0+b(R�1)=2c+7 > 0.If Qi0;j0 does not client-conict with a blocking queue then it server-conicts with a blockingqueue Qi00;j0. If Qi00;j0 does not client-conict with a blocking queue then on step t0 + 4 Qi0;j0and Qi00;j0 decide to send and nothing that client-conicts with either of them decides to send.If there is a working queue that client-conicts with Qi0;j0 then Qi0;j0 decides to send on stept0 + 5 and so does any working queue that client-conicts with it. Otherwise, Qi0;j0 doesnot decide to send on step t0 + 5. Similarly, if there is a working queue that client-conictswith Qi00;j0 then Qi00;j0 decides to send on step t0 + 5 and so does any working queue thatclient-conicts with it. Otherwise, Qi00;j0 does not decide to send on step t0 + 5. On stepst0 + 6; : : : ; t0 + b(R � 1)=2c + 6 Qi0;j0 and Qi00;j0 decide to send and so does any queue thatserver-conicts with them and is almost forced. On step t0 + b(R� 1)=2c+ 7 Qi;j decides tosend if qt0+b(R�1)=2c+7 > 0.If there is a blocking queue Qi00;j00 that client-conicts with Qi00;j0 then for even ` in the range0 � ` � b(R�1)=2c+4, on step t0+4+`, Qi00;j0 and Qi00;j00 decide to send and any queue thatclient-conicts with them and is almost forced decides to send. On step t0 + 4 any workingqueue that conicts with Qi0;j0 decides to send. If qi0;j0;t0+5 > 0 then for any odd ` in therange 0 � ` � b(R� 1)=2c+ 4, Qi0;j0 and Qi00;j0 decide to send. On step t0 + b(R� 1)=2c + 7or t0 + b(R� 1)=2c + 8 (whichever is of the same parity as t0 + 4), Qi;j decides to send if itsqueue is non-empty. Every other queue only sends if it is forced. The probability of this eventis at least (1� �)K(b(R�1)=2c+8)(8)�KN4(bi;j;t0 + b(R� 1)=2c + 8)��R�2�KN(b(R�1)=2c+4). Onsteps t0 + 6; : : : ; t0 + b(R� 1)=2c + 7 nothing that conicts with Qi00;j00 decides to send, so itsuccessfully sends its last message by step t0 + b(R � 1)=2c + 6. If Qi0;j0;t0+7 > 0 then Qi0;j0doesn't decide to send on both of steps b(R� 1)=2c+ 7 and t0 + b(R� 1)=2c+ 8. Therefore,if Qi;j decides to send on one of these steps it succeeds. Furthermore, every queue Qi000;j00037



other than Qi;j only decides to send on step t with si000;j000;t � R2�.6. If Qi;j0 and Qi0;j are short clear solid candidates then we are in Case 3. Consider therun of the chain for steps t0; : : : ; t0 + 3 that we described earlier. Suppose that on stepst0+4; : : : ; t0+b(R�1)=2c+7 no messages arrive. Suppose that on step t0+4, every workingqueue that client-conicts with Qi;j0 or Qi0;j decides to send. On step t0 + 5, Qi;j0 and Qi0;jdecide to send and every working queue that server-conicts with one of them decides to send.For t in the range ft0+6; : : : ; t0+ b(R�1)=2c+6g, Qi;j0 decides to send on step t if qi;j0;t > 0and Qi0;j decides to send on step t if qi0;j;t > 0. On step t0+b(R�1)=2c+7 Qi;j decides to sendif qi;j;t0+b(R�1)=2c+7 > 0. Every other queue only sends if it is forced. The probability of thisevent is at least (1� �)K(b(R�1)=2c+7)(8)�KN4(bi;j;t0 + b(R� 1)=2c + 7)��R�2�KN(b(R�1)=2c+3).On steps t0 + 6; : : : ; t0 + b(R � 1)=2c + 7 nothing that conicts with Qi;j0 or Qi0;j decides tosend, so they successfully sends their last messages by step t0+ b(R� 1)=2c+6. Therefore, ifQi;j decides to send on step t0+ b(R� 1)=2c+7 it succeeds. Furthermore, every queue Qi00;j00other than Qi;j only decides to send on step t with si00;j00;t � R2�.7. If Qi0;j0 is a short clear solid candidate and there is no other solid candidate, then there aremany cases. In each case, we will say that a queue other-conicts with Qi;j if it conictswith Qi;j but not with queue Qi0;j0 . The cases follow.7a. No blocking queue other-conicts with Qi;j. We split this case up as follows.7a1. No working queue other-conicts with Qi;j. In this case, we are in Case 3. Considerthe run of the chain for steps t0; : : : ; t0 + 3 that we described earlier. Supposethat on steps t0 + 4; : : : ; t0 + b(R � 1)=2c + 7 no messages arrive. Suppose that onstep t0+4, every working queue that client-conicts with Qi0;j0 decides to send. Onstep t0+5, Qi0;j0 decides to send and every working queue that server-conicts withQi0;j0 decides to send. For t in the range ft0 + 6; : : : ; t0 + b(R � 1)=2c + 6g, Qi0;j0decides to send on step t if qi;j0;t > 0. On step t0 + b(R � 1)=2c + 7 Qi;j decidesto send if qi;j;t0+b(R�1)=2c+7 > 0. Every other queue only sends if it is forced. Theprobability of this event is at least(1� �)K(b(R�1)=2c+7)(8)�KN4(bi;j;t0 + b(R � 1)=2c + 7)��R�2�KN(b(R�1)=2c+3) :On steps t0+6; : : : ; t0+ b(R� 1)=2c+7 nothing that conicts with Qi0;j0 decides tosend, so it successfully sends its last messages by step t0+b(R�1)=2c+6. Therefore,if Qi;j decides to send on step t0 + b(R� 1)=2c+ 7 it succeeds. Furthermore, everyqueue Qi00;j00 other than Qi;j only decides to send on step t with si00;j00;t � R2�.7a2. There is a working queue that other-conicts with Qi;j. Every working queue thatother-conicts with Qi;j client-conicts with another potentially working queue. Inthis case, we are in Case 3. The proof is the same as that of Case 7a1 except thaton step t0 + 4 every working queue Qi00;j00 that other-conicts with Qi;j decides tosend, and every potentially working queue that client-conicts with Qi00;j00 decidesto send.7a3. There are two working queues, Qi00;j and Qi000;j that other-conict (and in particular,server-conict) with Qi;j. Neither of them client-conicts with a forcing queue. Inthis case we are in Case 3. The proof is the same as that of Case 7a1 except thaton step t0 + 4 every working queue that other-conicts with Qi;j decides to send.7a4. There is a working queueQi00;j that other-conicts (and in particular, server-conicts)with Qi;j and does not client-conict with a potentially working queue. Every otherworking queue that other-conicts with Qi;j client-conicts with a forcing queue. In38



this Case we are in Case 2. Note that bi00;j;t0+4 � Z (otherwise Qi00;j would be block-ing). Consider the run of the chain for steps t0; : : : ; t0+3 that we described earlier.Suppose that on step t0 + 4 no messages arrive and Qi00;j decides to send. No otherqueue decides to send unless it is forced. The probability of this event is at least(1� �)K58�KN4(bi;j;t0 + 5)��2�KN : Qi00;j succeeds on step t0 + 5 and every otherqueue Qi000;j000 decides to send on step t (for t 2 ft0; : : : ; t0 + 4g) only if si000;j000;t � 8.7a5. If there is a working queue Qi;j00 that other-conicts (and in particular, client-conicts) with Qi;j and does not client-conict with a potentially working queuebut server-conicts with a forcing queue then we are in Case 3. The proof is thesame as that of Case 7a1 except that on step t0+4, Qi;j00 decides to send and nothingthat client-conicts with the forcing queue decides to send.7a6. If there is a working queue Qi;j00 that other-conicts (and in particular, client-conicts) with Qi;j and does not client-conict with a potentially working queueand does not server-conict with a forcing queue then we are in Case 2. The proofsimilar to that of Case 7a4.7b. There is a blocking queue which other-conicts withQi;j. We split this case up as follows.7b1. There are two blocking queues, Qi;j0 and Qi;j00 that other-conict (and in particular,client-conict) with Qi;j. In this case, we are in Case 3. The proof is the same asthat of Case 7a1 except that on steps t0+4; : : : ; t0+ b(R� 1)=2c+6, Qi;j0 and Qi;j00decide to send, colliding with each other and with any other queues that send thatother-conict with Qi;j. On step t0+b(R�1)=2c+6, every queue that other-conictswith Qi;j and is almost forced decides to send.7b2. There are two blocking queues, Qi0;j and Qi00;j that other-conict (and in particular,server-conict) with Qi;j. There is no blocking queue that client-conicts with eitherof these queues. In this case, we are in Case 3. The proof is the same as that ofCase 7a1 except that, if there is a working queue that client-conicts with Qi0;jthen it sends on step t0 + 4 and Qi0;j sends on step t0 + 4. Otherwise, Qi0;j doesn'tsend on step t0 + 4. Similarly, if there is a working queue that client-conicts withQi00;j then it sends on step t0 + 4 and Qi00;j sends on step t0 + 4. Otherwise, Qi00;jdoesn't send on step t0+4. On steps t0+5; : : : ; t0+ b(R� 1)=2c+6, Qi;j0 and Qi;j00decide to send, colliding with each other and with any other queues that decide tosend that other-conict with Qi;j. On step t0 + b(R � 1)=2c + 6, every queue thatother-conicts with Qi;j and is almost forced decides to send.7b3. There is a blocking queue Qi0;j which other-conicts (and in particular, server-conicts) withQi;j and there is a blocking queue Qi0;j0 . In this case, we are in Case 3.The proof is the same as that of Case 7a1 except that on steps t0+4; : : : ; t0+ b(R�1)=2c+5 Qi0;j and Qi0;j0 decide to send. On step t0+b(R�1)=2c+5 any queue Qi0;j00which is almost forced decides to send. On step t0 + b(R � 1)=2c + 6 Qi0;j decidesto send and any queue Qi00;j which is almost forced decides to send and no otherqueue Qi0;j00 decides to send. On step t0 + b(R� 1)=2c + 7, Qi0;j0 decides to send.7b4. There is a blocking queue Qi;j0 which other-conicts (and in particular, client-conicts) with Qi;j. It does not client-conict with any other blocking queue. Itserver-conicts with the blocking queue Qi0;j0 . Qi0;j0 does not client-conict withany other blocking queue. In this case, we are in Case 3. The proof is similar to theproof of Case 7b2.7b5. There is a blocking queue Qi;j0 which other-conicts (and in particular, client-conicts) with Qi;j. It does not client-conict with any other blocking queue. It39



server-conicts with the blocking queue Qi0;j0. Qi0;j0 client-conicts with blockingqueue Qi0;j00 . In this case, we are in Case 3. The proof is the same as that of Case 7a1except that if there is a working queue that client-conicts with Qi;j0 then it sendson step t0+4 and Qi;j0 sends on step step t0+4. Otherwise, Qi;j0 does not send onstep t0 + 4. For even ` in the range 0 � ` � b(R � 1)=2c + 2, Qi0;j0 and Qi0;j00 bothsend, and so does any queue Qi0;j000 which is almost forced. For odd ` in the range0 � ` � b(R � 1)=2c + 2, on step t0 + 4 + `, nothing that client-conicts with Qi0;j0sends. Qi0;j0 and Qi;j0 both send.7b6. There is a short blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 does notconict with any blocking queues. In this Case, we are in Case 3. The proof is thesame as the proof of Case 6, because queue Qi0;j0 can be treated as a short clearsolid candidate.7b7. There is a long blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 does notconict with any blocking queues. bi0;j0;t0+4 � Z. In this case we are in Case 2. Theproof is similar to that of Case 7a4.7b8. There is a long blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 doesnot conict with any blocking queues. bi0;j0;t0+4 < Z. Qi0;j0 satis�es the followingconditions:1. If Qi00;j0 is a working queue then either qi00;j0;t0+4 = 1 and �i00;j0 � 1=R2, orthere is a queue Qi00;j00 which does not conict with a blocking queue and hassi00;j00;t0+4 = 1 andqi00;j00;t0+4 � min(R=2; si0;j0;t0+4 � 2; si00;j0;t0+4 � 1):2. If Qi0;j00 is a working queue then either qi0;j00;t0+4 = 1 and �i0;j00 � 1=R2, orthere is a queue Qi00;j00 which does not conict with a blocking queue and hassi00;j00;t0+4 = 1 andqi00;j00;t0+4 � min(R=2; si0;j0;t0+4 � 2; si0;j00;t0+4 � 1):We conclude that Qi0;j0 is a delayed candidate. Note that if there is a delayedcandidate Qi0;j0 then we can make Qi0;j0 a delayed control queue. If Qi00;j0 is work-ing and qi00;j0;t0+4 > 1 or �i00;j0;t0+4 > 1=R2 then, there is a queue Qi00;j00 whichdoes not conict with a blocking queue and has si00;j00;t0+4 = 1 and qi00;j00;t0+4 �min(R=2; si0;j0;t0+4 � 2; si00;j0;t0+4 � 1). We make Qi00;j00 a solid control queue if itis long, and a temporary control queue otherwise. (Note that Qi00;j00 is blocking,so it doesn't conict with a candidate.) If Qi0;j00 is working and qi0;j00;t0+4 > 1 or�i0;j00;t0+4 > 1=R2 then, there is a queueQi00;j00 which does not conict with a blockingqueue and has si00;j00;t0+4 = 1 and qi00;j00;t0+4 � min(R=2; si0;j0;t0+4� 2; si0;j00;t0+4� 1).As before, we make Qi00;j00 a solid control queue if it is long, and a temporary controlqueue otherwise.7b9. There is a long blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 does notconict with any blocking queues. Qi00;j0 is a working queue such that (qi00;j0;t0+4 > 1or �i00;j > 1=R2) and there is no forced queue Qi00;j00 . (Or, similarly, Qi0;j00 is aworking queue such that (qi0;j00;t0+4 > 1 or �i0;j00 > 1=R2) and there is no forcedqueue Qi00;j00 .) Then we are in Case 3. The proof is the same as that of Case 7a1except that on step t0 + 4, Qi00;j0 decides to send and nothing that conicts with itdecides to send. As of step t0+5, Qi00;j0 is a blocking queue. Thus, we are in one ofthe cases 7b1{7b5. (As in Cases 7b2, 7b4 and 7b5, if there is a working queue that40



client-conicts with Qi0;j0 then it sends on step t0 + 4 (while Qi00;j0 is succeeding)and Qi0;j0 sends on step t0+4. Otherwise, Qi0;j0 doesn't send on step t0+4. Now ifthere is a working queue that client-conicts with Qi00;j0 then we start at step t0+4of those cases. Otherwise, we start at step t0 + 5.)7b10. There is a long blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 does notconict with any blocking queues. Qi00;j0 is a working queue such that (qi00;j0;t0+4 > 1or �i00;j > 1=R2) and Qi00;j00 has si00;j00;t0+4 = 1 but it conicts with a blockingqueue Q0. (Similarly, Qi0;j00 is a working queue such that (qi0;j00;t0+4 > 1 or �i0;j00 >1=R2) and Qi00;j00 has si00;j00;t0+4 = 1 but it conicts with a blocking queue Q0. )Then we are in Case 3. The proof is the same as that of Case 7a1 except that onstep t0+4, Q0 decides to send (and collides with Qi00;j00). On step t0+5 Qi00;j0 decidesto send and nothing that conicts with it decides to send. As of step t0 + 6, Qi00;j0is a blocking queue. Thus, we are in one of the cases 7b1-7b5 as in case 7b9.7b11. There is a long blocking queue Qi0;j0 that other-conicts with Qi;j. Qi0;j0 doesnot conict with any blocking queues. For every working queue Qi00;j0 such thatqi00;j0;t0+4 > 1 or �i00;j0 > 1=R2 (there is at least one such Qi00;j0), there is a forcedqueue Qi00;j00 that does not collide with any blocking queue and has qi00;j00;t0+4 <min(R=2; si0;j0;t0+4 � 2; si00;j0;t0+4 � 1). (Similarly, For every working queue Qi0;j00such that qi0;j00;t0+4 > 1 or �i0;j00 > 1=R2 (there is at least one such Qi0;j00), thereis a forced queue Qi00;j00 that does not collide with any blocking queue and hasqi0;j00;t0+4 < min(R=2; si0;j0;t0+4 � 2; si0;j00;t0+4 � 1). ) Then we are in Case 3. Theproof is similar to that of Case 7a1 except that on step t0+4 all workers Qi000;j0 withqi000;j0;t0+4 = 1 and �i000;j0 � 1=R2 decide to send. On every step all of the forcedqueues that are described above decide to send and every working queue that client-conicts with one of the forced queues and is almost forced decides to send. If oneof the forced queues, Qi00;j00 has a collision on a step, then, on the next step, Qi00;j0decides to send and none of the queues that conict with Qi00;j0 decides to send.Otherwise, one of the forced queues, Qi00;j00 exhausts its queue and on the next stepQi00;j0 decides to send and none of the queues that conict with Qi00;j0 decides tosend. Qi00;j0 is then a blocking queue and so we are in one of the cases 7b1-7b5 asin Case 7b9.If none of the big backo� counters put us into Case 2 or Case 3, then the control queues that weidentify by considering the above cases do not conict and therefore we can divide the queues intocategories such that all of the Case 4 conditions are satis�ed.
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