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Adler and Fi
h [AF99℄ studied the question of how many header bits arerequired for end-to-end 
ommuni
ation in the setting where there is a singlemessage to be sent from S to R. They prove that, for the 
omplete network ofn pro
essors or any network that 
ontains it as a minor (su
h as the n2-inputbutter
y or the n�n� 2 mesh), any memoryless proto
ol that ensures deliveryof a single message using headers with fewer than dlog2 ne� 3 bits, generates anin�nite amount of message traÆ
.If there is a path of live links from S to R in an n-node network, then thereis a simple su
h path of length at most n � 1. Therefore, it suÆ
es to use thesimple \hop 
ount" algorithm: use pa
ket headers of length dlog2(n�1)e to 
ountthe number of links that pa
kets have travelled [P81℄. Thus, for the 
ompletegraph, we have upper and lower bounds that mat
h to within a small additive
onstant, and, for the n2-input butter
y and the n � n � 2 mesh, to within asmall multipli
ative 
onstant.However, for several graphs there remains a large gap between the best upperand lower bounds. Planar graphs, in
luding two-dimensional meshes, do not
ontain a 
omplete graph on more than 4 nodes as a minor [K30℄, and as a result,no previous work has demonstrated a lower bound larger than a 
onstant for anyplanar graph. Furthermore, for some networks it is possible to do better thanthe simple hop 
ount algorithm. For example, Adler and Fi
h [AF99℄ observedthat, for any feedba
k vertex set F in a graph G, any simple path visits verti
esin F at most jF j times and they obtained a variant of the hop 
ount proto
olthat uses pa
ket headers of length dlog2(jF j+1)e. However, some graphs have nosmall feedba
k vertex sets. In parti
ular, any feedba
k vertex set for the m� nmesh has size at least bm=2
 � bn=2
. In this 
ase, this variant does not o�ersigni�
ant improvement over the hop 
ount algorithm.Thus, we see that a network that has resisted both lower bound and upperbound improvements is the two-dimensional mesh. Prior to this work, there wasno upper bound better than O(logmn), nor lower bound better than 
(1), forany m � n mesh with m;n > 2. Note that for m = 2, headers of length onesuÆ
e (to indi
ate whi
h neighbour sent the pa
ket) [AF99℄. In [AF99℄, it is
onje
tured that 
(logn) header bits are ne
essary for a proto
ol to ensuredelivery of a single message in an n � n mesh without generating an in�niteamount of message traÆ
.Here, we atta
k this open problem by 
onsidering m � n meshes, for 
on-stant m � 3. We prove the unexpe
ted result that �(log logn) bit headers arene
essary and suÆ
ient for su
h graphs.1.1 Network ModelWe model a network by an undire
ted graph G, with a node 
orresponding toea
h pro
essor and an edge 
orresponding to a link between two pro
essors.Spe
i�
ally, we 
onsider the graphs G(m;n) with a sender node S and a re
eivernode R in addition to the mn intermediate nodes, (i; j), for 0 � i < m and0 � j < n. There are links between 2



{ node S and node (i; 0), for 0 � i < m,{ node (i; j) and node (i; j + 1), for 0 � i < m and 0 � j < n� 1,{ node (i; j) and node (i+ 1; j), for 0 � i < m� 1 and 0 � j < n, and{ node (i; n� 1) and node R, for 0 � i < m.The graph G(3; 6) is illustrated in Figure 1.
(2,5)

S R

(0,0)Fig. 1. The graph G(3; 6)Pro
essors 
ommuni
ate by sending pa
kets along links in the network. Ea
hpa
ket 
onsists of data (i.e. the message) and a header. The pro
essor at anintermediate node may use information in the header to determine what pa
ketsto send to its neighbours, but they 
annot use the data for this purpose. Fur-thermore, headers may be modi�ed arbitrarily; however, data must be treatedas a \bla
k box". This data-oblivious assumption is appropriate when one viewsend-to-end 
ommuni
ation proto
ols as providing a reliable 
ommuni
ation layerthat will be used by many di�erent distributed algorithms. We also assume thata pro
essor 
annot dete
t from whi
h of its neighbours a pa
ket was sent. Sin
ethe degree of the graphs is 
onstant, this is not important: when ea
h pro
essorsends a pa
ket, it 
an indi
ate the dire
tion of travel using a 
onstant numberof header bits.Intermediate pro
essors are assumed to be memoryless, and thus pro
essors
an only send pa
kets as a result of re
eiving a pa
ket and must de
ide alongwhi
h link(s) to forward the message and how to 
hange the pa
ket header,based only on the 
ontents of the header. This is an appropriate model for anetwork with simultaneous traÆ
 between many di�erent pairs of pro
essors,for example, the Internet, where no information 
on
erning past traÆ
 is stored.The links of the network are either alive or dead. At any time, a live link maybe
ome dead. However, on
e a link be
omes dead, it remains so. Pro
essors donot know whi
h subset of the links are alive.To simplify our proto
ols, we will adopt the 
onvention that pa
kets \sent"to non-existent nodes are ignored.Live links deliver pa
kets in a �rst in, �rst out manner. However, the timefor a pa
ket to traverse a link may di�er at di�erent times or for di�erent links.We assume that the time for a pa
ket to traverse a link is �nite, but unbounded.Edges whi
h are dead 
an be thought of as having in�nite delay. In this asyn-3




hronous model, a pro
essor 
annot distinguish between an dead link and a linkwhi
h is just very slow.1.2 Summary of ResultsIn this paper, we 
onsider the problem of sending a single message from S to R.Our goal is to ensure that{ as long as there is some simple S{R path of live links, at least one 
opy ofthe message gets sent from S to R, and{ even if all links are alive, only a �nite number of pa
kets are generated.We say that a proto
ol whi
h satis�es these requirements delivers a messagefrom S to R with �nite traÆ
. In this paper, we provide an algorithm that doesthis using O(m log logn)-bit headers for any network G(m;n). For the 
ase ofG(3; n), this is improved to log2 log2 n+O(1). Furthermore, we demonstrate thatfor G(3; n), log2 log2 n�O(log log logn) bits are required. Thus, for any 
onstantm � 3, we have optimal bounds to within a 
onstant fa
tor on the number ofheader bits that are ne
essary and suÆ
ient to deliver a message from S to Rwith �nite traÆ
 in G(m;n). For the 
ase of G(3; n), our bounds are within anadditive term of O(log log logn) from optimal.Our upper bounds use a new te
hnique to obtain an approximate 
ount ofhow many nodes a message has visited, whi
h is suÆ
ient to guarantee that onlya �nite number of pa
kets are generated. This te
hnique may have appli
ationsto other networks.Our upper bounds also provide upper bounds for any graphs that are mi-nors of G(m;n), for any 
onstant m. Similarly, we get lower bounds for anygraphs that 
ontain G(3; n) as a minor. These are 
onsequen
es of the followingobservation from Adler and Fi
h [AF99℄.Proposition 1. Suppose G0 is a minor of G and S0 and R0 are the supernodesof G0 
ontaining S and R, respe
tively. Then any proto
ol for G that deliversa message from S to R with �nite traÆ
 gives a proto
ol for G0 with the samepa
ket headers that delivers a message from S0 to R0 with �nite traÆ
.The proto
ol for G(3; n) is given in the next se
tion. Se
tion 3 extends thisresult to G(m;n) for any 
onstant m � 3. This is followed in Se
tion 4 by ourlower bound for G(3; n) and, hen
e, for G(m;n) with m > 3, whi
h 
ontainsG(3; n) as a minor.2 A Proto
ol for G(3; n)In this se
tion, we present a proto
ol using O(log logn) header bits that deliversa message from S to R with �nite traÆ
 in G(3; n). Throughout the proto
ol,4



ea
h pa
ket will 
ontain the message as its data. Consequently, we mention onlythe header bits in what follows.We des
ribe the proto
ol in pie
es. We �rst 
onsider some simple paths inthe graph, and fo
us on paths that move \right", that is, on paths from (r1; 
1)to (r2; 
2) with 
2 � 
1. There are four types of paths: U, D, S, and Z. For ea
h ofthese paths, there is a simple 
ommuni
ation proto
ol, su
h that when a pa
ketwith header \Ready" enters the �rst node (r1; 
1) of the path, and all of theedges in the path are alive, the proto
ol sends a pa
ket with header \Ready"from the last node of the path to the node (r2; 
2+1). The proto
ol uses a �nitenumber of header bits.A U-path (D-path) 
onsists of zero, one or two upward (downward respe
-tively) edges. The proto
ol for a U-path is as follows.If (r; 
) re
eives a pa
ket with header \Ready" or \up", it sends a pa
ketwith header \Ready"to (r; 
+ 1), and a pa
ket to (r + 1; 
) with header \up".Note that the U-path proto
ol only generates a �nite number of pa
kets, andresults in a \Ready" pa
ket at the end of the path. The proto
ol for D-paths isanalogous, substituting \down" and r � 1 for \up" and r + 1.An S-path of extent j � 1 is a path from (0; 
) to (2; 
+ j � 1). It 
onsists of� A left-to-right path of length j � 1 along the bottom row from (0; 
) to(0; 
+ j � 1), followed by� the verti
al edge from (0; 
+ j � 1) to (1; 
+ j � 1), followed by� a right-to-left path of length j � 1 along the middle row from (1; 
+ j � 1)to (1; 
), followed by� the verti
al edge from (1; 
) to (2; 
), followed by� a left-to-right path of length j�1 along the top row from (2; 
) to (2; 
+j�1).Thus, an S-path of extent j 
ontains 3(j � 1) horizontal edges and 2 verti
aledges, for a total length of 3j�1. Similarly, a Z-path of extent j is a simple pathof total length 3j � 1 from (2; 
) to (2; 
 + j � 1), to (1; 
+ j � 1), to (1; 
), to(0; 
), and �nally to (0; 
+ j � 1).Our 
ommuni
ation proto
ol for an S-path of extent j has the property thatwhen a pa
ket enters the �rst node (0; 
) with header \Ready", and all of theedges are alive, the proto
ol sends a pa
ket with header \Ready" from the lastnode to (2; 
 + j). The proto
ol will use O(log logn) header bits. Furthermore,it will only generate a �nite number of pa
kets. It may result in more than onenew pa
ket with header \Ready", but ea
h of these new pa
kets will arrive ata node whi
h is to the right of 
olumn 
. Thus, only a �nite number of pa
ketswill be generated overall, so we will be able to 
ombine the proto
ol with ourother proto
ols to a
hieve our two goals.For any nonnegative integer k, we say that 
olumn 
 is a k-
ounter if andonly if 
 = 0 mod 2k. In parti
ular, every 
olumn is a 0-
ounter and 
olumn 0 isa k-
ounter for all k � 0.The proto
ol for S-paths of extent greater than one is as follows.5



{ If (0; 
) re
eives a pa
ket with header \Ready", then for ea
h value k 2f1; : : : ; dlog2 neg, it sends a pa
ket to (0; 
+1) with header (S; k; \unmarked").{ If (0; 
) re
eives a pa
ket with header (S; k; \unmarked"), it sends a pa
ketto (0; 
 + 1) with header (S; k; x), where x = \marked" if 
 is a k-
ounterand x = \unmarked" otherwise. In addition, if 
 is a k-
ounter, then (0; 
)also sends a pa
ket to (1; 
) with header (S; k; \up").{ If (0; 
) re
eives a pa
ket with header (S; k; \marked") and 
 is not a k-
ounter, it sends a pa
ket to (1; 
) with header (S; k; \up"), and a pa
ket to(0; 
+ 1) with header (S; k; \marked").{ If (1; 
) re
eives a pa
ket with header (S; k; \up"), it sends a pa
ket to (1; 
�1) with header (S; k; \unmarked") if 
 is not a k-
ounter and with header(S; k; \marked") if 
 is a k-
ounter.{ If (1; 
) re
eives a pa
ket with header (S; k; \unmarked"), it sends a pa
ketto (1; 
 � 1) with header (S; k; x), where x = \marked" if 
 is a k-
ounterand x = \unmarked" otherwise. In addition, if 
 is a k-
ounter then (1; 
)also sends a pa
ket to (2; 
) with header (S; k; \up").{ If (1; 
) re
eives a pa
ket with header (S; k; \marked"), it sends a pa
ket to(2; 
) with header (S; k; \up"). If 
 is not a k-
ounter, it also sends a pa
ketto (1; 
� 1) with header (S; k; \marked").{ If (2; 
) re
eives a pa
ket with header (S; k; \up"), it sends a pa
ket to (2; 
+1)with header (S; k; \unmarked").{ If (2; 
) re
eives a pa
ket with header (S; k; \unmarked"), it sends a pa
ketto (2; 
+1) with header (S; k; x), where x = \marked" if 
 is a k-
ounter andx = \unmarked" otherwise. If 
 is a k-
ounter, (2; 
) it also sends a pa
ketto (2; 
+ 1) with header \Ready".{ If (2; 
) re
eives a pa
ket with header (S; k; \marked"), it sends a pa
ket to(2; 
+1) with header \Ready". If 
 is not a k-
ounter, it also sends a pa
ketto (2; 
+ 1) with header (S; k; \marked").Lemma 1. Suppose that the S-path 
ommuni
ation proto
ol is run as a resultof a pa
ket with header \Ready" arriving at (0; 
). Then(A) For 1 < j � n � 
 + 1, if all of the edges in the S-path of extent j from(0; 
) to (2; 
+ j � 1) are alive, then a pa
ket with header \Ready" is sentto (2; 
+ j).(B) The only new pa
kets whi
h are generated with header \Ready" have desti-nations in 
olumns whi
h are to the right of 
olumn 
.Proof. We �rst prove (A). Suppose that there is a k 2 f1; : : : ; dlog2 neg su
hthat exa
tly one 
olumn 
0 in f
 + 1; : : : ; 
 + j � 1g is a k-
ounter. Then it isstraightforward to verify that pa
kets travel from (0; 
) to (0; 
0) with header(S; k; \unmarked"), from there to (0; 
 + j � 1) with header (S; k; \marked"),up to (1; 
 + j � 1) with header (S; k; \up"), from there to (1; 
0) with header(S; k; \unmarked"), from there to (1; 
) with header (S; k; \marked"), up to (2; 
)with header (S; k; \up"), from there to (2; 
0) with header (S; k; \unmarked"),from there to (2; 
+j�1) with header (S; k; \marked"), and from there to (2; 
+j)6



with header \Ready". We will now verify that su
h a k exists. Let k0 = blog2 j
.Then there are either one or two k0-
ounters in f
+ 1; : : : ; 
+ j � 1g. Supposethat there are two, in 
olumns m2k0 and (m+ 1)2k0 . Then one of m and m+ 1is even, so there is exa
tly one (k0 + 1)-
ounter in f
+ 1; : : : ; 
+ j � 1g.We now prove (B). Let 
0 be the �rst k-
ounter to the right of 
 and let 
00 bethe �rst k-
ounter to the left of 
0. Then 
olumn 
0 is the leftmost 
olumn in whi
ha pa
ket 
an enter row 1 as a result of a pa
ket with header \Ready" arrivingat (0; 
). By the time that a pa
ket gets to 
olumn 
00 in row 1, it is marked.Thus, the leftmost 
olumn in row 1 whi
h is rea
hed is 
olumn 
00. These pa
ketstravel right in row 2, but they are unmarked as they enter 
olumn 
0. Thus, theleftmost 
olumn to whi
h a header \Ready" pa
ket is sent is 
olumn 
0 + 1. utThe 
ommuni
ation proto
ol that we use for Z-paths is analogous to the onethat we use for S-paths. We now make the following observation.Lemma 2. Every simple path from S to R 
an be formed by 
on
atenating pathsof types U, D, S, and Z, using left-to-right edges.Proof. Consider a simple path P from S to R. We �rst observe that any right-to-left edge in P 
an only be in row 1. For 
ontradi
tion, suppose that ((1; 
+1); (1; 
)) is a right-to-left edge along row 1. It is easy to see that any path fromS to (1; 
 + 1) must interse
t any path from (1; 
) to R. Sin
e P is simple, wehave a 
ontradi
tion.Hen
e every right-to-left edge o

urs in row 1 with left-to-right edges imme-diately above and below it in rows 0 and 2. As a 
onsequen
e, every 
onse
utivesequen
e of right-to-left edges o

urs as the 
entral se
tion of an S-path or aZ-path. Sin
e any subpath whi
h 
ontains no right-to-left edges is formed by
on
atenating zero or more U-paths and D-paths with left-to-right edges, theproof is 
omplete. utThus, using Lemma 1 (and the 
orresponding observation for Z-paths), we
an prove Theorem 1.Theorem 1. There is a proto
ol whi
h delivers a message from S to R inG(3; n) with �nite traÆ
, using headers of length log2 log2 n+O(1).Proof. Consider the 
ommuni
ation proto
ol that starts by sending a pa
ketwith header \Ready" from S to ea
h of its neighbours (0; 0), (1; 0), and (2; 0),that performs the U, D, S, and Z proto
ols at all intermediate nodes, and thatsends a pa
ket to R from its neighbours (0; n � 1), (1; n � 1), and (2; n � 1),whenever they re
eive a pa
ket.Sin
e ea
h of the four types of proto
ol ends by sending a pa
ket withheader \Ready" to the right, a pa
ket path 
an be regarded as a sequen
e of \ba-si
" paths (of type U, D, S or Z) 
on
atenated by horizontal edges along whi
hthese pa
kets are sent. Formally, we 
an prove that if there is a simple path of7



live edges from S to R, then R will re
eive a pa
ket. This is done by indu
tionon the number of basi
 paths whi
h get 
on
atenated to form the simple path.Now suppose that all of the edges in the graph are alive. When a node(r; 
) re
eives a pa
ket of type \Ready", the result is a bounded number of newpa
kets of type \Ready" all of whi
h are sent to verti
es in 
olumns to the rightof 
olumn 
, and a bounded number of pa
kets of other types. Thus, only a �nitenumber of pa
kets are generated. ut3 A Proto
ol for G(m;n)In this se
tion, we provide an upper bound on the header size required for sendinga single message from S to R in G(m;n). Sin
e G(m;n) is a minor of G(m;n0)for all n � n0, by Proposition 1, it suÆ
es to assume that n = 2h + 1 for somepositive integer h.We begin by giving a 
hara
terization of 
ertain simple paths.De�nition 1. For r1 � r2 and 
1 6= 
2, a (
1; 
2; r1; r2)-bounded path is asimple path that starts in 
olumn 
1, ends in 
olumn 
2, and does not go throughany node in a 
olumn less than minf
1; 
2g, a 
olumn greater than maxf
1; 
2g,a row less than r1, or a row greater than r2.Note that every simple path from the �rst 
olumn of G(m;n) to the last
olumn of G(m;n) is a (0; n�1; 0;m�1)-bounded path. A (
1; 
2; r; r)-boundedpath is a simple path of horizontal edges.De�nition 2. For r1 < r2 and 
1 6= 
2, a (
1; 
2; r1; r2)-bounded loop is asimple path that starts and ends in 
olumn 
1, and does not go through any nodein a 
olumn less than minf
1; 
2g, a 
olumn greater than maxf
1; 
2g, a row lessthan r1, or a row greater than r2.We fo
us attention on bounded paths between 
olumns whi
h are 
onse
utivemultiples of some power of 2, i.e. from 
olumn 
2k to 
olumn 
02k, where 
0 =
� 1.Lemma 3. Let 
1, 
2, and 
3 be 
onse
utive nonnegative integers, with 
2 odd,and let k be a nonnegative integer. Then every (
12k; 
32k; r1; r2)-bounded path
an be de
omposed into a (
12k; 
22k; r1; r2)-bounded path, followed by a series ofr2�r1 or fewer (
22k; 
12k; r1; r2)- and (
22k; 
32k; r1; r2)-bounded loops, followedby a (
22k; 
32k; r1; r2)-bounded path.Proof. Consider any (
12k; 
32k; r1; r2)-bounded path. The portion of the pathuntil a node in 
olumn 
22k is �rst en
ountered is the �rst subpath, the portionof the path after a node in 
olumn 
22k is last en
ountered is the last subpath,and the remainder of the path is the series of loops. The bound on the numberof loops follows from the fa
t that the path is simple, so the �rst subpath andea
h of the loops end on di�erent nodes in 
olumn 
22k. ut8



This gives us a re
ursive de
omposition of any simple path from the �rst
olumn to the last 
olumn of G(m;n), where n is one more than a power of2. Spe
i�
ally, su
h a (0; n � 1; 0;m � 1)-bounded path 
onsists of a (0; (n �1)=2; 0;m � 1)-bounded path, followed by a series of at most m � 1 di�erent((n � 1)=2; n� 1; 0;m� 1) and ((n � 1)=2; 0; 0;m� 1)-bounded loops, followedby a ((n� 1)=2; n� 1; 0;m� 1)-bounded path. Ea
h of the bounded paths 
anthen be similarly de
omposed. Furthermore, we 
an also de
ompose the boundedloops.Lemma 4. Let k, r1, r2, 
1 and 
2 be nonnegative integers, where 
1 and 
2are 
onse
utive, 
1 is odd, and r1 < r2. Then every (
12k; 
22k; r1; r2)-boundedloop 
an be de
omposed into the pre�x of a (
12k; 
22k; r1 + 1; r2)-bounded path,followed by a downward edge, followed by the suÆx of a (
22k; 
12k; r1; r2 � 1)-bounded path, or the pre�x of a (
12k; 
22k; r1; r2 � 1)-bounded path, followed byan upward edge, followed by the suÆx of a (
22k; 
12k; r1 + 1; r2)-bounded path.Proof. Consider any (
12k; 
22k; r1; r2) bounded loop. Let 
 be the 
olumn far-thest from 
12k that this path rea
hes and let (r; 
) be the �rst node in this pathin 
olumn 
. Let p1 be the pre�x of this path up to and in
luding node (r; 
).The next edge is verti
al. Let p2 be the remainder of the bounded loop followingthat edge.Sin
e the loop is a simple path, paths p1 and p2 do not interse
t. Thus, eitherp1 is 
ompletely above p2, so p1 never uses row r1 and p2 never uses row r2, orp1 is 
ompletely below p2, so p1 never uses row r2 and p2 never uses row r1. utWe use this re
ursive de
omposition of simple paths in our proto
ol. Insteadof trying just the simple S{R paths in G(m;n), our proto
ol tries all S{R pathsthat 
an be re
ursively de
omposed in this way.Our basi
 building blo
k is a proto
ol that sends a pa
ket from 
olumn 
1 to
olumn 
2, where 
1 and 
2 are 
onse
utive multiples of some power of 2, usingsome set of r adja
ent rows. The proto
ol does this by �rst sending the pa
ketfrom 
olumn 
1 to the middle 
olumn (
1 + 
2)=2, re
ursively. Then it sends thepa
ket looping around the middle 
olumn at most r�1 times. Ea
h loop 
onsistsof a �rst half and a se
ond half, ea
h of whi
h uses at most r � 1 rows. Both ofthese subproblems are solved re
ursively. Finally, the proto
ol re
ursively sendsthe pa
ket from the middle 
olumn to 
olumn 
2.It follows by Lemmas 3 and 4 that, if there is a simple path of live edges fromS to R, then our proto
ol �nds it. Note that, at the lowest level of the re
ursion,a pa
ket is always travelling in what is 
onsidered the forward dire
tion (whenthe bounded path is from right to left, this will be in the ba
kwards dire
tionof the original problem, but still in the forward dire
tion of the lowest levelsubproblem). Thus, the diÆ
ult part of this proto
ol is performing the boundedloops in su
h a way that the pa
ket does not travel in an in�nite loop.Let #2(0) =1 and for every positive integer 
, let #2(
) denote the largestpower of two that divides 
. Thus, if 
 
an be expressed as 
12k for an odd9



number 
1, then #2(
) = k. In our proto
ol, the pa
ket header is used to keeptra
k of the 
olumn in whi
h the 
urrent loop started and the distan
e to theother 
olumn boundary. If we naively stored these numbers, then 
(logn) headerbits would be required. However, be
ause our de
omposition only uses boundedloops of the form (
12k; (
1 � 1)2k; r1; r2), where 
1 is odd, it is suÆ
ient tokeep tra
k of k (i.e., #2(
12k)). Note that k 
an be represented using onlydlog2 log2(n � 1)e bits. Using the quantity k, a pa
ket 
an tell when it rea
hesits boundary 
olumns. In parti
ular, while its 
urrent 
olumn 
 is between theboundaries, #2(
) < k but when 
 is at the boundaries #2(
) � k.When the algorithm is doing a bounded loop from 
olumn 
12k the followingquantities are stored.{ power = #2(
12k) (whi
h is equal to k),{ minRow, the smallest row that 
an be used,{ maxRow, the largest row that 
an be used,{ loopCounter, the number of loops that have already been done around 
ol-umn 
12k in the 
urrent path,{ loopHalf (0 if the 
urrent pa
ket is in the �rst bounded path that forms thisloop and +1 if it is in the se
ond),{ forward, the dire
tion in whi
h the pa
ket is travelling on the 
urrent path(+1 if the pa
ket is going from left to right and �1 it is going from right toleft).Although our path de
omposition has log2(n�1) levels of re
ursion, at mostm loops 
an be a
tive at any one time. This follows from Lemma 4, sin
e thenumber of allowed rows de
reases by 1 for ea
h a
tive loop. We shall thinkof the bits in the pa
ket header as a sta
k and, for ea
h a
tive loop, the abovementioned variables will be pushed onto the sta
k. Finally, we use two additionalbits with ea
h transmission to ensure that any node re
eiving a pa
ket knowswhere that pa
ket 
ame from. In total, our proto
ol uses headers with at mostO(m(log logn+ logm)) bits.At the start, S sends a pa
ket to ea
h node in 
olumn 0. The header ofea
h pa
ket 
ontains the following information in its only sta
k entry: power= log2(n � 1), minRow = 0, maxRow = m � 1, forward = 1, loopHalf = 1,and loopCounter = 0. (To be 
onsistent with other levels of re
ursion, we arethinking of the path from 
olumn 0 to 
olumn n� 1 as being the se
ond half ofa (n� 1; 0; 0;m� 1)-bounded loop.)We shall refer to the variable d = m � maxRow + minRow, whi
h is equalto the re
ursion depth. We des
ribe the a
tions of any node (r; 
) that does notappear in the �rst or last 
olumn of G(m;n). The a
tions of the nodes in the�rst (or last) 
olumn are identi
al, ex
ept that they do not perform the spe
i�edforwarding of pa
kets to the left (or right, respe
tively). In addition, if a node inthe last 
olumn of G(m;n) ever re
eives a pa
ket, it forwards that pa
ket to R.10



Proto
ol DELIVEROn re
eipt of a pa
ket at node (r; 
) with (power,minRow,maxRow, loopCounter,loopHalf, forward) at the top of its sta
k/* The default move is to forward a pa
ket up, down, and in the 
urrentdire
tion of travel. */� If r < maxRow and the pa
ket was not re
eived from node (r + 1; 
), sendthe pa
ket to node (r + 1; 
).� If r > minRow and the pa
ket was not re
eived from node (r � 1; 
), sendthe pa
ket to node (r � 1; 
).� If power > #2(
), then send the pa
ket to node (r; 
+ forward)./* In addition, we may 
hoose to start a set of loops starting at the 
urrent
olumn. */� If power > #2(
), d < m, and r > minRow, then, for f = �1, send thepa
ket to node (r; 
 + f) with (#2(
);minRow + 1;maxRow; 0; 0; f) pushedonto its sta
k.� If power > #2(
), d < m, and r < maxRow, then, for f = �1, send thepa
ket to node (r; 
 + f) with (#2(
);minRow;maxRow � 1; 0; 0; f) pushedonto its sta
k./* If a loop is in its �rst half, it 
an swit
h to the se
ond half at any step. */� If loopHalf = 0, let minRow 0 denote the value of minRow at the previouslevel of re
ursion (i.e. in the re
ord se
ond from the top of the sta
k).If minRow = minRow 0� then send the pa
ket to node (r+1; 
) with (power,minRow+1,maxRow+1,loopCounter,1,�forward) repla
ing the top re
ord on its sta
k.� else send the pa
ket to node (r�1; 
) with (power, minRow�1,maxRow�1,loopCounter,1,�forward) repla
ing the top re
ord on its sta
k./* If a pa
ket has returned to the 
olumn where it started its 
urrent set ofloops, it has two options. */� If #2(
) � power and loopHalf = 1 then/* Option 1: start the next loop in the set. Note that if the se
ond half ofthe previous loop allows the use of rows r1 to r2, then the previous level ofthe re
ursion allows the use of either rows r1 to r2 + 1 or rows r1 � 1 to r2.In the �rst 
ase, the �rst half of the next loop 
an use either rows r1 to r2or rows r1 + 1 to r2 + 1. In the se
ond 
ase, the �rst half of the next loop
an use either rows r1 to r2 or rows r1 � 1 to r2 � 1. */� If loopCounter < maxRow�minRow� 1, then� For f = �1, send the pa
ket to node (r; 
+f) with (power, minRow,maxRow, loopCounter+1, 0, f) repla
ing the top re
ord on its sta
k.11



� LetminRow 0 andmaxRow 0 denote the value ofminRow andmaxRowat the previous level of re
ursion (i.e. in the re
ord se
ond from thetop of the sta
k).� If minRow = minRow 0 and r > minRow then for f = �1, sendthe pa
ket to node (r; 
+ f) with (power, minRow+1, maxRow+1,loopCounter + 1, 0, f) repla
ing the top re
ord on its sta
k.� If maxRow = maxRow 0 and r < maxRow then for f = �1, sendthe pa
ket to node (r; 
+ f) with (power, minRow� 1, maxRow� 1,loopCounter + 1, 0, f) repla
ing the top re
ord on its sta
k./* Option 2: stop the 
urrent set of loops and return to the previous levelof the re
ursion. */� If d > 1, pop one re
ord o� the sta
k. Let forward 0 denote the value offorward at the new top level of the sta
k. Send the resulting pa
ket tonode (r; 
+ forward 0).End of proto
ol.Lemma 5. The header of any pa
ket produ
ed by the Proto
ol DELIVER hasa length of at most m(dlog2 log2(n� 1)e+ 3dlog2me+ 2) + 2 bits.Proof. It is easily veri�ed that the maximum depth of the re
ursion produ
edby Proto
ol DELIVER is m. For ea
h su
h level, the variable power 
an berepresented using dlog2 log2(n � 1)e bits, the variables maxRow, minRow, andloopCounter 
an be represented using dlog2me bits, and forward and loopHalf
an ea
h be represented using a single bit. The �nal two bits 
ome from thefa
t that ea
h transmission informs the re
ipient of the dire
tion from whi
h thepa
ket 
ame. utLemma 6. Proto
ol DELIVER transmits only a �nite number of pa
kets.Proof. We provide a potential fun
tion � for any pa
ket in the system, su
hthat there is a maximum value that � 
an attain and, every time a pa
ket isforwarded, the 
orresponding value of � is in
reased by at least 1. (That is, ea
hpa
ket P has a potential ex
eeding the potential of the pa
ket whose arrival
aused P to be sent.) For ea
h level of re
ursion i, 1 � i � m, we de�ne threevariables: l
i, lhi, and disti. All of these variables are de�ned to be 0 if i > d. Fori � d, l
i and lhi are the loopCounter and loopHalf variables, respe
tively, forlevel i in the re
ursion. For i � d, the variable disti is the number of horizontalsteps taken by the pa
ket starting from the time that the forward variable at thei'th level of re
ursion was last set, 
ounting only those steps that o

urred whend = i. Note that a pa
ket 
an only move horizontally in the dire
tion spe
i�edby the forward variable, and thus all of these steps will be in the same dire
tion.This means that disti � n. We also de�ne the variable vert to be the number ofsteps taken in a verti
al dire
tion on the 
urrent 
olumn sin
e last moving therefrom another 
olumn. 12



The potential fun
tion � that we de�ne 
an be thought of as a (3m+1)-digitmixed radix number, where for t 2 f1; : : : ;mg, digit 3(t � 1) + 1 is l
t, digit3(t � 1) + 2 is lht, and digit 3(t � 1) + 3 is distt. Digit 3m + 1 is vert. It iseasily veri�ed that when a pa
ket is �rst sent, � � 0. Also, by 
he
king ea
hof the possible a
tions of a node on the re
eipt of a pa
ket, we 
an verify thatevery time a pa
ket is forwarded, � in
reases by at least 1. We also see that �is bounded, sin
e vert � m � 1 and, for any i, l
i � m, disti � n, and lhi � 1.Sin
e ea
h pa
ket re
eipt 
auses at most a 
onstant number of new pa
kets to besent out, it follows that the total number of pa
kets sent as a result of Proto
olDELIVER is �nite. utIt follows from the de
omposition of simple S{R paths given by Lemmas 3and 4 that, if there is a simple path of live edges from S to R, then Proto
olDELIVER �nds it. We 
ombine Lemmas 5 and 6 to get our main result.Theorem 2. Proto
ol DELIVER delivers a message from S to R with �nitetraÆ
 using O(m(log logn+ logm))-bit headers .4 A Lower BoundIn this se
tion, we prove that 
(log logn) header bits are ne
essary for 
ommuni-
ating a single message in a 3�n grid. First, we 
onsider the graph G(3; n) withn = h!. The proof is similar in 
avour to the lower bound for 
ommuni
ating asingle message in a 
omplete graph [AF99℄.Our proof fo
usses attention on h parti
ular simple S{R paths, de�ned asfollows. For k = 1; : : : ; h, let Pk 
onsist of k! alternating S-paths and Z-paths,ea
h of extent h!=k!, 
on
atenated using single horizontal edges. Figure 2 showspaths P1; P2, and P3 for the 
ase h = 3.
P1 P2 P3Fig. 2. Paths P1; P2, and P3 for h = 3For 0 � i < n, let i1; : : : ; ih be su
h that i =Phk=1 ikn=k! where 0 � ik < k.In other words, (i1; � � � ; ih) is the mixed radix representation of i, where the k'thmost signi�
ant digit is in base k. Note that i1 always has value 0. For example,if n = 24 = 4! and i = 20, then i1 = 0, i2 = 1, i2 = 2, and i3 = 0.Proposition 2. Let 0 � i < j < n. Node (1; j) appears before node (1; i) inpath Pk if and only if id = jd for d = 1; : : : ; k.13



Proof. In every S-path or Z-path, the nodes in row 1 appear in order fromlargest numbered 
olumn to smallest numbered 
olumn. Sin
e path Pk is the
on
atenation of S-paths and Z-paths, node (1; j) appears before node (1; i) ifand only if 
olumns i and j are in the same S-path or Z-path. Sin
e ea
h S-pathand Z-path 
omprising Pk has extent n=k!, it follows that i and j are in theS-path or Z-path if and only if bi=(n=k!)
 = bj=(n=k!)
, whi
h is true if and onlyif id = jd for d = 1; : : : ; k. utConsider any proto
ol for G(3; h!) that delivers a message from S to R with�nite traÆ
. Sin
e node (1; 
) is on path Pk, it re
eives at least one pa
ket whenonly the links on the simple S{R path Pk are alive. Let Hk(
) denote the headerof the last pa
ket re
eived by node (1; 
) in this situation that 
auses a pa
ketto be re
eived by R.Lemma 7. Consider any proto
ol for G(3; h!) that delivers a message from Sto R with �nite traÆ
. Then, for all path indi
es 1 � j < k � h and all 
olumns0 � 
 < 
0 < h! su
h that (
1; 
2; : : : ; 
j) = (
01; 
02; : : : ; 
0j) and (
1; 
2; : : : ; 
k) 6=(
01; 
02; : : : ; 
0k), either Hj(
) 6= Hk(
) or Hj(
0) 6= Hk(
0).Proof. To obtain a 
ontradi
tion, suppose that Hj(
) = Hk(
) and Hj(
0) =Hk(
0), for some path indi
es 1 � j < k � h and some 
olumns 0 � 
 < 
0 < h!su
h that (
1; 
2; : : : ; 
j) = (
01; 
02; : : : ; 
0j) and (
1; 
2; : : : ; 
k) 6= (
01; 
02; : : : ; 
0k).Then, by Proposition 2, node (1; 
0) appears before node (1; 
) in path Pj butafter node (1; 
) in path Pk.Consider the situation when the links on both paths Pj and Pk are alive.The proto
ol forwards a pa
ket along path Pk until a pa
ket with header Hk(
0)rea
hes node (1; 
0). This 
auses a pa
ket to be re
eived by R. Sin
e Hk(
0) =Hj(
0) and node (1; 
0) o

urs before node (1; 
) on path Pj , it also 
auses a pa
ketwith header Hj(
) to be re
eived at node (1; 
). Likewise, sin
e Hj(
) = Hk(
)and node (1; 
) o

urs before node (1; 
0) on path Pk, this 
auses a pa
ket withheader Hk(
0) to be re
eived at node (1; 
0), and we have an in�nite loop. Ea
htime su
h a pa
ket goes through the loop, it produ
es a new pa
ket that is sentto the destination R. This 
ontradi
ts the �nite traÆ
 assumption. utLemma 8. Consider any proto
ol for G(3; h!) that delivers a message from Sto R with �nite traÆ
. Then, for 1 � k � h, there exist nonnegative digitsi1 < 1; i2 < 2; : : : ; ik < k su
h that the k headers H1(
); : : : ; Hk(
) are distin
tfor ea
h 
olumn 
 with (
1; 
2; : : : ; 
k) = (i1; i2; : : : ; ik).Proof. To obtain a 
ontradi
tion, suppose the lemma is false. Consider the small-est value of k � h for whi
h the lemma is false. Sin
e there are no repetitionsin a sequen
e of length one, k > 1. Let i1 < 1; i2 < 2; : : : ; ik�1 < k � 1be su
h that the k � 1 headers H1(
); : : : ; Hk�1(
) are distin
t for ea
h 
ol-umn 
 with (
1; 
2; : : : ; 
k�1) = (i1; i2; : : : ; ik�1). Then, for ea
h digit ik 2f0; : : : ; k � 1g, there exists a path index j 2 f1; : : : ; k � 1g and a 
olumn 
su
h that (
1; 
2; : : : ; 
k�1; 
k) = (i1; i2; : : : ; ik�1; ik) and Hk(
) = Hj(
).14



Sin
e there are k 
hoi
es for ik and only k � 1 
hoi
es for j, the pigeonholeprin
iple implies that there exist distin
t ik; i0k 2 f0; : : : ; k�1g whi
h give rise tothe same value of j and there exist 
olumns 
 and 
0 su
h that (
1; 
2; : : : ; 
k�1) =(
01; 
02; : : : ; 
0k�1), 
k = ik 6= i0k = 
0k, Hk(
) = Hj(
), and Hk(
0) = Hj(
0). Butthis 
ontradi
ts Lemma 7. utTheorem 3. Any proto
ol for G(3; n) that delivers a message from S to R with�nite traÆ
 uses headers of length at least log2 log2 n�O(log log logn).Proof. Let h be the largest integer su
h that n � h!. Then n < (h+1)! < (h+1)h,so h log2(h+ 1) > log2 n and h 2 
(logn= log logn).Consider any proto
ol for G(3; n) that uses headers of length L. Sin
e G(3; h!)is a minor of G(3; n), it follows from Proposition 1 that there is a proto
ol forG(3; h!) using headers of length L. Hen
e, by Lemma 8, L � log2 h = log2 log2 n�O(log log logn). utReferen
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