Tight Size Bounds for Packet Headers
in Narrow Meshes*

Micah Adler', Faith Fich?, Leslie Ann Goldberg?, and Mike Paterson?®

! micah@cs.umass.edu, Department of Computer Science, University of
Massachusetts, Amherst, MA 01003, USA.
2 fich@cs.toronto.edu, Department of Computer Science, University of Toronto,
Toronto, Canada, M5S 3G4.1
3 (leslie,msp)@dcs.warwick.ac.uk, Department of Computer Science, University
of Warwick, Coventry CV4 7AL, UK.}

Abstract. Consider the problem of sending a single message from a
sender to a receiver through an m x n mesh with asynchronous links
that may stop working, and memoryless intermediate nodes. We prove
that for m € O(1), it is necessary and sufficient to use packet headers
that are ©(loglogn) bits long.

1 Introduction

Protocols that send information bundled into packets over a communication
network allocate some number of bits in each packet for transmitting control
information. We here refer to such bits as header bits. These bits might include
sequence numbers to ensure that packets are received in the correct order, or
they might contain routing information to ensure that a packet is delivered to its
destination. When the number of message bits in a packet is small (for example,
in acknowledgements), the header bits can make up a significant fraction of the
total number of bits contained in the packet. A natural question to ask is the
following: how large must packet headers be for reliable communication?

This problem is addressed in [AF99], part of a large body of research on the
end-to-end communication problem [AAF+494], [AAG+97], [AG88], [AMS89],
[APV96], [DW97], [KOR95], [LLT98]. The end-to-end communication problem
is to send information from one designated processor (the sender S) to another
designated processor (the receiver R) over an unreliable communication network.
This is a fundamental problem in distributed computing, since (a) communica-
tion is crucial to distributed computing and (b) as the size of a network increases,
the likelihood of a fault occurring somewhere in the network also increases.

* Research Report 366, Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK

t This work was partly supported by grants from NSERC and CITO.

 This work was partly supported by EPSRC grant GR/L60982 and ESPRIT LTR
Project ALCOM-FT.

Adler and Fich [AF99] studied the question of how many header bits are
required for end-to-end communication in the setting where there is a single
message to be sent from S to R. They prove that, for the complete network of
n processors or any network that contains it as a minor (such as the n?-input
butterfly or the n X n x 2 mesh), any memoryless protocol that ensures delivery
of a single message using headers with fewer than [log, n] — 3 bits, generates an
infinite amount of message traffic.

If there is a path of live links from S to R in an n-node network, then there
is a simple such path of length at most n — 1. Therefore, it suffices to use the
simple “hop count” algorithm: use packet headers of length [log,(n—1)] to count
the number of links that packets have travelled [P81]. Thus, for the complete
graph, we have upper and lower bounds that match to within a small additive
constant, and, for the n2-input butterfly and the n x n x 2 mesh, to within a
small multiplicative constant.

However, for several graphs there remains a large gap between the best upper
and lower bounds. Planar graphs, including two-dimensional meshes, do not
contain a complete graph on more than 4 nodes as a minor [K30], and as a result,
no previous work has demonstrated a lower bound larger than a constant for any
planar graph. Furthermore, for some networks it is possible to do better than
the simple hop count algorithm. For example, Adler and Fich [AF99] observed
that, for any feedback vertex set F' in a graph G, any simple path visits vertices
in F' at most |F| times and they obtained a variant of the hop count protocol
that uses packet headers of length [log,(|F'|+1)]. However, some graphs have no
small feedback vertex sets. In particular, any feedback vertex set for the m x n
mesh has size at least |m/2] - |[n/2]. In this case, this variant does not offer
significant improvement over the hop count algorithm.

Thus, we see that a network that has resisted both lower bound and upper
bound improvements is the two-dimensional mesh. Prior to this work, there was
no upper bound better than O(logmn), nor lower bound better than 2(1), for
any m X n mesh with m,n > 2. Note that for m = 2, headers of length one
suffice (to indicate which neighbour sent the packet) [AF99]. In [AF99], it is
conjectured that 2(logn) header bits are necessary for a protocol to ensure
delivery of a single message in an n x n mesh without generating an infinite
amount of message traffic.

Here, we attack this open problem by considering m x n meshes, for con-
stant m > 3. We prove the unexpected result that ©(loglogn) bit headers are
necessary and sufficient for such graphs.

1.1 Network Model

We model a network by an undirected graph G, with a node corresponding to
each processor and an edge corresponding to a link between two processors.
Specifically, we consider the graphs G(m,n) with a sender node S and a receiver
node R in addition to the mn intermediate nodes, (i,7), for 0 < i < m and
0 < j < n. There are links between

node S and node (¢,0), for 0 < i < m,

— node (4,5) and node (i,j+ 1), for 0 <i<mand 0<j<n—1,
node (4,7) and node (i +1,5),for 0 <i<m —1and 0 < j < n, and
— node (i,n — 1) and node R, for 0 <i < m.

The graph G(3,6) is illustrated in Figure 1.

(25

(0.0

Fig. 1. The graph G(3,6)

Processors communicate by sending packets along links in the network. Each
packet consists of data (i.e. the message) and a header. The processor at an
intermediate node may use information in the header to determine what packets
to send to its neighbours, but they cannot use the data for this purpose. Fur-
thermore, headers may be modified arbitrarily; however, data must be treated
as a “black box”. This data-oblivious assumption is appropriate when one views
end-to-end communication protocols as providing a reliable communication layer
that will be used by many different distributed algorithms. We also assume that
a processor cannot detect from which of its neighbours a packet was sent. Since
the degree of the graphs is constant, this is not important: when each processor
sends a packet, it can indicate the direction of travel using a constant number
of header bits.

Intermediate processors are assumed to be memoryless, and thus processors
can only send packets as a result of receiving a packet and must decide along
which link(s) to forward the message and how to change the packet header,
based only on the contents of the header. This is an appropriate model for a
network with simultaneous traffic between many different pairs of processors,
for example, the Internet, where no information concerning past traffic is stored.

The links of the network are either alive or dead. At any time, a live link may
become dead. However, once a link becomes dead, it remains so. Processors do
not know which subset of the links are alive.

To simplify our protocols, we will adopt the convention that packets “sent”
to non-existent nodes are ignored.

Live links deliver packets in a first in, first out manner. However, the time
for a packet to traverse a link may differ at different times or for different links.
We assume that the time for a packet to traverse a link is finite, but unbounded.
Edges which are dead can be thought of as having infinite delay. In this asyn-

chronous model, a processor cannot distinguish between an dead link and a link
which is just very slow.

1.2 Summary of Results

In this paper, we consider the problem of sending a single message from S to R.
Our goal is to ensure that

— as long as there is some simple S—R path of live links, at least one copy of
the message gets sent from S to R, and
— even if all links are alive, only a finite number of packets are generated.

We say that a protocol which satisfies these requirements delivers a message
from S to R with finite traffic. In this paper, we provide an algorithm that does
this using O(m loglogn)-bit headers for any network G(m,n). For the case of
G(3,n), this is improved to log, log, n+O(1). Furthermore, we demonstrate that
for G(3,n), log, log, n—O(log loglogn) bits are required. Thus, for any constant
m > 3, we have optimal bounds to within a constant factor on the number of
header bits that are necessary and sufficient to deliver a message from S to R
with finite traffic in G(m,n). For the case of G(3,7n), our bounds are within an
additive term of O(logloglogn) from optimal.

Our upper bounds use a new technique to obtain an approximate count of
how many nodes a message has visited, which is sufficient to guarantee that only
a finite number of packets are generated. This technique may have applications
to other networks.

Our upper bounds also provide upper bounds for any graphs that are mi-
nors of G(m,n), for any constant m. Similarly, we get lower bounds for any
graphs that contain G(3,n) as a minor. These are consequences of the following
observation from Adler and Fich [AF99].

Proposition 1. Suppose G' is a minor of G and S’ and R' are the supernodes
of G' containing S and R, respectively. Then any protocol for G that delivers
a message from S to R with finite traffic gives a protocol for G' with the same
packet headers that delivers a message from S’ to R' with finite traffic.

The protocol for G(3,n) is given in the next section. Section 3 extends this
result to G(m,n) for any constant m > 3. This is followed in Section 4 by our
lower bound for G(3,n) and, hence, for G(m,n) with m > 3, which contains
G(3,n) as a minor.

2 A Protocol for G(3,n)

In this section, we present a protocol using O(loglogn) header bits that delivers
a message from S to R with finite traffic in G(3,n). Throughout the protocol,

each packet will contain the message as its data. Consequently, we mention only
the header bits in what follows.

We describe the protocol in pieces. We first consider some simple paths in
the graph, and focus on paths that move “right”, that is, on paths from (r,¢;)
to (ro, ¢2) with ¢a > ¢1. There are four types of paths: U, D, S, and Z. For each of
these paths, there is a simple communication protocol, such that when a packet
with header “Ready” enters the first node (r1,c¢;) of the path, and all of the
edges in the path are alive, the protocol sends a packet with header “Ready”
from the last node of the path to the node (72, ¢c2 + 1). The protocol uses a finite
number of header bits.

A U-path (D-path) consists of zero, one or two upward (downward respec-
tively) edges. The protocol for a U-path is as follows.

If (r,c) receives a packet with header “Ready” or “up”, it sends a packet
with header “Ready”to (r,c+ 1), and a packet to (r + 1,¢) with header “up”.

Note that the U-path protocol only generates a finite number of packets, and
results in a “Ready” packet at the end of the path. The protocol for D-paths is
analogous, substituting “down” and r — 1 for “up” and r + 1.

An S-path of extent j > 1is a path from (0,¢) to (2,¢+ j — 1). It consists of

— A left-to-right path of length j — 1 along the bottom row from (0,¢) to
(0,¢+j — 1), followed by

— the vertical edge from (0,¢+ j — 1) to (1,¢+ j — 1), followed by

— a right-to-left path of length j — 1 along the middle row from (1,¢+j — 1)
o (1, ¢), followed by

— the vertical edge from (1,¢) to (2, ¢), followed by

— aleft-to-right path of length j—1 along the top row from (2, ¢) to (2, c+j—1).

Thus, an S-path of extent j contains 3(j — 1) horizontal edges and 2 vertical
edges, for a total length of 3j — 1. Similarly, a Z-path of extent j is a simple path
of total length 35 — 1 from (2,¢) to (2,c¢+j — 1), to (1,c+j — 1), to (1,¢), to
(0,¢), and finally to (0,¢+j — 1).

Our communication protocol for an S-path of extent j has the property that
when a packet enters the first node (0, c¢) with header “Ready”, and all of the
edges are alive, the protocol sends a packet with header “Ready” from the last
node to (2,¢+ j). The protocol will use O(loglogn) header bits. Furthermore,
it will only generate a finite number of packets. It may result in more than one
new packet with header “Ready”, but each of these new packets will arrive at
a node which is to the right of column c. Thus, only a finite number of packets
will be generated overall, so we will be able to combine the protocol with our
other protocols to achieve our two goals.

For any nonnegative integer k, we say that column c is a k-counter if and
only if ¢ = 0 mod 2*. In particular, every column is a O-counter and column 0 is
a k-counter for all £ > 0.

The protocol for S-paths of extent greater than one is as follows.

— If (0,c¢) receives a packet with header “Ready”, then for each value k €
{1,...,[logy n]}, it sends a packet to (0, c+1) with header (S, k, “unmarked”).

— If (0,¢) receives a packet with header (S, k, “unmarked”), it sends a packet
to (0,c+ 1) with header (S, k,z), where z = “marked” if ¢ is a k-counter
and x = “unmarked” otherwise. In addition, if ¢ is a k-counter, then (0, c)
also sends a packet to (1, ¢) with header (S, k, “up”).

— If (0,¢) receives a packet with header (S, k, “marked”) and ¢ is not a k-

counter, it sends a packet to (1,¢) with header (S, k, “up”), and a packet to

(0,¢+ 1) with header (S, k, “marked”).

If (1, ¢) receives a packet with header (S, k, “up”), it sends a packet to (1,c—

1) with header (S, %, “unmarked”) if ¢ is not a k-counter and with header

(S, k, “marked”) if ¢ is a k-counter.

— If (1,¢) receives a packet with header (S, k, “unmarked”), it sends a packet

to (1,¢ — 1) with header (S, k,z), where z = “marked” if ¢ is a k-counter

and z = “unmarked” otherwise. In addition, if ¢ is a k-counter then (1,c)

also sends a packet to (2, ¢) with header (S, k, “up”).

If (1,c) receives a packet with header (S, %, “marked”), it sends a packet to

(2,¢) with header (S, k, “up”). If ¢ is not a k-counter, it also sends a packet

to (1,¢— 1) with header (S, k, “marked”).

— If (2, ¢) receives a packet with header (S, k, “up”), it sends a packet to (2, c+1)

with header (S, k, “unmarked”).

If (2,c) receives a packet with header (S, k, “unmarked”), it sends a packet

to (2,c+1) with header (S, k, z), where = “marked” if ¢ is a k-counter and

z = “unmarked” otherwise. If ¢ is a k-counter, (2, ¢) it also sends a packet

to (2,¢+ 1) with header “Ready”.

If (2,c) receives a packet with header (S, k, “marked”), it sends a packet to

(2,¢+ 1) with header “Ready”. If ¢ is not a k-counter, it also sends a packet

to (2,c+ 1) with header (S, k, “marked”).

Lemma 1. Suppose that the S-path communication protocol is run as a result
of a packet with header “Ready” arriving at (0,c¢). Then

(A) For 1 < j <n—c+1, if all of the edges in the S-path of extent j from
(0,¢) to (2,c+ j — 1) are alive, then a packet with header “Ready” is sent
to (2,¢+ 7).

(B) The only new packets which are generated with header “Ready” have desti-
nations in columns which are to the right of column c.

Proof. We first prove (A). Suppose that there is a k € {1,...,[log, n]} such
that exactly one column ¢’ in {¢+ 1,...,¢+ j — 1} is a k-counter. Then it is
straightforward to verify that packets travel from (0,¢) to (0,¢') with header
(S, k, “unmarked”), from there to (0,¢ + j — 1) with header (S, k&, “marked”),
up to (1,c¢+ j — 1) with header (S, k, “up”), from there to (1,¢') with header
(S, k, “unmarked”), from there to (1, ¢) with header (S, k, “marked”), up to (2, ¢)
with header (S, k, “up”), from there to (2,¢') with header (S, %, “unmarked”),
from there to (2, c+j—1) with header (S, k, “marked”), and from there to (2, ¢+j)

with header “Ready”. We will now verify that such a k exists. Let k' = |log, j].

Then there are either one or two k'-counters in {¢+ 1,...,¢+ j — 1}. Suppose
that there are two, in columns m2* and (m + 1)2* . Then one of m and m + 1
is even, so there is exactly one (k' + 1)-counter in {c+1,...,¢+j —1}.

We now prove (B). Let ¢’ be the first k-counter to the right of ¢ and let ¢’ be
the first k-counter to the left of ¢’. Then column ¢ is the leftmost column in which
a packet can enter row 1 as a result of a packet with header “Ready” arriving
at (0,¢). By the time that a packet gets to column ¢’ in row 1, it is marked.
Thus, the leftmost column in row 1 which is reached is column ¢”. These packets
travel right in row 2, but they are unmarked as they enter column ¢'. Thus, the
leftmost column to which a header “Ready” packet is sent is column ¢/ +1. 0O

The communication protocol that we use for Z-paths is analogous to the one
that we use for S-paths. We now make the following observation.

Lemma 2. Fvery simple path from S to R can be formed by concatenating paths
of types U, D, S, and Z, using left-to-right edges.

Proof. Consider a simple path P from S to R. We first observe that any right-
to-left edge in P can only be in row 1. For contradiction, suppose that ((1,c+
1),(1,¢)) is a right-to-left edge along row 1. It is easy to see that any path from
S to (1,¢ + 1) must intersect any path from (1,¢) to R. Since P is simple, we
have a contradiction.

Hence every right-to-left edge occurs in row 1 with left-to-right edges imme-
diately above and below it in rows 0 and 2. As a consequence, every consecutive
sequence of right-to-left edges occurs as the central section of an S-path or a
Z-path. Since any subpath which contains no right-to-left edges is formed by
concatenating zero or more U-paths and D-paths with left-to-right edges, the
proof is complete. O

Thus, using Lemma 1 (and the corresponding observation for Z-paths), we
can prove Theorem 1.

Theorem 1. There is a protocol which delivers a message from S to R in
G(3,n) with finite traffic, using headers of length log, log, n + O(1).

Proof. Consider the communication protocol that starts by sending a packet
with header “Ready” from S to each of its neighbours (0,0), (1,0), and (2,0),
that performs the U, D, S, and Z protocols at all intermediate nodes, and that
sends a packet to R from its neighbours (0,n — 1), (1,n — 1), and (2,n — 1),
whenever they receive a packet.

Since each of the four types of protocol ends by sending a packet with
header “Ready” to the right, a packet path can be regarded as a sequence of “ba-
sic” paths (of type U, D, S or Z) concatenated by horizontal edges along which
these packets are sent. Formally, we can prove that if there is a simple path of

live edges from S to R, then R will receive a packet. This is done by induction
on the number of basic paths which get concatenated to form the simple path.

Now suppose that all of the edges in the graph are alive. When a node
(r,c) receives a packet of type “Ready”, the result is a bounded number of new
packets of type “Ready” all of which are sent to vertices in columns to the right
of column ¢, and a bounded number of packets of other types. Thus, only a finite
number of packets are generated. O

3 A Protocol for G(m,n)

In this section, we provide an upper bound on the header size required for sending
a single message from S to R in G(m,n). Since G(m,n) is a minor of G(m,n')
for all n < n', by Proposition 1, it suffices to assume that n = 2* + 1 for some
positive integer h.

We begin by giving a characterization of certain simple paths.

Definition 1. For ry < ro and ¢1 # c¢2, a (¢1,c¢2,71,72)-bounded path is a
simple path that starts in column ¢y, ends in column co, and does not go through
any node in a column less than min{cy,ca}, a column greater than max{cy,ca},
a row less than r1, or a row greater than rs.

Note that every simple path from the first column of G(m,n) to the last
column of G(m,n) is a (0,n — 1,0, m — 1)-bounded path. A (¢1, ¢2,7,7)-bounded
path is a simple path of horizontal edges.

Definition 2. For r1 < 79 and ¢1 # ¢2, a (¢1,¢2,71,72)-bounded loop is a
simple path that starts and ends in column c1, and does not go through any node
in a column less than min{cy,ca}, a column greater than max{cy,cs}, a row less
than ry, or a row greater than rs.

We focus attention on bounded paths between columns which are consecutive
multiples of some power of 2, i.e. from column ¢2* to column ¢'2%, where ¢’ =
ct1.

Lemma 3. Let c1, c2, and c3 be consecutive nonnegative integers, with co odd,
and let k be a nonnegative integer. Then every (c12%,c32% ry,ry)-bounded path
can be decomposed into a (c12%, ca2%, r1, ry)-bounded path, followed by a series of
ro—r1 or fewer (c22%,¢12F, 71, ro)- and (ca2%, c32%, 71, 75)-bounded loops, followed
by a (c22%,c32F, 71, 79)-bounded path.

Proof. Consider any (c12*, c32%, r1,75)-bounded path. The portion of the path
until a node in column ¢»2 is first encountered is the first subpath, the portion
of the path after a node in column ¢»2* is last encountered is the last subpath,
and the remainder of the path is the series of loops. The bound on the number
of loops follows from the fact that the path is simple, so the first subpath and
each of the loops end on different nodes in column ¢y 2. O

This gives us a recursive decomposition of any simple path from the first
column to the last column of G(m,n), where n is one more than a power of
2. Specifically, such a (0,n — 1,0,m — 1)-bounded path consists of a (0, (n —
1)/2,0,m — 1)-bounded path, followed by a series of at most m — 1 different
((n—1)/2,n—1,0,m —1) and ((n — 1)/2,0,0,m — 1)-bounded loops, followed
by a ((n —1)/2,n — 1,0,m — 1)-bounded path. Each of the bounded paths can
then be similarly decomposed. Furthermore, we can also decompose the bounded
loops.

Lemma 4. Let k, r1, ro, ¢1 and co be nonnegative integers, where ¢; and co
are consecutive, ¢1 is odd, and r1 < 2. Then every (Cle,CQQk,Tl,TQ)—bOUnded
loop can be decomposed into the prefiz of a (c12F,c22% ry + 1,79)-bounded path,
followed by a downward edge, followed by the suffiz of a (co2*,c12%, 71,79 —1)-
bounded path, or the prefiz of a (c12%, 22k, 71, ro — 1)-bounded path, followed by
an upward edge, followed by the suffiz of a (ca2*,c12%, 71 + 1,72)-bounded path.

Proof. Consider any (c;2%,¢22%,71,75) bounded loop. Let ¢ be the column far-
thest from ¢;2¥ that this path reaches and let (r,¢) be the first node in this path
in column c¢. Let p; be the prefix of this path up to and including node (r, ¢).
The next edge is vertical. Let po be the remainder of the bounded loop following
that edge.

Since the loop is a simple path, paths p; and py do not intersect. Thus, either
p1 is completely above ps, so p; never uses row r; and p, never uses row o, Or
p1 is completely below ps, so p; never uses row r» and ps never uses row r;. 0O

We use this recursive decomposition of simple paths in our protocol. Instead
of trying just the simple S—R paths in G(m,n), our protocol tries all S—R paths
that can be recursively decomposed in this way.

Our basic building block is a protocol that sends a packet from column ¢; to
column co, where ¢; and ¢y are consecutive multiples of some power of 2, using
some set of r adjacent rows. The protocol does this by first sending the packet
from column ¢; to the middle column (¢; + ¢2)/2, recursively. Then it sends the
packet looping around the middle column at most r —1 times. Each loop consists
of a first half and a second half, each of which uses at most r — 1 rows. Both of
these subproblems are solved recursively. Finally, the protocol recursively sends
the packet from the middle column to column cs.

It follows by Lemmas 3 and 4 that, if there is a simple path of live edges from
S to R, then our protocol finds it. Note that, at the lowest level of the recursion,
a packet is always travelling in what is considered the forward direction (when
the bounded path is from right to left, this will be in the backwards direction
of the original problem, but still in the forward direction of the lowest level
subproblem). Thus, the difficult part of this protocol is performing the bounded
loops in such a way that the packet does not travel in an infinite loop.

Let #4(0) = oo and for every positive integer ¢, let #2(c) denote the largest
power of two that divides ¢. Thus, if ¢ can be expressed as ¢;2* for an odd

number ¢y, then #5(¢) = k. In our protocol, the packet header is used to keep
track of the column in which the current loop started and the distance to the
other column boundary. If we naively stored these numbers, then {2(logn) header
bits would be required. However, because our decomposition only uses bounded
loops of the form (c;2%, (¢; & 1)2% ry,73), where ¢; is odd, it is sufficient to
keep track of k (i.e., #2(c12¥)). Note that k can be represented using only
[log, logy(n — 1)] bits. Using the quantity k, a packet can tell when it reaches
its boundary columns. In particular, while its current column c is between the
boundaries, #2(c) < k but when ¢ is at the boundaries #2(c) > k.

When the algorithm is doing a bounded loop from column ¢;2* the following
quantities are stored.

power = #2(c12%) (which is equal to k),

minRow, the smallest row that can be used,

— mazRow, the largest row that can be used,

loop Counter, the number of loops that have already been done around col-

umn ¢; 2% in the current path,

— loopHalf (0 if the current packet is in the first bounded path that forms this
loop and +1 if it is in the second),

— forward, the direction in which the packet is travelling on the current path

(41 if the packet is going from left to right and —1 it is going from right to

left).

Although our path decomposition has log,(n — 1) levels of recursion, at most
m loops can be active at any one time. This follows from Lemma 4, since the
number of allowed rows decreases by 1 for each active loop. We shall think
of the bits in the packet header as a stack and, for each active loop, the above
mentioned variables will be pushed onto the stack. Finally, we use two additional
bits with each transmission to ensure that any node receiving a packet knows
where that packet came from. In total, our protocol uses headers with at most
O(m(loglogn + logm)) bits.

At the start, S sends a packet to each node in column 0. The header of
each packet contains the following information in its only stack entry: power
= logy(n — 1), minRow = 0, mazRow = m — 1, forward = 1, loopHalf = 1,
and loopCounter = 0. (To be consistent with other levels of recursion, we are
thinking of the path from column 0 to column n — 1 as being the second half of
a (n—1,0,0,m — 1)-bounded loop.)

We shall refer to the variable d = m — mazRow + minRow, which is equal
to the recursion depth. We describe the actions of any node (r,¢) that does not
appear in the first or last column of G(m,n). The actions of the nodes in the
first (or last) column are identical, except that they do not perform the specified
forwarding of packets to the left (or right, respectively). In addition, if a node in
the last column of G(m,n) ever receives a packet, it forwards that packet to R.

10

Protocol DELIVER

On receipt of a packet at node (r, ¢) with (power, minRow, mazRow, loopCounter,
loopHalf, forward) at the top of its stack

/* The default move is to forward a packet up, down, and in the current
direction of travel. */

e If r < mazRow and the packet was not received from node (r + 1, ¢), send
the packet to node (r + 1, ¢).

e If r > minRow and the packet was not received from node (r — 1, ¢), send
the packet to node (r — 1, ¢).

o If power > #2(c), then send the packet to node (r, ¢ + forward).

/* In addition, we may choose to start a set of loops starting at the current
column. */

o If power > #s5(c), d < m, and r > minRow, then, for f = £1, send the
packet to node (r,c + f) with (#2(c), minRow + 1, mazRow, 0,0, f) pushed
onto its stack.

o If power > #2(c), d < m, and r < mazRow, then, for f = £1, send the
packet to node (r,c¢ + f) with (#2(c), minRow, mazRow — 1,0,0, f) pushed
onto its stack.

/* If a loop is in its first half, it can switch to the second half at any step. */

e If loopHalf = 0, let minRow' denote the value of minRow at the previous
level of recursion (i.e. in the record second from the top of the stack).
If minRow = minRow'
— then send the packet to node (r+1, ¢) with (power, minRow+1,mazRow+
1,loop Counter,1,— forward) replacing the top record on its stack.
— else send the packet to node (r—1, ¢) with (power, minRow—1,mazRow—
1,loop Counter,1,— forward) replacing the top record on its stack.

/* If a packet has returned to the column where it started its current set of
loops, it has two options. */

o If #2(c) > power and loopHalf = 1 then

/* Option 1: start the next loop in the set. Note that if the second half of
the previous loop allows the use of rows r; to rs, then the previous level of
the recursion allows the use of either rows r; to ro + 1 or rows r; — 1 to rs.
In the first case, the first half of the next loop can use either rows r; to ro
or rows 1 + 1 to ro + 1. In the second case, the first half of the next loop
can use either rows r1 to ro or rows r; — 1 to ro — 1. */
— If loopCounter < maxRow — minRow — 1, then
*x For f = %1, send the packet to node (r,c+ f) with (power, minRow,
maxRow, loopCounter+ 1, 0,) replacing the top record on its stack.

11

x Let minRow' and mazRow' denote the value of minRow and mazRow
at the previous level of recursion (i.e. in the record second from the
top of the stack).

x If minRow = minRow’ and r > minRow then for f = 1, send
the packet to node (r,c+ f) with (power, minRow+ 1, mazRow+ 1,
loopCounter + 1, 0, f) replacing the top record on its stack.

x If mazRow = mazRow’ and r < maxzRow then for f = +1, send
the packet to node (r,c+ f) with (power, minRow — 1, mazRow — 1,
loopCounter + 1, 0, f) replacing the top record on its stack.

/* Option 2: stop the current set of loops and return to the previous level
of the recursion. */

— If d > 1, pop one record off the stack. Let forward' denote the value of
forward at the new top level of the stack. Send the resulting packet to
node (r,c + forward').

End of protocol.

Lemma 5. The header of any packet produced by the Protocol DELIVER has
a length of at most m([log, logy(n — 1)] + 3[logy, m| + 2) + 2 bits.

Proof. Tt is easily verified that the maximum depth of the recursion produced
by Protocol DELIVER is m. For each such level, the variable power can be
represented using [log, log,(n — 1)] bits, the variables mazRow, minRow, and
loopCounter can be represented using [log, m] bits, and forward and loopHalf
can each be represented using a single bit. The final two bits come from the
fact that each transmission informs the recipient of the direction from which the
packet came. O

Lemma 6. Protocol DELIVER . transmits only a finite number of packets.

Proof. We provide a potential function @ for any packet in the system, such
that there is a maximum value that é can attain and, every time a packet is
forwarded, the corresponding value of @ is increased by at least 1. (That is, each
packet P has a potential exceeding the potential of the packet whose arrival
caused P to be sent.) For each level of recursion i, 1 < ¢ < m, we define three
variables: lc;, lh;, and dist;. All of these variables are defined to be 0 if i > d. For
i < d, le; and lh; are the loopCounter and loopHalf variables, respectively, for
level 4 in the recursion. For i < d, the variable dist; is the number of horizontal
steps taken by the packet starting from the time that the forward variable at the
1’th level of recursion was last set, counting only those steps that occurred when
d = i. Note that a packet can only move horizontally in the direction specified
by the forward variable, and thus all of these steps will be in the same direction.
This means that dist; < n. We also define the variable vert to be the number of
steps taken in a vertical direction on the current column since last moving there
from another column.

12

The potential function @ that we define can be thought of as a (3m + 1)-digit
mixed radix number, where for ¢t € {1,...,m}, digit 3(t — 1) + 1 is le;, digit
3(t — 1) + 2 is lhy, and digit 3(¢t — 1) + 3 is dist,. Digit 3m + 1 is vert. It is
easily verified that when a packet is first sent, & > 0. Also, by checking each
of the possible actions of a node on the receipt of a packet, we can verify that
every time a packet is forwarded, @ increases by at least 1. We also see that ¢
is bounded, since vert < m — 1 and, for any ¢, lc; < m, dist; < n, and [h; < 1.
Since each packet receipt causes at most a constant number of new packets to be
sent out, it follows that the total number of packets sent as a result of Protocol
DELIVER is finite. O

It follows from the decomposition of simple S—R paths given by Lemmas 3
and 4 that, if there is a simple path of live edges from S to R, then Protocol
DELIVER finds it. We combine Lemmas 5 and 6 to get our main result.

Theorem 2. Protocol DELIVER delivers a message from S to R with finite
traffic using O(m(loglogn + logm))-bit headers .

4 A Lower Bound

In this section, we prove that £2(loglogn) header bits are necessary for communi-
cating a single message in a 3 x n grid. First, we consider the graph G(3,n) with
n = hl. The proof is similar in flavour to the lower bound for communicating a
single message in a complete graph [AF99].

Our proof focusses attention on h particular simple S—R paths, defined as
follows. For k = 1,...,h, let Py consist of k! alternating S-paths and Z-paths,
each of extent h!/k!, concatenated using single horizontal edges. Figure 2 shows
paths Py, P>, and P; for the case h = 3.

Py P,
Fig. 2. Paths P, P», and Ps for h =3

For 0 <i < n,let i1,...,1; be such that 1 = 2221 ixn/k! where 0 < iy, < k.
In other words, (i1, --,1) is the mixed radix representation of 7, where the k’th
most significant digit is in base k. Note that i, always has value 0. For example,
if n =24 =4! and i = 20, then 41 =0, 95 = 1, i = 2, and iz = 0.

Proposition 2. Let 0 < i < j < n. Node (1,7) appears before node (1,1) in
path Py if and only if iqg = jq ford=1,... k.

13

Proof. In every S-path or Z-path, the nodes in row 1 appear in order from
largest numbered column to smallest numbered column. Since path Py is the
concatenation of S-paths and Z-paths, node (1,5) appears before node (1,1%) if
and only if columns i and j are in the same S-path or Z-path. Since each S-path
and Z-path comprising Py has extent n/k!, it follows that ¢ and j are in the
S-path or Z-path if and only if |i/(n/k!)| = |j/(n/k!)], which is true if and only
ifig=ggford=1,... k. O

Consider any protocol for G(3, h!) that delivers a message from S to R with
finite traffic. Since node (1, ¢) is on path Py, it receives at least one packet when
only the links on the simple S—R path Py are alive. Let Hy(c) denote the header
of the last packet received by node (1,¢) in this situation that causes a packet
to be received by R.

Lemma 7. Consider any protocol for G(3,h!) that delivers a message from S
to R with finite traffic. Then, for all path indices 1 < 7 < k < h and all columns
0 < c < < h!such that (c1,ca,...,¢5) = (c1,¢h,...,¢;) and (ci,c2,...,ck) #
(ch,¢h,...,¢}), either H;(c) # Hy(c) or Hj(c') # Hi(c').

Proof. To obtain a contradiction, suppose that H;(c) = Hy(c) and H;(c') =
Hy ('), for some path indices 1 < j < k < h and some columns 0 < ¢ < ¢’ < h!
such that (c1,¢2,...,¢;) = (¢}, ¢3,...,¢;) and (c1,¢2,... 1) # (€1,¢h,. .., €).
Then, by Proposition 2, node (1,¢') appears before node (1,¢) in path P; but
after node (1,c¢) in path Pg.

Consider the situation when the links on both paths P; and P, are alive.
The protocol forwards a packet along path Py until a packet with header Hy(c')
reaches node (1,¢'). This causes a packet to be received by R. Since Hy(c') =
H;(c") and node (1, ¢') occurs before node (1, ¢) on path P;, it also causes a packet
with header H;(c) to be received at node (1,c¢). Likewise, since H;(c) = Hy/(c)
and node (1, ¢) occurs before node (1,¢') on path Py, this causes a packet with
header Hy(c') to be received at node (1,c'), and we have an infinite loop. Each
time such a packet goes through the loop, it produces a new packet that is sent
to the destination R. This contradicts the finite traffic assumption. O

Lemma 8. Consider any protocol for G(3,h!) that delivers a message from S
to R with finite traffic. Then, for 1 < k < h, there exist nonnegative digits
i1 < lyia < 2,...,4x < k such that the k headers Hy(c), ..., Hy(c) are distinct
for each column ¢ with (¢1,ca,...,cx) = (91,02, ... ,0k)-

Proof. To obtain a contradiction, suppose the lemma is false. Consider the small-
est value of k& < h for which the lemma is false. Since there are no repetitions
in a sequence of length one, k& > 1. Let 41 < 1,40 < 2,...,05-1 < k —1
be such that the k& — 1 headers Hy(c),..., Hy_4(c) are distinct for each col-

umn ¢ with (¢1,¢9,...,¢c6-1) = (i1,82,...,9x—1). Then, for each digit iy €
{0,...,k — 1}, there exists a path index j € {1,...,k — 1} and a column ¢
such that (c¢1,¢2,...,¢k—1,¢k) = (1,92, ..,ix—1,%%) and Hy(c) = Hj(c).

14

Since there are k choices for ¢ and only k& — 1 choices for 7, the pigeonhole
principle implies that there exist distinct i,), € {0, ..., k—1} which give rise to

the same value of j and there exist columns ¢ and ¢’ such that (¢1,ca, ..., ck—1) =
(ch e, o ¢), e =t # 0}, = ¢}, Hr(c) = Hj(c), and Hy(c') = H;(c'). But
this contradicts Lemma, 7.]

Theorem 3. Any protocol for G(3,n) that delivers a message from S to R with
finite traffic uses headers of length at least log, log, n — O(log loglogn).

Proof. Let h be the largest integer such that n > h!. Then n < (h+1)! < (h+1)",
so hlogy(h + 1) > logyn and h € 2(logn/loglogn).

Consider any protocol for G(3,n) that uses headers of length L. Since G(3, h!)
is a minor of G(3,n), it follows from Proposition 1 that there is a protocol for
G(3, h!) using headers of length L. Hence, by Lemma 8, L > log, h = log, log, n—
O(logloglogn). O

References

[AF99] Micah Adler and Faith E. Fich, The Complezity of End-to-End Communication
in Memoryless Networks, with Micah Adler, 8h Annual ACM Symposium on
Principles of Distributed Computing, May 1999, pages 239-248.

[AAF+94] Afek, Attiya, Fekete, Fischer, Lynch, Mansour, Wang, and Zuck, Reliable
Communication Quer Unreliable Channels, JACM, vol. 41, no. 6, 1994, pages
1267-1297.

[AAGH+97] Afek, Awerbuch, Gafni, Mansour, Rosén, and Shavit, Slide-The Key to
Polynomial End-to-End Communication, Journal of Algorithms, vol. 22, no. 1,
1997, pages 158-186.

[AG88] Afek and Gafni, End-to End Communication in Unreliable Networks, Tth
PODC, 1988, pages 131-148.

[AMS89] Awerbuch, Mansour, and Shavit, Polynomial End to End Communication,
30th FOCS, 1989, pages 358-363.

[APV96] Awerbuch, Patt-Shamir, and Varghese, Self-stabilizing End-to-End Commu-
nication,

[DW97] Dolev and Welch, Crash Relient Communication in Dynamic Networks, IEEE
Transactions of Computers, vol. 46, 1997, pages 14-26.

[F98] Faith E. Fich, End-to-end Communication, Proceedings of the 2nd International
Conference on Principles of Distributed Systems, Amiens, France, 1998, pages
37-43.

[K30] K. Kuratowski, Sur le Probléme des Courbes Gauches en Topologie, Fund.
Math., vol. 15, 1930, pages 271-283.

[KOR95] Kushilevitz, Ostrovsky, and Rosén, Log-Space Polynomial End-to-End Com-
munication, 28th STOC, 1995, pages 559-568.

[LLT98] Ladner, LaMarca, and Tempero, Counting Protocols for Reliable End-to-End
Transmission, JCSS, vol. 56, no. 1, 1998, pages 96-111.

[P81] Postel, Internet Protocol, Network Working Group Request for Comments 791,
September 1981.

15

