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1 Introduction

A multiple-access channel is a broadcast channel that allows multiple users
to communicate with each other by sending messages onto the channel. If
two or more users simultaneously send messages, then the messages interfere
with each other (collide), and the messages are not transmitted successfully.
The channel is not centrally controlled. Instead, the users use a contention-
resolution protocol to resolve collisions. Thus, after a collision, each user
involved in the collision waits a random amount of time (which is determined
by the protocol) before re-sending.

Following previous work on multiple-access channels, we work in a time-
slotted model in which time is partitioned into discrete time steps. At the
beginning of each time step, a random number of messages enter the system,
each of which is associated with a new user which has no other messages to
send. The number of messages that enter the system is drawn from a Poisson
distribution with mean λ. During each time step, each message chooses
independently whether to send to the channel. If exactly one message sends
to the channel during the time step, then this message leaves the system and
we call this a success. Otherwise, all of the messages remain in the system
and the next time step is started. Note that when a message sends to the
channel this may or may not result in a success, depending on whether any
other messages send to the channel.

The quality of a protocol can be measured in several ways. Typically, one
models the execution of the protocol as a Markov chain. If the protocol is
good (for a given arrival rate λ), the corresponding Markov chain will be
recurrent (with probability 1, it will eventually return to the empty state in
which no messages are waiting). Otherwise, the chain is said to be transient
(and we also say that a protocol is transient). Note that transience is a
very strong form of instability. In particular, if we focus on any finite set of
“good” states then if the chain is transient, the probability of visiting these
states at least N times during the infinite run of the protocol is exponentially
small in N . (This follows because the relevant Markov chain is irreducible
and aperiodic.)

Another way to measure the quality of a protocol is to measure its ca-
pacity. A protocol is said to achieve full throughput at rate λ if, when it is
run with input rate λ, the average success rate is λ. The capacity of the
protocol [4] is the maximum arrival rate at which it achieves full throughput.

The protocols that we consider in this paper are acknowledgement-based
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protocols. In the acknowledgement-based model, the only information that
a user receives about the state of the system is the history of its own trans-
missions. An alternative model is the full-sensing model, in which every user
listens to the channel at every step, regardless of whether it sends during
the step.1

One particularly simple and easy-to-implement class of acknowledgement-
based protocols is the class of backoff protocols. A backoff protocol is a
sequence of probabilities p0, p1, . . .. If a message has sent unsuccessfully
i times before a time-step then, with probability pi, it sends during the
time-step. Otherwise, it does not send. Kelly and MacPhee [13, 14, 17]
gave a formula for the critical arrival rate, λ∗, of a backoff protocol, which
is the minimum arrival rate for which the expected number of successful
transmissions that the protocol makes is finite.2

Perhaps the best-known backoff protocol is the binary exponential backoff
protocol in which pi = 2−i. This protocol is the basis of the Ethernet
protocol of Metcalfe and Boggs [18].3 Kelly and MacPhee showed that the
critical arrival rate of this protocol is ln 2. Thus, if λ > ln 2, then binary
exponential backoff achieves only a finite number of successful transmissions
(in expectation). Aldous [1] showed that the binary exponential backoff
protocol is not a good protocol for any positive arrival rate λ. In particular,
it is transient and the expected number of successful transmissions in t steps
is o(t). MacPhee [17] posed the question of whether there exists a backoff
protocol which is recurrent for some positive arrival rate λ.

In this paper, we show that there is no backoff protocol which is recurrent
for λ ≥ 0.42. (Thus, every backoff protocol is transient if λ ≥ 0.42.) Also,
every backoff protocol has capacity at most 0.42. As far as we know, our
result is the first proof showing that backoff protocols have smaller capacity
than full-sensing protocols. In particular, Mosely and Humblet [20] have
discovered a full-sensing protocol with capacity 0.48776.4 Finally, we show

1In practice, it is possible to implement the full-sensing model when there is a single
channel, but this becomes increasingly difficult in situations where there are multiple
shared channels, such as optical networks. Thus, acknowledgement-based protocols are
sometimes preferable to full-sensing protocols. For work on contention-resolution in the
multiple-channel setting, see [6].

2If λ > λ
∗, then the expected number of successes is finite, even if the protocol runs

forever. They showed that the critical arrival rate is 0 if the expected number of times
that a message sends during the first t steps is ω(log t).

3There are several differences between the “real-life” Ethernet protocol and “pure”
binary exponential backoff, but we do not describe these here.

4Mosely and Humblet’s protocol is a “tree protocol” in the sense of Capetanakis [3] and
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that no acknowledgement-based protocol is recurrent for λ ≥ 0.530045.

1.1 Related work

Backoff protocols and acknowledgement-based protocols have also been stud-
ied in an n-user model, which combines contention-resolution with queueing.
In this model, it is assumed that n users maintain queues of messages, and
that new messages arrive at the tails of the queues. At each step, the users
use contention-resolution protocols to try to send the messages at the heads
of their queues. It turns out that the queues have a stabilising effect, so
some protocols (such as “polynomial backoff”) which are unstable in our
model [14] are stable in the queueing model [12]. We will not describe
queueing-model results here, but the reader is referred to [2, 9, 12, 22].

Much work has gone into determining upper bounds on the capacity that
can be achieved by a full-sensing protocol. The current best result is due to
Tsybakov and Likhanov [24] who have shown that no protocol can achieve
capacity higher than 0.568. (For more information, see [4, 10, 19, 23].)
In the full-sensing model, one typically assumes that messages are born at
real “times” which are chosen uniformly from the unit interval. Recently,
Loher [15, 16] has shown that if a protocol is required to respect these birth
times, in the sense that packets must be successfully delivered in their birth
order, then no protocol can achieve capacity higher than 0.4906. Intuitively,
the “first-come-first-served” restriction seems very strong, so it is somewhat
surprising that the best known algorithm without the restriction (that of
Vvedenskaya and Pinsker) does not beat this upper bound. The algorithm
of Humblet and Mosely satisfies the first-come-first-served restriction.

2 Markov Chain Background

A Markov chain X = {X0,X1, . . .} with a countable state space Ω (see [11])
is time-homogeneous if its transition probabilities are independent of time so
Pr(Xn+1 = j | Xn = i) = Pr(X1 = j | X0 = i) for all n, i, j. It is irreducible
if every pair (i, j) of states is connected in the sense that there is an n > 0
such that Pr(Xn+m = j | Xm = i) > 0. It is aperiodic if every state i satisfies
gcd{n | Pr(Xn+m = i | Xm = i) > 0} = 1. If the chain is irreducible and

Tsybakov and Mikhailov [25]. For a simple analysis of the protocol, see [26]. Vvedenskaya
and Pinsker have shown how to modify Mosely and Humblet’s protocol to achieve an
improvement in the capacity (in the seventh decimal place) [27].
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aperiodic then we say that it is recurrent if it returns to its start state with
probability 1. That is, it is recurrent if for some state i (and therefore, for
all i), Prob[Xt = i for some t ≥ 1 | X0 = i] = 1. Otherwise, X is said to
be transient. X is positive recurrent (or ergodic) if the expected number
of steps that it takes before returning to its start state is finite. A chain is
positive recurrent if and only if it has a unique stationary distribution. The
standard way to prove that a Markov chain is positive recurrent is Foster’s
theorem.

Theorem 1 (Foster [7]) A time-homogeneous irreducible aperiodic Markov
chain X with a countable state space Ω is positive recurrent if and only if
there exists a positive function f(ρ), ρ ∈ Ω, a number ǫ > 0, and a finite set
A ⊆ Ω, such that the following inequalities hold.

E[f(X(t + 1)) − f(X(t)) | X(t) = ρ] ≤ −ǫ, ρ 6∈ A, (1)

E[f(X(t + 1)) | X(t) = ρ] < ∞, ρ ∈ A. (2)

Basically, the idea is to use a “potential function” f to follow the progress of
the chain. The chain is positive recurrent if and only if there is a potential
function f which

1. usually decreases (Equation (1)), and

2. cannot increase much (Equation (2))

in a single step. Equation (1) implies that, from any state ρ 6∈ A, the
expected time to reach A from ρ is at most f(ρ)/ǫ. This (combined with
Equation (2)) implies that the expected return time to A is finite, which in
turn implies that the chain is positive recurrent. (For more details, see [5].)
Theorems like Theorem 1 are called “drift theorems” because the progress
of the Markov chain X is studied by focusing on the “drift” of the potential
function f . The function f is sometimes called a Lyapounov function or a
test function.

We can also use drift theorems to show that a Markov chain is not positive
recurrent. To do this we want to find a potential function f which “drifts”
towards larger potentials. Here is the theorem that we will use.
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Theorem 2 (Fayolle, Malyshev, Menshikov [5]) An irreducible aperiodic
time-homogeneous Markov chain X with countable state space Ω is not pos-
itive recurrent if there is a function f with domain Ω and there are con-
stants C and d such that

1. there is a state x with f(x) > C, and a state y with f(y) ≤ C, and

2. E[f(X1) − f(X0) | X0 = x] ≥ 0 for all x with f(x) > C, and

3. E[ |f(X1) − f(X0)| | X0 = x] ≤ d for every state x.

We will use a similar theorem to show that a Markov chain is transient
(which is stronger than saying that it is not positive recurrent).

Theorem 3 (Fayolle, Malyshev, Menshikov [5]) An irreducible aperiodic
time-homogeneous Markov chain X with countable state space Ω is transi-
ent if there is a positive function f with domain Ω and there are positive
constants C, d and ε such that

1. there is a state x with f(x) > C, and a state y with f(y) ≤ C, and

2. E[f(X1) − f(X0) | X0 = x] ≥ ε for all x with f(x) > C, and

3. if |f(x) − f(y)| > d then the probability of moving from x to y in a
single move is 0.

3 Stochastic Domination and Monotonicity

Suppose that X is a Markov chain and that the (countable) state space Ω of
the chain is a partial order with binary relation ≤. If A and B are random
variables taking states as values, then B dominates A if and only if there
is a joint sample space for A and B in which the value of A is always less
than or equal to the value of B. Note that there will generally be other joint
sample spaces in which the value of A can exceed the value of B. We write
A ≤ B to indicate that B dominates A. We say that X is monotonic if for
any states x ≤ x′, the next state conditioned on starting at x′ dominates
the next state conditioned on starting at x. (Formally, (X1 | X0 = x′)
dominates (X1 | X0 = x).)

When an acknowledgement-based protocol is viewed as a Markov chain,
the state is just the collection of messages in the system. (Each message
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is identified by the history of its transmissions.) Thus, the state space is
countable and it forms a partial order with respect to the subset inclusion
relation ⊆ (for multisets). We say that a protocol is deletion resilient [8] if
its Markov chain is monotonic with respect to the subset-inclusion partial
order.

Observation 4 Every acknowledgement-based protocol is deletion resilient.

Proof: Consider the states x and x′ with x ⊆ x′. Recall that each state is
a set of messages, each message being identified by its transmission history.
Thus, x′ contains all of the messages in x and possibly others. Now consider
one step of the protocol. We wish to show that the random variable denoting
the next state z′ = (X1 | X0 = x′) dominates the random variable z = (X1 |
X0 = x). z′ does dominate z because we can draw z and z′ from a joint
sample space in which

• the messages in x do the same thing in both copies, and

• both copies have the same number of new arrivals, which make the
same number of send attempts in both copies.

Now consider any message m which is either a new arrival or a member of x.

1. If m is silent during the step then its transmission history in z′ is the
same as in z.

2. If m has a collision during the transition to z then it also has a collision
during the transition to z′, so its transmission history in z′ is the same
as in z.

Thus, z ⊆ z′. 2

As we indicated earlier, we will generally assume that the number of
messages entering the system at a given step is drawn from a Poisson pro-
cess with mean λ. However, it will sometimes be useful to consider other
message-arrival distributions. If I and I ′ are message-arrival distributions,
we write I ≤ I ′ to indicate that the number of messages generated under I
is dominated by the number of messages generated under I ′.

Observation 5 If the acknowledgement-based protocol P is recurrent un-
der the message-arrival distribution I ′ and I ≤ I ′ then P is also recurrent
under I.
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Proof: Let X be the Markov chain corresponding to protocol P with ar-
rival distribution I with X0 as the empty state. Let X ′ be the analogous
Markov chain with arrival distribution I ′. Consider the evolution of the
stochastic process (X0,X

′
0), (X1,X

′
1), . . .. We will choose the random vari-

able (Xi,X
′
i) from a joint probability distribution in which

1. every message which is common to Xi and X ′
i does the same thing in

both copies, and

2. the new arrivals which are drawn from I arrive in both copies, and
make the same number of send attempts in both copies.

3. Some additional messages may arrive in X ′
i (according to I ′).

Note that items (2) and (3) are possible since I ≤ I ′. We can now show by
induction on t that X ′

t dominates Xt. That is, when this joint distribution
is used, Xt is a subset of X ′

t. This holds for t = 0 since X0 = X ′
0. The

inductive step is the same as in the proof of Observation 4. Consider any
message m which is in Xt or arrives (according to I) just before step t + 1.

1. If m is silent during the step then its transmission history in X ′
t+1 is

the same as in Xt+1.

2. If m has a collision during the transition to Xt+1 then it also has a
collision during the transition to X ′

t+1.

Thus, Xt+1 ⊆ X ′
t+1. Finally, since X ′

t dominates Xt, the recurrence of X ′
t

implies the recurrence of Xt. 2

4 Backoff protocols

In this section, we will show that there is no backoff protocol which is recur-
rent for λ ≥ 0.42. Our method will be to use the drift theorems in Section 2.
Let p0, p1, . . . be a backoff protocol. Without loss of generality, we can as-
sume p0 = 1, since we can ignore new arrivals until they first send.5 Let
λ = 0.42. Let X be the Markov chain described in Section 3 which describes

5Since the arrivals are Poisson, and Poisson random variables are additive, the number
of messages making their very first send on a given time step is Poisson and the mean of
this distribution approaches λ.

8



the behaviour of the protocol with arrival rate λ. First, we will construct a
potential function (Lyapounov function) f which satisfies the conditions of
Theorem 2, that is, a potential function which has a bounded positive drift.
We will use Theorem 2 to conclude that the chain is not positive recur-
rent. Next, we will consider the behaviour of the protocol under a truncated
arrival distribution and we will use Theorem 3 to show that the protocol
is transient. Using Observation 5 (domination), we will conclude that the
protocol is also transient with Poisson arrivals at rate λ or higher. Finally,
we will show that the capacity of every backoff protocol is at most 0.42.

We will use the following technical lemma.

Lemma 6 Let 1 ≤ ti ≤ d for i ∈ [1, k] and
∏k

i=1 ti = c. Then
∑k

i=1(ti−1) ≤
(d − 1) log c

log d .

Proof: Let S =
∑k

i=1 ti. S can be viewed as a function of k− 1 of the ti’s,
for example S =

∑k−1
i=1 ti + c/

∏k−1
i=1 ti. For i ∈ {1, . . . , k − 1}, the derivative

of S with respect to ti is 1−c/(ti
∏k−1

j=1 tj). Thus, the derivative is positive if
ti > tk. Thus, S is maximised (subject to c) by setting some ti’s to 1, some
ti’s to d and at most one ti to some intermediate value t ∈ [1, d). Given
this, the maximum value of

∑k
i=1(ti − 1) is s(d − 1) + t − 1, where c = dst

and s = ⌊(log c)/(log d)⌋. Let α be the fractional part of (log c)/(log d),
that is, α = (log c)/(log d) − s. We want to show that s(d − 1) + t − 1 ≤
(d − 1)(log c)/(log d). This is true, since

(d − 1)
log c

log d
− s(d − 1) − (t − 1) = α(d − 1) − c/ds + 1

= α(d − 1) − dα + 1

≥ 0.

The final inequality holds since we have equality for d = 1 and the partial
derivative with respect to d proves that the inequality holds for d > 1. 2

We now define some parameters of a state x. Let k(x) denote the number
of messages in state x. If k(x) = 0, then p(x) = r(x) = u(x) = 0. Otherwise,
let m1, . . . ,mk(x) denote the messages in state x, with send probabilities
ρ1 ≥ · · · ≥ ρk(x). Let p(x) = ρ1 and let r(x) denote the probability that
at least one of m2, . . . ,mk(x) sends on the next step. Let u(x) denote the
probability that exactly one of m2, . . . ,mk(x) sends on the next step. Clearly
u(x) ≤ r(x). If p(x) < r(x) then we use the following (tighter) upper bound
for u(x).
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Lemma 7 If p(x) < r(x) then u(x) ≤ r(x)−r(x)2/2
1−p(x)/2 .

Proof: Fix a state x. We will use k, p, r, . . . to denote k(x), p(x), r(x), . . ..
Since p < r, we have k ≥ 2.

u =
k
∑

i=2

ρi

1 − ρi

k
∏

i=2

(1 − ρi) =
k
∑

i=2

(ti − 1)(1 − r),

where ti = 1/(1 − ρi). Let d = 1/(1 − p), and note that 1 ≤ ti ≤ d. By
Lemma 6

u ≤ (1 − r)(d − 1)
log(

∏k
i=2 ti)

log d
= (1 − r)

p

1 − p

log(1/(1 − r))

log d

= (1 − r)
p

1 − p

(− log(1 − r))

(− log(1 − p))
.

Now we wish to show that

(1 − r)
p

1 − p

(− log(1 − r))

(− log(1 − p))
≤

r − r2/2

1 − p/2
,

i.e., that

(1 − r)
(− log(1 − r))

r − r2/2
≤ (1 − p)

(− log(1 − p))

p − p2/2
.

This is true, since the function (1 − r) (− log(1−r))
r−r2/2

is decreasing in r. To see

this, note that the derivative of this function with respect to r is y(r)/(r −
r2/2)2, where

y(r) = (1 − r + r2/2) log(1 − r) + (r − r2/2)

≤ (1 − r + r2/2)(−r − r2/2) + (r − r2/2) = −r4/4.

2

Let S(x) denote the probability that there is a success when the system
is run for one step starting in state x. (Recall that a success occurs if
exactly one message sends during the step. This single sender might be a
new arrival, or it might be an old message from state x.) Let

g(r, p) = e−λ[(1 − r)p + (1 − p)min{r,
r − r2/2

1 − p/2
} + (1 − p)(1 − r)λ].

We now have the following corollary of Lemma 7.
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Corollary 8 For any state x, S(x) ≤ g(r(x), p(x)).

Let s(x) denote the probability that at least one message in state x sends
on the next step. That is, s(x) is the probability that at least one existing
message in x sends. New arrivals may also send. There may or may not
be a success. (Thus, if x is the empty state, then s(x) = 0.) Let A = 0.9
and B = 0.41. For every z ∈ [0, 1], let c(z) = max(0,−Az + B). For every
state x, let f(x) = k(x) + c(s(x)). The function f is the potential function
alluded to earlier, which plays a leading role in Theorems 2 and 3. To a first
approximation, f(x) counts the number of messages in the state x, but the
small correction term is crucial. Finally, let

h(r, p) = λ−g(r, p)−[1−e−λ(1−p)(1−r)(1+λ)]c(r+p−r p)+e−λp(1−r)c(r).

Now we have the following.

Observation 9 For any state x, E[ |f(X1) − f(X0)| | X0 = x] ≤ 1 + B.

Lemma 10 For any state x, E[f(X1) − f(X0) | X0 = x] ≥ h(r(x), p(x)).

Proof: The result follows from the following chain of inequalities, each
link of which is justified below.

E[f(X1) − f(X0) | X0 = x]

= λ − S(x) + E[c(s(X1)) | X0 = x] − c(s(x))

≥ λ − g(r(x), p(x)) + E[c(s(X1)) | X0 = x] − c(s(x))

≥ λ − g(r(x), p(x)) + e−λ(1 − p(x))(1 − r(x))(1 + λ)c(s(x))

+ e−λp(x)(1 − r(x))c(r(x)) − c(s(x))

= h(r(x), p(x)).

The first inequality follows from Corollary 8. The second comes from substi-
tuting exact expressions for c(s(X1)) whenever the form of X1 allows it, and
using the bound c(s(X1)) ≥ 0 elsewhere. If none of the existing messages
sends and there is at most one arrival, then c(s(X1)) = c(s(x)), giving the
third term; if message m1 alone sends and there are no new arrivals then
c(s(X1)) = c(r(x)), giving the fourth term. The final equality uses the fact
that s(x) = p(x) + r(x) − p(x)r(x). 2

Lemma 11 For any r ∈ [0, 1] and p ∈ [0, 1], h(r, p) ≥ 0.003.
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Figure 1: −h(r, p) over the range r ∈ [0, 1], p ∈ [0, 1].

Proof: We defer the proof of this lemma to the Appendix of the paper.
Figure 1 contains a (Mathematica-produced) plot of −h(r, p) over the range
r ∈ [0, 1], p ∈ [0, 1]. The plot suggests that −h(r, p) is bounded below zero.

We note here that our proof of the lemma (in the Appendix) involves
evaluating certain polynomials at about 40 000 points, and we did this using
Mathematica. 2

We now have the following theorem.

Theorem 12 No backoff protocol is positive recurrent when the arrival rate
is λ = 0.42.

Proof: This follows from Theorem 2, Observation 9, and Lemmas 10
and 11. The value C in Theorem 2 can be taken to be 1 and the value d
can be taken to be 1 + B. 2

Now we wish to show that every backoff protocol is transient for λ ≥
0.42. Once again, fix a backoff protocol p0, p1, . . . with p0 = 1. Notice that
our potential function f almost satisfies the conditions in Theorem 3. The
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main problem is that there is no absolute bound on the amount that f
can change in a single step, because the arrivals are drawn from a Poisson
distribution. We get around this problem by first considering a truncated-
Poisson distribution, TM,λ, in which the probability of r inputs is e−λλr/r!
(as for the Poisson distribution) when r < M , but r = M for the remaining
probability. By choosing M sufficiently large we can have E[TM,λ] arbitrarily
close to λ.

Lemma 13 Every backoff protocol is transient for the input distribution
TM,λ when λ = 0.42 and λ′ = E[TM,λ] > λ − 0.001.

Proof: The proof is almost identical to that of Theorem 12, except that
the first term, λ, in the definition of h(r, p) (for Lemmas 10 and 11) must be
replaced by λ′. The corresponding function h′ satisfies h′(r, p) ≥ h(r, p) −
0.001. Thus Lemma 11 shows that h′(r, p) ≥ 0.002 for all r ∈ [0, 1] and
p ∈ [0, 1].

The potential function f(x) is defined as before, but under the truncated
input distribution we have the property required for Theorem 3. If |f(x) −
f(y)| > M + B then the probability of moving from x to y in a single move
is 0.

The lemma follows from Theorem 3, where the values of C, ε, and d can
be taken to be 1, 0.002, and M + B, respectively. 2

We now have the following theorem.

Theorem 14 Every backoff protocol is transient under the Poisson distri-
bution with arrival rate λ ≥ 0.42.

Proof: The proof is immediate from Lemma 13 and Observation 5. 2

Finally, we bound the capacity of every backoff protocol.

Theorem 15 The capacity of every backoff protocol is at most 0.42.

Proof: Let p0, p1, . . . be a backoff protocol, let λ′′ ≥ 0.42 be the arrival
rate and let λ = 0.42. View the arrivals at each step as Poisson(λ) “or-
dinary” messages and Poisson(λ′′ − λ) “ghost” messages. We will show
that the protocol does not achieve average success rate λ′′. Let Y0, Y1, . . .
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be the Markov chain describing the protocol. Let k(Yt) be the number
of ordinary messages in the system after t steps. Clearly, the expected
number of successes in the first t steps is at most λ′′t − E[k(Yt)]. Now
let X1,X2, . . . be the Markov chain describing the evolution of the backoff
protocol with arrival rate λ (with no ghost messages). By deletion resili-
ence (Observation 4), E[k(Yt)] ≥ E[k(Xt)]. Now by Lemmas 10 and 11,
E[k(Xt)] ≥ E[f(Xt)] − B ≥ 0.003 t − B. Thus, the expected number of
successes in the first t steps is at most (λ′′ − 0.003)t + B, which is less than
λ′′t if t is sufficiently large. (If X0 is the empty state, then we do not require
t to be sufficiently large, because E[f(Xt)] ≥ 0.003t + B.) 2

4.1 Improvements

We choose λ = 0.42 in order to make the proof of Lemma 11 (see the
Appendix) as simple as possible. The lemma seems to be true for λ down
to about 0.41 and presumably the parameters A and B could be tweaked to
get λ slightly smaller.

5 Acknowledgement-based protocols

We will prove that every acknowledgement-based protocol is transient for
all λ > 0.531; see Theorem 21 for a precise statement of this claim.

An acknowledgement-based protocol can be viewed a system which, at
every step t, decides what subset of the old messages to send. The decision
is a probabilistic one dependent on the histories of the messages held. As
a technical device for proving our bounds, we introduce the notion of a
“genie”, which (in general) has more freedom in making these decisions
than a protocol.

Since we only consider acknowledgement-based protocols, the behaviour
of each new message is independent of the other messages and of the state
of the system until after its first send. This is why we ignore new messages
until their first send – for Poisson arrivals this is equivalent to the convention
that each message sends at its arrival time.

A genie is a random variable over the natural numbers, dependent on the
complete history (of arrivals and sends of messages) up to time t− 1, which
gives a natural number representing the number of messages that the genie
will send at time t. Note that the number of messages that the genie sends at
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step t is independent of the number of newly-arriving messages which send
at step t. Also, the genie may send any number of messages at step t —
possibly even more than the number of messages that arrived during steps
1, . . . , t− 1. It is clear that for every acknowledgement-based protocol there
is a corresponding genie. However there are genies which do not behave like
any protocol, e.g., a genie may give a cumulative total number of “sends”
up to time t which exceeds the actual number of arrivals up to that time.

First, we consider the class of all genies. In Lemma 16, we show that if the
arrival rate, λ, exceeds 0.567 then the backlog of messages (the difference
between the cumulative number of arrivals and the cumulative number of
successes) tends to infinity as time goes on. This implies that no genie has
capacity greater than 0.567. To get a better result, we consider a constrained
class of genies called bucket genies. An ordinary genie (as defined previously)
has no control over new inputs making their first send but has complete
control over any other messages. (In particular, it can even send a message
if none has arrived.) A bucket genie has no control over new inputs or
over the “bucket” of messages that have already tried exactly once but has
complete control over any other messages. We consider a particular type
of bucket genie called an “eager” bucket genie. In Lemma 18 we show that
for λ ≥ 0.531, the backlog tends to infinity for eager bucket genies. In
Lemma 19 we show how any bucket genie (including the acknowledgement-
based protocol under consideration) can be coupled with an eager bucket
genie in such a way that the the arbitrary bucket genie doesn’t have many
more successes than the eager bucket genie. This, combined with Lemma 16
(which shows that the eager genie doesn’t have enough successes) proves the
theorem.

Let I(t), G(t) be the number of arrivals and the genie’s send value, re-
spectively, at step t. It is convenient to introduce some indicator vari-
ables to express various outcomes at the step under consideration. We
use i0, i1 for the events of no new arrival, or exactly one arrival, respect-
ively, and g0, g1 for the events of no send and exactly one send from the
genie. The indicator random variable S(t) for a success at time t is given by
S(t) = i0g1 + i1g0. Let In(t) =

∑

j≤t I(j) and Out(t) =
∑

j≤t S(j). Define
Backlog(t) = In(t) − Out(t). Let λ = λ0 ≈ 0.567 be the (unique) root of
λ = e−λ.

Lemma 16 For any genie and input rate λ > λ0, there exists ε > 0 such
that
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Prob[Backlog(t) > εt for all t ≥ T ] → 1 as T → ∞.

Proof: Let 3ε = λ − e−λ > 0. At any step t, S(t) is a Bernoulli variable
with expectation 0, e−λ, λe−λ, according as G(t) > 1, G(t) = 1, G(t) = 0,
respectively, which is dominated by the Bernoulli variable with expecta-
tion e−λ. Therefore E[Out(t)] ≤ e−λt, and also, Prob[Out(t) − e−λt <
εt for all t ≥ T ] → 1 as T → ∞. (To see this note that, by a Chernoff
bound, Prob[Out(t) − e−λt ≥ εt] ≤ e−δt for a positive constant δ. Thus,

Prob[∃t ≥ T such that Out(t) − e−λt ≥ εt] ≤
∑

t≥T

e−δt,

which goes to 0 as T goes to ∞.)

We also have E[In(t)] = λt and Prob[λt − In(t) ≤ εt for all t ≥ T ] →
1 as T → ∞, since In(t) = Poisson(λt).

Since

Backlog(t) = In(t) − Out(t)

= (λ − e−λ)t + (In(t) − λt) + (e−λt − Out(t))

= εt + (εt + In(t) − λt) + (εt + e−λt − Out(t)),

the result follows. 2

Corollary 17 No acknowledgement-based protocol is recurrent for λ > λ0

or has capacity greater than λ0.

To strengthen the above result we introduce a restricted class of genies.
We think of the messages which have failed exactly once as being contained
in the bucket. (More generally, we could consider an array of buckets, where
the jth bucket contains those messages which have failed exactly j times.) A
1-bucket genie, here called simply a bucket genie, is a genie which simulates
a given protocol for the messages in the bucket and is required to choose a
send value which is at least as great as the number of sends from the bucket.
Thus, on a given step, some number, say b of the messages in the bucket
will decide to send. Each of these decisions is made independently by each
message, which is simulating the protocol. Then the genie will choose a

16



number x ≥ b, which is the number of sends that it will make. As before,
g0 is the indicator for x = 0 and g1 is the indicator for x = 1. The indicator
for success is S(t) = i0g1 + i1g0. At the end of the step, the b messages from
the bucket which have sent leave the bucket. Also, any new arrivals which
have collided join the bucket. Note that if the messages in the bucket decide
not to send (i.e., b = 0) and there are no new arrivals (i.e., i0 = 1) then
S(t) can be either 1 or 0, depending on whether or not x = 1. No matter
what x is, no messages enter or leave the bucket during this step. For such
constrained genies, we can improve the bound of Corollary 17.

For the range of arrival rates we consider, an excellent strategy for a genie
is to ensure that at least one message is sent at each step. Of course a bucket
genie has to respect the bucket messages and is obliged sometimes to send
more than one message (inevitably failing). An eager genie always sends at
least one message, but otherwise sends as few as possible. In particular, it
sends x = min(1, b).

An eager bucket genie is easy to analyse, since every arrival is blocked by
the genie and enters the bucket.

Let λ = λ1 ≈ 0.531 be the (unique) root of λ = (1 + λ)e−2λ.

Lemma 18 For any eager bucket genie and input rate λ > λ1, there exists
ε > 0 such that

Prob[Backlog(t) > εt for all t ≥ T ] → 1 as T → ∞.

Proof: Let Eager be an eager bucket genie. Let ri be the probability that
a message in the bucket sends for the first time (and hence exits from the
bucket) i steps after its arrival. Assume

∑∞
i=1 ri = 1, otherwise there is a

positive probability that the message never exits from the bucket, and the
result follows trivially.

The generating function for the Poisson distribution with rate λ is eλ(z−1)

(i.e., the coefficient of zk in this function gives the probability of exactly k
arrivals; see, e.g., [11]). Consider the sends from the bucket at step t. Since
Eager always blocks arriving messages, the generating function for messages
entering the bucket i time steps in the past, 1 ≤ i ≤ t, is eλ(z−1). Some of
these messages may send at step t; the generating function for the number
of sends is eλ[(1−ri)+riz−1] = eλri(z−1). Finally, the generating function for
all sends from the bucket at step t is the convolution of all these functions,
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i.e.,
t
∏

i=1

exp(λri(z − 1)) = exp

[

λ(z − 1)
t
∑

i=1

ri

]

.

For any δ > 0, we can choose t sufficiently large so that
∑t

i=1 ri > 1 − δ.
The number of sends from the bucket at step t is distributed as Poisson(λ′),
where (1 − δ)λ < λ′ ≤ λ. The number of new arrivals sending at step t is
independently Poisson(λ). The only situation in which a message succeeds
under Eager is when there are no new arrivals and the number of sends
from the bucket is zero or one. Thus the success probability at step t is
e−λe−λ′

(1 + λ′). For sufficiently small δ, we have λ1 < λ′ ≤ λ, and so
e−λ′

(1 + λ′) < e−λ1(1 + λ1) = eλ1λ1 < eλλ. Hence e−λe−λ′
(1 + λ′) ≤ λ − 3ǫ

for ǫ sufficiently small. Thus the success event is dominated by a Bernoulli
variable with expectation λ − 3ǫ. Hence, as in the previous lemma,

Prob[Backlog(t) > εt for all t ≥ T ] → 1 as T → ∞,

completing the proof. 2

Let Any be an arbitrary bucket genie and let Eager be the eager bucket
genie based on the same bucket parameters. We may couple the executions
of Eager and Any so that the same arrival sequences are presented to each.
At any stage the set of messages in Any ’s bucket is a subset of those in
Eager ’s bucket, any difference arising from steps when there is exactly one
arrival, no sends from the bucket, and Eager sends but Any is silent. We
may further couple the behaviour of the common subset of messages.

Let λ = λ2 ≈ 0.659 be the (unique) root of λ = 1 − λe−λ.

Lemma 19 For the coupled genies Any and Eager defined above, if OutA
and OutE are the corresponding output functions, we define

∆Out(t) = OutE(t) − OutA(t).

For any λ ≤ λ2 and any ε > 0,

Prob[∆Out(t) ≥ −εt for all t ≥ T ] → 1 as T → ∞.

Proof: Let c0 be the indicator for the event that no common messages
are sent. Let c1 be the indicator for the event that exactly one common
message is sent. Let c∗ be the indicator for the event that more than one
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common message is sent. In addition, for the messages which are only in
Eager ’s bucket, we use the similar indicators e0, e1, e∗. Let a0, a1 represent
Any not sending, or sending, additional messages respectively. (Note that
Eager ’s behaviour is fully determined since it will always send exactly one
additional message if none of the messages in its bucket send. Otherwise, it
will send no additional messages.)

We write Z(t) for ∆Out(t) − ∆Out(t − 1), for t > 0, so Z represents the
difference in success between Eager and Any in one step. In terms of the
indicators we have

Z(t) = SE(t) − SA(t)

= i0gE1(t) + i1gE0(t) − i0gA1(t) − i1gA0(t),

where SE(t) is the indicator random variable for a success of Eager at time t
and gE1(t) is the event that Eager sends exactly one message during step t
(and so on) as in the paragraph before Lemma 16. Thus,

Z(t) ≥ i0c0(a0(e0 + e1) − a1e∗) − i0c1(e1 + e∗) − i1c0a0.

Note that if the number of arrivals plus the number of common bucket
sends is more than 1 then neither genie can succeed. We also need to keep
track of the number, ∆B, of extra messages in Eager ’s bucket. At any step,
at most one new such extra message can arrive; the indicator for this event
is i1c0a0, i.e., there is a single arrival and no sends from the common bucket,
so if Any does not send then this message succeeds but Eager ’s send will
cause a failure. The number of “extra” messages leaving Eager ’s bucket
at any step is unbounded, given by a random variable we could show as
e = 1 · e1 + 2 · e2 + · · · . However e dominates e1 + e∗ and it is sufficient
to use the latter. The change at one step in the number of extra messages
satisfies:

∆B(t) − ∆B(t − 1) = i1c0a0 − e ≤ i1c0a0 − (e1 + e∗).

Next we define Y (t) = Z(t) − α(∆B(t) − ∆B(t − 1)), for some positive
constant α to be chosen below. Note that X(t) =

∑t
j=1 Y (j) = ∆Out(t) −

α∆B(t). We also define

Y ′(t) = i0c0(a0(e0 +e1)−a1e∗)− i0c1(e1 +e∗)− i1c0a0−α(i1c0a0− (e1 +e∗))
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and X ′(t) =
∑t

j=1 Y ′(j). Note that Y (t) ≥ Y ′(t). That is, Y (t) dominates
Y ′(t).

We can identify five (exhaustive) cases A,B,C,D,E depending on the values
of the c’s, a’s and e’s, such that in each case Y ′(t) dominates a given random
variable depending only on I(t).

A. c∗: Y ′(t) ≥ 0;
B. (c1 + c0a1)(e1 + e∗): Y ′(t) ≥ α − i0;
C. (c1 + c0a1)e0: Y ′(t) ≥ 0;
D. c0a0(e0 + e1): Y ′(t) ≥ i0 − (1 + α)i1;
E. c0a0e∗: Y ′(t) ≥ α − (1 + α)i1.

For example, the correct interpretation of Case B is “conditioned on (c1 +
c0a1)(e1 + e∗) = 1, the value of Y ′(t) is at least α − i0.” Since E[i0] =
e−λ and E[i1] = λe−λ, we have E[Y ′(t)] ≥ 0 in each case, provided that
max{e−λ, λe−λ/(1 − λe−λ)} ≤ α ≤ 1/λ − 1. There exists such an α for any
λ ≤ λ2; for such λ we may take the value α = e−λ, say.

Let Ft be the σ-field generated by the first t steps of the coupled process.
Let Ŷ (t) = Y ′(t)−E[Y ′(t) | Ft−1] and let X̂(t) =

∑t
i=1 Ŷ (t). The sequence

X̂(0), X̂(1), . . . forms a martingale (see Definition 4.11 of [21]) since E[X̂(t) |
Ft−1] = X̂(t − 1). Furthermore, there is a positive constant c such that
|X̂(t)− X̂(t − 1)| ≤ c. Thus, we can apply the Hoeffding-Azuma Inequality
(see Theorem 4.16 of [21]):

Theorem 20 (Hoeffding, Azuma) Let X0,X1, . . . be a martingale sequence
such that for each k

|Xk − Xk−1| ≤ ck,

where ck may depend upon k. Then, for all t ≥ 0 and any λ > 0,

Prob[|Xt − X0| ≥ λ] ≤ 2 exp

(

−
λ2

2
∑t

k=1 c2
k

)

.

In particular, we can conclude that

Prob[X̂t ≤ −ǫt] ≤ 2 exp

(

−
ǫ2t

2c2

)

.

Our choice of α above ensured that E[Y ′(t) | Ft−1] ≥ 0. Hence Y ′(t) ≥
Ŷ (t) and X ′(t) ≥ X̂(t). We observed earlier that X(t) ≥ X ′(t). Thus,
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X(t) ≥ X̂(t) so we have

Prob[Xt ≤ −ǫt] ≤ 2 exp

(

−
ǫ2t

2c2

)

.

Since
∑

t≥0 2 exp
(

− ǫ2t
2c2

)

converges, we deduce that

Prob[X(t) ≥ −εt for all t ≥ T ] → 1 as T → ∞.

Since ∆Out(t) = X(t) + α∆B(t) ≥ X(t), for all t, we obtain the required
conclusion. 2

Finally, we can prove the main results of this section.

Theorem 21 Let P be an acknowledgement-based protocol. Let λ = λ1 ≈
0.531 be the (unique) root of λ = (1 + λ)e−2λ. Then

1. P is transient for arrival rates greater than λ1;

2. P has capacity no greater than λ1.

Proof: Let λ be the arrival rate, and suppose λ > λ1. If λ > λ0 ≈ 0.567
then the result follows from Lemma 16. Otherwise, we can assume that
λ < λ2 ≈ 0.659. If E is the eager genie derived from P , then the corres-
ponding Backlogs satisfy BacklogP (t) = BacklogE(t)+∆Out(t). The results
of Lemmas 18 and 19 show that, for some ε > 0, both Prob[BacklogE(t) >
2εt for all t ≥ T ] and Prob[∆Out(t) ≥ −εt for all t ≥ T ] tend to 1 as
T → ∞. The conclusion of the theorem follows. 2

References

[1] D. Aldous, Ultimate instability of exponential back-off protocol for
acknowledgement-based transmission control of random access commu-
nication channels, IEEE Trans. Inf. Theory IT-33(2) (1987) 219–233.

[2] H. Al-Ammal, L.A. Goldberg and P. MacKenzie, An improved stability
bound for binary exponential backoff, Theory of Computing Systems
34(3) (2001) 229–244.

[3] J.I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE
Trans. Inf. Theory IT-25(5) (1979) 505-515.

21



[4] A. Ephremides and B. Hajek, Information theory and communication
networks: an unconsummated union, IEEE Trans. Inf. Theory 44(6)
(1998) 2416–2432.

[5] G. Fayolle, V.A. Malyshev, and M.V. Menshikov, Topics in the Con-
structive Theory of Countable Markov Chains, (Cambridge University
Press, 1995).

[6] L.A. Goldberg and P.D. MacKenzie, Analysis of Practical Backoff Pro-
tocols for Contention Resolution with Multiple Servers, Journal of
Computer and Systems Sciences 58 (1999) 232–258.

[7] F.G. Foster, On the stochastic matrices associated with certain
queueing processes, Ann. Math. Statist. 24 (1953) 355–360.

[8] L.A. Goldberg, P.D. MacKenzie, M. Paterson and A. Srinivasan, Con-
tention resolution with constant expected delay, J. of the ACM 47(6)
(2000) 1048–1096.

[9] J. Goodman, A.G. Greenberg, N. Madras and P. March, Stability of
binary exponential backoff, J. of the ACM 35(3) (1988) 579–602.

[10] A.G. Greenberg, P. Flajolet and R. Ladner, Estimating the multiplicit-
ies of conflicts to speed their resolution in multiple access channels, J.
of the ACM 34(2) (1987) 289–325.

[11] G.R. Grimmet and D.R. Stirzaker, Probability and Random Processes,
Second Edition. (Oxford University Press, 1992)

[12] J. H̊astad, T. Leighton and B. Rogoff, Analysis of backoff protocols for
multiple access channels, SIAM Journal on Computing 25(4) (1996)
740-774.

[13] F.P. Kelly, Stochastic models of computer communication systems, J.R.
Statist. Soc. B 47(3) (1985) 379–395.

[14] F.P. Kelly and I.M. MacPhee, The number of packets transmitted by
collision detect random access schemes, The Annals of Probability 15(4)
(1987) 1557–1568.

[15] U. Loher, Efficiency of first-come first-served algorithms, Proc. ISIT
(1998) p108.

22



[16] U. Loher, Information-theoretic and genie-aided analyses of random-
access algorithms, PhD Thesis, Swiss Federal Institute of Technology,
DISS ETH No. 12627, Zurich (1998).

[17] I.M. MacPhee, On optimal strategies in stochastic decision processes,
D. Phil Thesis, University of Cambridge, (1987).

[18] R.M. Metcalfe and D.R. Boggs, Ethernet: Distributed packet switching
for local computer networks. Commun. ACM 19 (1976) 395–404.

[19] M. Molle and G.C. Polyzos, Conflict resolution algorithms and their
performance analysis, Technical Report CS93-300, Computer Systems
Research Institute, University of Toronto, (1993).

[20] J. Mosely and P.A. Humblet, A class of efficient contention resolution
algorithms for multiple access channels, IEEE Trans. on Communica-
tions COM-33(2) (1985) 145–151.

[21] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge Uni-
versity Press, 1995.)

[22] P. Raghavan and E. Upfal, Stochastic contention resolution with short
delays, SIAM Journal on Computing 28(2) (1999) 709–719.

[23] R. Rom and M. Sidi, Multiple access protocols: performance and ana-
lysis (Springer-Verlag, 1990).

[24] B.S. Tsybakov and N. B. Likhanov, Upper bound on the capacity of a
random multiple-access system, Problemy Peredachi Informatsii 23(3)
(1987) 64–78.

[25] B.S. Tsybakov and V. A. Mikhailov, Free synchronous packet access
in a broadcast channel with feedback, Probl. Information Transmission
14(4) (1978) 259–280.

[26] S. Verdu, Computation of the efficiency of the Mosely-Humblet conten-
tion resolution algorithm: a simple method, Proc. of the IEEE 74(4)
(1986) 613–614.

[27] N.S. Vvedenskaya and M.S. Pinsker, Nonoptimality of the part-and-try
algorithm, Abstr. Papers, Int. Workshop “Convolutional Codes; Multi-
User Commun.,” Sochi, U.S.S.R (1983) 141–144.

23



Appendix. Proof of Lemma 11

Let j(r, p) = −h(r, p). We will show that for any r ∈ [0, 1] and p ∈ [0, 1],
j(r, p) ≤ −0.003.

Case 1: r + p − rp ≥ r ≥ B/A and p ≥ r.

In this case we have

g(r, p) = e−λ((1 − r)p + (1 − p)r + (1 − p)(1 − r)λ),

j(r, p) = g(r, p) − λ.

Observe that

j(r, p) = e−λ
1
∑

i=0

1
∑

j=0

ci,jp
irj,

where the coefficients ci,j are defined as follows.

c0,0 = λ(1 − eλ)

c1,0 = 1 − λ

c0,1 = 1 − λ

c1,1 = −2 + λ.

Note that the only positive coefficients are c1,0 and c0,1. Thus, if p ∈ [p1, p2]
and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

e−λ(c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1).

Now we need only check that for all r1 ∈ (B/A − 0.01, 1) and p1 ∈ [r1, 1)
such that p1 and r1 are multiples of 0.01, U(p1, p1 + 0.01, r1, r1 + 0.01) is at
most −0.003. This is the case. (The highest value is U(0.45, 0.46, 0.45, 0.46)
which is −0.00366228.)

Case 2: r + p − rp ≥ r ≥ B/A and p < r.

Now we have

g(r, p) = e−λ((1 − r)p + (1 − p)
r − r2/2

1 − p/2
+ (1 − p)(1 − r)λ)

j(r, p) = g(r, p) − λ.
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Observe that

(1 − p/2)j(r, p) = e−λ
2
∑

i=0

2
∑

j=0

ci,jp
irj,

where the coefficients ci,j are defined as follows.

c0,0 = λ(1 − eλ)

c1,0 = 1 − 3λ/2 + eλλ/2

c0,1 = 1 − λ

c1,1 = −2 + 3λ/2

c2,0 = −1/2 + λ/2

c0,2 = −1/2

c2,1 = 1/2 − λ/2

c1,2 = 1/2

c2,2 = 0.

Note that the only positive coefficients are c1,0, c0,1, c2,1 and c1,2. Thus, if
p ∈ [p1, p2] and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we
define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2 + c2,2p

2
1r

2
1

eλ(1 − p2/2)
.

Now we need only check that for all r1 ∈ (B/A− 0.005, 1) and p1 ∈ [0, r1]
such that p1 and r1 are multiples of 0.005, U(p1, p1 + 0.005, r1, r1 + 0.005) is
at most −0.003. This is the case. (The highest value for these parameters
is U(0.45, 0.455, 0.455, 0.46) = −0.00479648.)

Case 3: r + p − rp ≥ B/A ≥ r and p ≥ r.

In this case we have

g(r, p) = e−λ((1 − r)p + (1 − p)r + (1 − p)(1 − r)λ).

j(r, p) = g(r, p) − λ − (−Ar + B)e−λ(1 − r)p.

Observe that

j(r, p) = e−λ
2
∑

i=0

2
∑

j=0

ci,jp
irj,
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where the coefficients ci,j are defined as follows.

c0,0 = λ(1 − eλ)

c1,0 = 1 − B − λ

c0,1 = 1 − λ

c1,1 = −2 + A + B + λ

c2,0 = 0

c0,2 = 0

c2,1 = 0

c1,2 = −A

c2,2 = 0.

Note that the only positive coefficients are c1,0 and c0,1. Thus, if p ∈ [p1, p2]
and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
1r1 + c1,2p1r

2
1 + c2,2p

2
1r

2
1

eλ
.

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [0, p1] such
that p1 and r1 are multiples of 0.01, U(p1, p1 + 0.01, r1, r1 + 0.01) is at most
−0.003. This is the case. (The highest value is U(0.44, 0.45, 0.44, 0.45) =
−0.00700507.)

Case 4: r + p − rp ≥ B/A ≥ r and p < r.

Now we have

g(r, p) = e−λ((1 − r)p + (1 − p)
r − r2/2

1 − p/2
+ (1 − p)(1 − r)λ)

j(r, p) = g(r, p) − λ − (−Ar + B)e−λ(1 − r)p.

Observe that

j(r, p) = e−λ(1/2)

∑2
i=0

∑2
j=0 ci,jp

irj

1 − p/2
,

where the coefficients ci,j are defined as follows.

c0,0 = 2λ(1 − eλ)
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c1,0 = 2 − 2B − 3λ + λeλ

c0,1 = 2 − 2λ

c1,1 = −4 + 2A + 2B + 3λ

c2,0 = −1 + B + λ

c0,2 = −1

c2,1 = 1 − A − B − λ

c1,2 = 1 − 2A

c2,2 = A.

Note that the coefficients are all negative except c1,0, c0,1 and c2,2. Thus, if
p ∈ [p1, p2] and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we
define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
1r1 + c1,2p1r

2
1 + c2,2p

2
2r

2
2

2eλ(1 − p2/2)
.

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [p1, 1) such
that p1 and r1 are multiples of 0.01, U(p1, p1 + 0.01, r1, r1 + 0.01) is at most
−0.003. This is the case. (The highest value is U(0.44, 0.45, 0.44, 0.45) =
−0.00337716.)

Case 5: B/A ≥ r + p − rp ≥ r and p ≥ r.

In this case we have

g(r, p) = e−λ((1 − r)p + (1 − p)r + (1 − p)(1 − r)λ).

j(r, p) = g(r, p) − λ

+ (−A(r + p − rp) + B)(1 − (1 − r)(1 − p)e−λ(1 + λ))

− (−Ar + B)e−λ(1 − r)p.

Observe that

j(r, p) = e−λ
2
∑

i=0

2
∑

j=0

ci,jp
irj,

where the coefficients ci,j are defined as follows.

c0,0 = −B + Beλ + λ − Bλ − eλλ
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c1,0 = 1 + A − Aeλ − λ + Aλ + Bλ

c0,1 = 1 + A + B − Aeλ − λ + Aλ + Bλ

c1,1 = −2 − 2A + Aeλ + λ − 3Aλ − Bλ

c2,0 = −A − Aλ

c0,2 = −A − Aλ

c2,1 = 2A + 2Aλ

c1,2 = A + 2Aλ

c2,2 = −A − Aλ.

Note that the only positive coefficients are c1,0, c0,1, c2,1 and c1,2. Thus, if
p ∈ [p1, p2] and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2), which we
define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2 + c2,2p

2
1r

2
1

eλ
.

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [0, p1] such that p1

and r1 are multiples of 0.01, U(p1, p1 +0.01, r1, r1 +0.01) is at most −0.003.
This is the case. (The highest value is U(0.19, 0.2, 0.19, 0.2) = −0.0073656.)

Case 6: B/A ≥ r + p − rp ≥ r and p < r.

Now we have

g(r, p) = e−λ((1 − r)p + (1 − p)
r − r2/2

1 − p/2
+ (1 − p)(1 − r)λ)

j(r, p) = g(r, p) − λ

+ (−A(r + p − rp) + B)(1 − (1 − r)(1 − p)e−λ(1 + λ))

− (−Ar + B)e−λ(1 − r)p.

Observe that

(1 − p/2)j(r, p) = e−λ
3
∑

i=0

2
∑

j=0

ci,jp
irj,

where the coefficients ci,j are defined as follows.

c0,0 = −B + Beλ + λ − Bλ − eλλ

c1,0 = 1 + A + B/2 − Aeλ − Beλ/2 − 3λ/2 + Aλ + 3Bλ/2 + eλλ/2
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c0,1 = 1 + A + B − Aeλ − λ + Aλ + Bλ

c1,1 = −2 − 5A/2 − B/2 + 3Aeλ/2 + 3λ/2 − 7Aλ/2 − 3Bλ/2

c2,0 = −1/2 − 3A/2 + Aeλ/2 + λ/2 − 3Aλ/2 − Bλ/2

c0,2 = −1/2 − A − Aλ

c2,1 = 1/2 + 3A − Aeλ/2 − λ/2 + 7Aλ/2 + Bλ/2

c1,2 = 1/2 + 3A/2 + 5Aλ/2

c2,2 = −3A/2 − 2Aλ

c3,0 = A/2 + Aλ/2

c3,1 = −A − Aλ

c3,2 = A/2 + Aλ/2.

Note that the only positive coefficients are c1,0, c0,1, c2,1, c1,2, c3,0 and c3,2.
Thus, if p ∈ [p1, p2] and r ∈ [r1, r2], then j(r, p) is at most U(p1, p2, r1, r2),
which we define as

c0,0 + c1,0p2 + c0,1r2 + c1,1p1r1 + c2,0p
2
1 + c0,2r

2
1 + c2,1p

2
2r2 + c1,2p2r

2
2

+c2,2p
2
1r

2
1 + c3,0p

3
2 + c3,1p

3
1r1 + c3,2p

3
2r

2
2

divided by eλ(1 − p2/2).

Now we need only check that for all p1 ∈ [0, 1) and r1 ∈ [p1, 1) such that
p1 and r1 are multiples of 0.005, U(p1, p1 + 0.005, r1, r1 + 0.005) is at most
−0.003. This is the case. (The highest value is U(0.01, 0.015, 0.3, 0.305) =
−0.00383814.)
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