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path oupling is not enough to prove rapid mixing. We run the path oupling formultiple steps and use the expeted behaviour of the oupling at a ertain stopping timeto bound the expeted behaviour of the oupling after a �xed number of steps. Standardpath oupling is a worst-ase analysis, in that it onsiders the the expeted hange inthe distane between the worst possible pair of states over a single step. However, in amultiple-step analysis, the hoie of the initial pair of states is mitigated by the randomhoies made by the oupling over several steps. Hene, with some onstant probability,we are not in the worst ase. This is how a multiple-step analysis an improve uponone-step path oupling.The approah of analyzing the behavior of a Markov hain over several steps hasproved worthwhile in other settings. For example, it has been used to prove the stabilityof randomized bin-paking algorithms [7, 16, 1℄ and ontention resolution protools [14,13℄. Hene this approah appears to be a natural diretion for oupling arguments aswell.Czumaj et al. [8℄ introdued a framework for multiple-step ouplings based on pathoupling, whih they all delayed path oupling. Their \delayed path oupling lemma" [8,Lemma 4.2℄ (reprodued below as Lemma 2.1) shows how the mixing time of a Markovhain an be bounded above in terms of the behaviour of a oupling over a �xed numberof steps. However, the way in whih the oupling is analysed over the �xed time intervalis not spei�ed, and Czumaj et al. give a few di�erent appliations. In some appliations,they expliitly onstrut a non-Markovian oupling over the full time interval. Theonstrution and analysis of suh a oupling an be very ompliated. However, we usestraightforward path oupling to drive our multiple-step oupling, performing most ofour analysis at a speially de�ned stopping time. The next setion ontains a desriptionof this new method.We then apply our method to the problem of analysing the mixing time of theGlauber dynamis for graph olourings. A proper k-olouring of a graph G = (V;E)is a labelling of the verties from a set of olours C = f1; : : : ; kg suh that no twoneighboring verties have the same olour. We onsider the problem of sampling nearlyuniformly from the set of all proper k-olourings of a graph of maximum degree �.Note that eÆiently sampling k-olourings nearly uniformly allows one to approximatelyount suh olourings [15℄. This problem is interesting as a fundamental ombinatorialproblem, and it also relates to several problems in statistial physis; see [15, 23℄, formore details.A standard approah to the sampling problem is to design a Markov hain whosestationary distribution is uniform over all proper k-olourings. We an then samplenearly uniformly from all proper k-olourings by running the Markov hain until thedistribution of the state is suÆiently near the stationary distribution. For this approahto be eÆient, the number of steps for whih we must run the Markov hain must besuÆiently small. The number of steps for whih we must run the Markov hain isgenerally alled the mixing time, and a Markov hain for sampling proper k-olouringsis rapidly mixing if the mixing time is bounded above by some polynomial in jV j = n.Jerrum [15℄ (and independently Salas and Sokal [21℄, using di�erent methods) showedthat when k � 2�, a simple Markov hain is rapidly mixing. This Markov hain is easily2



desribed as follows: hoose a vertex v uniformly at random and a olour  uniformly atrandom; reolour v to olour  if doing so yields a proper olouring. This Markov hainis generally referred to as the Glauber dynamis in the statistial physis literature.Jerrum proved that the Glauber dynamis has O(n log(n)) mixing time for k > 2�,while for k = 2� the best known upper bound was O(n3). We use our new method toshow that, for � � 14, the Glauber dynamis hain has O(n log(n)) mixing time fork � (2� �)� whenever the graph is triangle-free and �-regular, where � is some small,positive onstant. It seems to be widely believed that 
(n logn) is a lower bound on themixing time of the Glauber dynamis; however, we do not know of an existing proof.We present a simple proof of this fat in Theorem 3.1, for the speial ase of graphswith no edges. Therefore our O(n logn) bound on the mixing time is optimal. Our mainresult is the �rst proof of an optimal upper bound for the mixing time of the Glauberdynamis for some values of k in the range k � 2�.The 2� barrier has been broken using more ompliated hains, but as far as weknow this is the �rst proof that involves diret analysis of the simple Glauber dynamishain. In [?℄, a rapidly mixing Markov hain was presented for the ase � = 3, k = 5(and for � = 4, k = 7 when the graph is triangle-free and 4-regular). The proof involvesthe analysis of several (in the hundreds for the � = 3 ase) linear programming problemsrelated to the hain. Using a omparison tehnique suh as [9℄ one an onlude that theGlauber dynamis is also rapidly mixing for these values of k, �. However, applying aomparison tehnique generally inreases the upper bound on the mixing time by severalfators of n.In reent work, Vigoda [23℄ has proven that k � 11�=6 is suÆient for rapid mixing,using an entirely di�erent Markov hain (similar to the well-known Swendsen-Wangalgorithm [22℄). Again, his result implies rapid mixing of the Glauber dynamis fork � 11�=6, but with an O(n2 logn) bound on the mixing time. His result learlydominates ours in terms of the range of k for whih rapid mixing is established. However,beause our analysis is based diretly on the Glauber dynamis hain and ahieves anoptimal bound, and beause we use a new tehnique based on analysing this hain overmultiple steps, our result is of independent interest.2 Path oupling using stopping timesBefore desribing the new method we present some standard de�nitions and notation.Let 
 be a �nite set and let M be a Markov hain with state spae 
, transition matrixP and unique stationary distribution �. If the initial state of the Markov hain is x thenthe distribution of the hain at time t is given by P tx(y) = P t(x; y). The total variationdistane of the Markov hain from � at time t, with initial state x, is de�ned bydTV(P tx; �) = 12Xy2
 jP t(x; y)� �(y)j:Following Aldous [3℄, let �x(") denote the least value T suh that dTV(P tx; �) � " for allt � T . The mixing time ofM, denoted by �("), is de�ned by �(") = max f�x(") : x 2 
g.3



A Markov hain is be said to be rapidly mixing if the mixing time is bounded above bysome polynomial in n and log("�1), where n is a measure of the size of the elements of
. Throughout this paper all logarithms are to base e.There are relatively few methods available to prove that a Markov hain is rapidlymixing. One suh method is oupling. A oupling for M is a stohasti proess (Xt; Yt)on 
 � 
 suh that eah of (Xt), (Yt), onsidered marginally, is a faithful opy of M.The moves of the oupling are orrelated to enourage the two opies of the Markovhain to ouple: i.e. to ahieve Xt = Yt. This gives a bound on the total variationdistane using the Coupling Lemma (see for example, Aldous [3℄), whih states thatdTV(P tx; �) � Prob[Xt 6= Yt℄where X0 = x and Y0 is drawn from the stationary distribution �. The following standardresult is used to obtain an upper bound on this probability and hene an upper boundfor the mixing time (the proof is omitted).Theorem 2.1 Let (Xt; Yt) be a oupling for the Markov hain M and let � be anyinteger valued metri de�ned on 
 � 
. Suppose that there exists � � 1 suh thatE[�(Xt+1; Yt+1)℄ � � �(Xt; Yt) for all t, and all (Xt; Yt) 2 
�
. Let D be the maximumvalue that � ahieves on 
 � 
. If � < 1 then the mixing time �(") of M satis�es�(") � log(D"�1)=(1� �). If � = 1 and there exists � > 0 suh thatProb[�(Xt+1; Yt+1) 6= �(Xt; Yt)℄ � �for all t, and all (Xt; Yt) 2 
 � 
, then �(") � deD2=�edlog("�1)e.From now on, assume that all ouplings are Markovian unless expliitly stated. Thepath oupling method, introdued in [4℄, is a variation of traditional oupling whihallows us to restrit our attention to a ertain subset S of 
 � 
, where 
 is the statespae of a given Markov hain. If we view S as a relation, the transitive losure ofS must equal 
. The rate of onvergene of the hain is measured with respet to a(quasi)metri � on 
� 
, whih an be de�ned by lifting a proximity funtion on S tothe whole of 
 � 
 (see [12℄ for details).In this setion we present a modi�ation of path oupling whih involves stoppingtimes. Let (X; Y ) be any element of 
� 
. As for ordinary path oupling, we de�ne apath, or sequene X = Z0; Z1; : : : ; Zr = Ybetween X and Y , where (Z`; Z`+1) 2 S for 0 � ` < r, andr�1X̀=0 �(Z`; Z`+1) = �(X; Y ):In ordinary path oupling we allow the oupling to evolve for one step, giving a newpath Z00; Z10; : : : ; Zr 04



(for a preise de�nition of the probability distribution of this new path, see [12℄). Wethen de�ne (X 0; Y 0) = (Z00; Zr0). The path oupling lemma says the following. Let(X; Y ) 7! (X 0; Y 0) be a oupling de�ned on all pairs in S. Suppose there exists aonstant � suh that 0 < � � 1 and for all (X; Y ) 2 S we haveE [�(X 0; Y 0)℄ � � �(X; Y ): (1)Then we an onlude that (1) holds for all (X; Y ) 2 
 � 
, and apply Theorem 2.1.Suppose however that the smallest value of � for whih (1) holds for all (X; Y ) 2 Ssatis�es � > 1. Then path oupling is not good enough to allow us to apply Theorem 2.1.However, if � is not muh larger than 1, and there are some \good" initial pairs (X; Y ) 2S where the distane dereases after one step (in expeted value), then we an try thefollowing approah.The following lemma is the \delayed path oupling lemma" [8, Lemma 4.2℄ of Czumajet al., whih shows how the mixing time of a Markov hain may be related to thebehaviour of a t-step path oupling (whih may be non-Markovian). For ompleteness,we present a proof.Lemma 2.1 Let S � 
�
 be suh that the transitive losure of S is the whole of 
�
.Let � be an integer-valued metri on 
 � 
 whih takes values in f0; : : : ; Dg. Given(X0; Y0) 2 S, let (X0; Y0), (X1; Y1); : : : ; (Xt; Yt) be the t-step evolution of a (possiblynon-Markovian) oupling starting from (X0; Y0). Suppose that there exists a onstant suh that 0 <  < 1 and E [�(Xt; Yt)℄ � �(X0; Y0) (2)for all (X0; Y0) 2 S. Then the mixing time �(") of M satis�es�(") � log(D"�1)1�  � t:Proof. Using the same argument as the path oupling lemma, we know that (2) holdsfor all (X0; Y0) 2 
 � 
. Run the oupling in epohs of length t. After r epohs, wehave E [�(Xrt; Yrt)℄ � r �(X0; Y0) � rD:If r � log(D"�1)=(1 � ) then E [�(Xrt; Yrt)℄ � ". This gives an upper bound for thenumber of epohs required to ensure that the distribution of the hain is at most " awayfrom stationarity, in terms of total variation distane. Multiplying this number by t,the number of steps per epoh, gives the mixing time of the hain.Therefore it suÆes to show that E [�(Xt; Yt)℄ �  �(X0; Y0) for all (X0; Y0) 2 S,where  is some positive onstant less than 1. The main ontribution of this paperis to provide a new approah to bounding E [�(Xt; Yt)℄, whih we now desribe. Let(X; Y ) 7! (X 0; Y 0) be a (one-step, Markovian) oupling for M de�ned on all initialpairs in S; that is, (X; Y ) 2 S and (X 0; Y 0) 2 
 � 
. We will apply this oupling for t5



steps, using the path oupling mahinery to drive the oupling if the trajetory of theoupling leaves the set S. This gives a multiple-step oupling f(Xs; Ys)gs�0. Let T be astopping time for this oupling, de�ned in suh a way that�(Xs; Ys) = �(X0; Y0) for 0 � s < T:Then T is a random variable whih depends only on the history of the oupling up tothe present time. For example, we ould de�ne T to be the �rst time at whih the valueof � hanges.If T > t then we know that �(Xt; Yt) = �(X0; Y0). Otherwise, we onsider (XT ; YT ),the state of the oupling at the stopping time T . (The pair (XT ; YT ) need no longerbelong to the set S, but the path oupling mahinery drives the oupling for all pairs in
� 
.) The analysis gives an upper bound for the quantityE [�(XT ; YT ) j T � t℄ :We hope that this quantity will be smaller than E [�(X1; Y1)℄, with the following heuristijusti�ation. The analysis of one-step oupling is a worst-ase analysis. However, afterrunning the Markov hain for T steps, the e�et of the hosen starting state is mitigatedto some extent by the random hoies made during the running of the oupling. In otherwords, with some positive probability we are not in the worst ase. It is here that wean improve on one-step oupling.We now show how to relate E [�(XT ; YT ) j T � t℄ and E [�(Xt; Yt)℄.Theorem 2.2 Let M be a Markov hain with state spae 
. Let � be a metri on 
�
and let S be some subset of 
�
 suh that the transitive losure of S is 
�
. Supposethat we have a (one-step, Markovian) oupling (X; Y ) 7! (X 0; Y 0), de�ned on pairs inS suh that E [�(X 0; Y 0)℄ � � �(X; Y )for some onstant � suh that � � 1. Let t > 0 be a �xed integer. Apply the oupling fort steps from initial state (X0; Y0) 2 S, using the path oupling lemma. Let T be somestopping time for f(Xs; Ys)gs�0 suh that�(Xs; Ys) = �(X0; Y0)whenenever 0 � s < T . ThenE [�(Xt; Yt)℄ � Prob [T > t℄ � �(X0; Y0) + Prob [T � t℄ � �t �E [�(XT ; YT ) j T � t℄for all (X0; Y0) 2 S.Proof. The oupling de�ned on the set S gives rise to a oupling (X; Y ) 7! (X 0; Y 0) onthe entire set 
� 
 suh that E [�(X 0; Y 0)℄ � � �(X; Y ) for all (X; Y ) 2 
 � 
, by thepath oupling lemma [4℄. Let (X0; Y0), (X1; Y1); : : : ; (Xt; Yt) be the t-step evolution ofthis oupling from the starting state (X0; Y0) 2 S.6



If T > t then �(Xt; Yt) = �(X0; Y0). Next suppose that T � t. ThenE [�(Xt; Yt) j T � t℄ � �E [�(Xt�1; Yt�1) j T � t℄� E ��t�T �(XT ; YT ) j T � t�� �tE [�(XT ; YT ) j T � t℄ :(By replaing t�T by t we are, in e�et, assuming that the stopping time ours at thevery beginning of the interval.) This proves the theorem.Suppose that S is the set of all pairs (X; Y ) with �(X; Y ) = 1. In this ase, Theo-rem 2.2 an be rewritten to assert thatE [�(Xt; Yt)� 1℄ � Prob [T � t℄ ��t �E [�(XT ; YT ) j T � t℄ � 1� :Combining Lemma 2.1 and Theorem 2.2, we see that  an be de�ned to be the maximumof the values 1� Prob [T � t℄ �1� �t �E [�(XT ; YT ) j T � t℄� (3)over all (X0; Y0) 2 S. In order to obtain a good bound on the mixing time of the hain,we aim to show that  < 1. Clearly  < 1 if�tE [�(XT ; YT ) j T � t℄ < 1for all (X0; Y0) 2 S.3 Applying the new method to the Glauber dynam-is for graph olouringsIn this setion we illustrate the new method by using it to analyse the mixing time ofthe Glauber dynamis for graph olourings.Let G = (V;E) be a given graph and let 
k(G) be the set of all proper k-olouringsof G, where C is the set of olours. The Glauber dynamis is a Markov hain on 
k(G)with transitions from the urrent state aording to the following proedure:� hoose (v; i) 2 V � C uniformly at random,� reolour v with i if this results in v being properly reoloured.This hain was analysed by Jerrum [15℄ and independently by Salas and Sokal [21℄.They proved that the hain is rapidly mixing for graphs with maximum degree � whenk > 2�. The fat that the hain is also rapidly mixing for k = 2� an be found in [4℄.Jerrum showed that the Glauber dynamis has O(n log(n)) mixing time for k > 2�,and the best known upper bound when k = 2� was O(n3).In Setion 3.1 we desribe the standard path oupling for this hain. Setion 3.2ontains the de�nition of the stopping time for this oupling, and gives a neessary7



ondition for the suess of the new method. In Setion 3.3 we perform the alulationsneeded to establish the neessary ondition. All alulations are ombined in Setion 3.4to provide an O(n log(n)) upper bound for the mixing time of the Glauber dynamis for�-regular, triangle-free graphs, when (2 � �)� � k � 2�, where � is a small positiveonstant.Before we proeed, we present a proof of the \folklore" result that the mixing timeof the Glauber dynamis is bounded below by 
(n logn). Our proof onerns graphswith no edges.Theorem 3.1 Let G be the empty graph with n verties, and let k � 2. Then�((2e)�1) = 
(n logn):Proof. A stopping rule � (see [17℄) is a map that assoiates every initial sequene w ofMarkov hain states with a number �[w℄ 2 [0; 1℄, whih is taken to be the probabilitythat the sequene should ontinue. We an also think of � as a random variable takingvalues in f0; 1; 2; : : :g, whose distribution only depends on w0; : : : ; w� (and w� is thestate where we stop). If w0 is drawn from the distribution � and E[�℄ is �nite, and thedistribution of �nal states is � , then the rule is alled a stopping rule from � to � . Itis said to be optimal for � and � if E[�℄ is minimal. For eah x 2 
k(G) let �x be thedistribution onentrated on the state x. De�ne �2 to be the maximum, over all initialstates x, of the expeted length of an optimal stopping rule from �x to �. Sine theGlauber dynamis is time-reversible, a result of Aldous' [2, Lemma 12℄ applies, showingthat �((2e)�1) � �2where  = (1� e�1)2=2. Now let � be the stopping rule whih says \stop when you havevisited every vertex of G at least one". (It may not be immediately apparent that thisrule satis�es the de�nition of a stopping rule given in [17℄, sine it uses information notenoded in the states of the hain. However, it is routine to formulate an equivalentrandomized stopping rule whih does �t the de�nition, see [18, p.89℄.) Sine G has noedges and every vertex has been randomly reoloured, the olouring obtained at time �is distributed aording to �. Hene � is a stopping rule from �x to �, for all x 2 
k(G).Let y 2 
k(G) be any olouring of G suh that y(v) 6= x(v) for all v 2 V . Then y is ahalting state for this stopping rule (that is, the probability that the proess will halt ifit reahes y is 1). Sine � has a halting state it is an optimal stopping rule, using [17,Theorem 5.1℄. This shows that �2 = E[�℄. Therefore �((2e)�1) is bounded below bya onstant times the expeted number of steps required to visit every vertex at leastone, and the latter is �(n logn) by the well-known oupon olletor's lemma (see, forexample [19, Setion 3.6℄).
8



3.1 Path oupling for the Glauber dynamisWe now give the standard path oupling analysis of the Glauber dynamis. The prox-imity funtion is given by Hamming distane, and we let S be the set of all pairs withHamming distane 1. The state spae of the Markov hain must be extended to the setof all olourings (inluding non-proper olourings), in order to be able to form a path oflength H(X; Y ) between any two olourings (X; Y ) 2 
k(G). (This approah is stan-dard, and does not ause any problems, sine the non-proper olourings are transientstates. The stationary distribution is uniform over all proper olourings, and zero else-where. Although the extended hain is no longer reversible, the path oupling lemmastill applies. Moreover, the mixing time of the hain on the original state spae isbounded above by the mixing time of the hain on the extended state spae.)Consider (X; Y ) 2 S, so X and Y di�er just at a single vertex v. Let N(v) denote theset of neighbours of v in G. We an ouple at (X; Y ) as follows: hoose (u; i) uniformlyat random from V � C. If u = v then attempt to reolour v with i in both X andY . This will either sueed in both, or fail in both. If it sueeds then the Hammingdistane dereases by 1. The only other moves whih an a�et the Hamming distaneare when u = w where w 2 N(v). In this ase, if i 62 fX(v); Y (v)g then attempt toreolour w with i in both X and Y . This will either sueed in both or fail in both,and the Hamming distane is una�eted. If i = X(v) then attempt to reolour w withX(v) in X and attempt to reolour w with Y (v) in Y . This will fail in both X and Y ,so the Hamming distane is una�eted. Finally, if i = Y (v) then attempt to reolour wwith Y (v) in X, and attempt to reolour w with X(v) in Y . This may sueed or failin either, so the Hamming distane ould inrease by 1 here. Thus the expeted hangein the Hamming distane is at most�(k � j fX(w) : w 2 N(v)g j)kn + �kn:In general, we have j fX(w) : w 2 N(v)g j � �, so that the expeted hange in theHamming distane is at most �(k � 2�)=(kn). This gives noninreasing Hammingdistane for k � 2�. The aim of the new approah is to show that, with onstantpositive probability, there are fewer than � distint olours around v, just before thestopping time. This gives noninreasing Hamming distane for a wider range of k.3.2 A stopping time for the Glauber dynamis on olouringsFor simpliity, assume that the given graph G is �-regular and triangle-free. Let � bea small positive onstant whih we �x later, and suppose that (2� �)� � k � 2�. Weanalyse the mixing time of the Glauber dynamis using our new method, to show thatthe Glauber dynamis has O(n log(n)) mixing time for this range of k.Let (X0; Y0) 2 S be given, so that X0, Y0 di�er just at a single vertex v 2 V . Performthe oupling desribed in Setion 3.1 with starting point (X0; Y0). Let Q(X0; Y0) be theset of all moves whih involve v or inrease the Hamming distane; that is,Q(X0; Y0) = f(v; i) : i 2 Cg [ f(w; Y0(v)) : w 2 N(v)g :9



Then Q(X0; Y0) ontains all the hoies whih may a�et the Hamming distane, butalso some whih will not. De�ne the random variable T to be the �rst step at whih apair in Q(X0; Y0) is hosen by the oupling. Then T is a stopping time sine it dependsonly on the oupling up to the present time. Now (XT ; YT ) is the state of the ouplingafter the T th step, whih we refer to as the state of the oupling at the stopping time.Note that H(Xs; Ys) = H(X0; Y0) = 1 for 0 � s < T , by the analysis of Setion 3.1.Clearly jQ(X0; Y0)j = k + � for all pairs (X0; Y0) 2 S. Let Æ be a positive onstant,and assume that Æn is an integer. (Sine n an grow arbitrarily large, there is not muhharm in making this assumption.) An (approximately) optimal value of Æ will be �xedlater, whih will satisfy Æ < (2� �)=3. We run the oupling for t steps, where t = Æn.Let C be a random variable whih denotes the number of olours whih our morethan one around v just before the stopping time T (that is, after step T � 1). In thenext setion we prove that, when n and � are \big enough" and � is \small enough",we have E [C j T � Æn℄ � ��for some onstant � suh that � � 2�. We now show why this is suÆient.The arguments of Setion 3.1 show that the expeted value of the Hamming distaneafter one step of normal path oupling from (X; Y ) 2 S is at most1� k � 2�kn � 1 + ��kn ;sine (2� �)� � k � 2�. Next, notie thatE [H(XT ; YT )� 1 j T � Æn℄ � �k � (�� E [C j T � Æn℄)k + � + �k + �� �k � (1� 2�)�k + � + �k + �� ��3 :Therefore, using Theorem 2.2 (and in partiular the remarks following the theorem),E [H(XÆn; YÆn)� 1℄ � Prob [T � Æn℄ ��Æn �E [H(XT ; YT ) j T � Æn℄� 1�� Prob [T � Æn℄ �1 + ��kn�Æn �1� �3�� 1!� Prob [T � Æn℄ �e�Æ=(2��)e��=3 � 1� : (4)This quantity is nonpositive whenever�Æ2� � � �3 � 0;and this holds for Æ � (2� �)=3.We now alulate a lower bound for E [T j T � Æn℄, whih is needed in Setion 3.3.10



Lemma 3.1 Suppose that n � Æ�1 and (2 � �)� � k � 2�, where 0 < � < 2. Let� = 3=(2� �). Then E [T j T � Æn℄ � Æn2 (1� �Æ):Proof. Let q = 1 � (k + �)=(kn), and let ps denote the probability that T = s. Thenps = Prob [T = s℄ = (1� q)qs�1 and Prob [T � Æn℄ = 1� qÆn. Now qÆn � 1� (k+ �)Æ=ksine n � Æ�1. ThereforeE [T j T � Æn℄ = �1� qÆn��1 ÆnXs=0 sps� pÆn Æ2 n22 (1� qÆn)> (1� q) qÆn Æ2 n22 (1� qÆn)� (1� q) �1� k+�k Æ�2k+�k Æ Æ2 n2� (1� �Æ) Æn2 ;as laimed.3.3 The expeted number of repeated olours just before thestopping timeLet (X0; Y0) be a given pair in S and let v be the vertex whih is oloured di�erently inX and Y . Let T be the stopping time for the oupling when started at (X0; Y0). Denoteby C the number of olours whih our at least twie around v just before the stoppingtime T . That is, C = j fi 2 C : j fw 2 N(v) : XT�1(w) = ig j � 2g j:In this setion we obtain a lower bound for E [C j T � Æn℄ whih holds when � and nare both \large enough" and � is \small enough". Spei�ally, take � � 14, n � 120and � < 1=210.Let Aw be de�ned byAw = C n (fX0(u) : fu; wg 2 Eg [ fY0(v)g)for w 2 N(v). Then Aw is the set of olours whih are aeptable at w in both X0 andY0. Note that jAwj � k � �� 1 for all w 2 N(v). Next, letBi = fw 2 N(v) : i 2 Awg11



and let bi = jBij for eah i 2 C. So Bi is the set of verties w 2 N(v) at whih i isaeptable in both X0 and Y0.Lemma 3.2 Assume that � < 1=210 and � � 14. Let k satisfy (2 � �)� � k � 2�.Then there are at least dk=5e olours i suh that bi � �=3.Proof. Let Z = jf(i; w) : i 2 Awgj. Now Z � �(k � � � 1). For a ontradition,suppose that fewer than dk=5e olours i have bi � �=3. If k is a multiple of 5 thenZ � �k5 � 1�� + �4k5 + 1� �3� �1� � 115 � 13����2 � �< �(k � �� 1);giving the desired ontradition. Next, suppose that k = 5` + r where r 2 f1; 2; 3; 4g.Then Z � `� + (k � `)�3� �1� � 115 � 15� 2r15� ���2 ��< �(k �� � 1);sine � < 1=210 and � � 14. Again, this is a ontradition.Using this information we an prove a lower bound for the expeted number ofrepeated olours around v just before the stopping time, given that the stopping timeours in the �rst Æn steps.Theorem 3.2 Suppose that n � 120, � � 14, � < 1=210 and Æ < (2 � �)=3. Alsoassume that (2� �)� � k � 2�. ThenE [C j T � Æn℄ � 13840 � Æ2 (1� �Æ)2 � e�4Æ ��;where � = 3=(2� �).Proof. By Lemma 3.2, there are at least dk=5e olours i suh that bi � �=3. Considerways in whih suh a olour i an our at least twie around v just before the stoppingtime T . One way in whih this an our is as follows. Suppose that there are exatlytwo distint elements u, w 2 Bi whih were hosen with the olour i during the oupling.That is, (u; i) and (w; i) were both hosen but (q; i) was not hosen for any q 2 Binfu; wg.Also suppose that u and w are never hosen at any other time, with any olour, andthat no neighbour of u or w is ever hosen with olour i. In this situation, both u and12



w end up oloured i. We now analyse the probability that this event ours, for a givenvalue of T .We know that T is the �rst stopping time, so there are T�1 steps before the stoppingtime step. We do not have kn possible hoies at eah of these T � 1 steps, but ratherkn � (k + �) possibilities. With this in mind, the probability that, say, w is hosenwith olour i is given by 1=(kn� (k + �)) � 1=(kn). There are at least �2=24 hoiesfor the unordered pair fu; wg � Bi, sine bi � �=3 and � � 14. The probability thatboth (u; i) and (w; i) are hosen at two distint times in the �rst T � 1 steps is at least�T�12 � � 1=(k2n2). There are also hoies whih we have ruled out for all other steps,orresponding to the vertex-olour pairs from the setf(q; i) : q 2 (N(u) [N(w) n fvg) [ (Bi n fu; wg)g[ f(u; j); (w; j) : j 2 C n fY (v)gg(note that the seletion of j = Y (v) is ruled out beause s is not a stopping time for0 � s < T ). We have ruled out at most 3� + 2k � 6 hoies at eah of T � 3 steps.Thus we see thatProb �i is repeated j T; bi � �3 � � �224 � �T � 12 � � 1k2n2 � �1� 3� + 2k � 6kn� (k + �)�T�3 :Let x = 3� + 2k � 6 and y = kn� (k + �). Then�1� xy�T�3 = exp �(T � 3) 1Xi=1 1i �xy�i!= exp �Txy + 1Xi=1 �3i � Tx(i + 1)y��xy�i!� e�Tx=y� e�4Æ:The �rst inequality follows sine 3=i � Tx=((i + 1)y for all i � 1, and the seondinequality follows sine 4y � nx (using the de�nition of x, y and the assumptions of thetheorem.) Plugging this bak into our alulations, we obtainProb �i is repeated j T; bi � �3 � � �224 � �T � 12 � � 1k2n2 � e�4Æ:Now we shall take expetation with respet to T , onditional on T � Æn. UsingLemma 3.1 and the fat that n � 120, we �nd that�E [T j T � Æn℄� 12 � � Æ2 n2 (1� �Æ)216 :Applying Jensen's inequality, we obtainProb �i is repeated j T � Æn; bi � �3 � � �2384 � Æ2 n2 (1� �Æ)2 � 1k2n2 � e�4Æ� 1768 � Æ2 (1� �Æ)2 � e�4Æ � �k : (5)13



By summing (5) over the dk=5e most popular olours, the theorem is proved.3.4 The mixing time of the Glauber dynamisWe now alulate an upper bound for the mixing time of the Glauber dynamis, usingLemma 2.1 and Theorem 2.2. Let � be de�ned by�(Æ; �) = 13840 � Æ2 (1� �Æ)2 � e�4Æ= 13840 � Æ2 �1� 3Æ2� ��2 � e�4Æ:Theorem 3.2 shows that E [C j T � Æn℄ � ��. Note that � is a dereasing funtionof �. Take Æ = 1=8 and � = 8 � 10�7. Then �(Æ; �) � 2�. (These values of Æ, � areapproximately optimal.) The disussion of Setion 3.2 suggested that this ondition wassuÆient to ensure rapid mixing of the Glauber dynamis. We now give the details.Theorem 3.3 Let n � 120 and � � 14. Suppose that (2 � �)� � k � 2�, where� = 8 � 10�7. The mixing time of the Glauber dynamis for graph olourings of �-regular, triangle-free graphs is bounded above by�(") � 4� 106 n log(n"�1):Proof. Let Æ = 1=8, as in the previous setion. We bound the mixing time by �ndingan upper bound on the quantity  suh thatH(XÆn; YÆn) � over all initial pairs (X0; Y0) 2 S. Using the remark following Theorem 2.2, we ande�ne  by (3). Let q = 1� (k + �)=(kn), as in Lemma 3.1. ThenProb [T � Æn℄ = 1� qÆn� 1� exp��k + �k Æ� � 1� e�4Æ=3:Using this, with the alulations of (4), we obtain � 1� �1� e�4Æ=3��1� exp� �Æ2� � � �3��� 1� 3:3� 10�8;
14



substituting Æ = 1=8 and � = 8 � 10�7. Now applying Lemma 2.1 we �nd that themixing time of the Glauber dynamis is bounded above by�(") � Æn � log(n"�1)1� � 10826:4 n log(n"�1)< 4� 106 n log(n"�1):This bound holds for (2 � �)� � k � 2�, where � = 8 � 10�7, assuming that � � 14and n � 120.Vigoda [23℄ desribed a new Markov hain for graph olourings whih alters theolouring of up to six verties at eah transition. He showed using path oupling thatthis hain is rapidly mixing for k � 11�=6. The mixing time of this hain is boundedabove by kk � 116 � n log(n"�1)for k > 11�=6. Vigoda also applies the omparison tehnique of Diaonis and Salo�-Coste [9℄ to show that the mixing time of the Glauber dynamis is at mostO �k log(k)n2 log(n)�when k > 11�=6. In partiular, this gives an upper bound of O(n2 logn) when k =2�. It seems unlikely that any omparison tehnique ould yield the optimal bound ofO(n logn).Referenes[1℄ S. Albers and M. Mitzenmaher, Average-ase analyses of �rst �t and random �tbin paking, in 9th Annual Symposium on Disrete Algorithms, ACM{SIAM, NewYork{Philadelphia, 1998 pp. 290{299.[2℄ D. J. Aldous, Some inequalities for reversible Markov hains, Journal of the LondonMathematial Soiety 2, 25 (1982), pp. 564{576.[3℄ D. Aldous, Random walks on �nite groups and rapidly mixing Markov hains, inA. Dold and B. Ekmann, eds., S�eminaire de Probabilit�es XVII 1981/1982, vol. 986of Springer-Verlag Leture Notes in Mathematis, Springer-Verlag, New York, 1983pp. 243{297.[4℄ R. Bubley and M. Dyer, Path oupling: A tehnique for proving rapid mixing inMarkov hains, in 38th Annual Symposium on Foundations of Computer Siene,IEEE, Los Alimitos, 1997 pp. 223{231.15
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