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known lower bound for this problem which does not restrict the class of algorithms underconsideration.1. IntroductionIn current distributed-memory parallel computers, a number of processors equipped withprivate local memory communicate by sending messages via a network of communicationlinks. Current technology restricts the network to be of low degree: each processor inthe network can communicate directly with only a few others, and the remainder must bereached indirectly by routing messages along a sequence of links. The emerging technologyof optical communication challenges the assumption that the network must be of lowdegree. In particular, the huge bandwidth of the optical medium can be divided so thateach processor has its own channel for receiving messages and each processor can sendon any channel. Even though such an interconnection network is a complete graph, thereremains the problem of contention: no processor can receive messages simultaneously fromtwo other processors without corruption. The problem of avoiding contention is muchmoredi�cult in high-degree networks (such as optical networks) than in traditional low-degreenetworks.The problem of routing in optical networks is captured mathematically by the OCPCmodel. In an n-processor completely connected Optical Communication Parallel Computer(n-OCPC) n processors with local memory are connected by a complete network. Acomputation on this computer consists of a sequence of communication steps. Duringeach communication step each processor can perform some local computation and thensend one message to any other processor. If a processor is sent a single message during acommunication step then it receives this message successfully, but if it is sent more thanone message then the transmissions are garbled and it receives none of them.Eshaghian [5, 6] �rst studied the computational aspects of parallel architectures withcomplete optical interconnection networks. The OCPC model is an abstract model ofcomputation which formalizes important properties of such architectures. It was �rstintroduced by Anderson and Miller [1] and Eshaghian and Kumar [7], and has subsequentlybeen studied by several authors including Valiant [22], Ger�eb-Graus and Tsantilas [12], andGerbessiotis and Valiant [11] (though not always under the name OCPC). Aside from itsimportance as a model for optical communication, the OCPC has the attraction of being aclean, mathematically appealing model that allows us to study a single issue, namely theresolution of contention between independent processors, in isolation from other factors. Ithas recently been observed that the n-processor OCPC is equivalent to an ERCW PRAMwith n global memory cells. Thus our results carry over to that model. For details, see [20].In this paper we study a fundamental communication problem for multiprocessor com-2



puters: that of routing h-relations. This problem arises both in the direct implementationof speci�c parallel algorithms [1], and in the simulation of shared-memory models, suchas the PRAM, on more realistic distributed-memory models [22]. An h-relation routingproblem [22] is a communication problem in which each processor has up to h messagesthat it wishes to send to other processors. The destinations of these messages can bearbitrary except that each processor is the destination of at most h messages. The goal isto design a fast algorithm for the n-OCPC that can route an arbitrary h-relation.Anderson and Miller [1] have observed that an h-relation can easily be routed in hcommunication steps if all of the processors are given total information about the h-relation to be routed. A more interesting (and more realistic) situation arises if we assumethat each processor initially knows only about the messages that it wants to send, andthat processors learn about the the rest of the h-relation only through receiving messagesfrom other processors. This is the usual assumption, and the one that will be made here.Valiant [22], building on work of Anderson and Miller [1], developed a randomizedalgorithm that routes an arbitrary h-relation in O(h + log n) steps, on average. Subse-quently, Goldberg, Jerrum, Leighton, and Rao [13] presented a more complex randomizedalgorithm for the same task that runs in O(h+ log logn) steps and has failure probabilityn�� for any constant � . The latter algorithm is asymptotically the fastest known, and itwould be interesting to discover whether it is the best possible. Our attention thereforeturns to lower bounds.Goldberg et al. [13] proved a lower bound for a restricted class of algorithms knownas direct, in which a processor may only send messages directly to their �nal destination.(Thus the only freedom a processor has is in its choice of when to attempt to send itsmessages.) They proved that for any (randomized) direct algorithm there is a 2-relationthat takes 
(log n) steps to route with success probability 12 , thus showing that even ina completely connected network it is advantageous to route messages indirectly. Subse-quently, MacKenzie, Plaxton and Rajaraman [19] generalized this result by showing thatfor any (randomized) direct algorithm and any h � 2 there is an h-relation that takes
(h + log h log n) expected steps to route. (This bound is tight as the randomized di-rect algorithm of Ger�eb-Graus and Tsantilas [12] routes h-relations in O(h + log h log n)expected steps.)Obtaining a lower bound for unrestricted algorithms has proved a much greater chal-lenge, owing, no doubt, to the rich variety of strategies that are available to a non-directalgorithm. (Some of the possibilities will be glimpsed in Section 2.) Indeed, no lower boundbeyond the trivial 
(h) was previously known. The new result in this paper is a lowerbound on the number of steps required to route 2-relations on an n-OCPC. We prove thatfor any randomized algorithm there is a 2-relation such that the expected number of steps3



required to route the relation is 
(p log log n ) . (See Theorem 1 for a precise statement ofthe result.) Our result implies that for any h > 1 the number of steps required to routean arbitrary h-relation is 
(h + p log log n ) . We note that our lower bound also holdsfor routing c + 1-relations in the c-collision OCPC model studied by Dietzfelbinger andMeyer auf der Heide [2].Our proof technique is based on one used in MacKenzie [18] (see also [16]). Thetechnique is a novel extension to the random restriction method which Furst, Saxe andSipser [10] used to prove circuit lower bounds. In this extension the choice of which inputsto randomly restrict at each stage depends on a careful analysis of the appropriate step ofthe algorithm under consideration. Although the random restriction method was �rst usedto obtain a deterministic lower bound, we obtain a randomized lower bound by provingthat the induction hypothesis in the random restriction method holds with high probability(and not merely with non-zero probability). Other randomized lower bounds were obtainedby this method in Hastad [15].The gap between the current upper and lower bounds on routing h-relations deservescomment. Section 4 indicates why a lower bound of the form 
(p log log n ) is the limit ofthe current technique. An example presented in that section points to an issue that mustbe faced in any attempt to improve the current lower bound. It appears that some newidea is necessary to make further progress on this front.2. Some Preliminary ObservationsImagine that two processors p and q wish to deliver a single message each to a commondestination processor within O(log log n) steps. Assume that p and q do not know eachother's identity. A simple strategy is for p and q each to ip a coin and attempt totransmit its packet to the destination processor if the coin comes up \heads." AfterO(log log n) steps, the probability that p and q have failed to transmit their packets isat least (log n)�O(1) . If n
(1) pairs of processors simultaneously employ this strategy todeliver their messages to separate destinations, the probability that they all succeed isnegligible. Some more subtle approach is required.One possibility, suggested by Rao, is the following. Suppose the processors are as-signed binary sequence numbers, and that the numbers assigned to p and q are p1p2 : : : prand q1q2 : : : qr , where r � log n . By simultaneously sending messages to processorsp1p2 : : : pr=20 : : : 0 and q1q2 : : : qr=20 : : : 0, respectively, processors p and q may discoverwhether their sequence numbers di�er in the �rst r=2 bits. After about log log n experi-ments of this general form, and using binary search, p and q can agree on a bit position atwhich their sequence numbers di�er; this bit can then be used to determine a priority forthe processors, and hence resolve the conict. Note that this method (with slight modi�-cation) could be used by n
(1) pairs of processors simultaneously. Observe that p and q4



are not sending messages in order to get the content of the message to another processor,but to learn some information about the competing processor.A second strategy is replication of messages. In O(log logn) binary replication steps,p and q can each prime a set of �(log n) processors with the message they are requiredto transmit. These two sets of processors then use the naive coin-ipping strategy toattempt to send their cloned messages to a common target set of size �(log n) . In just aconstant number of attempts, the probability that either a p-message or a q -message failsto get through is reduced to n�
(1) where the implicit constant is arbitrary. Finally, themessages in the target set can be funneled into the destination processor by a procedurewhich is an inverse to the cloning phase. Note that the failure probability is much smallerhere than for the naive strategy, and can be expected to remain small when many pairs ofprocessors simultaneously attempt to send to distinct targets.These two examples indicate the subtle strategies that are available to indirect algo-rithms. With these in mind, it is possible to give a little of the avor of the lower boundargument. After t-steps, some set of processors (of size at most exponential in t) will beaware that processor p or q has a packet to send. Viewing the situation crudely, these\agents" for p and q can act in one of two modes, or possibly a mixture: (a) they cansend messages to some narrow set of destinations that is only weakly dependent on theidentity of the source processor, or (b) they can send to a wide destination set, or one thatis strongly dependent on the identity of the source processor.The �rst strategy sketched above operates purely in mode (a), while the second strat-egy relies on mode (b) to recruit the processors that are required in the replication phase.The key point is that the e�ectiveness of mode (a) is limited by the collisions that in-evitably occur, while mode (b) is limited in its ability to \advance messages towards theirdestination." The lower bound proof to be described in Section 3 analyses the tradeo�between these modes. That both strategies described above are e�ective suggests thatthe whole range of the tradeo� must be examined, and explains some of the technicalcomplexity of the proof.3. The Lower Bound Argument3.1. De�nitions and GoalsOur goal is to establish the following.Theorem 1. Let A be a randomized algorithm that routes 2-relations on an n-OCPC.Then there is a 2-relation on which the expected number of communication steps usedby A is at least p log log n=4 .yy All logarithms in this paper are to the base 2.5



The �rst step in the proof of Theorem 1 will be to reduce to the case of deterministic A .A certain restricted class of 2-relations (to be de�ned presently) will be termed \relevant."We will use a weak form of a theorem of Yao (as stated in [9]) to show that Theorem 1reduces to proving the following.Theorem 2. Let A be a deterministic algorithm that allegedly routes 2-relations inT = plog log n=2 steps. Let the input to A be drawn u.a.r. from the set of relevant2-relations. Then the probability that A successfully routes the input is at most 12 .To de�ne the class of relevant 2-relations, we make the following de�nitions, which willbe explained below. (For the purpose of the proof, we de�ne \h-relation" in a restrictedway. In the h-relations that we consider, a processor can receive up to h messages, butcan send at most one message.)De�nition: A partial h-relation is a function from the set f1; : : : ; ng of processors tof0; 1; �g .De�nition: An h-relation is a partial h-relation in which no processor is mappedto `� '.Intuitively, we think of the n-OCPC as being partitioned into n4=5 ranges containingn1=5 processors each. If an h-relation maps a processor to 1 then this processor has amessage to send and if it maps a processor to 0 then this processor does not have a messageto send. The destination of each message is the �rst processor in the range containing thesending processor. We can now make the following de�nitions.De�nition: A relevant 2-relation is an h-relation in which exactly two processors ineach range are mapped to `1'.De�nition: A partial h-relation f is a re�nement of a partial h-relation f 0 (this isdenoted by f � f 0 ) if f 0(p) = 1 implies f(p) = 1, and f 0(p) = 0 implies f(p) = 0.De�nition: A partial relevant 2-relation is a partial h-relation that has a re�nementwhich is a relevant 2-relation.De�nition: f� is the partial h-relation that maps every processor to `� '.3.2. Generating a random 2-relationAlgorithm RANDOMSET can be used to randomly generate a relevant 2-relationone processor at a time. It is called with a partial relevant 2-relation f and a set P ofprocessors which are mapped to `� ' by f . The processors in P are randomly mappedto `0' or `1' in such a way that the resulting function f 0 is a partial relevant 2-relation andthe following claim holds. 6



Function RANDOMSET(f; P )Let f 0 = fFor each p 2 PLet s = j f q j q is in the range of p and f(q) = `� 'g jIf no processors in the same range as p are mapped to `1' by fWith probability 2=s set f 0(p) = 1With probability 1� 2=s set f 0(p) = 0If one processor in the same range as p is mapped to `1' by fWith probability 1=s set f 0(p) = 1With probability 1� 1=s set f 0(p) = 0Otherwise set f 0(p) = 0Return f 0End RANDOMSETClaim 3. An h-relation f generated solely by calls to RANDOMSET is a relevant 2-relation generated uniformly at random (u.a.r.) from the set of relevant 2-relations.Proof: Straightforward.3.3. De�ning the knowledge set and t-good partial h-relationsNow we make some de�nitions that deal with the running of a deterministic algo-rithm A on an n-OCPC when the input is an h-relation f .De�nition: The (0; f)-trace of processor p is the tuple < p; f(p) > . The (t; f)-traceof processor p (for t > 0) is the tuple < p; f(p); �1 ; : : : ; �t > in which �j is the messagethat processor p receives at step j if such a message exists and �j is the null symbolotherwise.Note that we lose no generality by assuming that if p sends a message on step t thenit sends its entire (t � 1)-trace. (Since each processor is allowed to know the algorithmsthat the other processors run we can simulate an algorithm which sends di�erent messagesby an algorithm which sends traces using the same pattern of communications.)De�nition: Processor p is a direct (t; f)-receiver of processor q if either p = q orwhen A is run with input f , p receives a message from q in the �rst t steps.De�nition: Processor p is an indirect (t; f)-receiver of q if either p is a direct (t; f)-receiver of q , or when A is run with input f , there is some processor k and some time-stept0 < t such that k is an indirect (t0; f)-receiver of q and p receives a message from kduring steps t0 + 1; : : : ; t .De�nition: A set S of processors is a (t; g)-dependency set of a processor p if gis a partial h-relation and for any relevant 2-relations f1 and f2 which re�ne g andhave f1(q) = f2(q) for every processor q 2 S , the (t; f1)-trace of p is the same as the7



(t; f2)-trace of p .The intuition behind the above de�nition is that p is not dependent on processorsoutside S , since these could not a�ect its trace. Note that if S0 and S00 are (t; g)-dependency sets of a processor p then so is S0 \ S00 , so p has a unique (t; g)-dependencyset of minimum size.De�nition: The (t; g)-knowledge set of a processor p is the smallest (t; g)-dependencyset of p .Suppose that g is a partial h-relation and that f is a relevant 2-relation which re�nesg . Note that if g(p) = `� ' and q has a (t; g)-dependency set which excludes p then qcannot be an indirect (t; f)-receiver of p . Also note that if g(p) 6= `� ' then p is not in the(t; g)-knowledge set of any processor. We now de�ne the following constants and functionsof n :De�nition: ki = 3i , s0 = n1=5 , wi = s1=kii =21k2i , ri = s4i , and si = w1=7i�1 (for i �1). Recall that T = plog log n=2. We will use the following facts.Fact 4. For large enough n and t � T , st � 2log1=3 n .Proof: Note that for t � 1 we havest = (7=3)�1=79�t=7st�11=(7�3t�1):Let �(t) denote 1=(7t3(t2)) . It is easy to prove (by induction on t) thatst � (7=3)�2=79�2t=7s0�(t):Therefore sT � (7=3)�2=79�2T=72�(T ) logn=5:To see that the claim follows note that 3(T2) � (log n)(log 3)=4 and (log 3)=4 < 2=3.Fact 5. For large enough n and t < T , 3kt � w1=7t .Proof: Using Fact 4, for large enough n and t < T we have3kt = kt+1 � 3p log logn � 2log1=3 n � st+1 = w1=7t :Fact 6. rt=w4=7t > s3t .Proof: Immediate from the de�nitions.De�nition: A t-good partial h-relation is a partial h-relation f which satis�es thefollowing three conditions. 8



1. rt ranges have st processors that are mapped to `� ' by f , and no processors that aremapped to `1' by f , while the remaining ranges have no processors mapped to `� ' byf , and two processors that are mapped to `1' by f .2. The (t; f)-knowledge set of each processor p has size at most one.3. Each processor q is in the (t; f)-knowledge set of at most kt processors.Condition (2) captures a crucial idea, which can be traced to Fich et al. [8], andmay be expressed informally as follows. Suppose that A is run on input g , where g is a2-relation that re�nes f . Then the entire state of the n-OCPC at time t depends in aparticularly simple way on the restriction of g to the processors p with f(p) = `� ' .3.4 Re�ning partial 2-relations with CONSTRUCTAt the heart of our proof is a randomized procedure CONSTRUCT(t; f) that takesa time t and a partial 2-relation f and returns a new partial 2-relation f 0 that is a re-�nement of f . Aside from the parameters t and f , CONSTRUCT depends implicitlyon the algorithm A , in particular on the action of A at time step t + 1. (The approachhere is similar to that used by MacKenzie in the context of lower bounds for load balanc-ing [18].) The procedure CONSTRUCT has two important properties, the �rst of whichis concerned with invariance. Namely, we will show that If t < T and CONSTRUCTis called with parameters (t; f) , where f is t-good, then with high probability, CON-STRUCT will return a partial 2-relation f 0 that is (t + 1)-good. The second propertyis that CONSTRUCT is unbiased. Speci�cally, suppose that GENERATE is a procedurethat starts with the partial 2-relation f0 = f� , and applies CONSTRUCT T times to gen-erate a sequence of partial relevant 2-relations f0 = f� � f1 � � � � � fT � f in whicheach ft = CONSTRUCT(t; ft�1) is a re�nement of ft�1 , and f is a relevant 2-relationgenerated u.a.r. from the set of re�nements of fT . We will show that the relevant 2-relationf produced by GENERATE is uniformly distributed. From invariance, we will also be ableto conclude that with high probability, the partial 2-relation fT is T -good.Before describing algorithm CONSTRUCT, we note that the proof of Theorem 2follows quickly from the properties of CONSTRUCT that we have described, provided weare prepared to set aside a minor technical complication, which is dealt with later in thissection. With high probability, the partial 2-relation fT produced by GENERATE hasmany ranges with no processors mapped to `1' by fT . In these ranges the target processorhas a (T; fT )-knowledge set of size at most one; thus the target processor can have receivedat most one of the messages destined for it.We now describe algorithm CONSTRUCT which is called with a time t and a partial2-relation f , and which randomly re�nes f based on the action of algorithm A at stept + 1. Let the j th range be denoted Rj and let Sj denote the set of processors in Rj9



that are mapped to `� ' by f . Let J be the set of indices j such that jSjj > 0.De�nition: A processor p zero-a�ects a processor q if there is a processor p0 suchthat p is in the (t; f)-knowledge set of p0 , and for any relevant 2-relation g which re�nesf and has g(p) = 0: when A is run with input g , processor p0 sends to q on step t+ 1.The notion of p one-a�ecting processor q is de�ned analogously. Whenever it isthe case that a processor p is zero-a�ected or one-a�ected by a processor q there is arisk that the (t + 1; f)-knowledge set of p will grow to size greater than one. Recall thatthe aim of CONSTRUCT is to produce a re�nement f 0 of f that is (t + 1)-good; inparticular this entails arranging that the (t + 1; f 0)-knowledge set of p has size at mostone. CONSTRUCT's strategy is to nominate, for each range Rj with j 2 J , a certainsubset of Sj . The subsets are chosen in such a way that each processor p is a�ected by atmost one processor in the subsets. Then CONSTRUCT randomly selects a re�nement f 0of f such that the undetermined part of f 0 lies precisely over the union of the subsetsthat were nominated.We now describe CONSTRUCT in detail. Let W 0j be a subset of Sj which is as largeas possible and has the property that if two processors p1 and p2 are in W 0j and zero-a�ect the same processor q , then two processors in Sj �W 0j also zero-a�ect processor q .Let W 00j be a subset of W 0j which is as large as possible and has the property that if twoprocessors p1 and p2 are in W 00j and one-a�ect the same processor q , then all processorsin W 00j one-a�ect processor q .For each processor p in range Rj we de�ne the set AFFECTS(p) as follows.1. If p is in the (t; f)-knowledge set of any processor q then put q in AFFECTS(p) .2. If p zero-a�ects any processor q and there are not two processors in Sj �W 0j whichzero-a�ect q then put q in AFFECTS(p) .(The intuition here is that if there are two processors in Sj �W 0j which zero-a�ectq and all of the processors in Sj �W 0j are mapped to `0' there will be a collision atprocessor q at step t+ 1 so q will not be a�ected by p .)3. If p one-a�ects any processor q and there is some processor in W 00j which does notone-a�ect q then put q in AFFECTS(p) .(The intuition here is that if every processor in W 00j one-a�ects q and all of theprocessors in Sj �W 00j are mapped to `0' there will be a collision at processor q atstep t+ 1 so q will not be a�ected by p .)Let Wj be a subset of W 00j which is as large as possible and has the property that forany two processors p1 and p2 in Wj , AFFECTS(p1) \ AFFECTS(p2) is empty. (Intu-itively, at this point, we would like each processor to be a�ected by at most one processorin each Wj ) 10



In CONSTRUCT, we will split J into groups J1; J2; : : : ; J` each of size rt=w4=7t , withthe last group possibly smaller. For each group Ji CONSTRUCT will construct a setVi containing some of the processors from up to one of the ranges in Ji . The sets willhave the property that if two processors p and p0 are in Si Vi , then AFFECTS(p) \AFFECTS(p0) is empty. Intuitively, this means that no processor could be a�ected bytwo processors in Si Vi . We will let V denote Si Vi . CONSTRUCT will produce f 0by making random assignments to the processors which are not in V . We will say thatalgorithm CONSTRUCT is successful if each set Vi has size w1=7t .Function CONSTRUCT(t; f)For each i 2 f1; : : : ; `gLet Vi = ;For each j 2 JiLet S = ;Let S0 = ;While jSj < w1=7t and jWj � S � S0j > 0Let p be the lowest numbered processor in Wj � S � S0If there is no p0 2 V1 [ � � � [ Vi�1 such thatAFFECTS(p) \AFFECTS(p0) 6= ; ThenLet S = S [ fpgElse Let S0 = S0 [ fpgLet f = RANDOMSET(Sj � S; f)If f maps any processor in Sj � S to `1' ThenLet f = RANDOMSET(S; f)Next jElse Let Vi = SFor each remaining j0 2 JiLet f = RANDOMSET(Sj0 ; f)Next iLet f 0 = fReturn f 0End CONSTRUCT 11



3.5. Analysis of CONSTRUCTClaim 7. If f is t-good then jAFFECTS(p)j � 3kt for each p .Proof: Since f is t-good, each p is in the (t; f) knowledge set of at most kt processors.Each of these kt processors can cause p to zero-a�ect at most one other processor and toone-a�ect at most one other processor.Claim 8. If f is t-good then each processor q is in at most 3 sets AFFECTS(p) withp 2 W 00j .Proof: Since f is t-good, the (t; f)-knowledge set of q has size at most one. Therefore,q is added to at most one set AFFECTS(p1) using the �rst part of the de�nition ofAFFECTS(p) . By the construction of W 0j , q is added to at most one set AFFECTS(p2)using the second part of the de�nition of AFFECTS(p) . Finally, by the construction ofW 00j , q is added to at most one set AFFECTS(p3) using the third part of the de�nitionof AFFECTS(p) .Claim 9. If f is t-good then for each j 2 J we have jW 0j j � jSj j=(2kt + 1) .Proof: We use the following procedure, which we call Procedure A:Procedure AFor each j 2 JLet S0 = ;Let S = SjWhile jSj > 0Select a processor p 2 SLet S = S � pLet S0 = S0 [ fpgFor each processor q which p zero-a�ectsLet Z = fvjv zero-a�ects q and v 2 SgIf Z > 1 ThenLet p1; p2 be two processors in ZLet S = S � fp1; p2gElse If Z = 1 ThenLet p1 be the processor in ZLet S = S � fp1gEnd AUsing procedure A we can construct a set S0 � Sj such that if two processors p1 andp2 are in S0 and zero-a�ect the same processor q , then two processors in Sj � S0 also12



zero-a�ect processor q . Procedure A starts by setting S = Sj . Since f is t-good eachprocessor p 2 S zero-a�ects at most kt processors. So for each iteration of the while loopat most 2kt + 1 processors are removed from S with exactly one of them placed in S0 .Thus jS0j � jSjj=(2kt + 1). By the de�nition of W 0j , jW 0j j � jS0j � jSjj=(2kt + 1).Claim 10. If f is t-good then for each j 2 J we have jW 00j j � jW 0j j1=kt=kt .Proof: For p 2 W 0j , let D(p) be the set of processors which p one-a�ects. ThenjD(p)j � kt . A sunower is de�ned as a collection of sets such that if an element is intwo of the sets, then it is contained in all of the sets. The Erd�os-Rado Theorem ([4], seealso [17]) says: Let t and m be positive integers and let F be a family of sets such thatevery element of F has size at most t and jF j > t!(m� 1)t . Then F contains a sunowerof size m . If we let F be the family of sets D(p) for p 2 W 0j , then F contains a sunowerof size (jW 0j j=kt!)1=kt � jW 0jj1=kt=kt . If two processors p1 and p2 correspond to two setsin this sunower and they one-a�ect the same processor q , then (by the de�nition of D(p)and sunower) all p corresponding to sets in this sunower one-a�ect q , and since W 00j isthe largest set of processors which satisfy this property, jW 00j j � jW 0j j1=kt=kt .A construction similar to the one used in the proof of Claim 10 was used by Grolmuszand Ragde [14].Claim 11. If f is t-good then for each j 2 J we have jWj j � jW 00j j=7kt .Proof: Construct a graph G = (W 00j ; E) where (p; q) 2 E if AFFECTS(p) \AFFECTS(q) is non-empty. Then an independent set S in this graph has the propertythat for p1 , p2 in S , AFFECTS(p1) \ AFFECTS(p2) is empty. Then Wj is simply thelargest independent set in this graph. By Tur�an's Theorem, jWj j � jW 00j j2=(jW 00j j+ 2jEj) .By Claim 7 and Claim 8, for each p 2 W 00j , jAFFECTS(p)j � 3kt , and each q is in atmost 3 sets AFFECTS(p) . Thus each p 2 W 00j is an end-point of at most 6kt edges in Eand therefore jEj � 3kt jW 00j j . We conclude that jWj j � jW 00j j=7kt .A construction similar to the one used in the proof of Claim 11 was used by Fich,Meyer auf der Heide and Wigderson [8].Corollary 12. If f is t-good then for each j 2 J we have jWj j � wt .Proof: Since f is t-good jSjj = st . Then the corollary follows from Claim 9, Claim 10,and Claim 11.Claim 13. If f is t-good then the number of groups used by algorithm CONSTRUCTis w4=7t .Proof: This follows from the de�nition of t-good and from the fact that the size of thegroups is rt=w4=7t .Claim 14. If f is t-good and t < T then the while loop in algorithm CONSTRUCTalways terminates with jSj = w1=7t . 13



Proof: We will show that if f is t-good then jSj < w1=7t implies jWj � S � S0j > 0.Suppose that some vertex p in Wj cannot be added to S. Then for some p0 2 V1 [ � � � [Vi�1 we have AFFECTS(p) \ AFFECTS(p0) 6= ; . But the size of each set V� is atmost w1=7t and i is at most the number of groups, which is equal to w4=7t by Claim 13.Furthermore, for each p0 2 V1 [ � � � [ Vi�1 , jAFFECTS(p0)j � 3kt . So at most 3ktw5=7tmembers of Rj will be put in S0 . By Fact 5, 3ktw5=7t < wt � w1=7t for t < T and largeenough n . We conclude using Corollary 12 that if jSj < w1=7t then jWj � S � S0j >wt � (w1=7t ) � (wt � w1=7t ) = 0.Claim 15. If f is t-good and t < T then the probability that CONSTRUCT is suc-cessful is at least 1� n�2 .Proof: We have already shown in the proof of Claim 14 that if f is t-good and t < Tthen the while loop in algorithm CONSTRUCT always terminates with jSj = w1=7t . Itremains to show that with probability at least 1� n�2 each group i has a range j suchthat the function f returned by the call \Let f = RANDOMSET(Sj � S; f)" does notmap any processor in Sj � S to `1'. Assume that this is true for groups 1 to i � 1. For1 � v � i � 1, let Xv be the random variable equal to the index of the �rst such rangein group v . For 1 � j � rt=w4=7t , let Yi;j be a binary random variable which is 1 whenrange j is such a range for group i . Let Zi = Prt=w4=7tj=1 Yi;j . Note that Zi is zero ifand only if group i does not have such a range. Note that for j 6= j0 , Yi;j and Yi;j0are independent. By construction, for any b1; : : : ; bi�1 2 [1; rt=w4=7t ] , using the facts thatst � 2log1=3 n (from Fact 4), and rt=w4=7t > s3t (from Fact 6), and assuming n is large,Pr(Zi = 0jXi�1 = bi�1; : : : ;X1 = b1)= Pr�Prt=w4=7tj=1 Yi;j = 0jXi�1 = bi�1; : : : ;X1 = b1�= Pr�Trt=w4=7tj=1 (Yi;j = 0)jXi�1 = bi�1; : : : ;X1 = b1�= Qrt=w4=7tj=1 Pr(Yi;j = 0jXi�1 = bi�1; : : : ;X1 = b1)=  1� (w1=7t2 )(st2 ) !rt=w4=7t� �1� 1s2t �s3t� e�st� n�3:The probability of failing in any group can then be bounded by14



Pw4=7ti=1 Pr(Zi = 0jZi�1 = 1; : : : ; Z1 = 1)= Pw4=7ti=1 Pb1;:::;bi�12[1;rt=w4=7t ] Pr(Zi = 0jXi�1 = bi�1; : : : ;X1 = b1)Pr(Xi�1 = bi�1; : : : ;X1 = b1)� n�3Pw4=7ti=1 Pb1;:::;bi�12[1;rt=w4=7t ] Pr(Xi�1 = bi�1; : : : ;X1 = b1)= w4=7t n�3� n�2 .Corollary 16. If f is t-good and algorithm CONSTRUCT is successful then after CON-STRUCT is executed rt+1 ranges have st+1 processors that are mapped to `� ' by f 0 , andno processors that are mapped to `1' by f 0 , while the remaining ranges have no processorsmapped to `� ' by f 0 , and two processors that are mapped to `1' by f 0Proof: Immediate from the de�nition of successful and from Claim 13.Claim 17. If f is t-good then after CONSTRUCT is executed every processor q thatis in the (t+ 1; f 0)-knowledge set of a processor p has p 2 AFFECTS(q) .Proof: By the de�nition of dependency sets, we can form a (t + 1; f 0) dependencyset D of p by taking the union of the (t; f)-knowledge set of p and the (t; f)-knowledgesets of all processors p0 satisfying the following: there is some re�nement g of f whichis a relevant 2-relation and on which p0 sends to p on step t + 1. Note that D is theunion of the (t; f)-knowledge set of p and the set of processors that zero-a�ect p andthe set of processors that one-a�ect p . If q is in the (t; f)-knowledge set of p then p isin AFFECTS(q) by the �rst part of the de�nition of AFFECTS. Suppose that q1 is aprocessor in some range j which zero-a�ects p and that p 62 AFFECTS(q1) . By the secondpart of the de�nition of AFFECTS we know that there are two processors in Sj �W 0jwhich zero-a�ect p . If both of these are mapped to `0' by f 0 then for any re�nement of f 0processor p has a conict at step t+ 1 so D � q1 is a (t+ 1; f 0)-dependency set of p . If,on the other hand, one of these is mapped to `1' by f 0 then algorithm CONSTRUCT mapsevery member of the range of q1 to `0' or `1' so D � q1 is a (t + 1; f 0)-dependency set ofp . (Recall that if f 0(q1) 6= `� ' then q1 cannot be in the (t + 1; f 0)-knowledge set of anyprocessor.) Similarly, suppose that q2 is a processor in some range j which one-a�ects pand that p 62 AFFECTS(q2) . By the third part of the de�nition of AFFECTS we knowthat every processor in W 00j one-a�ects p . If all of the processors in Sj �W 00j are mappedto `0' by f 0 then for any re�nement of f 0 that is a relevant 2-relation processor p has aconict at step t+ 1 so D � q2 is a (t + 1; f 0)-dependency set of p . If, on the other hand,one of these is mapped to `1' by f 0 then algorithm CONSTRUCT maps every member ofthe range of q2 to `0' or `1' so D � q2 is a (t + 1; f 0)-dependency set of p .15



Claim 18. If f is t-good and algorithm CONSTRUCT is successful then after CON-STRUCT is executed the (t + 1; f 0)-knowledge set of every processor p has size at mostone.Proof: We know from Claim 17 that every processor p has a (t + 1; f 0)-dependencyset D which contains only those processors q such that p 2 AFFECTS(q) . Suppose thattwo processors q and q0 have f 0(q) = f 0(q0) = `� ' . (If a processor q is not mapped to`� ' by f 0 then it is not in the (t+ 1; f 0)-knowledge set of any processor so it is not in the(t+ 1; f 0)-knowledge set of p .) Then q must be in some Wj � W 00j � W 0j and q0 must bein some Wj0 � W 00j0 � W 0j0 and both q and q0 are in the set V constructed by algorithmCONSTRUCT. If j = j0 , then the de�nition of Wj guarantees that AFFECTS(q) \AFFECTS(q0) = ; , implying that p is in just one of these sets, and thus either q or q0is not in D . If, on the other hand, j 6= j0 by the construction of V , AFFECTS(q) \AFFECTS(q0) = ; , implying p is in just one of these sets, and thus either q or q0 is notin D . Thus jDj � 1.Claim 19. If f is t-good then after CONSTRUCT is executed each processor q is inthe (t+ 1; f 0)-knowledge set of at most kt+1 processors.Proof: Let q be a processor which is in the (t+ 1; f 0)-knowledge set of a processor p .By Claim 17, p 2 AFFECTS(q) . But by Claim 7, jAFFECTS(q)j � 3kt = kt+1 . Theclaim follows.Lemma 20. If t < T and CONSTRUCT is called with parameters (t; f) , where fis t-good, then with probability at least 1 � n�2 CONSTRUCT will return a partial2-relation f 0 that is (t+ 1)-good.Proof: This follows from Claim 15, Corollary 16, Claim 18, and Claim 19.3.6. Function GENERATEWe use the following function, which calls CONSTRUCT to generate a sequence ofpartial relevant 2-relations f0 = f� � f1 � � � � � fT � f in which each ft is a re�nementof ft�1 , f is a re�nement of fT , and f is a relevant 2-relation generated u.a.r.16



Function GENERATELet f0 = f�Let f = f0Let t = 0While t � T DoIf for some p , f(p) = `� ' ThenLet ft = CONSTRUCT(t; f)Else Let ft = ft = t+ 1f = ftLet P = fpjf(p) = `� 'gReturn RANDOMSET(f; P )End GENERATELemma 21. The relevant 2-relation f produced by GENERATE is uniformly dis-tributed.Proof: The Lemma follows from Claim 3.Lemma 22. With probability at least 1� n�1 , the partial 2-relation fT is T -good.Proof: Let Zt be a random variable which is equal to 1 when CONSTRUCT succeedsat step t . Then the probability of failing at any step t � T can then be bounded byTXt=1 Pr(Zt = 0 j Zt�1 = 1; : : : ; Z1 = 1):By Lemma 20, this is at most Tn�2 which is at most n�1 .We now prove the following theorem.Theorem 2. Let A be a deterministic algorithm that allegedly routes 2-relations inT = plog log n=2 steps. Let the input to A be drawn u.a.r. from the set of relevant2-relations. Then the probability that A successfully routes the input is at most 12 .Proof: We will generate a relevant 2-relation by running algorithm GENERATE. ByLemma 21, algorithm GENERATE generates relevant 2-relations u.a.r. GENERATE alsoproduces a sequence f0 � � � � fT � � � � f in which f is the �nal relevant 2-relation. ByLemma 22, fT will be T -good with probability at least 1� 1=n .Suppose that fT is T -good. Then there is a range R that has a set S of sT processorswhich are mapped to `� ' by fT . R has no processors which are mapped to `1' by fT . Letd denote the �rst processor in range R . (d is the destination of the messages in range17



R .) The (T; fT )-knowledge set of d contains at most one processor. There are three caseswhich must be examined concerning fT :CASE 1: The (T; fT )-knowledge set of d contains a processor q which is a memberof S :We wish to bound the probability that A succeeds, given that fT is in Case 1. Let F1denote the set of relevant 2-relations which re�ne fT and map q to `1' and let F0 denotethe set of relevant 2-relations which re�ne fT and map q to `0'. One can see by examiningalgorithm RANDOMSET that the probability that f is in F1 is 2=sT and the probabilitythat f is in F0 is 1� 2=sT . We now examine the following sub-cases concerning f .CASE 1A: f is in F1 :We wish to bound the probability that A succeeds, given that f is in F1 . There isa particular trace � which is the (T; f 0)-trace of d for every input h-relation f 0 2 F1 .Since A runs in T steps processor d uses this trace � to deduce the pair of messages thatwere destined for d in every input h-relation that is in F1 . But there are sT � 1 suchpairs of messages, each of which is equally likely to come up in a randomly chosen memberof F1 . So the probability that A is successful given that f is in F1 is at most 1=(sT � 1).CASE 1B: f is in F0 :We wish to bound the probability that A succeeds, given that f is in F0 . There isa particular trace � which is the (T; f 0)-trace of d for every input h-relation f 0 2 F0 .Since A runs in T steps processor d uses this trace � to deduce the pair of messages thatwere destined for d in every input h-relation that is in F0 . But there are �sT�12 � suchpairs of messages, each of which is equally likely to come up in a randomly chosen memberof F1 . So the probability that A is successful given that f is in F1 is at most 1=�sT�12 � .Therefore the probability that A succeeds given that fT is in Case 1 is at most(2=sT )(1=(sT � 1)) + (1� 2=sT )(1=�sT�12 �) which is at most 2=�sT�12 � .CASE 2: The (T; fT )-knowledge set of d contains a processor q which is not a memberof S :Similar arguments to those used in Case 1 show that the probability that A succeedsgiven that fT is in Case 2 is at most 1=�sT2 � .CASE 3: The (T; fT )-knowledge set of d is the empty set:Similar arguments to those used in Case 1 show that the probability that A succeedsgiven that fT is in Case 3 is at most 1=�sT2 � .Finally, we conclude that the probability that A successfully routes f in T steps isat most the sum of 1=n ( an upper bound on the probability that fT is not T -good, byLemma 22) and (1 � 1=n) � 2=�sT�12 � (an upper bound on the probability that A succeedsgiven that fT is T -good). We can use Fact 4 to show that this quantity is at most 1/2.18



Therefore, with probability at least 1=2, an f drawn u.a.r. from the set of relevant2-relations will not be routed by algorithm A in T steps.Corollary 23. Let A be a deterministic algorithm that routes 2-relations. Let the inputto A be drawn u.a.r. from the set of relevant 2-relations. Then the expected number ofcommunication steps used by A is at least plog log n=4 .Proof: The corollary follows from the fact that plog logn=4 � (1=2)(T + 1).The following weak form of a theorem of Yao is stated (and proved) in Fich, Ragdeand Wigderson's paper [9]Theorem 24 [Yao]. Let T1 be the expected running time for a given probabilistic al-gorithm solving problem P , maximized over all possible inputs. Let T2 be the averagerunning time for a given input distribution, minimized over all possible deterministic al-gorithms to solve P . Then T1 � T2 .We now prove the following theorem:Theorem 1. Let A be a randomized algorithm that routes 2-relations on an n-OCPC.Then there is a 2-relation on which the expected number of communication steps usedby A is at least p log log n=4 .Proof: Corollary 23 shows that the average running time for the uniform distribution onrelevant 2-relations, minimized over all deterministic algorithms, is at least plog logn=4.Theorem 1 now follows from Theorem 24.4. The prospect for tightening the boundRecall the situation in which two processors p and q each have a single message to trans-mit to a common destination. Consider the following OCPC \algorithm" which is aparallel version of a strategy consider in Section 2. In �(p log log n) steps, p and qrecruit k = �� exp(p log log n )� \agents" to help discover a bit position at which thebinary sequence numbers for p and q di�er. This is done using the method of Section 2,but with k -way search in place of binary search: a p-agent and a q -agent simultane-ously attempt to transmit a message to processors with sequence numbers of the form0 : : : 0pi+1 : : : pi+r=k0 : : : 0 and 0 : : : 0qi+1 : : : qi+r=k0 : : : 0, respectively, and hence discoverwhether the sequence numbers of p and q di�er on a particular block of r=k bits. Thiswould seem to give a O(p log log n ) algorithm for delivering the messages.Of course, the catch is that a p-agent that �nds a block on which the sequence num-bers of p and q di�er is unable to alert the other p-agents to the discovery, at least,not su�ciently quickly to obtain an improvement over the original binary search strategy.Unfortunately, the lower bound argument presented here is oblivious to a cheating \algo-rithm" in which an agent that �nds an appropriate block broadcasts its discovery to theother agents in one step. The problem is that in the lower bound argument, the behavior19
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