
APPROXIMATION ALGORITHMS FOR THE FIXED-TOPOLOGYPHYLOGENETIC NUMBER PROBLEM�MARY CRYANy , LESLIE ANN GOLDBERG z , AND CYNTHIA A. PHILLIPSxAbstract. In the `-phylogeny problem, one wishes to construct an evolutionary tree for a setof species represented by characters, in which each state of each character induces no more than `connected components. We consider the �xed-topology version of this problem for �xed-topologies ofarbitrary degree. This version of the problem is known to be NP-complete for ` � 3 even for degree-3trees in which no state labels more than `+1 leaves (and therefore there is a trivial `+1 phylogeny).We give a 2-approximation algorithm for all ` � 3 for arbitrary input topologies and we give anoptimal approximation algorithm that constructs a 4-phylogeny when a 3-phylogeny exists. Dynamicprogramming techniques, which are typically used in �xed-topology problems, cannot be applied to`-phylogeny problems. Our 2-approximation algorithm is the �rst application of linear programmingto approximation algorithms for phylogeny problems. We extend our results to a related problem inwhich characters are polymorphic.

� Research Report CS-RR-327, Department of Computer Science, University of Warwick, Coven-try CV4 7AL, United Kingdom.y maryc@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-try CV4 7AL, United Kingdom. This work was partly supported by ESPRIT LTR Project no. 20244| ALCOM-IT.z leslie@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-try CV4 7AL, United Kingdom. Part of this work took place during a visit to Sandia NationalLaboratories which was supported by University of Warwick Research and Teaching InnovationsGrant 0951CSA and by the U.S. Department of Energy under contract DE-AC04-76AL85000. Partof this work was supported by ESPRIT LTR Project no. 20244 | ALCOM-IT.x caphill@cs.sandia.gov. Sandia National Laboratories, Albuquerque, NM. This work wasperformed under U.S. Department of Energy contract number DE-AC04-94AL85000.



h,m s,t f,m

s,ms,l

s,l

s,l

f,l h,l

f,tf.l

f,lFig. 1. An example of a 2-phylogeny. States h and f in the �rst character and state t in thesecond character are each in two components.1. Introduction. The evolutionary biologist collects information on extant species(and fossil evidence) and attempts to infer the evolutionary history of a set of species.Most mathematical models of this process assume divergent evolution, meaning thatonce two species diverge, they never share genetic material again. Therefore, evo-lution is modelled as a tree (phylogeny), with extant species as leaves and (extant,extinct, or hypothesized) ancestors as internal nodes. Species have been modelled inseveral ways, depending upon the nature of available information and the mechanismfor gathering that information. Based upon these representations, di�ering measuresof evolutionary distance and objective function are used to evaluate the goodness of aproposed evolutionary tree.In this paper we assume that input data is character-based. Let S be an input setof n species. A character c is a function from the species set S to a setRc of states. Theset of species in �gure 1 has two characters. The �rst character represents skin coveringand has three states: h for hair, s for scales, and f for feathers. The second characterrepresents size, where t (tiny) means at most one foot long, m (medium) means one tothree feet long and l (large) means greater than three feet long. If we are given a set ofcharacters c1; : : : ; ck for S, each species is a vector from Rc1 � : : :�Rck and any suchvector can represent a hypothesized ancestor. For example, an anaconda (the largestknown species of snake) would be represented on these simple characters as (s; l) anda hummingbird would be (f; t). Characters can be used to model biomolecular data,such as a column in a multiple sequence alignment, but in this paper, we think ofcharacters as morphological properties such as coloration or the ability to y.Character-based phylogenies are typically evaluated by some parsimony-like mea-sure, meaning that the total evolutionary change is somehow minimized. In this paper,we consider the `-phylogenymetric introduced in [9]. Given a phylogenetic tree, a char-acter ci and a state j 2 Rci , let `ij be the number of connected components in ci�1(j)(the subtree induced by the species with state j in character i). A phylogeny is an`-phylogeny if each state of each character induces no more than ` connected com-ponents. That is, maxci;j2Rci `ij � `. The `-phylogeny problem is to determine if aninput consisting of a species set S and a set of characters c1; : : : ; ck has an `-phylogeny.The phylogenetic number problem is to determine the minimum ` such that the inputhas an `-phylogeny.The classic parsimony problem is to �nd a tree that minimizes the total number1



of evolutionary changes: Pci;j2Rci `ij . The compatibility problem is to maximizethe number of characters that are perfect, meaning that all states of that characterinduce only one connected component. Thus the compatibility problem is to maximizejfci : `ij = 1 for all j 2 Rcigj. A 1-phylogeny is called a perfect phylogeny. All threeproblems (`-phylogeny for ` � 1, parsimony, compatibility) are NP-complete [1, 9, 4,5, 6, 8, 14]. Papers [4, 5, 8] prove that di�erent restrictions of the classic parsimonyproblem areNP-complete1. Parsimony, `-phylogeny, and compatibility all allow statesof a character to evolve multiple times. However, both parsimony and compatibilityallow some characters to evolve many times. The `-phylogeny metric requires balancedevolution, in that no one character can pay for most of the evolutionary changes.Thus, `-phylogeny is a better measure than parsimony or compatibility in biologicalsituations in which all characters are believed to evolve slowly.In this paper we consider the �xed-topology variant of the `-phylogeny problem,where in addition to the species set and characters, we are also given a tree T in whichinternal nodes are unlabelled, each leaf is labelled with a species s 2 S and each speciess 2 S is the label of exactly one leaf of T . The �xed-topology `-phylogeny problem is theproblem of determining labels for the internal nodes so that the resulting phylogenyis an `-phylogeny, or determining that such a labelling does not exist. In �gure 1, thehypothesized ancestor (s;m) labels one node. This example is a 2-phylogeny.Fixed-topology algorithms can be used as �lters. Current phylogeny-producingsoftware can generate thousands of trees which are (approximately) equally good undersome metric such as maximum likelihood or parsimony. We can think of these outputsas proposed topologies. One way to di�erentiate these hypotheses is to see whichtopologies also have low phylogenetic number. For example, the original trees canbe generated by biomolecular sequence data, and they can then be �ltered usingmorphological data with slowly-evolving traits.It will be convenient to allow a node to remain unlabelled in one or more charactersin a �xed topology. In this case, the node disagrees with all of its neighbors on allunlabelled characters. We can easily extend such a labelling to one in which everynode is labelled without increasing `ij for any i or j: for any character j, for eachconnected component of nodes which are not labelled, choose any neighbouring nodev which is labelled iv and label the entire component with the state iv. This does notintroduce any extra component for iv, nor does it break components of any other statethat weren't already broken.In the �xed-topology setting, optimal trees for the parsimony and compatibilitymetrics can be found in polynomial time [7]. The �xed-topology `-phylogeny problemcan be solved in polynomial time for ` � 2, but is NP-complete for ` � 3 evenfor degree-3 trees in which no state labels more than ` + 1 leaves (and thereforethere is a trivial ` + 1 phylogeny) [9]. Fitch's algorithm for parsimony uses dynamicprogramming. Dynamic programming also gives good algorithms in some cases for�nding phylogenies when characters are polymorphic [2].Jiang, Lawler, and Wang [11] consider the �xed-topology tree-alignment problem,where species are represented as biomolecular sequences, the cost of an edge in the treeis the edit distance between the labels at its endpoints, and the goal is to minimizethe sum of the costs over all edges. They give a 2-approximation for bounded-degree1 Wareham[17] describes and corrects a minor error in the reduction used by Day in [4] to showthe NP-completeness of the problem for Wagner characters.2



input topologies and extend this to obtain a polynomial-time approximation scheme(PTAS). In Lemma 3 of [11], they prove that the best lifted tree (in which the labelof each internal node is equal to the label of one of its children) is within a factor of2 of the best tree with arbitrary labels. The proof only uses the triangle inequality(it does not use any other facts about the cost measure). Therefore, the result holdsfor several other cost measures, including `-phylogeny, parsimony, and the minimum-load cost measure for phylogenies with polymorphic characters which was introducedin [2]. It also holds for the variant of `-phylogeny in which `i is speci�ed for eachcharacter ci. This variant was introduced in [9]. We refer to it as the generalized`-phylogeny problem. In fact, Lemma 3 of [11] holds for the �xed-topology problemwith arbitrary input topologies, though the authors do not state this fact since theydo not use it. Despite the applicability of Lemma 3, the algorithmic method of Jiang,Lawler and Wang does not seem to be useful in developing approximation algorithmsfor the �xed-topology `-phylogeny problem (or for related problems). Jiang et al. usedynamic programming to �nd the minimum-cost lifted tree. Dynamic programmingis not e�cient for the more global metric of `-phylogeny. The dynamic programmingproceeds by computing an optimal labelling for a subtree for each possible labellingof the root of the subtree. For metrics where cost is summed over edges (such asparsimony or tree alignment), one only needs to �nd the lowest-cost labelling for agiven root label. For the `-phylogeny problem, the cost of a tree depends upon howmany times each state is broken for a given character. One cannot tell a priori whichstate will be the limiting one. Therefore, instead of maintaining a single optimal treefor each root label, we must maintain all trees whose cost (represented as a vectorof components for each state) is undominated. This number can be exponential in r,the number of states, even for bounded-degree input trees. This is a common themein combinatorial optimization: the more global nature of minimax makes it harder tocompute than summation objectives, but also more useful.Gus�eld and Wang [15] take the approach of [11] a step further by proving thatthe best uniform lifted tree (ULT) is within a factor of 2 of the best arbitrarily-labelledtree. In a uniform lifted tree on each level, all internal nodes are labeled by the samechild (e.g. all nodes at level one take the label of their leftmost child). This proof alsoextends to the `-phylogeny metric. If the input tree is a complete binary tree, thenthere are only n ULTs, and exhaustive search is e�cient, giving an algorithm which isfaster than ours and has an equivalent performance bound. However, when the inputtree isn't complete (even if it is binary), Gus�eld and Wang use dynamic programmingto �nd the minimum-cost ULT, and so their method fails when it is applied to the`-phylogeny problem. Wang, Jiang, and Gus�eld recently improved the e�ciency oftheir PTAS for tree alignment [16], but still use dynamic programming.We give a simple 2-approximation for the �xed-topology `-phylogeny problem thatworks for arbitrary input topologies. It is based on rounding the linear-programmingrelaxation of an integer programming formulation for the �xed-topology `-phylogenyproblem. To our knowledge, this is the �rst application of linear-programming tech-nology to phylogeny problems.As we described earlier, `-phylogeny is most appropriate for slowly-evolving char-acters. It is most restrictive (and hence most di�erent from parsimony) when ` issmall. Therefore, we look more closely at the �rst NP -hard case: ` = 3. For this case,we give an algorithm based upon the structure of a 3-phylogeny that will construct a4-phylogeny if the input instance has a 3-phylogeny.3



The remainder of our paper is organized as follows: in section 2, we give the 2-approximation algorithm for the `-phylogeny problem. In section 3 we give the optimalapproximation algorithm for inputs with 3-phylogenies. In section 4, we extend thelinear-programming-based techniques to develop an approximation algorithm for theproblem of �nding parsimonious low-load labellings for phylogenies with polymorphiccharacters.2. A 2-approximation algorithm for the �xed-topology phylogeneticnumber problem. The interaction between characters in phylogeny problems af-fects the choice of the topology, but it does not a�ect the labelling of the internalnodes once the topology is chosen. Thus, for this problem, we can consider eachcharacter separately.Let c : S ! f1; : : : ; rg be a character and let T be a tree with root q and leaveslabelled by character states 1; : : : ; r. For each state i, let Ti be the subtree of Tconsisting of all the leaves labelled i and the minimum set of edges connecting theseleaves. Let L(Ti) be the set of leaves of Ti, and let rti, the root of Ti, be the nodeof Ti closest to the root of T . The important nodes of Ti are the leaf nodes and thenodes of degree greater than 2. An i-path p of Ti is a sequence of edges of Ti thatconnects two important nodes of Ti, but does not pass through any other importantnodes. The two important nodes are referred to as the endpoints of p, and the othernodes along the i-path are said to be on p (an i-path need not have any nodes on it).Although the edges of the tree T are undirected, we will sometimes use the notation(v ! w) for an edge or i-path with endpoints v and w, to indicate that v is nearer tothe root of T than w (v is the higher endpoint and w is the lower endpoint); otherwisewe will write edges and i-paths as (v; w). If the lower endpoint w is labelled i and thelabel of the upper endpoint v or some node on the i-path p = (v ! w) is not i, thenwe say that p breaks state i. If an i-path goes through the (degree-2) root of Ti, thenboth endpoints are considered lower endpoints.Given a tree T with each node labeled from the set f1; : : : ; rg, we need a way tocount the number of components induced by the nodes labeled i. Since the tree isrooted, we can assign each connected component a root, namely the node closest tothe root of T . We then count the number of roots for components labelled i. A node isthe root of its component if its label di�ers from that of its parent. The root q, whichhas no parent, is also the root of its component. Therefore we have the following:Observation 2.1. Let T be a tree with its leaves and internal nodes labelled byelements of f1; : : : ; rg. For each i, let Ti be de�ned as above, and let q be the rootof tree T . Then the number of connected components induced by the nodes labelled iis jfe = (v ! w) : c(v) 6= i; c(w) = igj + Yi, where Yi = 1 if q is labelled i and 0otherwise.We now de�ne an integer linear program (ILP) which solves the �xed-topology`-phylogeny problem. The linear-programming relaxation of this ILP is the key toour 2-approximation algorithm. The integer linear program I uses the variables Xv;i,for each state i 2 f1; : : : ; rg, and each node v in the tree T , the variables Xp;i foreach state i, and each i-path p of Ti and the variables costp;v;i for each state i, i-path p in Ti and each lower endpoint v of path p. Recall that each path has onelower endpoint except when there is an i-path through a degree-2 root, in which caseboth endpoints are lower endpoints. These variables have the following interpretation:4



Xv;i = ( 1 if node v is labelled i0 otherwiseXp;i = ( 1 if all nodes on p are labelled i0 otherwisecostp;v;i = ( 1 if lower endpoint v of p is the root of a component of state i0 otherwiseILP I is de�ned as follows: minimize `subject to Xv;i = 1 for each leaf v 2 Ti; i = 1; : : : ; r(1) Xv;i = 0 if v 62 Ti; i = 1; : : : ; r(2) rXi=1Xv;i � 1 8v 2 T(3) Xp;i = Xv;i i = 1; : : : ; r; 8p 2 Ti; 8v 2 p(4) Xp;i � Xv;i i = 1; : : : ; r; 8p 2 Ti; endpoint v 2 p(5) costp;v;i � Xv;i �Xp;i i = 1; : : : ; r; 8p 2 Ti; lower endpoint v 2 p(6)Xp;v costp;v;i +Xrti;i � ` i = 1; : : : ; r(7) Xv;i; Xp;i; costp;v;i 2 f0; 1g(8) Constraint (8) assures that the cost (costp;v;i), i-path (Xp;i), and vertex (Xv;i)variables serve as indicator variables in accordance with their interpretation. Con-straint (1) labels the leaves in accordance with the input. Constraint (2) prohibitslabelling a node v with a state i when v is not in Ti (the number of components la-belled i could not possibly be reduced by this labelling). Constraint (3) ensures thateach internal node will have no more than one label. Constraints (4) and (5) ensurethat for each tree Ti, nodes on paths are taken all-or-none; if any node on an i-path p(including endpoints) is lost to a state i, then it does no good to have any of the othernodes on the path (though it may be bene�cial to maintain one or both endpoints).Constraint (6) computes the path costs (counts roots) and constraint (7) ensures thateach state has no more than ` connected components. This is an implementation ofObservation 2.1. Since there is no i-path in Ti with rti as its lower endpoint, wemust explicitly check the root of each tree Ti, just as we checked the global root inObservation 2.1.Integer program I solves the �xed-topology `-phylogeny problem. We will nowshow that the optimal value of ` given by I is a lower bound on the phylogeneticnumber of tree T with the given leaf labelling.Proposition 2.2. If there exists an `-phylogeny for tree T with a given leaflabelling, then there is a feasible solution for the integer linear program for this valueof `.Proof. Suppose there exists an `-phylogeny on the tree T with leaves and inter-nal nodes labelled from f1; : : : ; rg. Consider one particular `-phylogeny, and assumewithout loss of generality that all node labels are useful for connectivity (i.e. changing5



the label of node v from i to something else will increase the number of componentslabelled i). This may require some nodes to be unlabelled. We obtain a feasible so-lution to I as follows. Set variable Xv;i to 1 if node v is labelled i in this phylogenyand 0 otherwise. Set Xp;i to 1 if both endpoints and all internal nodes of i-path p arelabelled i and 0 otherwise. Set costp;v;i = 1 if lower endpoint v of p is labelled i andthe i-path is not, and set costp;v;i = 0 otherwise. We now show this assignment is asolution to I.The Xv;i, Xp;i, and costp;v;i variables are binary by construction, thus satisfyingConstraint (8). By construction, Constraint (1) will be satis�ed by our assignment.Constraint (2) will also be satis�ed, because it is never useful to label nodes outsideTi with i, and we have assumed all the labels on nodes are useful for connectivity.Constraint (3) is also satis�ed because each node of the phylogeny will be labelledwith at most one state. Constraints (4) and (5) are satis�ed because the conditionthat all labelled nodes are necessary for connectivity ensures that a node on an i-path will only be labelled i if all the nodes and endpoints of the i-path are labelled i.Constraint (6) is satis�ed by construction.To show that constraint (7) is satis�ed, consider the connected components for i;by our assumption, these all lie in Ti. Let  = fe = (v ! w) : c(v) 6= i; c(w) = ig.By Observation 2.1 we have jj + Xq;i � `, where q is the root of T . To calculate(Pp;v costp;v;i) + Xrti;i, note that costp;w;i = 1 if and only if Xw;i = 1 for the lowerendpoint w andXp;i = 0 and otherwise costp;w;i is 0. By our de�nitions above,Xp;i = 0and Xw;i = 1 if and only if the edge (v; w) 2 T from w's parent (on the i-path p or itsupper endpoint) into w has c(v) 6= i and c(w) = i. Furthermore, this is the only edgeon the i-path with this property (the cost of each other edge is 0) unless path p passesthrough a degree-2 root and both its endpoints have breaks. In the latter case there isa second endpoint w0 such that costp;w0 ;i = 1. Since the i-paths part ion Ti, each i-pathp and lower endpoint v with costp;v;i = 1 contains one element of  which is unique tothat i-path and lower endpoint. Thus (Pp;v costp;v;i) � jj � `. If rti is the node q,then Xrti;i = Xq;i and (Pp;v costp;v;i) +Xrti;i � jj+Xq;i � `. Otherwise, if rti is notthe global root q, by our assumption that only useful nodes of T are labelled with i,the ancestor node ai of rti is not labelled i. Then, if Xrti;i = 1 the edge e = (ai ! rti)contributes 1 to jj, and therefore (Pp;v costp;v;i) + Xrti;i � jj + Xq;i � `. Henceconstraints (7) are satis�ed and we have a solution for the integer program I.Integer linear programming in NP-hard in general [3, 10, 12], so we cannot solveit directly in polynomial time. (In fact, doing so would solve the �xed-topology `-phylogeny problem, which we know to be NP-hard for ` � 3 from [9].) However, wecan solve the linear-programming relaxation L of I, which consists of all the constraintsof I except that Constraint (8) is replaced by the constraint 0 � Xv;i; Xp;i; costp;v;i � 1(80). Note that the right-hand side of constraint (6) could be negative, but the relaxedversion of the constraint (8) is still su�cient to prevent the path cost variables frombeing negative.Theorem 2.3. If there is a solution for the linear program L for a �xed topologyT with leaves labelled with states from f1; : : : ; rg, then we can assign states to theinternal nodes of T such that no state i 2 f1; : : : ; rg has more than 2` components.Proof. The 2` phylogeny for the character c : S ! f1; : : : ; rg on T is constructedby assigning states to the nodes of each tree Ti based on the Xv;i values. For eachstate i 2 f1; : : : ; rg, consider each internal node v of Ti. A node v is labelled i if andonly if Xv;i > 1=2, and there is a path v; w1; w2; : : : ; wk; v� through tree Ti to a leaf6



v� of Ti where Xwj;i > 1=2 for all j = 1; : : : ; k. If Xv;i > 1=2, but there is no suchpath, then node v is isolated, and by our procedure remains unlabelled. A node v alsoremains unlabelled if Xv;i � 1=2 for all states i.To show that the labelling is a 2`-phylogeny, we show that each component ofstate i adds at least 1=2 to the sum (Pp;v costp;v;i) + Xrti;i. From Observation 2.1,the number of connected components for the state i is jfe = (v ! w) : c(v) 6=i; c(w) = igj+Yi, where Yi is 1 if q has state i (and therefore q = rti) and 0 otherwise.Constraints (5) and (4) ensure that if the edge e = (v ! w) has c(v) 6= i and c(w) = ithen either w is the root of Ti, or w must be an endpoint node with Xw;i > 1=2, andthat either Xv;i � 1=2 or v is isolated. However, since w is labelled i, w must notbe isolated, and therefore v would not be isolated if Xv;i was greater than 1=2. SoXv;i � 1=2, and Xp;i � 1=2 for the i-path p with lower endpoint w. Therefore we needonly calculate the number of lower endpoints w from i-paths p such that Xp;i � 1=2,Xw;i > 1=2, and w is not isolated.Suppose w is a lower endpoint of i-path p. Since w is not isolated and the nodeabove w is not labelled i, there is a sequence p1 = (w! v1); p2 = (v1 ! v2); : : : ; pj =(vj�1 ! vj) of i-paths of Ti such that Xp;i > 1=2 for every p 2 fp1; : : : ; pjg andXv;i > 1=2 for every v 2 fv1; : : : ; vjg, and vj is a leaf of Ti. Calculating costp;w;i +costp1;v1;i + : : :+ costpj;vj;i = (Xw;i � Xp;i) + (Xv1;i � Xp1;i) + : : :+ (Xvj;i � Xpj) =�Xp;i + (Xw;i � Xp1;i) + (Xv1;i � Xp2) + : : :+ (Xvj�1;i � Xpj;i) + Xvj;i, we know byconstraints (5) that Xw;i �Xp1;i � 0, Xv1;i �Xp2;i � 0, : : : , Xvj�1;i � Xpj;i � 0. Socostp;w;i + costp1;v1;i + : : :+ costpj ;vj;i � Xvj;i �Xp;i = 1�Xp;i � 1=2.Note that for any two breaks that appear at lower endpoints w and w0 of i-pathsp and p0 respectively, the i-labelled paths to leaves are disjoint (because they are inseparate components of i). Therefore each break of i at a lower endpoint w contributesat least 1=2 to the sum (Pp;v costp;v;i). If rti is labelled i (and hence the root of acomponent of i), then Xrti;i > 1=2 (corresponding to an edge (v ! rti) in T or to thecase Yi = 1). So 2 � ((Pp;v costp;v;i) + Xrti;i) � jfe = (v ! w) : c(v) 6= i; c(w) =igj+ Yi, and therefore 2` � jfe = (v! w) : c(v) 6= i; c(w) = igj+ Yi.Theorem 2.3 is tight as shown by the following example: let the input topology bea star graph with 2x leaves: x leaves labelled i and x labelled j. The LP solution hasthe root labelled half i and half j, so that ` = (x+ 1)=2 by constraint 6. The optimalsolution has ` = x, arbitrarily close to twice the LP bound. In this example, however,it is the LP bound which is loose, and therefore our analysis of the approximationquality of the algorithm may not be tight.Recall that we have considered each character separately in our 2-approximationalgorithm. Thus, our work applies to the generalized `-phylogeny problem (and notjust to the ordinary `-phylogeny problem). In particular, we have the following theo-rem.Theorem 2.4. There is a 2-approximation algorithm for the generalized `-phylogeny problem.3. 4-phylogeny algorithm. In this section we give an algorithm which takesa �xed-topology phylogeny instance with arbitrary topology and, as long as it has a3-phylogeny, �nds a 4-phylogeny for the instance.We use the following de�nitions, in addition to those that we used for the 2-approximation. We will maintain a forest Fi for every state i, which corresponds to7



the set of nodes that state i is contending for. A branch point of Fi is a node in Fiwith degree 3. We say that a node v 2 Fi is claimed by state i if it is not in Fj forany j 6= i.The algorithm generalizes the �xed-topology 2-phylogeny algorithm of [9]. Itconsists of a forced phase and then an approximation phase. The forced phase producesa partial labelling (resolution of labels on some subset of the nodes) which can still beextended to a 3-phylogeny; it makes no labelling decisions that are not forced if oneis to have a 3-phylogeny. The approximation phase removes all remaining contentionfor labels, but it can break some states into four pieces. Because �nding a �xed-topology 3-phylogeny is NP-complete [9], this is an optimal approximation algorithmfor phylogeny instances with 3-phylogenies.3.1. The Forced Phase of the Algorithm. Initially, for every state i we willhave Fi = Ti. During the forced phase of the algorithm, nodes will be removed fromthe forests Fi. The invariant during the forced phase of the algorithm is that thereis a 3-phylogeny in which every node v is assigned a state j such that v 2 Fj . Theforced phase applies the following rules in any order until none can be applied. If anyforest Fi is broken into more than three components by the application of these rules,then the instance has no 3-phylogeny and the algorithm terminates.1. For any i-path (v; w), let S be the set containing v and w and the nodes onthe i-path. If S contains two or more branch points of Fj (for i 6= j) thenevery node on the i-path is removed from Fi. Note that in the updated copyof Fi (after the rule is applied), v and w will have lower degree than in theoriginal Fi. Furthermore, if v has degree 2 in the updated Fi then the i-pathcontaining it will consist of nodes from two di�erent i-paths in the original Fi.Similarly, i-paths can be merged as a result of the following rules.2. If Fi has C(Fi) connected components and Fi contains a node v of degree atleast 5� C(Fi) then in every forest Fj with j 6= i, v and all nodes on j-pathsadjacent to v are removed from Fj (i.e., i claims node v).3. Suppose v is a branch point of Fi but not a branchpoint of Fj , and supposetwo i-paths (v; w1) and (v; w2) adjacent to v each contain a branch point of Fj .Then in every forest Fk with k 6= i, every branch point w 62 fv; w1; w2g of Fiand every node on every k-path adjacent to w is removed from Fk (i.e., Ficlaims all branchpoints except v, w1, and w2).Rule 1 is justi�ed by observing that in any 3-phylogeny, each forest Fi gives upat most two disjoint i-paths, or a single branchpoint with the i-paths adjacent to it.In the setting in which rule 1 is applied, if Fi were to claim the path in question,then Fj would lose two branchpoints and necessarily be in at least four components.Therefore, in any 3-phylogeny for the input, Fi cannot have that i-path. Note thatonce any node on an i-path is lost to Fi, then Fi has no reason to claim any othernodes on the i-path.Rule 2 is justi�ed by the following observations. If there is a node of degree atleast 4 in tree Ti, then it must be labelled i in any 3-phylogeny (losing it will breakstate i into at least 4 pieces). Once Fi has been forced to give up an i-path, it cannotgive up another branchpoint. Finally, once Fi has been forced into three pieces, thenit must claim all remaining nodes in Fi.Rule 3 is applied when we isolate a region where a break in Fi must occur, but donot yet know exactly where the break will occur. If two paths adjacent to a branchpoint8



of Fi contain branchpoints of Fj , then by the previous argument for rule 1, Fi cannotkeep both of those paths. Therefore, outside of the a�ected region (those two i-paths),Fi can act as though the forest has been cut into at least two pieces, and can claimall branchpoints.3.2. The Approximation Phase of the Algorithm. In the following, releas-ing a degree-2 node v 2 Fi removes all nodes on its i-path from Fi. Releasing ahigher-degree node v 2 Fi removes v and all nodes on i-paths adjacent to v from Fi.The approximation phase consists of the following steps.1. For each connected component C of Fi, if the root of C is unclaimed thenFi releases the root of C. Also, if this root has degree 2, Fi releases anyunclaimed branch points at the ends of the i-path through this root.2. If, after the forced phase, Fi is in a single component with exactly one un-claimed branch point, w, then it releases w.3. If, after the forced phase, Fi is in a single component with exactly two un-claimed branch points, w1 and w2 which are the two endpoints of an i-path,and the path from the root to w2 passes through w1, then Fi releases w2.4. If, after the forced phase, Fi is in a single component with exactly threeunclaimed branch points, w1, w2 and w3 where there is an i-path from w1 tow2 and an i-path from w2 to w3, then Fi releases w2.3.3. The Proof of Correctness. The proof of correctness of the algorithmrequires the following observation, and follows from Lemma 3.2 and Lemma 3.7.Observation 3.1. If Fi is in one component and it releases two branchpoints w1and w2 which share an i-path, then the resulting forest Fi has at most 4 components.Proof. Suppose without loss of generality that branchpoint w1 is removed �rst.This leaves Fi in three pieces. Because w2 shares an i-path with w1, this operationreduces the degree of w2 to two, so the two remaining i-paths adjacent to w2 aremerged. Subsequently removing the i-path through w2 adds only one more component.Lemma 3.2. At the end of the approximation phase, every forest Fi has at most 4connected components.Proof. The forest Fi can be in at most three components at the end of the forcedphase. If Fi is in three components at the end of the forced phase, then, by Rule 2 ofthe forced phase, every remaining node in Fi is claimed during the forced phase, sonothing is removed from Fi during the approximation phase. If Fi is in two componentsafter the forced phase, then, again by Rule 2, all branch points of Fi are claimed duringthe forced phase, so no branch points are removed from Fi during the approximationphase. Step 1 of the approximation phase, therefore, will remove at most one pathfrom each component (when the root has degree 2, since degree-3 roots are claimed)and therefore breaks Fi into at most four components. In this case Steps 2{4 of theapproximation phase do not apply, and at most one of Steps 2{4 can apply to each ofthe remaining cases.If Fi is in one component after the forced phase, and Steps 2{4 do not apply thenwe have two cases. If the root is degree three, Step 1 results in at most 3 components.If the root is degree two, then Fi could release the two branchpoints on either end ofthis i-path, resulting in at most four components by Observation 3.1.Suppose Fi is in one component with exactly one unclaimed branchpoint afterthe forced phase. If that branchpoint is released by Step 1, then Fi is in at most9



3 components after that step (only that branchpoint and its adjacent i-paths areremoved from Fi), and Step 2 is redundant. Otherwise, Step 1 only has an e�ectif the root has degree 2. In this case, Step 1 releases only the i-path through theroot, since its endpoints are claimed, resulting in two components, and the subsequentapplication of Step 2 adds at most two more for a total of four.Suppose Step 3 can be applied to Fi. If w1 is not an endpoint of the i-path throughthe root of Fi (or the root itself), then, as in the previous case, Step 1 results in atmost two components. Subsequently removing w2 by Step 3 results in at most twomore components for a total of four. If w1 is an endpoint of the i-path containing theroot of Fi (or the root itself), then both w1 and w2 are released (and nothing more).Since they share an i-path, this results in at most four components by Observation 3.1.Finally, suppose Step 4 can be applied to Fi. If none of w1; w2 or w3 is the root oris an endpoint of the i-path adjacent to the root, then Step 1 will result in additionalcomponents only if the root has degree two. Since both of the endpoints of this i-pathare claimed in this case, removing this i-path and w2 (by Step 4) results in at mostfour components. Otherwise, the combined application of Steps 1 and 4 requires therelease of w2, and possibly one of w1 and w3 as well (but not both, since if w2 is theroot, neither of the other branchpoints will be released). By Observation 3.1 this willresult in at most four components.The following lemmas use this fact:Fact 3.3. ([9]) The intersection of two subtrees of a tree is connected and containsthe root of at least one of the subtrees.Lemma 3.4. If Fi and Fj are each in two components after the forced phase, thenafter the approximation phase, there is no node that is in Fi and in Fj.Proof. This proof is similar to the correctness proof of the �xed-topology 2-phylogeny algorithm in [9]. Let Ci be a component of Fi after the forced phase, andlet Cj be a component of Fj after the forced phase. Since Fi and Fj are both split intwo components during the forced phase, all branch points in Ci and Cj are claimedduring the forced phase (by Rule 2), and their intersection is a path in the �xedtopology (i.e., all nodes are degree 2). Furthermore, the root of Ci or Cj is in theintersection. Therefore, the contention is cleared in Step 1 of the approximation phaseof the algorithm.Lemma 3.5. If Fi is in one component after the forced phase, and Fj is in twocomponents after the forced phase, then there is no node that is in Fi and in Fj afterthe approximation phase.Proof. First note that no branch point of Tj is part of Ti. (Since Fj is in only 2pieces, it gave up only degree-2 nodes in the forced phase, and subsequently claimedall branch points. None of these are in Fi, since Fi was unbroken in the forced phase).Thus, the intersection of Ti and Tj is a path in Tj . We conclude that the intersectionof Fi and Fj is a path in Fj and contains at most one branch point of Fi (otherwise, thepath would be removed from Fj during the forced phase by Rule 1). If the intersectioncontains the root of Fj , then the contention will be removed during Step 1 of theapproximation phase. Otherwise, the intersection contains the root of Fi. Thus, thesingle branch point of Fi that is contained in the intersection of Fi and Fj is eitherthe root of Fi or it is an endpoint of the i-path containing the root of Fi. In eithercase, the contention will be removed in Step 1 of the approximation phase.Lemma 3.6. If Fi and Fj are each in one component after the forced phase, thenthere is no node that is in Fi and in Fj after the approximation phase.10



Proof. We will consider various cases. Case (�; �; ) will represent the situation inwhich the intersection of Fi and Fj after the forced phase contains � branch points ofFi and � branch points of Fj ,  of which are shared. Recall that when a branchpointv of Fi is released, v and all nodes on i-paths adjacent to v are removed from Fi.Case (0; 0; 0): As in the proof of Lemma 3.4, the intersection of Fi and Fj is a pathcontaining the root of one of Fi and Fj , so the contention is cleared in Step 1 of theapproximation phase.Case (1; 0; 0): As in the proof of Lemma 3.5, the intersection of Fi and Fj is a pathof Fj containing one branch point of Fi so the contention is cleared in Step 1 of theapproximation phase.Case (1; 1; ): Suppose without loss of generality that the root of Fi is in the inter-section of Fi and Fj after the forced phase. Then the branch point of Fi is either theroot of Fi or it is the endpoint of an i-path containing the root of Fi. In either case,it is released by Fi during Step 1 of the approximation phase.Case (2; 0; 0): This case cannot arise after the forced phase, because it requires twobranch points of Fi on a single path of Fj , which is forbidden by Rule 1 of the forcedphase.Case (2; 1; 0): By Rule 1, after the forced phase, the intersection of Fi and Fj hasthe branchpoint of Fj (w2), between the two branchpoints for Fi (w1 and w3) asillustrated in Figure 2(a). Let w4 be the other endpoint of the j-path adjacent to w2that contains w1, and let w5 be the other endpoint of the j-path adjacent to w2 thatcontains w3. By Rule 3 of the forced phase, all branch points of Fj except w2, w4 andw5 are claimed. If node w2 is released by Fj during the approximation phase, thenthe contention is cleared. Otherwise, by Rules 2 and 4 of the approximation phase,exactly one of fw4; w5g is unclaimed after the forced phase. Suppose without loss ofgenerality this is w4. Because w2 is not released by Fj in the approximation phase,the root of Fj is not w2 or on any j-path adjacent to it. Therefore the root of Fi is inthe intersection. If the root of Fi is on the i-path between w1 and w3 then by Step 1of the approximation phase, Fi will release both w1 and w3, and the contention will becleared. If the root of Fi was on the other i-path adjacent to w1 in the intersection, thenw4 would be the closest to the root of Fj among the three unreleased Fj branchpoints,and Fj would have released w2 by step 3 of the approximation phase. Finally, if theroot is on an i-path adjacent to w3 (but not w1), Fi will release w3 by Step 1 of theapproximation phase, clearing the i-path from w3 to w1 (not including w1). By Step 3of the approximation phase Fj will release w4, clearing the j-path from w2 to w4 (notincluding w2). Therefore the contention is removed.Case (2; 1; 1): This case cannot arise after the forced phase, because it requires twobranch points of Fi on a single path (including endpoints) of Fj , which is forbiddenby Rule 1 of the forced phase.Case (2; 2; 0): By Rule 1 of the forced phase, the branch points of Fi and Fj areinterleaved and lie on a path, as illustrated in Figure 2(b). Label the four relevantbranch points w1; w2; w3; w4 such that for k 2 f1; 2; 3g, there is a path between wk andwk+1 which does not pass through any w` 62 fwk; wk+1g. Without loss of generality,assume that w1 is a branch point of Fi. Let w5 be the other endpoint of the j-pathadjacent to w2 that contains w1, and let w6 be the other end of the i-path adjacentto w3 that contains w4. By repeated applications of Rule 3 of the forced phase, allbranch points of Fi and Fj other than w1{w6 are claimed.If Fj does not claim w5 in the forced phase and Fi does not claim w6, then by11



w 1 w 2 w 3w 5 w 4

w 6

(b)

w 1 w 2 w 3w 4 w 5

(a)

w 1 w 2 w 3 w 4 w 5

(c)Fig. 2. Cases from Lemma 10. Branchpoints of forest Fi are represented by solid circles, andi-paths are solid lines. Branchpoints of forest Fj are represented as empty circles with j-paths asdashed lines. Dashed and solid together represent shared paths. (a) case (2; 1; 0), (b) case (2; 2; 0),and (c) case (3; 2; 0).Rule 4 of the approximation phase, w3 is released by Fi and w2 is released by Fj , sothe contention is cleared.So, suppose without loss of generality that w6 is claimed by Fi. Consider thelocation of the root of Fi relative to w1 and w3. If the root of Fi is on the far side ofw6 (down one of the i-paths not adjacent to w3), or on the (w3; w6) i-path betweenw4 and w6, then w4 is on a j-path adjacent to the root of Fj . Therefore, by Step 1of the approximation phase, Fj will release w4, clearing contention up to, but notincluding w2, and by Step 3 of the approximation phase, Fi will release w1, clearingthe remaining contention. A similar argument holds when the root is on the far side ofw1. If the root is on the (w1; w3) i-path, then by Step 1 of the approximation phase, Fireleases both w1 and w3, removing contention. Similarly, if the root is on the (w2; w4)j-path, (included in Fi), then Fj releases both w2 and w4.Case (3; 2; 0): By Rule 1 of the forced phase, the branch points of Fi and Fj areinterleaved and lie on a path as illustrated in Figure 2(c). Label the �ve relevant branchpoints w1; w2; w3; w4; w5 such that for k 2 f1; 2; 3; 4g, there is a path between wk andwk+1 which does not pass through any w` 62 fwk; wk+1g. By repeated application ofRule 3 of the forced phase, all branch points of Fi and Fj other than w1{w5 are claimed.Node w3 is released by Fi by Rule 4 of the approximation phase. Contention remainsat w1 and w5. Consider where the global root is with respect to this intersection. Ifthe global root is located down one of the paths adjacent to w1 (but not adjacent tow3), then the root of Fj is on an j-path adjacent to w2. Fj releases w2 by Step 1 of12



the approximation phase and w4 by Step 3 of the approximation phase, removing theremaining contention. A similar argument holds if the root is down a i-path adjacentto w5 (other than (w3; w5)). If the global root is down a j-path adjacent to w2 (otherthan (w2; w4)), then the root of Fi is on an i-path adjacent to w1 (or w1 itself),and therefore Fi will release it by Step 1 of the approximation phase. As before, Fjwill release w4 by Step 3, removing the rest of the contention. A similar argumentholds when the global root is down a j-path adjacent to w4 (other than (w2; w4)). Ifthe global root is on j-path (w2; w4), or down the i-path adjacent to w3 which doesnot intersect this j-path, then by Step 1, Fj releases both w2 and w4, removing allcontention.Case (3; 3; 0): This case cannot arise. By Rule 1 of the forced phase, if it did exist,the branch points of Fi and Fj would be interleaved and lie on a path. But then, byapplying Rule 3 of the forced phase, we �nd that at least one of the relevant branchpoints of Fi and Fj would have been claimed during the forced phase.Case (� > 1; � > 1;  > 0): This case cannot arise after the forced phase, because itrequires two branch points of Fi on a single path of Fj , which is forbidden by Rule 1of the forced phase.Case (3; � � 1; ): This case cannot arise after the forced phase, because it requirestwo branch points of Fi on a single path of Fj , which is forbidden by Rule 1 of theforced phase.Lemma 3.7. After the approximation phase, every node is in at most one forest Fi.Proof. The lemma follows from Lemmas 3.4, 3.5 and 3.6.4. Approximating Polymorphism. A polymorphic character (see [13]) al-lows more than one state per character per species. This type of character has strongapplication in linguistics [2, 18]. If there are r states, a polymorphic character is afunction c : S ! (2f1 :::; rg � ;), where 2f1; :::; rg denotes the power set (set of allsubsets) of f1; :::; rg. For a given set of species, the load is the maximum number ofstates for any character for any species.Often the evolution of biological polymorphic characters from parent to child ismodelled by mutations, losses and duplications of states between species (see [13]). Amutation changes one state into another; a loss drops a state from a polymorphiccharacter from parent to child; and a duplication replicates a state which subse-quently mutates. We associate a cost with each mutation, duplication and loss be-tween a pair of species. In the state-independent model, which we will consider, a losscosts cl, a mutation costs cm and a duplication costs cd, regardless of which states areinvolved. Following the justi�cation in [2], we insist cl � cm � cd. Let s1; s2 2 S andassume s1 is the parent of s2. In the state-independent model, we �rst look at thedi�erences in cardinality of the parent and child sets. If the parent has fewer states,then we pay the appropriate duplication costs to account for the increased size of thechild. If the parent is bigger, then we pay the loss cost. Then we match up as manyelements as possible, and pay for the remaining changes as mutations. More speci�-cally, as given in [2], we de�ne X = c(s1)�c(s2), and Y = c(s2)�c(s1). Then the costfor the character c from s1 to s2 is cm �jX j if jX j = jY j, and is cl � [jX j�jY j]+cm �jY jif jX j > jY j and is cd � [jY j � jX j] + cm � jX j if jY j > jX j.As input we are given a �xed-topology T which has a unique species from Sassociated with each of its leaves, and label the leaf associated with s 2 S withthe set of states c(s). The parsimony problem is the problem of extending the13



function c to the internal nodes of T so that the sum of the costs over all edgesof T is minimized. In the monomorphic case (one state per character per species),as discussed earlier, this problem can be solved in polynomial time [7], though theproblem of �nding a minimum cost labelling is NP-hard if the input does not includea topology [4, 5, 8, 17]. We will consider the load problem, introduced in [2]; calculatea labelling of the internal nodes of a �xed topology T with load at most ` and costat most p. This problem was shown to be NP-hard in [2], even when cl = 0 and thetopology T is a binary tree. Note that the dynamic programming techniques presentedin Jiang, Lawler and Wang's [11] and Gus�eld and Wang's [15] papers do not appearto generalize for the polymorphic load problem. An (�; �)-approximation algorithmfor the load problem computes a phylogeny with load at most �` and cost at most �cprovided there is a load-` cost-c phylogeny. Note that this is a pseudoapproximationalgorithm, since the cost of the best �`-load phylogeny may be signi�cantly lower thanthe cost of the best `-load phylogeny. In this section of the paper, we consider the loadproblem when cl = 0 and the topology is arbitrary. We extend the results of section 2to obtain, for any � > 1, an (�; ���1)-approximation algorithm for the problem. (Notethat taking � = 2 gives a (2; 2)-approximation algorithm.)We �rst quote the following observation, which was �rst noted in [2]:Observation 4.1. If cl = 0, then if there is a labelling for the topology T whichhas load ` and cost p, then there is also a labelling for T with load ` and cost p suchthat each internal node contains all the states in the subtree rooted at it or else hasload `.Therefore to approximate the load we only need to consider the labellings whereeach internal node contains all the states in the subtree rooted at it or else has load `.We begin by presenting an ILP which provides an exact solution for the load problem.We then use the solution to the linear-programming relaxation of this ILP to computean (�; ���1)-approximation for the problem. The integer program P uses the variablesXv;i, for each node v of the �xed-topology T and each state i 2 f1; : : : ; rg, cost vari-ables coste;i for each edge e 2 E(T ) and each state i 2 f1; : : : ; rg and the total costvariable coste for each edge e. These variables have the following interpretation:Xv;i = ( 1 if state i is in c(v)0 otherwisecoste;i = ( 1 if i 2 c(v) and i 62 c(u), for e = (u! v)0 otherwisecoste = Pri=1 coste;iThe ILP P is then de�ned as: minimize psubject to Xv;i = 1 for each leaf v 2 V (T ); 8i 2 c(v)(9) rXi=1Xv;i � ` 8v 2 V (T )(10) coste;i � 0 8e 2 E(T ); i = 1; : : : ; r(11) 14



coste;i � Xv;i �Xu;i 8e = (u! v) 2 E(T ); i = 1; : : : ; r(12) coste = rXi=1 coste;i 8e = (u! v) 2 E(T )(13) Xe2E(T )coste � p=cm(14) Xv;i; coste;i 2 f0; 1g(15) The integer program P solves the load problem. However, we require only thatit provides a lower bound on the best cost. We now show that when we solve P withparameter `, the optimal value of p is a lower bound on the cost of the best load-`solution to the �xed topology problem.Lemma 4.2. Let S be a species set, T be a �xed topology and c : S ! (2f1;:::;rg�;)be a polymorphic character on S. If the internal nodes v of T can be labelled withsubsets of f1; : : : ; rg to create a phylogeny for c with load ` and cost p, then there is afeasible solution for the linear program for this value of ` and p.Proof. Because of Observation 4.1, we can assume that in the load-`, cost-c phy-logeny, for each internal node v in V (T ), either c(v0) � c(v) for every child v0 of v, orelse jc(v)j = `. Therefore the cost of this phylogeny isP(u!v)2E(T )(cm�jc(v)�c(u)j) =p. Assign values to the Xv;i variable for each internal node v and to the coste;i variablefor each edge e = (u! v) as follows:Xv;i = ( 1 if i 2 c(v)0 otherwisecoste;i = ( 1 if i 2 c(v)� c(u)0 otherwiseThis assignment satis�es constraints (15), (10), (11) and (12) of P . Constraint (9) isautomatically satis�ed, and constraint (13) is de�nitional. Also, cm�coste = cm�jc(v)�c(u)j for every e = (u ! v) by de�nition of the coste;i, and therefore Pe2E(T ) cm �coste = p, and constraint (14) is satis�ed.Once again, since integer linear programming is NP-hard, we solve the linear-programming relaxation LP of P , which consists of all the constraints of P exceptthat Constraint 15 is replaced with the constraint 0 � Xv;i; coste;i � 1 (150).Theorem 4.3. Suppose there is a solution for the linear program LP. Then wecan assign states to the internal nodes of input tree T such that the resulting phylogenyfor c has load �` and cost no more than � ���1� p.Proof. We assign states to the internal nodes of the �xed topology from theleaves upwards. For each internal node v 2 V (T ) � L(T ), consider the set R(v) =[(v!v0)2E(T )c(v0). If jR(v)j � �`, then de�ne c(v) = R(v). If jR(v)j > �` thenchoose the �` states i of R(v) which have the greatest Xv;i values. By de�nition, thisassignment of states to the internal nodes of T has load at most �`.To show that the cost of this assignment is no more than � ���1� p, note thatthe cost on an edge e = (u ! v) 2 E(T ) is cm � jc(v) � c(u)j, as jc(v) � c(u)j isthe number of mutations on e. Our assignment guarantees that if jc(u)j < �` thenc(u) � c(v), which implies cm � jc(v) � c(u)j = 0, so we need only consider edgeswhose upper endpoint has full load. Suppose jc(u)j = �` and i 2 c(v)� c(u). Then,15



by construction of the phylogeny, there is a downwards path from v to some leaf wwhich has i 2 c(v0) at every node along the path, including w. Suppose this path ise1 = (v ! v1); e2 = (v1 ! v2); :::; ej = (vj�1 ! w). By the constraints of the linearprogram, coste;i+coste1 ;i+ : : :+costej ;i � (Xv;i�Xu;i)+(Xv1;i�Xv;i)+ : : :+(Xw;i�Xvj�1;i) = Xw;i �Xu;i, and as w is a leaf and i 2 c(w), this is 1 �Xu;i. Then, sincei 62 c(u), and the �` states in c(u) were chosen to have the greatest Xu;j values, weknow Xu;i � `=(�`+1). The worst case is achieved when there are �`+1 positive Xu;jvalues all equal. They sum to at most ` from constraint 10, and therefore the smallestone, which cannot be included in the set, has value at most `=(�` + 1). Thereforecoste;i + coste1;i + : : : + costej ;i � ((� � 1)` + 1)=(�` + 1). Furthermore, the costscoste;i, coste1;i, : : : costej ;i will not be allocated to any other mutation to i, because anymutation occurring above u will not have an unbroken path in i intersecting with any ofthe edges e; e1; : : : ; ej . So every mutation along an edge e = (u! v) 2 T with jc(u)j =�` contributes at least ((�� 1)`+ 1)=(�`+ 1) to the sum Pe2E(T ) coste in our linearprogram. Hence p=cm � Pe2E(T ) coste � Pe=(u!v)2E(T ) jc(v)� c(u)j �(��1)`+1�`+1 �, sothe cost Pe=(u!v)2E(T ) cm � jc(v)� c(u)j � (�=(�� 1)) � p.

16



REFERENCES[1] H. Bodlaender, M. Fellows, T. Warnow, \Two Strikes Against Perfect Phylogeny", Proceed-ings of the 19th International Congress on Automata, Languages and Programming (ICALP),Springer-Verlag Lecture Notes in Computer Science, pp. 273-287 (1992).[2] M. Bonet, C. Phillips, T.J. Warnow and S. Yooseph, Constructing Evolutionary Trees in thePresence of Polymorphic Characters, Proceedings of the 28th Annual ACM Symposium on theTheory of Computing (1996).[3] I. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear Diophantine equations,Proceedings of the American Mathematical Society, Vol 55 (1976).[4] W.H.E. Day, Computationally di�cult parsimony problems in phylogenetic systematics, Journalof Theoretical Biology, Vol 103 (1983).[5] W.H.E. Day, D.S. Johnson and D. Sanko�, The computational complexity of inferring phylogeniesby parsimony, Mathematical biosciences, Vol 81 (1986).[6] W.H.E. Day and D. Sanko�, \Computational complexity of inferring phylogenies by compatibil-ity", Systematic Zoology, Vol 35(2):224-229 (1986).[7] W. Fitch, Towards de�ning the course of evolution: minimum change for a speci�ed tree topology,Systematic Zoology, Vol 20 (1971).[8] L.R. Foulds and R.L. Graham, \The Steiner Problem in Phylogeny is NP-complete", Advancesin Applied Mathematics, Vol 3:43-49 (1982).[9] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, E. Sweedyk and T. Warnow, \Minimizing phylo-genetic number to �nd good evolutionary trees", Discrete Applied Mathematics, to appear.[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman and Company (1979).[11] T. Jiang, E.L. Lawler and L. Wang, \Aligning Sequences via an Evolutionary Tree: Complexityand Approximation", Proceedings of the 26th Annual ACM Symposium on the Theory ofComputing (1994).[12] R.M. Karp, \Reducibility among combinatorial problems", Complexity of Computer Computa-tions, eds. R.E. Miller and J.W. Thatcher, Plenum Press (1972).[13] M. Nei, Molecular Evolutionary genetics, Columbia University Press, New York (1987).[14] M.A. Steel, \The complexity of reconstructing trees from qualitative characters and subtrees",Journal of Classi�cation, Vol 9:91-116 (1992).[15] L. Wang and D. Gus�eld, \Improved Approximation Algorithms for Tree Alignment", Proceedingsof the 7th Annual Symposium on Combinatorial Pattern Matching, 220-233 (1996).[16] L. Wang, T. Jiang, and D. Gus�eld, \A more e�cient approximation scheme for tree alignment",Proceedings of the First Annual International Conference on ComputationalMolecular Biology(1997).[17] T.H. Wareham, \On the Computational Complexity of Inferring Evolutionary Trees", M.Sc.thesis, Technical Report No. 9301, Department of Computer Science, Memorial University ofNewfoundland, Canada, (1993).[18] T. Warnow, D. Ringe and A. Taylor, \A character based method for reconstructing evolutionaryhistory for natural languages", Tech Report, Institute for Research in Cognitive Science, Uni-versity of Pennsylvania, (1995), and Proceedings of the 7th Annual ACM/SIAM Symposiumon Discrete Algorithms (1996).
17


