
Computation in permutation groups: ountingand randomly sampling orbitsLeslie Ann GoldbergAbstratLet
 be a �nite set and let G be a permutation group ating on
.The permutation group G partitions
 into orbits. This survey fo-uses on three related omputational problems, eah of whih is de�nedwith respet to a partiular input set I. The problems, given an input(
; G) 2 I, are (1) ount the orbits (exatly), (2) approximately ountthe orbits, and (3) hoose an orbit uniformly at random. The goal is toquantify the omputational diÆulty of the problems. In partiular, wewould like to know for whih input sets I the problems are tratable.1 IntrodutionLet
 be a �nite set and let G be a permutation group ating on
. Thepermutation group G partitions
 into orbits: Two elements of
 are in thesame orbit if and only if there is a permutation in G whih maps one elementto the other. This survey fouses on three related omputational problems,eah of whih is de�ned with respet to a partiular input set I:1. Given an input (
; G) 2 I, ount the orbits.2. Given an input (
; G) 2 I, approximately ount the orbits.3. Given an input (
; G) 2 I, hoose an orbit uniformly at random.The goal is to quantify the omputational diÆulty of the problems. In parti-ular, we would like to know for whih input sets I the problems are tratable.Many interesting orbit-ounting problems ome from the setting of \P�olyatheory". In this setting, � is a �xed alphabet of size at least two. For every(in�nite) set G of permutation groups, we get an input set I(G). In partiular,the group G 2 G orresponds to the input (�m; bG) 2 I(G), where m is thedegree of G, �m is the set of length-m words over alphabet �, and bG is apermutation group ating on �m whih is indued by G. We will later give apreise de�nition of bG (as a funtion of G), but the rough idea is as follows:Every permutation g 2 G indues exatly one permutation ĝ 2 bG. The imageof a word � 2 �m under ĝ is the word � that is obtained from � by permutingthe m alphabet symbols in � (applying g to the \positions" of the symbols).We use the notation P to denote the set of all permutation groups, so I(P) isthe input set orresponding to all inputs in the P�olya-theory framework (overa �xed alphabet �). 1

2 Leslie Ann GoldbergProblems 1{3 are studied in Setions 3, 4 and 5 respetively. In those se-tions, we will give the preise omplexity-theory de�nitions whih we will needto formally apture the notion of \tratability". We will also give appropriatereferenes, traing the development of ideas. In this setion, we introdue thearea by giving a very high-level sketh, stating (roughly) what is known abouteah of the three problems, without giving details, de�nitions, or referenes.There are natural input sets for whih exat orbit-ounting is tratable.Here is an example. Suppose that
n is the set of all n-vertex trees andthat Gn is the permutation group ating on
n whih is indued by vertexpermutations. The orbits of
n under Gn orrespond to isomorphism lasses.That is, there is one orbit for eah unlabelled n-vertex tree. Unlabelled treesan be ounted quikly using lassial methods based on generating funtionsand dynami programming. Thus, the orbit-ounting problem is tratable forthe input set I = f(
n; Gn)g.Perhaps surprisingly, the orbit-ounting problem beomes intratable if wemake the input set slightly more ompliated: Suppose that eah input or-responds to a tree T , and orbits orrespond to unlabelled subtrees of T . Itturns out that this orbit-ounting problem is #P-omplete. We will disussthe omplexity lass #P in Setion 3. To give a rough idea, ounting problemswhih are omplete in #P are equivalent in diÆulty to ounting the number ofsatisfying assignments of a Boolean formula, and this is believed to be very de-manding omputationally. Thus, it is unlikely that there is a polynomial-timealgorithm for ounting unlabelled subtrees of a tree T . What happens whenwe make the input set still more ompliated? Suppose now that eah inputorresponds to a graph H, and orbits orrespond to unlabelled subtrees of H.By the previous result, the new problem (ounting unlabelled subtrees of agraph) is at least as diÆult as #P. But perhaps it is more diÆult? Whetheror not it is more diÆult is unknown, but a omplexity-theoreti result of Todaimplies that it annot be muh more diÆult. The new problem is ompletein the omplexity lass FP#P, whih, as we will see later, is not so di�erentfrom #P. The problem of ounting orbits in the P�olya-theory setting (withinput set I(P)) is also omplete in FP#P. There are several natural prob-lems for whih the omplexity of orbit-ounting is unresolved. For example,there is no known eÆient algorithm for exatly ounting unlabelled n-vertexgraphs. It seems plausible that this problem is omputationally diÆult, butwe seem to lak the omplexity-theory mahinery to quantify the diÆulty ofsuh problems. These problems are members of the omplexity lass #P1,whih will be disussed in Setion 3.There are many known examples of ounting problems whih are #P-omplete to solve exatly but for whih good (eÆient) approximation al-gorithms exist. Interestingly, we do not know any natural1 orbit-ounting1Tehnially, every ounting problem without orbits an be expressed as an orbit-ountingproblem in whih the relevant permutation group ontains only the identity, but this is notwhat we mean by a \natural" orbit-ounting problem.

Counting and randomly sampling orbits 3problems whih have this property, though perhaps this is just beause orbit-ounting problems have not been suÆiently studied.There are examples of problems for whih the omplexity of exat orbit-ounting is unresolved, but approximate orbit-ounting is known to be tratable.For example, there is an eÆient algorithm for approximately ounting unla-belled n-vertex graphs. It is worth pointing out we do not know any eÆ-ient algorithms for this problem using traditional methods suh as generatingfuntions and dynami programming. The only algorithm whih is knownrelies upon a redution from almost-uniform sampling, whih we will disusspresently (see also Setion 5.6).As we mentioned before, some #P-omplete ounting problems have eÆ-ient approximation algorithms. For other #P-omplete ounting problems,the orresponding approximation problem an be shown to be \omplete" in aformal sense whih implies that there is no eÆient approximation algorithmunder standard omplexity-theoreti assumptions. It would be very interestingto know whether the approximate orbit-ounting problem is omplete in thissense for the set of P�olya-theory inputs I(P). This seems to be a very diÆultquestion. At present, the most that an be said is that the related questionof approximately ounting orbits over a oset (rather than over a group) isomplete.For many omputational ounting problems, there is a lose onnetionbetween the omplexity of approximately ounting and the omplexity of sam-pling uniformly at random. However, with a few exeptions, whih we willdisuss, these onnetions break down for orbit-ounting problems. Thus, sam-pling must be studied separately from approximate ounting.Most of the work on sampling orbits has foused on three methods: indu-tive sampling, the orbit-sampling proess, and rejetion sampling. \Indutivesampling" an be used when generating funtions for enumerating orbits anbe eÆiently evaluated. The idea is to �nd a reurrene for the oeÆientsof the generating funtion, whih an be omputed by dynami programming.The reurrene should show how to express outputs orresponding to a giveninstane of the problem in terms of outputs to smaller instanes. Sampling isthen done reursively: The oeÆients are used to probabilistially selet theappropriate (reursive) sub-problem. For example, unlabelled n-vertex treesan be sampled in this way.The \orbit-sampling proess" is inspired by the orbit-ounting lemma ofCauhy, Frobenius and Burnside. This lemma says that eah orbit is repre-sented jGj times in the set �(
; G), whih is the set of pairs (�; g) suh that� 2
, g 2 G and g �xes � (that is, g maps � to itself). The orbit-samplingproess is a Markov hain with state spae
. To make a transition from thestate �, the hain �rst piks uniformly-at-random a permutation g 2 G whih�xes � and then hooses the new state uniformly-at-random from the subsetof
 whih is �xed by g. The orbit-sampling lemma an be used to show thatthe stationary distribution of this proess is uniform on orbits. If the input

4 Leslie Ann Goldbergset is hosen suh that (1) eah transition an be implemented in polynomialtime, and (2) the Markov hain is rapidly mixing, then the orbit-proess givesan eÆient sampler for orbits.Not too muh is known about the mixing-time of the orbit-sampling pro-ess, even in the P�olya-theory setting. It is not rapidly-mixing for the ompleteset of inputs I(P). There is also an in�nitely-large subset of I(P) for whihthe transitions an be implemented in polynomial time, but the proess is stillnot rapidly mixing. The proess is known to be rapidly mixing if the set G ofpermutation groups is either (1) the set of all symmetri groups Sn, or (2) theset of all yli groups (all permutation groups with a single generator), butnothing else is known. In partiular, it is not even known whether the orbit-sampling proess is rapidly-mixing for the situation in whih orbits orrespondto unlabelled n-vertex graphs.As we mentioned earlier, there is an alternative eÆient algorithm for sam-pling unlabelled n-vertex graphs. This algorithm uses the \rejetion sampling"method, whih will be explained in Setion 5.6. The algorithm an be extendedto the general orbit-sampling framework. Whether or not it leads to an eÆ-ient sampling algorithm depends upon the input set I. What is lear is thatit will not work unless the identity permutation aounts for a suÆiently largefration of the pairs in �(
; G). That is, a typial member of
 must not be�xed by too many permutations in G.An example of an input set whih does not have this property is as follows:Eah input orresponds to a degree-sequene in whih every degree is bounded.Orbits orrespond to unlabelled onneted multigraphs with the given degreesequene. Here the degree sequene may ontain many verties of degree 1 or 2,in whih ase a typial member of
 is a multigraph whih is �xed by manyautomorphisms. The ideas whih have been desribed so far an be ombinedto give an eÆient sampling algorithm for this problem. Nevertheless, we lakgood general tehniques for orbit-sampling, espeially when the objets in
have many symmetries.The �nal setion of the survey is devoted to a problem whih is related tothat of sampling and ounting orbits { namely, the problem of listing orbits.Not too muh is known about the problem, and the setion gives pointers tosome reent work in the area.2 De�nitions and PreliminariesLet
 be a �nite set and let G be a permutation group ating on
. If� 2
 and g 2 G, we write �g to denote the image of � under g. We writeG� to denote the subgroup of G onsisting of the permutations in fg 2 G j�g = �g. We de�ne the relation � on
 in whih ��� if and only if thereis a permutation g 2 G suh that �g = �. The relation � partitions
 intoequivalene lasses, whih are alled orbits. We use the notation �G to denotethe orbit f�g : g 2 Gg ontaining � and the notation �(
; G) to denote

Counting and randomly sampling orbits 5the set of orbits. For eah permutation g 2 G, we let �x(g) denote the setf� 2
 j �g = �g. We let �(
; G) denote the set�(
; G) = f(�; g) j � 2
 and g 2 G and � 2 �x(g) g:The following lemma was known to Cauhy and Frobenius (see [40℄) but isoften alled \Burnside's Lemma". Following Cameron [7℄, we all it the \orbit-ounting" lemma.Lemma 2.1 The orbit-ounting lemma Let G be a permutation groupon the �nite set
. Then for eah orbit � 2 �(
; G) we havejf(�; g) 2 �(
; G) j � 2 �gj = jGj;so j�(
; G)j = j�(
; G)j jGj:Example 2.2 Let
n be the set of all n-vertex graphs and let Gn be the per-mutation group ating on
n whih is indued by vertex permutations. That is,Gn has n! permutations | one for eah permutation of the n verties. If � isa permutation of the verties and � is a graph in
n then the image of � underthe permutation orresponding to � is the graph obtained from � by applying �to the verties. The orbits of
n under Gn orrespond to isomorphism lasses.Thus, we an think of the orbits as representing the set of unlabelled n-vertexgraphs.We will let U
;G denote the uniform distribution on orbits. That is, foreah orbit � in �(
; G), the probability of � in U
;G (denoted U
;G(�)) is1=j�(
; G)j.We will measure the distane between two probability distributions D1and D2 over the disrete sample spae 	 using the total variation distanemetri. Namely,dtv(D1; D2) = maxA�	 jD1(A)�D2(A)j = 12Xx2	 jD1(x)�D2(x)j:2.1 A speial ase of P�olya's theoremMany of the orbit-ounting problems whih we will onsider ome fromthe setting of P�olya theory. We will not be using the fully general version ofP�olya's theorem. Instead, we will restrit our attention to the speial ase ofthe theorem that we de�ne in this setion. Suppose that � = f0; : : : ; k�1g is a�nite alphabet and that G is a group of permutations of the set f0; : : : ; m�1g,whih we denote [m℄. For every permutation g 2 G, let (g) denote the numberof yles in g. Let
 be the set �m of length-m words over alphabet �.The group G has a natural ation on
 whih is indued by permuting the

6 Leslie Ann Goldberg\positions" 0; : : : ; m� 1 of the alphabet symbols in the words. In partiular,if � = a0a1 : : : am�1 is a word in
 then the image of � under the induedation of g is the word � = b0b1 : : : bm�1, in whih, for all j 2 [m℄, bj is ajg�1That is, bj is the element ai suh that ig = j. To avoid onfusion, we usethe symbol bG to denote the permutation group on
 whih is indued by Gand we use the symbol ĝ to denote the permutation of
 whih is indued bypermutation g 2 G.Now �x(ĝ) has k(g) elements. In partiular, if a word � is in �x(ĝ), thenall of the positions whih form a single yle of g must have the same alphabetsymbol in �. There are k possible symbols whih an be hosen. Thus theorbit-ounting lemma (Lemma 2.1) gives us the following speial ase of P�olya'stheorem.Lemma 2.3 P�olya's theorem If � = [k℄ is a �nite alphabet,
 = �m,and G is a permutation group on [m℄, thenj�(
; bG)j = 1jGjXg2G k(g):Example 2.4 If � = f0; 1g and G is the symmetri group on [m℄ then them + 1 orbits onsist of, for eah i 2 [m + 1℄, those words in �m with thesymbol \1" in i positions.Example 2.5 The set of unlabelled n-vertex graphs (Example 2.2) an be en-oded as orbits in the P�olya-theory setting by using words in �m to enodegraphs. In partiular, the graph H an be represented by the word orrespond-ing to the upper-diagonal part of H's adjaeny matrix.Further examples an be found in surveys suh as [8℄ and [45℄.2.2 Computational questionsWe work in the following omputational framework whih is similar to thatof [25℄. We speify the input set I, where eah input in I onsists of a set
and a permutation group G. The inputs are represented in a onise manner,whih depends upon I. We study the following omputational problems.1. exat ounting: Given an input (
; G) 2 I, output j�(
; G)j.2. approximate ounting: Given an input (
; G) 2 I and an auray pa-rameter � 2 (0; 1), output an integer random variable Y satisfyingPr�e�� � Yj�(
; G)j � e�� � 34 :

Counting and randomly sampling orbits 73. almost-uniform sampling: Given an input (
; G) 2 I, and an aurayparameter � 2 (0; 1℄, output a random variable �. Typially, � will bea member of
, and will be viewed as a representative of its orbit, butit will be tehnially useful to allow sampling algorithms to sometimesprodue other outputs.We measure the auray of a sampling algorithm by onstruting adistribution D based on the output distribution of the algorithm. Thedomain of D is taken to be �(
; G) [f?g, where ? is an \error" sym-bol, whih reords the fat that the output does not represent an or-bit. For eah orbit � 2 �(
; G), the probability of � in D is de�nedto be Pr(� 2 �). Therefore, the probability of ? in D is equal to1�P�2�(
;G) Pr(� 2 �). The algorithm is an almost-uniform samplerif and only if dtv(D;U
;G) � �.For eah partiular input set I, we get a partiular exat ounting prob-lem, approximate ounting problem, and almost-uniform sampling problem.We will usually disuss the representation of the inputs when the partiularproblem is disussed. Typially, we will represent inputs in a onise manner.In the P�olya-theory setting, we will adopt the following notation from theintrodution. The alphabet � is �xed. For any permutation group G, we willlet m(G) denote the degree of G. For any set G of permutation groups, I(G)denotes the input set orresponding to G. In partiular,I(G) = f(�m(G); bG) j G 2 Gg:We use the notation P to denote the set of all permutation groups, so I(P) isthe input set orresponding to all inputs. The input (�m; bG) will be presentedas a set of O(m) generators for G.2For onveniene (in applying omplexity-theoreti de�nitions), we will as-sume that all inputs to omputational problems are enoded as words overthe binary alphabet f0; 1g. This typially does not present any problems. Forexample a generator of a degree-m permutation group an be enoded as abinary word of length O(m logm). Note that the input size is typially muhsmaller than the size of
 or G. In the P�olya-theory setting, the size of
 is kmand the size of bG an be as large as m!, but the size of the input is boundedfrom above by a polynomial in m. We are interested in knowing for whihinput sets I the omputational problems are tratable, in a sense whih willbe made lear as we go along.2The onstrution of small generating sets is beyond the sope of this artile, but Chap-ter 1 of [7℄ desribes several suh onstrutions, due to Shreier, Sims, Jerrum, MIver andNeumann.

8 Leslie Ann Goldberg3 Exat ountingIn Setions 3.2 and 3.3 we will see that for many natural input sets I theexat orbit-ounting problem is #P-hard. Thus, it is as diÆult as ountingthe number of satisfying assignments of a Boolean formula. In order to givedetails, we need some de�nitions, whih are given in Setion 3.1.3.1 The omplexity lass #PFollowing Valiant [50℄, we say that a funtion f : f0; 1g� ! N is in theomplexity lass FP if it an be omputed by a deterministi polynomial-time Turing mahine. We say that it is in #P if there is a nondeterministipolynomial-time Turing mahine M suh that for all x 2 f0; 1g� the numberof aepting omputations ofM on input x is f(x). A polynomial-time Turingredution from a funtion f : f0; 1g� ! N to a funtion g : f0; 1g� ! N isa deterministi polynomial-time orale Turing mahine whih, whenever it issupplied with an \orale" for g, an ompute f . Thus, the redution showshow to ompute f in polynomial time, assuming that we have an imaginarymeans for omputing g in polynomial time. A ounting problem, i.e., a funtionf : f0; 1g� ! N is said to be #P-hard if every funtion in #P is polynomial-time Turing-reduible to f . If, in addition, f 2 #P, then it is said to be #P-omplete. A #P-omplete problem is equivalent in omputational diÆulty toproblems suh as ounting the number of satisfying assignments of a Booleanformula, or evaluating the permanent of a 0,1-matrix, whih are widely believedto be intratable. For bakground information on #P and its ompletenesslass, see, for example, [14℄ or [44℄.3.2 Automating P�olya theoryIn this setion, we see that the problem of ounting orbits in the P�olya-theory setting is equivalent in omputational diÆulty to solving a #P-ompleteproblem. Let � = [k℄ be a �xed alphabet with k > 1. Consider the followingomputational problem.Name. #P�olyaOrbits.Instane. O(m) generators for a group G of permutations of [m℄.Output. jGj � j�(�m; bG)j.The size of a permutation group an be omputed in polynomial time from anarbitrary set of generators (see [7℄). Thus, #P�olyaOrbits is omputationallyequivalent to the orbit-ounting problem with input set I(P). The followingtheorem quanti�es the omputational diÆulty of this problem.Theorem 3.1 [17℄ #P�olyaOrbits is #P-omplete.

Counting and randomly sampling orbits 9P�olya's Theorem (Lemma 2.3) tells us that the appropriate output of#P�olyaOrbits is Pg2G k(g). From this, it is not diÆult to show that#P�olyaOrbits is in #P. Thus, to prove Theorem 3.1, we need only showthat it is #P-hard. The #P-hardness follows from Theorem 2 of [17℄ and analternative proof has been given by Jerrum in [27℄. Nevertheless, in order togeneralise the result in Setion 4, we will need a hardness proof whih doesnot use interpolation, so we provide suh a proof here.We start with some de�nitions. A \ut" of a graph is an unordered par-tition (S; T) of its vertex set. The \ut edges" orresponding to the ut arethose edges of the graph whih have one endpoint in S and the other in T .Sine the partition (S; T) is unordered, a ut of a onneted graph is uniquelydetermined by the set of ut edges. The \size" of the ut is the number of utedges. Lemma 12 of Jerrum and Sinlair's paper [30℄ shows that the followingproblem is #P-omplete.Name. #LargeCut.Instane. A positive integer j and a onneted non-bipartite graph H in whihno uts are larger than size j.Output. The number of size-j uts of H.Thus, Theorem 3.1 follows from the following lemma.Lemma 3.2 There is a polynomial-time Turing-redution from #LargeCutto #P�olyaOrbits.Proof Let j and H be an instane of #LargeCut. Let V denote the vertexset of H and let E denote the edge set of H. Let r = jV j2. Let G be the degree-2rjEj permutation group onstruted as follows. For eah edge e 2 E and eahi 2 [r℄, we will have an objet ae;i and an objet be;i. For eah vertex v 2 V wewill have a permutation gv. The ation of gv on the set Se2ESi2[r℄fae;i; be;ig isas follows. For every edge e 2 E whih is inident on v, and for every i 2 [r℄,gv transposes ae;i and be;i. Let G be the group generated by the permutationsSv gv.Sine the permutations in fgvg ommute and have order 2, the permuta-tions in G orrespond to subsets of V . The points ae;1 and be;1 are transposedin a given permutation if and only if exatly one of the endpoints of e is in theorresponding subset of V . Thus, the permutations in G are in one-to-one or-respondene with the uts of H. A ut of size ` orresponds to a permutationwith 2jEjr � `r yles.Now let h be the permutation whih transposes every pair (ae;i; be;i). SineH is not bipartite, h 62 G. Let G0 be the permutation group generated byfgvg[fhg. Note that the permutations in this set ommute and have order 2.Let C denote the oset of G in G0 whih is not equal to G. As before, thepermutations in C are in one-to-one orrespondene with the uts of H. Aut of size ` orresponds to a permutation with 2jEjr� (jEj � `)r = jEjr+ `r

10 Leslie Ann Goldbergyles. Let P (G) denote the output of #P�olyaOrbits(G) and let N` denotethe number of size-` uts of H. ThenP (G0)� P (G) =Xg2C k(g) = jX̀=0 N`kjEjr+`r; soP (G0)� P (G)kjEjr+jr = Nj + j�1X̀=0 N`k(`�j)r:Sine Pj�1`=0 N`k(`�j)r is non-negative and (from the de�nition of N`) is atmost 2jV jk�r we haveNj � P (G0)� P (G)kjEjr+jr � Nj + 2jV jk�r:Sine r = jV j2 and k � 2 and Nj is an integer,Nj = �P (G0)� P (G)kjEjr+jr � : �3.3 Counting subtrees of a treeIn this setion, we will onsider an exat orbit-ounting problem that has arather di�erent avour from the P�olya-theory problem of the previous setion.We will see that this problem too is #P-omplete. Thus, exatly ountingorbits is omputationally diÆult, even in a seemingly simple setting.Suppose that T is a tree with vertex set V and edge set E. We will let
Tbe the set ontaining all (labelled) subtrees of T . That is, every element T 0of
T is a graph with vertex set V , some edge set E 0 � E, and at most onenon-trivial onneted omponent. (At most one onneted omponent of T 0will ontain edges.) Let GT be the permutation group ating on
T whih isindued by vertex permutations. As in Example 2.2, the orbits orrespond tounlabelled subtrees of T . Jerrum and I [20℄ have shown that this orbit-ountingproblem, the problem #SubTrees below, is #P-omplete.Name. #SubTrees.Instane. A tree T .Output. The number of distint (up to isomorphism) subtrees of T . That is,j�(
T ; GT)j.The proof that #SubTrees is #P-omplete is ontained in [20℄. Theomplexity of most variants of the problem is still unknown. For example, thestatus of the following problem is open.

Counting and randomly sampling orbits 11Name. #SubForests.Instane. A tree T .Output. The number of distint (up to isomorphism) subforests of T .The onstrutions used in [20℄ involve trees with high-degree verties, soit is also not lear whether the following problem is #P-omplete for anyonstant � > 2.Name. #�Tree-SubTrees.Instane. A tree T in whih every vertex has degree at most �.Output. The number of distint (up to isomorphism) subtrees of T .We will onlude this setion by briey onsidering the following generali-sation of #�Tree-SubTrees.Name. #�Graph-SubTrees.Instane. A graph H in whih every vertex has degree at most �.Output. The number of distint (up to isomorphism) subtrees of H.Corollary 6 of [20℄ shows that #�Graph-SubTrees is in the omplexitylass FP#P. Informally, this is the lass of funtions whih are \as easy" as#P. More formally, a funtion f is in FP#P if it is polynomial-time Turing-reduible to a problem in #P. Thus, by the following lemma, whih is provedin the appendix, #�Graph-SubTrees is omplete in FP#P for every �xed� � 5.Lemma 3.3 (Goldberg, Jerrum, Kelk) For any �xed � � 5, the problem#�Graph-SubTrees is #P-hard.3.4 Orbit-ounting problems and the omplexity lass #P1In the previous setion, we have seen that the problem of ounting unla-belled subtrees of a given tree T is #P-omplete. Now suppose that insteadof having a partiular n-vertex tree T as input, the input is just n and we areinterested in ounting all unlabelled trees with at most n verties. We willonsider the following omputational problem.Name. #Trees.Instane. A positive integer n, expressed in unary.3Output. The number of distint (up to isomorphism) n-vertex trees.3The reason that the input to #Trees is expressed in unary is that we are interestedin knowing whether there is an algorithm for #Trees whose running time is bounded fromabove by a polynomial in n. Sine there are exponentially many unlabelled n-vertex trees,an algorithm whose running time is bounded from above by a polynomial in logn would noteven have enough time to write down the answer.

12 Leslie Ann GoldbergThe problem#Trees an be viewed as an orbit-ounting problem. In par-tiular, it is the orbit-ounting problem orresponding to input set f(
n; Gn)gin whih
n is the set of n-vertex trees, and Gn is the group indued by vertexpermutations (see Example 2.2).#Trees an be solved in polynomial time using a generating funtion forthe number of orbits. One the generating funtion is given, its oeÆientsan be omputed by dynami programming. Harary and Palmer's book [23℄ontains a survey on using generating funtions to do unlabelled enumeration.Their book gives a full treatment of the enumeration of unlabelled trees, fol-lowing the work of Otter [43℄. In order to illustrate the priniples, we repeat afew of the details here. Let T (x) =P1n=1 Tnxn be the generating funtion forrooted unlabelled trees. That is, Tn is the number of rooted unlabelled treeswith n verties. P�olya's theorem gives an expression4 for T (x) whih an bemanipulated to yield the reurreneTn+1 = 1n nXk=10�Xdjk d Td1ATn�k+1; (3.1)where the sum is over all divisors d of k. Using this formula, the oeÆientsT1; T2; : : : ; Tn an be omputed in polynomial time by dynami programming.(\Dynami programming" just means that the oeÆients should be omputedin the order T1; T2; : : :. Note that a reursive algorithm would not omplete inpolynomial time unless a devie suh as a \memory funtion" is used.) Next,let t(x) = P1n=1 tnxn be the generating funtion for (unrooted) unlabelledtrees. It an be shown thatt(x) = T (x)� 12 �T 2(x)� T (x2)� ;so the oeÆients t1; t2; : : : ; tn an also be omputed in polynomial time.Now that we have seen a polynomial-time algorithm for #Trees, let usonsider the following related problem from Example 2.2.Name. #Graphs.Instane. A positive integer n, expressed in unary.Output. The number of distint (up to isomorphism) n-vertex graphs.There is no known generating funtion whih would enable us to quikly solve#Graphs. In fat, there is no known polynomial-time algorithm (of any type)for this problem.Both #Trees and #Graphs are examples of problems from the om-plexity lass #P1. The de�nition of this lass is similar to the de�nition of#P. The only di�erene is that the input alphabet is now unary rather thanbinary. Valiant [50℄ has shown that #P1 does ontain omplete problems.4This expression was also disovered by Cayley.

Counting and randomly sampling orbits 13Notably, Bertoni, Goldwurm and Sabadini have shown that ounting stringsof a given length in some ontext-free language is omplete [4℄. Nevertheless,no natural ombinatorial problem is known to be omplete for #P1 and itseems unlikely that a problem suh as #Graphs would be omplete. Thus,at present, we seem to lak methods for quantifying the omputational om-plexity of #Graphs and similar problems. This is an intriguing open questionin the omplexity theory of ounting.4 Approximate ountingDe�nition A randomised approximation sheme for a funtion f : f0; 1g� !N is a probabilisti Turing mahine that takes as input a pair (x; �) 2 f0; 1g��(0; 1) and produes as output an integer random variable Y satisfying theondition Pr(e�� � Y=f(x) � e�) � 3=4. Suh an approximation sheme issaid to be a fully polynomial5 randomised approximation sheme (or FPRAS)if its running time is bounded from above by a polynomial in jxj and ��1.Thus, an algorithm for the approximate ounting problem of Setion 2.2 is anFPRAS if and only if its running time is bounded from above by a polynomialin the size of the desription of the the input (
; G), and in ��1.Clearly, there is an FPRAS for the problem #Trees, sine this probleman be solved (exatly) in deterministi polynomial time (see Setion 3.4).We will see in Setion 5.6 that there is also an FPRAS for #Graphs. Itis worth observing at this point that there are asymptoti enumerations ofunlabelled graphs based on P�olya's theorem, but these do not seem to bestrong enough to give an FPRAS. In partiular, let Un denote the number ofunlabelled n-vertex graphs. P�olya showed that Un is asymptotially equal to2(n2)=n!. Obershelp [42℄ gave a more detailed formula for Un with improvederror terms. (See Chapter 9 of [23℄.) For example, he showed that there is aonstant suh that Un � 2(n2)n! �1 + n22n � : (4.1)Equation 4.1 is suÆiently aurate when the desired error, �, exeeds n2=2n.However, it is not immediately lear how to approximate Un when the errorparameter � is smaller. Note that it takes
(n!) time to apply P�olya's theoremdiretly and this an exeed poly(��1) even when � is too small for usingEquation 4.1.We will return to the problem #Graphs in Setion 5.6, where we willdesribe an FPRAS. It is not known whether there are eÆient approximateounting algorithms for the rest of the problems introdued in Setion 3. Beforewe say more about these problems, we will look briey at the omplexity-theoryontext.5The de�nitions that we use are taken from [12℄ but they are losely related to Karp andLuby's de�nitions from [33℄.

14 Leslie Ann Goldberg4.1 The omplexity of approximate ountingFrom a omplexity-theoreti point of view, exatly solving a #P-ompleteproblem seems to be muh more diÆult than approximately solving it. Thebest way to illustrate this point is to introdue the notion of the \polynomialhierarhy". We will just state the relevant fats without giving details orde�nitions. Details an be found in [14℄ and [44℄. The polynomial hierarhyontains an in�nite sequene of omplexity lasses, �p0;�p1; : : :. The lass �p0is the same as the familiar lass P and the lass �p1 is the same as NP. It iswidely believed that all lasses in the hierarhy are distint. In partiular, �piis believed to be a proper subset of �pi+1. We an now state the relevane of thepolynomial hierarhy | Toda [49℄ has shown that every problem in the entirepolynomial hierarhy an be solved in polynomial time using an orale for any#P-omplete problem. Thus, informally, a #P-omplete problem is \as hardas" the entire polynomial hierarhy. On the other hand, a result of Valiant andVazirani [51℄ implies that every funtion in #P an be approximated (in theFPRAS sense) by a polynomial-time probabilisti Turing mahine equippedwith an NP orale.6 We an therefore onlude that the approximate ountingproblems in Setions 3.2 and 3.3 are \as easy as" NP, and we are interested inknowing whether they are easier.Dyer, Greenhill, Jerrum, and I [12℄ reently studied the following notion ofapproximation-preserving redution. Suppose f; g : f0; 1g� ! N are funtionswhose omplexity (of approximation) we want to ompare. An approximation-preserving redution from f to g is a probabilisti orale Turing mahine Mthat takes as input a pair (x; �) 2 f0; 1g� � (0; 1), and satis�es the followingthree onditions: (i) every orale all made by M is of the form (w; Æ), wherew 2 f0; 1g� is an instane of g and 0 < Æ < 1 is an error bound satisfyingÆ�1 � poly(jxj; ��1); (ii) the Turing mahine M meets the spei�ation forbeing a randomised approximation sheme for f whenever the orale meets thespei�ation for being a randomised approximation sheme for g; and (iii) therun-time of M is polynomial in jxj and ��1. If an approximation-preservingredution from f to g exists we write f �AP g, and say that f is AP-reduibleto g.In [12℄, we identify a lass of problems whih are omplete for #P withrespet to AP-reduibility. It is unlikely that any of these problems has anFPRAS. In partiular, if any suh omplete problem has an FPRAS then sodoes every problem in #P. This, in turn, would imply that RP = NP, whihis unlikely.We will not be using the omplexity lass RP after Setion 4, but forompleteness, we provide a de�nition. A deision problem (i.e., a problem witha \yes"/\no" answer) is in RP (see Chapter 11 of [44℄) if there is a randomised6This is Corollary 3.6 of [51℄. Only a sketh of the proof appears in [51℄, but a detailedproof appears in Chapter 10 of [21℄. For a related result, see [47℄.

Counting and randomly sampling orbits 15polynomial-time algorithm whih, for every \no" instane, answers \no" andfor every \yes" instane, produes an output (\yes" or \no") whih, on anygiven run, has probability at least 1=2 of being \yes". The relationship betweenRP and the more familiar lasses P and NP is given by P � RP � NP. It iswidely onjetured (for example, Chapter 7 of [21℄) that P = RP, or at leastthat RP 6= NP.4.2 Approximately automating P�olya theoryIt is an intriguing open question whether #P�olyaOrbits is ompletefor #P with respet to AP-reduibility. The most that we an say at thispoint is that a related problem (in whih we work in a oset rather than ina group) is omplete in this sense. The relationship between the new prob-lem and #P�olyaOrbits will be more lear if we �rst give a new de�nitionof #P�olyaOrbits, whih is equivalent to the original de�nition by P�olya'stheorem (Lemma 2.3). Reall that k is the size of the alphabet � in whih thewords are onstruted.Name. #P�olyaOrbits.Instane. O(m) generators for a group G of permutations of [m℄.Output. Pg2G k(g).We now desribe the related problem, in whih we sum permutations over aoset, rather than over the entire group.Name. #CosetOrbits.Instane. O(m) generators for a group G0 of permutations of [m℄, O(m) gen-erators for a subgroup G of G0 and a permutation h 2 G0.Output. Pg2Gh k(g).Note that#P�olyaOrbits orresponds to the speial ase of #CosetOrbitsin whih the oset Gh is a group. The following lemma implies that #Cose-tOrbits is unlikely to have an FPRAS, in whih ase oset deompositionannot be used to give an FPRAS for #P�olyaOrbits.Lemma 4.1 #CosetOrbits is omplete for #P with respet to AP-reduibility.Proof Reall the problem#LargeCut from Setion 3.2. Theorem 1 of [12℄shows that #LargeCut is omplete for #P with respet to AP-reduibility.Thus, it will suÆe to show that #LargeCut �AP #CosetOrbits. Let jand H be an instane of #LargeCut and let Nj denote the number of size-juts of H. Construt G0, G and h as in the proof of Lemma 3.2. Now notethat the output of #CosetOrbits orresponding to input (G0; G; h), whih

16 Leslie Ann Goldbergwe denote #CosetOrbits(G0; G; h), is equal to the quantity P (G0) � P (G)in the notation of Lemma 3.2. Thus,Nj = �#CosetOrbits(G0; G; h)kjEjr+jr � : (4.2)We onlude that a good approximation to #CosetOrbits(G0; G; h) gives agood approximation to Nj. We will omit the details about how to hoose theauray parameter Æ in the redution. If it were not for the oor funtionin (4.2), we ould simply set Æ = �, sine division by a onstant preservesrelative error. The disontinuous oor funtion ould spoil the approximationwhen its argument is small. However, this is a tehnial problem and not areal diÆulty. For a solution, see the proof of Theorem 3 of [12℄. �We have now shown that the approximation problem orresponding to#CosetOrbits is intratable, subjet to the standard omplexity-theoretiassumption that RP 6= NP. It seems plausible that the approximation prob-lem orresponding to#P�olyaOrbits is also intratable, perhaps in the sensethat it is also omplete for #P with respet to AP-reduibility.7 In Se-tion 5.5 we will return to this problem and we will desribe some speialases of #P�olyaOrbits for whih fully polynomial randomised approxima-tion shemes are known. We lose this setion by mentioning a surprising fat.Although it is urrently unknown whether #P�olyaOrbits has an FPRASfor any �xed integer k > 1, Jerrum and I (Theorem 4 of [17℄ or Theorem 6of [27℄) have shown that if k is allowed to be any �xed rational that is not aninteger then there is no FPRAS for #P�olyaOrbits unless RP = NP. Ourproof for the ase in whih k is not an integer sheds no light on the intriguinginteger ase.5 Almost-uniform samplingDe�nition An algorithm for the almost-uniform sampling problem in Se-tion 2.2 is said to be a fully polynomial almost-uniform sampler if its runningtime is bounded from above by a polynomial in the size of the desription ofthe input (
; G) and in log(��1).The notion of \fully polynomial almost-uniform sampling" is due to Jerrum,Valiant and Vazirani [31℄. The partiular de�nition that we use is based onthe one in [11℄. Sine the running time of a fully polynomial almost-uniformsampler is bounded from above by a polynomial in the logarithm of ��1 (ratherthan just by a polynomial in ��1), the output distribution D (see Setion 2.2)7Note that the redution in Lemma 3.2 is not approximation preserving. In partiular,approximations for P (G0) and P (G) do not give an aurate approximation for P (G0)�P (G).For example, e�P (G0)� e��P (G) an be muh larger than e�(P (G0)� P (G)).

Counting and randomly sampling orbits 17an be made very lose to the uniform distribution U
;G at modest omputa-tional expense. For example, if � is taken to be e�j(
;G)j, where j(
; G)j denotesthe size of the input (
; G), then the variation distane between the two dis-tributions is exponentially small in j(
; G)j, even though the running time isonly polynomial in j(
; G)j. 85.1 Almost-uniform sampling and approximate ountingJerrum, Valiant and Vazirani [31℄ have shown that there is a lose on-netion between almost-uniform sampling and approximate ounting. In par-tiular, for \self-reduible" ombinatorial strutures [46℄, a fully-polynomialalmost-uniform sampler exists if and only if an FPRAS exists. We will notgive a formal de�nition of \self-reduible" but intuitively it means that out-puts orresponding to a given input an be expressed in terms of outputsorresponding to \smaller" inputs. That is, the family of ombinatorial stru-tures has an indutive de�nition. The tehniques from [31℄ have been used toget similar results for some ombinatorial strutures that do not seem to beself-reduible (see [11℄). Furthermore, Dyer and Greenhill [11℄ have extendedthe result to the (related, but larger) lass of \self-partitionable" strutures.Self-reduibility and self-partitioning do not seem to apply (in general) toorbit-ounting problems and there is no known general onnetion betweenthe (approximate) orbit-ounting problem and the orbit sampling problem.We shall revisit this point briey in Setion 5.5. The reader is also referred toJerrum's papers [25℄ and [27℄.One situation in whih \ounting" tehnology an be used for samplingorbits is when generating funtions for enumerating orbits an be eÆientlyevaluated. For example, Nijenhuis and Wilf [41℄ used Equation 3.1 (see Se-tion 3.4) to obtain a polynomial-time algorithm for sampling rooted unlabelledtrees. Their algorithm is given in Figure 1 (see also [48℄). Note that this is anexatly uniform sampling algorithm | its output distribution is exatly theuniform distribution on orbits.Nijenhuis and Wilf's approah was extended by Wilf [52℄, who gave a fully-polynomial almost-uniform sampler for the problem#Trees from Setion 3.4.One again, the output distribution of Wilf's algorithm is exatly uniform onorbits. Wilf's algorithm is also based on �nding a reurrene for the oeÆientsof the relevant generating funtion. This approah to sampling has been sys-8Note that a similarly demanding de�nition would not make sense in the ontext of anFPRAS. If we hanged the de�nition of FPRAS (at the start of Setion 4), demandinginstead that the running time be bounded from above by a polynomial in jxj and log(��1),then �nding an FPRAS for a problem would be as diÆult as �nding an exat algorithm.In partiular, for many ounting problems f , the quantity f(x) is only exponentially large(as a funtion of jxj). Suh problems ould be solved exatly in polynomial time by runningan FPRAS with � � 1=(2f(x)). The lose onnetion between almost-uniform samplingand approximate ounting (Setion 5.1) indiates that these de�nitions (less demanding forFPRAS and more demanding for almost-uniform sampling) are the \right" ones.

18 Leslie Ann Goldberg1. Choose a pair (d; k) suh that k 2 [1; n � 1℄ and d divides k. Theprobability that the partiular pair (d; k) is hosen should be dTn�kTd(n�1)Tn .2. Reursively hoose T 0 uniformly at random (u.a.r.) from Rn�k.3. Reursively hoose T 00 u.a.r. from Rd.4. Make k=d opies of T 00 and attah the root of eah opy to the root ofT 0.5. Let the root of T 0 be the root of the new n-vertex tree and output thenew tree.Figure 1: Let Rn be set of rooted unlabelled n-vertex trees. Suppose n > 2.The tree output by this algorithm of Nijenhuis and Wilf is equally likely tobe any element of Rn. The reason for this is given in Equation 3.1 | everyn-vertex output omes up n� 1 times in the following proess. Choose k andd. Choose a d-vertex tree and an n�k-vertex tree. Connet these as desribedin the algorithm. Count the resulting n-vertex tree d times. The quantities Tiare omputed using dynami programming as in Setion 3.4.tematised by Flajolet, Zimmerman and Van Cutsem [13℄. In their systematiapproah, one spei�es a set of strutures using a formal grammar involvingset, sequene and yle onstrutions. Generating funtions an be derivedautomatially from the spei�ation, so uniform sampling an be done auto-matially using dynami programming. The ombinatorial strutures studiedin [13℄ are labelled strutures, but the authors observe that similar priniplesan sometimes be used for sampling \unlabelled strutures" (orbits). Jerrumand I have used their approah to sample some tree-like unlabelled struturesin Setion 4 of [19℄.5.2 The orbit-sampling proessWe will now desribe a general Markov-hain approah for sampling or-bits. The approah was proposed9 by Jerrum [25℄. It is essentially a randomwalk on the bipartite graph whih orresponds to the orbit-ounting lemma(Lemma 2.1). In partiular, onsider the bipartite graph in whih the left-hand vertex set is a �nite set
 and the right-hand vertex set is a permutationgroup G ating on
. There is an edge between element � 2
 and permu-tation g 2 G if and only if �g = �. The Markov hain M(
; G), whih we9Jerrum's desription of the Markov hain was in terms of the P�olya-theory setting ofSetion 2.1. However, as Cameron has observed [7℄, the hain is appliable in the generalorbit-ounting setting.

Counting and randomly sampling orbits 19refer to as the \orbit-sampling proess", is essentially a random walk on thisgraph. In partiular, the state spae of M(
; G) is the set
. The transi-tion probabilities from a state � 2
 are spei�ed by the following two-stepexperiment:1. Sample g uniformly at random (u.a.r.) from G�.2. Sample �0 u.a.r. from �x(g).The new state is �0. The hain M(
; G) is ergodi sine every state � anbe reahed from every other in a single transition, by seleting the identitypermutation in Step 1. (For Markov-hain de�nitions, see Chapter 6 of [22℄).Let � :
 ! [0; 1℄ denote the stationary distribution of M(
; G). It is nowstraightforward to verify that �(�) is proportional to the degree of � in thebipartite graph. That is, �(�) = jG�j=j�(
; G)j. We have thus establishedthe following Lemma from [25℄:Lemma 5.1 Let � be the stationary distribution of the Markov hainM(
; G).Then �(�) = jG�jj�(
; G)j = jGjj�Gj j�(
; G)j = 1j�Gj j�(
; G)j (5.1)for all � 2
. in partiular, � assigns equal probability to eah orbit �G.The seond equality in Equation 5.1 follows from Lagrange's Theorem whihimplies that jG�j � j�Gj = jGj and the third follows from Lemma 2.1.Sine the stationary distribution of M(
; G) is uniform on orbits, a rea-sonable approah to the orbit-sampling problem is to simulate M(
; G) for asuÆient number of transitions (to get \lose" to the stationary distribution)and then output the result. Two issues arise at this point:1. Can the steps of M(
; G) be simulated eÆiently, and2. how many transitions have to be simulated before the hain is lose tostationarity? In partiular, how many transitions have to be simulatedbefore almost-uniform sampling is ahieved? (The de�nition of \almost-uniform sampling" is in Setion 2.2.)Both of these questions depend upon the spei� input set I and the spei�representation of the inputs in I.Let � be the stationary distribution of the Markov hain M(
; G). Let �tbe the distribution of M(
; G) after t transitions, when started in state �0.De�nition The mixing time of M(
; G), given initial state �0, is a funtion��0 : (0; 1℄ ! N , from toleranes � to simulation times, de�ned as follows:for eah � 2 (0; 1℄, let ��0(�) be the smallest t suh that dtv(�t0 ; �) � � forall t0 � t. We de�ne �(�) to be the maximum of ��0(�) over all initial states�0 2
. M(
; G) is said to be rapidly mixing if and only if �(�) is at most apolynomial in the size of the input (
; G) and in log(��1).

20 Leslie Ann GoldbergNote that ifM(
; G) is rapidly mixing, and eah transition an be implementedin polynomial time, thenM(
; G) is a fully-polynomial almost uniform samplerfor orbits.5.3 The orbit-sampling proess and P�olya theoryLet I(G) be an input set in the P�olya-theory setting. Reall that eahinput (�m; bG) is represented as a set of O(m) generators for G. Thus, the sizeof the input is bounded from above by a polynomial in m.In this framework, Step 2 of eah transition is omputationally easy: tosample �0 u.a.r. from �x(ĝ), one just onsiders eah of the (g) yles of gand hooses one of the k alphabet symbols u.a.r. (see Setion 2.1). However,Step 1 is apparently diÆult. It is equivalent under randomised polynomial-time redutions to the Setwise Stabiliser problem, whih inludes Graph Iso-morphism as a speial ase. There are, nevertheless, signi�ant sets G ofgroups G for whih a polynomial-time implementation exists. Luks has shownthat p-groups|groups in whih every element has order a power of p for someprime p|is an example of suh a set [36℄. For the remainder of this setion, wewill restrit our attention to input sets orresponding to sets G of permutationgroups for whih eah transition an be implemented in polynomial time.5.3.1 Negative Results Jerrum [25℄ asked whether the orbit-sampling pro-ess is rapidly mixing for the input set I(P). Subsequently [18℄, he and Ishowed that this is not the ase. In partiular, we onstruted an in�nite setG of permutation groups suh that when the inputs (�m; bG) are hosen fromI(G), the mixing time �(1=3) of M(�m; bG) is exponential in m.We will desribe the onstrution (but not the proofs) here. Let k be thesize of the �xed alphabet �. Let � = 1=k2. We will onstrut one group foreah10 pair (l; n(l)) where l and n(l) are natural numbers satisfying�����1� (1 + 2�)l � (1� �)l(1 + 2�)l + 2(1� �)l�� 4 ln 2n(l) ���� � 3n(l)2 :To onstrut the group Gl;n(l), we let Hl;n(l) denote the graph whih is obtainedfrom the omplete graph on n(l) verties by subdividing eah edge, insertingl � 1 intermediate verties of degree two. Thus, Hl;n(l) is formed by applyingthe \l-streth" operation of Jaeger, Vertigan and Welsh [24℄ to the ompletegraph Kn(l). Let Vl;n(l) and El;n(l) denote the vertex and edge sets of Hl;n(l)(respetively) and let ml;n(l) be 3 jEl;n(l)j. We will onstrut a degree-ml;n(l)permutation group Gl;n(l).Gl;n(l) ats on the set K = Se2El;n(l) Ke, whih is the disjoint union ofthree-element sets Ke. Arbitrarily orient the edges of Hl;n(l), so that eah edgee 2 El;n(l) has a de�ned start-vertex e� and end-vertex e+. For e 2 El;n(l) and10In [18℄ we prove that there are in�nitely many suh pairs.

Counting and randomly sampling orbits 21v 2 Vl;n(l), let he be some �xed permutation that indues a 3-yle on Ke andleaves everything else �xed and let gv be the generatorgv := Ye:e+=v he Ye:e�=v h�1e :Finally, let Gl;n(l) be hgv : v 2 Vl;n(l)i, the group generated by fgvg. Ob-serve that the generators of the group ommute and have order three, so eahpermutation g 2 Gl;n(l) an be expressed as a produtYv2Vl;n(l) gv�(v);where � : V ! f0; 1; 2g. Thus, for every pair (l; n(l)), the group Gl;n(l) isAbelian and every permutation g 2 Gl;n(l) (other than the identity) has order 3.Let G = fGl;n(l)g. In [18℄, we showed that for any Æ > 0, the mixingtime of the orbit-sampling proess with input set I(G) satis�es �(1=3) =
(exp(m(G)1=(4+Æ))). Thus, the orbit-sampling proess mixes slowly for anin�nite set of Abelian 3-groups.We will not desribe the slow-mixing proof here, but the high-level pitureis as follows: We an identify two types of permutation g 2 G suh that, whenthe hain is in the stationary distribution, the permutation g seleted in Step 1is quite likely to have type 1 and also quite likely to have type 2. On the otherhand, it takes the hain a long time to move from a permutation of one typeto a permutation of the other type, and this implies slow mixing.5.3.2 Positive results Despite the slow-mixing result of the previous se-tion, Jerrum [25℄ has identi�ed two sets of permutation groups for whih theorbit-sampling hain is rapidly mixing.1. G is the set of symmetri groups, as in Example 2.4.2. G is the set of all yli groups (all groups whih are generated by a singlepermutation).Jerrum showed that the orbit-sampling proess is rapidly mixing in both ases,so this proess provides a fully-polynomial almost-uniform sampler in theseases.To illustrate the ideas, we will onsider the seond ase. Let G be a degree-m yli group and onsider the Markov hain M(�m; bG).As before, let � be the stationary distribution of M(�m; bG), and let �tbe the distribution after t transitions, starting from state �0. A (Markovian)oupling for M(�m; bG) is a stohasti proess (�t; �t) on �m � �m suh thateah of (�t) and (�t), onsidered marginally, is a faithful opy of M(�m; bG).In order to prove that M(�m; bG) is rapidly mixing, we want to onstrut a

22 Leslie Ann Goldbergoupling in whih the moves of (�t) and (�t) are orrelated, so that (�t) and(�t) oalese rapidly, ensuring that �t = �t for all suÆiently large t. Theoupling lemma (see, for example, Aldous [1℄) says that if �0 is hosen from �then dtv(�t; �) � Pr[�t 6= �t℄:Let 1 denote the identity permutation. Let gi denote the permutationhosen in Step 1 of the i'th transition ofM(�m; bG). Jerrum showed that thereis a onstant � and a polynomial p(m) suh that for every permutation g 2 GPr(gp(m) = 1 j g1 = g) � �.Given this fat, the mixing time an be bounded via a straightforwardoupling: Let the two opies run independently until they reah a transitionduring whih they both selet the identity during Step 1. After that, run theopies together, keeping the seond opy in the same state as the �rst. Theprobability that oupling has not ourred by time � is exp(�
(�=p(m))), sothe hain is rapidly mixing.5.4 Open questions regarding the orbit-sampling proessAs we observed in the previous setion, when the set
 onsists of wordsin the P�olya-theory framework and the group G is yli, the orbit-samplingproess visits the identity permutation often, and this implies that it mixesrapidly. Similarly, when the group is the symmetri group, the proess visitsthe word � = 00 � � �0 often, and it mixes rapidly. I am not aware of any otherrapid-mixing results for the orbit-sampling proess. It would be interesting toidentify a non-trivial input set for whih the hain is rapidly mixing, but forsome other reason. As a test ase, we might ask whether it is rapidly mixingwhen orbits orrespond to unlabelled 2-regular graphs. However, note thatunlabelled 2-regular graphs an easily be sampled diretly using the onnetionto integer partitions. See [35℄.Cameron illustrated the orbit-sampling proess in his textbook [7℄ by de-sribing the ase in whih orbits represent unlabelled graphs (Example 2.2). Inthis ase, Step 1 of the proess orresponds to Graph Isomorphism, whih wedo not know how to solve in polynomial time. Nevertheless, as Cameron ob-serves, there are good heuristis for graph isomorphism (for example, MKay'snauty [37℄), so implementing the transitions may not represent a serious pra-tial diÆulty. It is worth reording the fat that we do not know whether theorbit-sampling proess is rapidly mixing for unlabelled graphs. Probably it is.Sine the identity permutation is visited often, a proof along the lines of theone skethed in Setion 5.3.2 may work. However, as far as I know, nobody hasproved this. In partiular, even though it is lear that the identity permutationis visited often in the stationary distribution, it is not known whether thereare some \bad" starting points from whih it takes a long time to reah theidentity. It would also be good to know whether the proess is rapidly-mixing

Counting and randomly sampling orbits 23when orbits orrespond to (unlabelled) bounded-degree graphs. In this ase,the transitions of the proess an be eÆiently implemented.5.5 Approximate ounting revisitedThere is no known general onnetion between the problem of approxi-mately ounting orbits and the orbit sampling problem (see Setion 5.1). Thisis true even if we restrit attention to the P�olya-theory framework of Se-tion 2.1. Nevertheless, in the P�olya-theory setting, the orbit-sampling proessan be used for approximate ounting.Reall that�(
; G) = f(�; g) j � 2
 and g 2 G and � 2 �x(g) g:De�nition A fully-polynomial almost-uniform �-sampler for an input set Iis an algorithm whih takes an input (
; G) 2 I and an auray parameter� 2 (0; 1℄ and outputs a random variable. Typially, the output is a member of�(
; G). In partiular, the variation distane between the output distributionof the algorithm and the uniform distribution on �(
; G) should be at most �.Furthermore, the running time of the algorithm should be bounded from aboveby a polynomial in the size of the desription of the input and in log(��1).If we run the orbit-sampling proess, and observe the pair (�0; g) at the endof eah transition, then the stationary distribution of the proess is uniformon �(
; G) (see Lemma 5.1). Thus, the proess is a fully-polynomial almost-uniform �-sampler for an input set I if and only if it is rapidly mixing for I.Now let I(G) be an input set in the P�olya-theory setting. The followinglemma is due to Jerrum.Lemma 5.2 [25℄ If there is a fully-polynomial almost-uniform �-sampler forI(G) then there is an FPRAS for the orresponding orbit-ounting problem.Together with Jerrum's rapid-mixing results from Setion 5.3.2, Lemma 5.2implies that the problem #P�olyaOrbits has an FPRAS if the group G isrequired to be yli or to be a symmetri group. We will not inlude theproof of the lemma but it will be useful to outline the key ideas, whih arefrequently used in the \Markov Chain Monte Carlo" area. Note that theproof in [25℄ uses slightly di�erent de�nitions, but a general treatment, withde�nitions similar to ours an be found in [11℄. First, sine j bGj an be omputedexatly in polynomial time, Lemma 2.1 implies that it suÆes to approximatej�(�m; bG)j. In this approximation, the self-reduibility in the group struturean be exploited. In partiular, it suÆes to estimate m ratios of the formj�(�m; bGi�1)jj�(�m; bGi)j (5.2)

24 Leslie Ann Goldbergwhere Gj = fg 2 G j `g = ` for all ` < jgand i 2 f1; : : : ; mg. j�(�m; bGm)j an be alulated exatly (it is km) andthis an be multiplied by all of the ratios to yield j�(�m; bG0)j, whih is thedesired quantity. The ratio in Equation 5.2 an be estimated by sampling from�(�m; bGi�1) and heking how many of the samples are in �(�m; bGi).Lemma 5.2 tells us that approximate ounting is as easy as almost-uniformlysampling from �(�m; bG) but it is not known whether the onverse is true. Inpartiular, �(�m; bG) does not seem to be \self-partitionable" in the senseof [11℄. It is easy to see that the set �(�m; bG) an be desribed indutivelyby breaking bG into osets. However, the problem is that the natural \parts"are osets rather than groups, and we already know from Lemma 4.1 thatapproximately ounting is diÆult over osets.In partiular, a natural method for sampling from �(�m; bGi) would beto use ounting estimates to determine the relative weight of eah oset of�(�m; bGi+1), then selet a oset (with the appropriate probability) and re-ursively sample from the oset. But this approah is unlikely to lead to aneÆient algorithm beause of Lemma 4.1.5.6 Other orbit-sampling methods5.6.1 Wormald's Method As in Example 2.2, let
n be the set of all n-vertex graphs and let Gn be the permutation group ating on
n whih isindued by vertex permutations. The orbits of
n under Gn orrespond tounlabelled n-vertex graphs. Let I be the input set f(
n; Gn)g. The input(
n; Gn) will be represented by the positive integer n, enoded in unary, as inthe problem #Graphs. It is unknown whether the orbit-sampling proess israpidly mixing for I. Nevertheless, there is a fully-polynomial almost-uniform�-sampler for I. Thus, by Lemma 5.2, there is also an FPRAS for I.11 The�-sampler is due to Wormald [55℄ and uses the \rejetion sampling" method,whih is a frequently-used and powerful tool for sampling.In order to simplify the desription of Wormald's algorithm, we introduethe following notation: For every permutation g of a set
, let�(
; g) = f(�; g) j � 2
 and � 2 �x(g) g:Thus, �(
; G) = Sg2G�(
; g).First, suppose that we ould estimate j�(
n; g)j and j�(
n; Gn)j. Thenwe ould sample from �(
n; Gn) using the following algorithm of Dixon andWilf [9℄:1211In order to apply Lemma 5.2, we are impliitly using the fat that I an be enoded inthe P�olya-theory setting. See Example 2.5.12Dixon and Wilf's algorithm is more sophistiated than the one that we desribe here.In partiular, they show that the probabilities in Step 2 are idential for permutations

Counting and randomly sampling orbits 251. Input n2. Choose g 2 Gn with probability j�(
n;g)jj�(
n;Gn)j .3. Choose (�; g) u.a.r. from �(
n; g).Step 3 of the algorithm is easily implemented | it orresponds to Step 2of the orbit-sampling proess. The main problem is that we do not know howto estimate j�(
n; Gn)j. Wormald [55℄ uses rejetion sampling to avoid doingthis estimation. The basi idea of rejetion sampling is as follows. It maybe too diÆult to sample from a given desired distribution. So what the userdoes instead is to sample from some other (more tratable) distribution. Imag-ine the desired distribution as being \saled down" so that it �ts underneaththe more tratable distribution. To draw a sample from the desired distri-bution, the user �rst draws a sample from the more tratable distribution.The user then uses the sample to determine the probability with whih themore tratable distribution over-represents this sample (relative to the \saleddown" desired distribution). With this probability, the sample is rejeted (andthe value ? is output instead). Otherwise, the sample is output. The methodis useful when it is easy to determine the probability with whih a given sampleshould be rejeted (so rejetion is fast) and, furthermore, the overall rejetionprobability is low (so the variation distane between the output distributionof the algorithm and the desired distribution is small).We will now desribe Wormald's algorithm. To simplify the desription,we will �rst omit the auray parameter, �, from the input. After we havedesribed the algorithm, we will bound the variation distane between the out-put distribution of the algorithm and the uniform distribution on �(
n; Gn).We will then say how to modify the algorithm to redue the variation distaneto any desired quantity �. The outline of the algorithm is as follows, where1 denotes the identity permutation (This is a slight abuse of notation, sinewe use the single symbol 1, but when the input is n, we mean the identitypermutation on
n.) We will use the symbol pg;n to represent the probabilitywith whih permutation g is hosen (so Pg pg;n = 1). Appropriate hoiesfor pg;n will be disussed below.1. Input n2. Choose g with probability pg;n.3. Choose (�; g) u.a.r. from �(
n; g).4. With probability p1;nj�(
n;1)j j�(
n;g)jpg;n output (�; g); otherwise output ?.in the same onjugay lass, and by breaking Gn into onjugay lasses, they show how toimplement Step 2 in polynomial time on average provided the value of j�(
n; Gn)j is known.Details an be found in [9℄.

26 Leslie Ann GoldbergClearly, we will need to hoose the probabilities pg;n in suh a way thatCriterion 1 (below) is satis�ed (so that Step 4 an be implemented). We willalso hoose the probabilities in suh a way that Criteria 2 and 3 are satis�ed,so that the algorithm runs in polynomial time.Criterion 1: The probabilities pg;n must be hosen so thatp1;nj�(
n; 1)j j�(
n; g)jpg;n � 1:Criterion 2: The probabilities pg;n must be hosen so that Step 2 anbe implemented in polynomial time13.Criterion 3: The probabilities pg;n must be hosen so that Step 4 anbe implemented in polynomial time.It is easy to hek that the probability that any given pair (�; g) from�(
n; Gn) is output is p1;n = j�(
n; 1)j. With the remaining probability, whihwe denote �, the algorithm outputs ?. It is now straightforward to verify thatthe total variation distane between the output distribution of the algorithmand the uniform distribution on �(
n; Gn) is �. Note that the rejetion prob-ability is 0 whenever g = 1. Thus, � � 1� p1;n.If we wish to have an upper bound � on the total variation distane, thenwe simply run the algorithm for dlog(�)= log(1�p1;n)e iterations. If the outputis always ? (for every iteration) then we output ?. Otherwise, we output the�rst member of �(
n; Gn) whih is output by an iteration. We get a fully-polynomial almost-uniform �-sampler as long as the total number of timesthat we run the algorithm is bounded from above by a polynomial in n andlog(��1). Sinelog(�)= log(1� p1;n) = log(��1)= log((1� p1;n)�1);this follows from Criterion 4.Criterion 4: The probabilities pg;n must be hosen so that, for somepositive onstant and every n, we have p1;n � n�.Wormald [55℄ showed how to hoose the probabilities pg;n so that theseriteria are met. Thus, he gave a fully-polynomial almost-uniform �-samplerfor unlabelled graphs.13Note that hoosing pg;n = j�(
n;g)jj�(
n;Gn)j would make Wormald's algorithm equivalent toDixon and Wilf's. Thus, it would satisfy all riteria exept Criterion 2.

Counting and randomly sampling orbits 275.6.2 Extending Wormald's Method Wormald's method an easily be ex-pressed in the general orbit-sampling framework. As before, pg;G denotes theprobability with whih permutation g is hosen, so Pg pg;G = 1.1. Input (
; G)2. Choose g 2 G with probability pg;G.3. Choose (�; g) u.a.r. from �(
; g).4. With probability p1;Gj�(
;1)j j�(
;g)jpg;G output (�; g); otherwise output ?.The analogue of Criterion 4 states that there is a positive onstant suhthat for every possible input (
; G), we must have p1;G � m(G)�. On theother hand, the analogue of Criterion 1 impliesj�(
; 1)jp1;G � j�(
; g)jpg;G ; (5.3)whih implies p1;G � j�(
; 1)jj�(
; G)j :Thus, we annot simultaneously satisfy the two riteria unless there is apositive onstant suh that for every possible input (
; G),m(G)� � j�(
; 1)jj�(
; G)j : (5.4)In other words, we annot use Wormald's method unless the the part of�(
; G) whih orresponds to the identity permutation aounts for at least apolynomial fration of �(
; G).Several natural sets of permutation groups satisfy Equation 5.4. For ex-ample, Wormald has shown [55℄ how to use the method to eÆiently sampleunlabelled r-regular graphs for r � 3.5.6.3 Other possibilities Not muh is known about how to sample orbitswhen the input set does not satisfy Equation 5.4. We have just seen thatWormald's method relies on the identity permutation having a large weight(in the sense that Equation 5.4 must be satis�ed). One of the two positiveresults in Setion 5.3.2 (the result showing that the orbit-sampling proess israpidly mixing for yli groups) also relies on this fat.Jerrum and I [19℄ onsidered the following orbit-sampling problem, whihwe hose spei�ally beause Equation 5.4 does not hold.

28 Leslie Ann GoldbergExample 5.3 Let � be any �xed onstant. For any multigraph H with degreeat most �, the degree sequene of H is a sequene n = n0; : : : ; n�, whereni denotes the number of verties of H with degree i. Let
n be the set ofall n-vertex onneted multigraphs with degree sequene n. Let Gn be the per-mutation group ating on
n whih is indued by vertex permutations. As inExample 2.2, the orbits orrespond to isomorphism lasses. That is, the orbitsof
n under Gn orrespond to the unlabelled onneted multigraphs with degreesequene n.In [19℄, we gave a fully polynomial almost-uniform sampler for this orbit-sampling problem (sampling unlabelled onneted multigraphs with a given(bounded) degree sequene). Unfortunately, our solution does not ontain anynew methods | it is really a ombination of the methods that have alreadybeen desribed here. Disovering new methods for sampling orbits, partiularlymethods whih do not require Equation 5.4 remains an interesting hallenge.Our algorithm for sampling unlabelled onneted multigraphs is based onthe following idea. Every unlabelled onneted multigraph H is assoiatedwith a unique \ore"14 whih has no verties of degree 1 or 2. To randomlygenerate a multigraph H, the algorithm �rst generates the ore of H and thenextends the ore by adding trees and hains of trees to obtain H.The algorithm for generating the ore is desribed using the on�gurationmodel of Bender and Can�eld [3℄, Bollob�as [6℄ and Wormald [53℄. A on�gura-tion (for a given degree sequene) is a labelled ombinatorial struture whihan be viewed as a re�nement of a multigraph with the degree sequene. Forany given degree sequene, the orbits of all on�gurations (with respet to theappropriate permutation group) orrespond to the unlabelled multigraphs withthe degree sequene. Sine the degree sequene of the ore has no verties ofdegree 1 or 2, a typial ore does not have many symmetries and Equation 5.4is satis�ed. (This follows from an extension of Bollob�as's analysis of unlabelledregular graphs [5℄.) Thus, the algorithm uses Wormald's method to generatethe ore. (If the ore is not onneted, it is rejeted. The fat that this doesnot happen too often follows from another result of Wormald [54℄.)After generating the ore of the random multigraph, the algorithm extendsthe ore by adding trees and hains of trees. This part of the algorithm isbased on the generating-funtion approah illustrated in Setion 5.1.It is an open problem to sample unlabelled multigraphs given a generaldegree sequene (in whih degrees need not be bounded from above by a on-stant). Our method is not appliable when the degrees are unbounded. Infat, the problem with unbounded degrees seems to be diÆult even in thelabelled ase (see [29, 39, 10℄).14For other uses of the \ore" idea, see Zhan [56℄.

Counting and randomly sampling orbits 296 A related problem: Listing orbitsConsider the following omputational problem, whih �ts into the frame-work of Setion 2.2.De�nition The orbit-listing problem: Given an input (
; G) 2 I, outputexatly one member of eah orbit in �(
; G).There is a vast literature on the problem of listing orbits. The reader isreferred partiularly to MKay's paper [38℄ whih introdues a new methodand also explains the onnetion between various methods whih are used inpratie. Further work along these lines an be found in [34℄. In this survey wewill restrit our attention to polynomial delay listing, whih is not mentionedin these works.The notion of \polynomial delay" is due to Johnson, Yannakakis and Pa-padimitriou [32℄. A listing algorithm has polynomial delay if and only if thedelay (in time-steps) between eah pair of onseutive outputs is bounded fromabove by a polynomial (in the input size).When the permutation group is trivial (so the orbits are in one-to-oneorrespondene with the elements of
), listing an be shown to be stritlyless diÆult than sampling [16℄, in the sense that the existene of a fully-polynomial almost-uniform sampling algorithm for a given input set impliesthe existene of a (randomised) polynomial-delay listing algorithm (but notvie-versa). It is not known whether suh a result holds for arbitrary inputsets, but the idea has been used for at least one non-trivial orbit samplingproblem. In partiular, Dixon and Wilf [9℄ suggested using a sampling algo-rithm for unlabelled graphs in order to list them. Using this idea, one anombine Wormald's unlabelled-graph sampling algorithm from Setion 5.6.1with Babai and Ku�era's anonial labelling algorithm [2℄ to obtain a (ran-domised) polynomial-delay algorithm for listing unlabelled graphs [15, 16℄.The dupliate-elimination ontained in this algorithm requires eah of the(exponentially-many) orbits to be stored. However, it turns out that thereis also a deterministi polynomial-spae polynomial-delay algorithm for listingunlabelled graphs [15, 16℄.It is not known whether there is a polynomial-delay listing algorithm forlisting orbits in the general P�olya-theory framework (i.e., for input set I(P)).It would be interesting to know more about this question, and about its on-netion to the orresponding orbit-sampling problem.AknowledgementsThis work was supported by the EPSRC Researh Grant GR/M96940 andby the ESPRIT Projets RAND-APX and ALCOM-FT. I am grateful to MarkJerrum for many useful disussions and ollaborations in this area and also forhelpful omments on an earlier draft of this artile. I am also grateful to thereferee for helpful omments.

30 Leslie Ann Goldberg7 Appendix: Proof of Lemma 3.3The proof is by redution from the problem #CubiHam, whih wasshown to be #P-omplete by Jerrum [26℄.Name. #CubiHam.Instane. A graph H in whih every vertex has degree at most 3.Output. The number of Hamiltonian paths in H.Proof Let Fn be the graph with vertex set fi;j j i 2 [n℄; j 2 [2n + 2℄g andedge setf(i;0; i0;0) j i0 = i+ 1 (mod n)g [[i f(i;j; i;j0) j j 0 = j + 1 (mod 2n+ 2)g:Thus, Fn onsists of a \entral" length-n yle 0;0; : : : ; n�1;0 and, o� of eahvertex i;0 in the yle, there is a length-(2n+2) yle i;0; : : : ; i;2n+1, whih werefer to as a \petal". For every j 2 [n+1℄, let F 0n[j℄ be the graph obtained fromFn by deleting edges (0;j; 0;j+1) and (0;j+1; 0;j+2). Thus, F 0n[j℄ is obtainedfrom Fn by removing two adjaent edges from a petal. The shortest path fromthe entral yle to the two deleted edges is the length-j path from 0;0 to 0;j.Let F 0n be the union of n + 1 disjoint graphs, the jth of whih is isomorphito F 0n[j℄.LetH be an instane of #CubiHam with vertex set V = fv0;0; : : : ; vn�1;0g.Let H 0 be the graph with vertex set V [fvi;j j i 2 [n℄; j 2 f1; : : : ; 2n + 1ggwhih is onstruted from H by adding the edges in[i f(vi;j; vi;j0) j j 0 = j + 1 (mod 2n+ 2) and j 6= i + 1g:Roughly, H 0 is formed from H by attahing petals, but the i + 1st edge isdeleted from the ith petal.For any graph �, let N(�) denote the number of distint (up to isomor-phism) subtrees of �. We laim thatN(H 0 [Fn)�N(H 0 [F 0n) = N(Fn)�N(F 0n)�#CubiHam(H);whih ompletes the proof.To see why the laim is true, note that to form a subtree of Fn, onemust delete an edge (i;0; i0;0). Also, for eah i 2 [n℄, one must delete anedge (i;j; i;j0). If one stops at this point, then the subtree is not representedin N(F 0n), but if any further edges are deleted, then the subtree is representedin N(F 0n). Now we want to know how many subtrees in N(Fn) � N(F 0n) aresubtrees of H 0 and this turns out to be the number of Hamiltonian paths in H.�

Counting and randomly sampling orbits 31Referenes[1℄ D. Aldous, Random walks on �nite groups and rapidly mixing Markovhains, S�eminaire de Probabilit�es XVII 1981/1982 , (ed. A. Dold andB. Ekmann), Springer-Verlag Leture Notes in Mathematis, 986Springer-Verlag, (1983). 243{297.[2℄ L. Babai and L. Ku�era, Canonial labeling of graphs in linear averagetime, in Proeedings 20th IEEE Symposium on Foundations of ComputerSiene (1979), 39-46.[3℄ E. A. Bender and E. R. Can�eld, The asymptoti number of labelledgraphs with given degree sequenes, J. Combin. Theory Ser. A 24 (1978),296{307.[4℄ A. Bertoni, M. Goldwurm and N. Sabadini, The omplexity of omputingthe number of strings of given length in ontext-free languages, RapportoInterno n. 26/88, Dipartimento di Sienze dell'Informazione, Universit�adegli Studi di Milano, via Moretta da Bresia, 9-I 20133 Milano, Italy,1988.[5℄ B. Bollob�as, The asymptoti number of unlabelled regular graphs, J. Lon-don Math. So. 26 (1982), 201{206.[6℄ B. Bollob�as, Almost all regular graphs are Hamiltonian, European J. Com-bin. 4 (1983), 97{106.[7℄ P. Cameron, Permutation Groups, London Mathematial Soiety StudentTexts, 45 Cambridge University Press, (1999).[8℄ N. G. De Bruijn, P�olya's theory of ounting, Applied Combinatorial Math-ematis, (ed. E.F. Bekenbah), John Wiley and Sons, (1964).[9℄ J. D. Dixon and H. S. Wilf, The random seletion of unlabeled graphs, J.Algorithms 4 (1983), 205{213.[10℄ M. Dyer and C. Greenhill, Polynomial-time ounting and sampling of two-rowed ontingeny tables, Theoret. Comput. Si. 246 (2000), 265{278.[11℄ M. Dyer and C. Greenhill, Random walks on ombinatorial objets, Sur-veys in Combinatoris, (ed. J.D. Lamb and D.A. Preee), London Math-ematial Soiety Leture Note Series, 267 Cambridge University Press,(1999). 101{136.[12℄ M. Dyer, C. Greenhill, L.A. Goldberg and M. Jerrum, On the relativeomplexity of approximate ounting problems, in Proeedings of APPROXSpringer Leture Notes in Computer Siene, 1913 (2000), 108{119.

32 Leslie Ann Goldberg[13℄ P. Flajolet, P. Zimmerman and B. Van Cutsem, A alulus for the randomgeneration of labelled ombinatorial strutures, Theoret. Comput. Si.132 (1994), 1{35.[14℄ M.R. Garey and D.S. Johnson, Computers and Intratability: A Guide tothe Theory of NP-Completeness, Freeman, (1979).[15℄ L. A. Goldberg, EÆient algorithms for listing unlabeled graphs, J. Algo-rithms 13 (1992), 128{143.[16℄ L.A. Goldberg, EÆient Algorithms for Listing Combinatorial Strutures,Cambridge University Press, (1993).[17℄ L.A. Goldberg, Automating P�olya theory: the omputational omplexityof the yle index polynomial, Inform. and Comput. 105(2) (1993), 268{288.[18℄ L. A. Goldberg and M. Jerrum, The \Burnside proess" onverges slowly,in Randomization and Approximation Tehniques in Computer Siene,Proeedings of RANDOM 1998 (ed. M. Luby, J. Rolim and M. Serna),Springer Leture Notes in Computer Siene, 1518 (1998), 331{345.[19℄ L.A. Goldberg and M. Jerrum, Randomly sampling moleules, SIAM J.Comput. 29(3) (1999), 834{853.[20℄ L.A. Goldberg and M. Jerrum, Counting unlabelled subtrees of a tree is#P-omplete, LMS J. Comput. Math. 3 (2000), 117-124.[21℄ O. Goldreih, Introdution to Complexity Theory , Leture Notes Se-ries of the Eletroni Colloquium on Computational Complexity , (1999).http://www.e.uni-trier.de/e-loal/ECCC-LetureNotes/[22℄ G.R. Grimmett and D.R. Stirzaker, Probability and Random Proesses,Seond Edition, Oxford University Press, (1992).[23℄ F. Harary and E.M. Palmer, Graphial Enumeration, Aademi Press,(1973).[24℄ F. Jaeger, D.L. Vertigan and D.J.A. Welsh, On the omputational om-plexity of the Jones and Tutte polynomials, Math. Pro. Cambridge Phi-los. So. 108 (1990), 35{53.[25℄ M. Jerrum, Uniform sampling modulo a group of symmetries usingMarkov hain simulation, Expanding Graphs, DIMACS Series in DisreteMathematis and Theoretial Computer Siene, 10 (ed. J. Friedman),AMS, 37{47. (1993).[26℄ M. Jerrum, Counting trees in a graph is #P-omplete, Inform. Proess.Lett. 51(3) (1994), 111{116.

Counting and randomly sampling orbits 33[27℄ M. Jerrum, Computational P�olya theory, Surveys in Combinatoris, Lon-don Mathematial Soiety Leture Note Series, 218 Cambridge UniversityPress, (1995). 103{118.[28℄ M. Jerrum, Mathematial foundations of MCMC, Probabilisti Methodsfor Algorithmi Disrete Mathematis, (ed. M. Habib, C. MDiarmid,J. Ramirez-Alfonsin and B. Reed), Springer, (1998). 116{165.[29℄ M. Jerrum and A. Sinlair, Fast uniform generation of regular graphs,Theoret. Comput. Si. 73 (1990), 91{100.[30℄ M. Jerrum and A. Sinlair, Polynomial-time approximation algorithmsfor the Ising model, SIAM J. Comput. 22 (1993), 1087{1116.[31℄ M.R. Jerrum, L.G. Valiant and V.V. Vazirani, Random generation ofombinatorial strutures from a uniform distribution, Theoret. Comput.Si. 43 (1986), 169{188.[32℄ D.S. Johnson, M. Yannakakis and C.H. Papadimitriou, On generating allmaximal independent sets, Inform. Proess. Lett. 27 (1988), 119{123.[33℄ R.M. Karp and M. Luby, Monte-Carlo algorithms for enumeration andreliability problems, in Proeedings of the 24th IEEE Symposium on Foun-dations of Computer Siene (1983), 56{64.[34℄ A. Kerber, Applied Finite Group Ations, 2nd Edition, Springer-Verlag,(1999).[35℄ D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation,Enumeration and Searh, CRC Press, (1999).[36℄ E.M. Luks, Isomorphism of graphs of bounded valene an be tested inpolynomial time, J. Comput. System Si. 25 (1982), 42{65.[37℄ B.D. MKay, nauty user's guide (version 1.5), Tehnial report TR-CS-90-02, Computer Siene Department, Australian National University,1990.[38℄ B.D. MKay, Isomorph-free exhaustive generation, J. Algorithms 26(1998), 306{324.[39℄ B. D. MKay and N. C. Wormald, Uniform generation of random regulargraphs of moderate degree, J. Algorithms 11 (1990), 52{67.[40℄ P.M. Neumann, A lemma that is not Burnside's, Math. Si. 4 (1979),133{141.[41℄ A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd Edition, Aa-demi Press, (1978).

34 Leslie Ann Goldberg[42℄ W. Obershelp, Kombinatorishe anzahlbestimmungen in relationen,Math. Ann. 174 (1967), 53{58.[43℄ R. Otter, The number of trees, Ann. of Math. 49 (1948), 583{599.[44℄ C.H. Papadimitriou, Computational Complexity , Addison-Wesley,(1994).[45℄ G.P�olya and R.C. Read, Combinatorial Enumeration of Groups, Graphs,and Chemial Compounds, Springer-Verlag, (1987).[46℄ C.P. Shnorr, Optimal algorithms for self-reduible problems, in Proeed-ings of the 3rd International Colloquium on Automata Theory, Languagesand Programming (1976), 322{337.[47℄ L. Stokmeyer, The omplexity of approximate ounting (preliminary ver-sion), in Proeedings of the 15th ACM Symposium on Theory of Comput-ing (1983), 118{126.[48℄ G. Tinhofer, Generating graphs uniformly at random, Computing, Supp.7 (1990), 235{255.[49℄ S. Toda, PP is as hard as the polynomial-time hierarhy, SIAM J. Com-put. 20 (1991), 865{877.[50℄ L.G. Valiant, The omplexity of enumeration and reliability problems,SIAM J. Comput. 8 (1979), 410{421.[51℄ L.G. Valiant and V.V. Vazirani, NP is as easy as deteting unique solu-tions, Theoret. Comput. Si. 47 (1986), 85{93.[52℄ H. S. Wilf, The uniform seletion of free trees, J. Algorithms 2 (1981),204{207.[53℄ N. C. Wormald, Some problems in the enumeration of labelled graphs,Ph.D. Thesis, Department of Mathematis, University of Newastle, NewSouth Wales, 1978.[54℄ N. C. Wormald, The asymptoti onnetivity of labelled regular graphs,J. Combin. Theory Ser. B 31 (1981), 156{167.[55℄ N. C. Wormald, Generating random unlabelled graphs, SIAM J. Comput.16 (1987), 717{727.[56℄ S. Zhan, On Hamiltonian line graphs and onnetivity, Disrete Math. 89(1991), 89{95.

Counting and randomly sampling orbits 35Department of Computer SieneUniversity of WarwikCoventry CV4 7ALUnited Kingdomleslie�ds.warwik.a.uk

