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and 2R > T +S. Thus, in a single round, it is best for eah player to defet even thoughthis is not globally optimal. In the iterated prisoner's dilemma game, rounds are playedrepeatedly and players may base their deisions on the outomes of previous rounds.Empirial evidene 1 indiates that an e�etive strategy for this game is the so-alled\Pavlov" strategy: If a player is \rewarded" with T or R points during a given round,then he repeats his previous move next time. If he is \punished" with P or S pointsthen he does not repeat his previous move. A small ase analysis reveals that the Pavlovstrategy an also be stated as follows: A player ooperates if and only if he has madethe same hoie as his opponent during the previous round.Kittok [5℄ studied the Pavlov strategy2 in a distributed setting: n players are on-neted by an \interation graph". During a round of the game, an edge of the graph isseleted uniformly at random. The two players onneted by the edge play one round,using the Pavlov strategy. That is, if a player agreed with his (previous) opponent lasttime he was hosen to play, then he ooperates this time. Otherwise he defets. As longas the interation graph is onneted, the game onverges to a unique absorbing statein whih every player ooperates. Kittok was interested in determining the absorptiontime | that is, the time required to reah the absorbing state. He provided empirialevidene for the onjeture that the absorption time is exponential in n if the graph isthe omplete graph, and polynomial in n if the graph is a yle. In this note, we proveKittok's onjetures.The basi method whih we use to prove both theorems is to de�ne an appropriatepotential funtion so that the progress of the Pavlov proess may be ompared to that ofa one-dimensional random walk. See, for example, [6℄. Similar tehniques are often usedto analyse the mixing time of Markov hains via oupling arguments. In the ouplingontext, the observed state spae is taken to be the set of pairs of Markov-hain states,and the potential funtion is de�ned to be the distane between the states in the pair,with respet to some metri. See, for example, [7, 8, 2, 4℄.2 PreliminariesWe are given a population of n � 4 players situated at the verties of a onneted graphG = (V;E). Eah player has an initial state X(i) 2 f�1; 1g. The 1 values enode thedeision \ooperate" and are referred to as pluses. The �1 values enode the deision\defet" and are referred to as minuses. During eah step of the Pavlov proess, we1Axelrod [1℄ hosted a omputer tournament in whih strategies proposed by game theorists wereplayed against eah other. Surprisingly, a simple Markovian strategy won the tournament. That is, thewinning strategy has the property that the deision of a given player in a given round depends onlyon the outome of the previous round, and not on the rest of the history of the game. Nowak andSigmund [9℄ did a omputational study of all suh Markovian strategies, and found the Pavlov strategyto be \best".2Kittok's paper is desribed using AI language, but the iterated prisoner's dilemma strategy thathe studies (whih he alls the zero-memory HCR strategy) is preisely the Pavlov strategy. For moreinformation about the ontext of Kittok's work and the HCR generalisation of the Pavlov strategy,see Shoham and Tennenholtz's paper [10℄. 2



hoose a pair fi; jg 2 E uniformly at random and replae X(i) and X(j) by X(i)X(j).The state X� with X�(i) = 1 for all i 2 V is an absorbing state of this proess. If Gontains no isolated verties then X� is the unique absorbing state and there exists asequene of moves whih an transform X to X�, for every X 2 f1;�1gV .We are interested in the absorption time; that is, the time required for the Pavlovproess to reah the absorbing state. We investigate two families of graphs, namelyyles and omplete graphs. Using a oupon-olletor-like argument, Shoham and Ten-nenholtz [10℄ proved that, for a large lass of strategies, the absorption time for both ofthese families is 
(n logn). We prove the following theorems, showing that the Pavlovproess has optimal absorption time when G is a yle, and exponential absorption timewhen G is a omplete graph.Theorem 1 Let G be a yle on n verties and let " > 0 be given. With probability atleast 1� ", the Pavlov proess reahes the absorbing state in492 n log�49n94"�steps.Theorem 2 Let Tn denote the absorption time of Pavlov proess on the graph Kn start-ing from a on�guration X0 with fewer than 3n=5 pluses. With probability 1� o(1) wehave Tn � (1:1)n.3 Optimal absorption on ylesLet G be a yle on the vertex set [n℄ = f0; : : : ; n� 1g. That is, G has n edges fi; i+ 1gfor 0 � i < n. Here, and throughout the paper, addition and subtration on verties isperformed modulo n.We de�ne a potential funtion  : f1;�1gV ! R to measure the distane of a givenstate X from the absorbing state X�. First, we must introdue some terminology. LetX 2 f1;�1gV be given. A run in X is an interval [i; j℄ where 0 � i; j < n, suh thatX(`) = �1 for ` = i; i + 1; : : : ; j � 1; j and X(i� 1) = 1, X(j + 1) = 1. (It is possibleto have j < i, sine we are working modulo n.) Clearly all runs are disjoint. We ande�ne the set R(X) of all runs in X. By onvention, the all-minuses on�guration isnot onsidered a run, sine it has no bordering pluses.Suppose that r = [i; j℄. The length of the run r, denoted by `(r), equals the numberof minuses in the run. We will refer to a run of length ` as an `-run. A 1-run will alsobe alled a singleton and a 2-run will also be alled a pair. Then the potential funtion is given by (X) = j fi : X(i) = �1g j+ � � jR(X)j+  � j fr 2 R(X) : r is a singletong j+ Æ � j fr 2 R(X) : r is a pairg j:3



The parameters �,  and Æ will be set below. Note that a singleton is a barrier toabsorption sine a singleton minus annot be hanged to a plus in one step. The singletonmust �rst beome part of a longer run. So we set  > 0 to penalise singletons. On theother hand, pairs give the opportunity for two minuses to be hanged at one step. Thuspairs are helpful, and we reet this by setting Æ < 0. We also set � > 0. Clearly (X�) = 0 for any values of �, , Æ sine X�(i) = 1 for all i, and R(X�) = ;. For to be a well-de�ned potential funtion, we must also show that  (X) > 0 wheneverX 6= X�. This is ahieved if �2 < Æ < 0, sine there an be at most half as many pairsin X as there are minuses.3.1 The analysisWe now analyse the Pavlov proess using the potential funtion  . Let X0 2 f1;�1gVbe �xed. Clearly if X0 = X� there is nothing to prove. So, suppose that X0 ontainsat least one minus. Let X1 be the result of performing one step of the proess fromstarting point X0. We will �nd an upper bound for E [ (X1)�  (X0)℄.Note that eah edge overlaps at most one run in R(X0), and that there are ` + 1edges whih overlap a given `-run. Spei�ally, if r = [i; j℄ then these `(r) + 1 edges arefi� 1; ig ; : : : ; fj; j + 1g :Let L(X0) be de�ned by L(X0) = Xr2R(X0)(`(r) + 1):Then L(X0) equals the number of edges whih overlap some run in X0. Denote byv(X0; e) the value of  (X1) �  (X0) given that the edge e has been hosen by thePavlov proess in step 1. Let r be an `-run and let�(r) = Xe overlaps r v(X0; e):By de�nition we have E [ (X1)�  (X0)℄ = 1nXe2E v(X0; e);sine there are n edges in G. When X0 ontains both pluses and minuses we an alsostate that E [ (X1)�  (X0)℄ = 1n Xr2R(X0) �(r);sine runs are disjoint and an edge whih does not overlap a run makes no hange toX0. Let M =M(X0) be de�ned byM = max� �(r)`(r) + 1 j r 2 R(X0)� :4



That is,M is the maximum over all runs of the average ontribution of eah edge in thatrun. The way in whihM will be used is desribed below. We ignore two on�gurations:the all-pluses on�guration X�, and the all-minuses on�guration. The latter is treatedseparately in Setion 3.2.Lemma 1 Suppose that X0 ontains both pluses and minuses. WithM ,  and L de�nedas above, we have E [ (X1)℄ � �1 + ML(X0) (X0)n � (X0):Proof. From above, we haveE [ (X1)�  (X0)℄ = 1n Xr2R(X0) �(r)� 1n Xr2R(X0)(`(r) + 1)M= ML(X0)nWe an rearrange this inequality to giveE [ (X1)℄ �  (X0) + ML(X0)n = �1 + ML(X0) (X0)n � (X0);as stated.Suppose that the values of �, , Æ ould be set to ensure that M < 0. Then, byLemma 1, the value of  dereases in expetation at every step. This will be used inSetion 3.2 to alulate an upper bound for the absorption time of the Pavlov proess.Let r = [i; j℄ be a run. Then there are two outer rim edges assoiated with r, namelyfi� 1; ig and fj; j + 1g. If r has length at least 3 then there are also two inner rimedges assoiated with r, namely fi; i + 1g and fj � 1; jg. If r is a singleton then thereare no inner rim edges, while if r is a pair [i; i+1℄ then there is a unique inner rim edgefi; i + 1g. All other edges whih overlap r are stritly inside the interval [i; j℄, and weall these edges internal edges.Suppose that there are two runs in R(X0) whih are only separated by a single plus,i.e. [i; j℄ and [j + 2; k℄ for some i, j, k. Then there are two edge hoies fj; j + 1g andfj + 1; j + 2g whih ause the two runs to merge (note that these edges are both outerrim edges for the runs whih they overlap). For simpliity, we will �rst assume that thereare no edge hoies whih ause runs to merge. That is, in Lemma 2 we assume thatall adjaent runs in R(X0) are separated by at least two pluses. By arefully hoosingvalues for �,  and Æ in this ase, we show that M is negative: spei�ally M = �1=14.In Lemma 3 we return to on�gurations whih ontain adjaent runs separated by asingle plus. 5



Before presenting Lemma 2, we make a few general remarks. When all adjaent runsare separated by at least two pluses, hoosing an outer rim edge will always ause r toinrease in length by 1, introduing an extra minus. Similarly, hoosing an inner rimedge will always ause r to derease in length by 2, hanging two minuses to pluses.When the length of r is small there might be additional e�ets from these four edges,as we shall see. When any internal edge is hosen, the run r is split into two runs whihare separated by two pluses. If the two runs have length k and ` we say that this edgehoie produes a (k; `)-split.We an now prove that M is negative for ertain �xed values of �,  and Æ, when X0ontains both pluses and minuses and all adjaent runs are separated by at least twopluses.Lemma 2 Let X0 ontain both pluses and minuses, and suppose that adjaent runs inX0 are separated by at least two pluses. Then setting � = 27=14,  = 4=7 and Æ = �4=7we obtain M = �1=14.Proof. We will onsider runs r of di�erent lengths in turn, and alulate �(r)=(`(r)+1)in eah ase. Then M is the maximum of these values.A 1-run. Let r be a 1-run [i; i℄. The only edges whih overlap r are the outer rim edgesfi� 1; ig and fi; i+ 1g. When either of these edges are hosen, a vertex adjaent tothe 1-run hanges from a plus to a minus. This introdues an extra minus and hangesa 1-run (singleton) to a 2-run (a pair), without hanging the total number of runs.Therefore �(r)2 = 1�  + Æ = �17 : (1)A 2-run. Suppose that r = [i; i + 1℄. There are 3 edges whih overlap r. When eitherof the outer rim edges fi� 1; ig or fi+ 1; i+ 2g are hosen the 2-run beomes a 3-run,introduing an extra minus and deleting a pair. There is only one inner rim edge, theedge fi; i+ 1g. When this edge is hosen, both minuses in the pair beome pluses. Herewe lose two minuses and delete a pair, dereasing the number of runs by 1. Addingthese ontributions and dividing by 3 we �nd that�(r)3 = 2(1� Æ)� (2 + � + Æ)3 = �� + 3Æ3 = � 114 : (2)A 3-run. Suppose that r = [i; i + 2℄. There are 4 edges whih overlap r, namely thetwo outer rim edges and the two inner rim edges. Choosing an outer rim edge turns the3-run into a 4-run, introduing an extra minus. Choosing an inner rim edge turns the3-run into a 1-run. Hene�(r)4 = 2 + 2(�2 + )4 = �1 + 2 = � 314 : (3)6



A 4-run. Suppose that r = [i; i + 3℄ for some i. There are 5 edges whih overlapr. Choosing an outer rim edge auses r to inrease in length by 1, introduing a newminus. Choosing an inner rim edge auses the length of r to derease by 2: in this asethis introdues a new pair. Finally, there is one internal edge fi+ 1; i+ 2g. Choosingthis edge produes a (1; 1)-split. This introdues two singletons and inreases the totalnumber of runs by 1, while removing two minuses. Adding these ontributions togetherand dividing by 5, we obtain�(r)5 = 2 + 2(�2 + Æ) + (�2 + � + 2)5 = �4 + � + 2 + 2Æ5 = �2970 : (4)A 5-run. Let r = [i; i + 4℄ for some i. There are six edges whih overlap r. Choosingan outer rim edge auses r to inrease in length by 1. Choosing an inner rim edgeauses the length of r to derease by 2. There are two internal edges, fi+ 1; i+ 2gand fi+ 2; i+ 3g. Choosing either of these edges produes a (1; 2)-split, deleting twominuses, introduing a singleton and a pair, as well as inreasing the number of runsby 1. Adding the ontributions from all of these edges together, and dividing by 6, weobtain �(r)6 = 2� 4 + 2(�2 + � +  + Æ)6 = �3 + � +  + Æ3 = � 514 : (5)A 6-run. Let r = [i; i + 5℄. There are 7 edges whih overlap r. If an outer rim edge ishosen then r inreases in length by 1. If an inner rim edge is hosen then r dereases inlength by 2. There are 3 internal edges. Choosing fi+ 1; i+ 2g or fi+ 3; i+ 4g produesa (1; 3)-split, dereasing the number of minuses by 2 while inreasing the number ofsingletons and the number of runs by 1. Finally, hoosing the edge fi+ 2; i+ 3g produesa (2; 2)-split, dereasing the number of minuses by 2, inreasing the number of runs by1 and the number of pairs by 2. Combining this information we �nd that�(r)7 = 2� 4 + 2(�2 + � + ) + (�2 + � + 2Æ)7 = �8 + 3� + 2 + 2Æ7 = �3198 : (6)An `-run, where ` � 7. Now suppose that r = [i; j℄ is an `-run for some ` � 7.Choosing either of the two outer rim edges auses r to inrease in length by 1. Choosingeither of the two inner rim edges auses r to derease in length by 2. There are 4 internaledges whih need areful analysis. Choosing either fi+ 1; i+ 2g or fj � 2; j � 1g pro-dues a (1; `� 3)-split, introduing a singleton and inreasing the number of runs by 1,while dereasing the number of minuses by 2. Similarly, hoosing either fi+ 2; i+ 3g orfj � 3; j � 2g produes a (2; `� 4)-split, introduing a pair and inreasing the number7



of runs by 1, while dereasing the number of minuses by 2. There are `�7 other internaledges whih split r into pairs of runs, eah of length at least 3. In eah ase, the numberof minuses dereases by 2 while the number of runs inreases by 1, but the numbers ofsingletons and pairs are unhanged. We obtain�(r)`+ 1 = 2� 4 + 2(�2 + � + ) + 2(�2 + � + Æ) + (`� 7)(�2 + �)`+ 1= � � 2� 4� � 6� 2 � 2Æ`+ 1= � 114 � 127(`+ 1) : (7)Now M is equal to the maximum of the right hand sides of (1){(7). It is easy toverify that the maximum is �1=14, as stated.For the remainder of this setion, the values of � = 27=14,  = 4=7 and Æ = �4=7are �xed. These values were hosen without explanation for use in the proof of Lemma 2above. They were originally derived by setting � = 2� �,  = 1=2+ � and Æ = �, andhoosing � to minimize M . The interested reader an easily verify that � = 1=14 is theoptimal hoie.We now show that the value M = �1=14 an still be used in Lemma 1 even whenthe initial on�guration has adjaent runs whih are separated by a single plus.Lemma 3 Suppose that X0 2 f1;�1g ontains both pluses and minuses. Then theonlusion of Lemma 1 holds with M = � 114 :Proof. By Lemma 2, we have M = �1=14 whenever no two adjaent runs in X0 areseparated by a single plus. So now suppose that there are exatly s distint valuesi 2 f0; : : : ; n� 1g suh that X0(i � 1) = �1, X0(i) = 1 and X0(i + 1) = �1, wheres � 1. We will all suh an i a rim vertex. De�ne a new yle G0 = (V 0; E 0) from G bysplitting the vertex i into two new verties, i0 and i00, for eah rim vertex i. Thus G0 is agraph on n+ s verties. Let the edges of G0 be obtained from the edges of G by deletingthe edges fi� 1; ig, fi; i + 1g and adding the edges fi� 1; i0g, fi0; i00g, fi0; i+ 1g, foreah rim vertex i. Thus G0 forms a yle on n+ s verties. Construt the on�gurationX00 2 f1;�1gV 0 from X0 by replaing the single plus at i by two pluses on i0, i00, foreah rim vertex i. That is, letX00(j) = (X0(j) if j is unprimed,1 otherwise:8



By de�nition, X00 has no two adjaent runs separated by a single plus. Note also thatL(X00) = L(X0). Let X10 be the result of running the Pavlov proess for one step fromX00. Combining Lemma 1 and Lemma 2, we see thatE [ (X10)�  (X00)℄ � � L(X00)14(n+ s) :Suppose that we ould show thatXe2E(G0) v(X00; e) � Xe2E(G) v(X0; e): (8)Then we would haveE [ (X10)�  (X00)℄ = 1n+ s Xe2E(G0) v(X00; e)� 1n+ s Xe2E(G) v(X0; e)= nn+ sE [ (X1)�  (X0)℄ :From this we ould onlude thatnn+ sE [ (X1)�  (X0)℄ � E [ (X10)�  (X00)℄� � L(X00)14(n+ s)= � L(X0)14(n+ s) :Multiplying this inequality through by (n+ s)=n proves the lemma. Hene it suÆes toestablish (8).It is not diÆult to see that any edge whih does not overlap a rim vertex in X0makes the same ontribution in both the primed and unprimed settings. For these edgese belong to both E(G) and E(G0), andv(X00; e) = v(X0; e):Therefore, to prove (8) it suÆes to prove that Y 0 > Y for all rim verties i, whereY = v(X0; fi� 1; ig) + v(X0; fi; i+ 1g)and Y 0 = v(X00; fi� 1; i0g) + v(X00; fi00; i + 1g):(Clearly the edge fi0; i00g makes no ontribution to E [ (X10)�  (X00)℄.) Let r1 and r2be the two runs whih are separated by i in X0, and de�ne a and b bya = j fj 2 f1; 2g j rj is a singletong j and b = j fj 2 f1; 2g j rj is a pairg j:9



Then 0 � a + b � 2. Consider hoosing either fi� 1; i0g or fi00; i+ 1g for X00. Clearlyeither hoie will ause a minus to be introdued. For a of these hoies a singleton isremoved and a pair is reated, while for b of these hoies a pair is removed. ThereforeY 0 = 2� a + aÆ � bÆ:Now onsider hoosing either fi� 1; ig or fi; i+ 1g in X0. The expeted hange of  isidential for either hoie. Choosing either of these edges introdues a minus, dereasesthe number of runs by 1, and deletes all singletons or pairs whih are present in X0.The merged run whih is reated has length `(r1) + `(r2) + 1 � 3, so no singletons orpairs are reated. Therefore Y = 2(1� � � a � bÆ):Hene, using the values of �,  and Æ we obtainY 0 � Y = 2� + a( + Æ) + bÆ � 2(� + Æ) > 0;proving the lemma.3.2 Bounding the absorption timeWe have �xed � = 27=14,  = 4=7, Æ = �4=7. Reall that L(X0) =Pr2R(X0)(`(r) + 1).Combining Lemmas 1, 2, 3 we obtainE [ (X1)℄ � �1� L(X0)14 (X0)n� (X0); (9)for all X0 whih ontain both pluses and minuses. We need the following result.Lemma 4 Let X 2 f1;�1gV and let  , L be as de�ned above. Then (X) � 7L(X)4 (10)if X ontains both pluses and minuses, while4714 �  (X) � 7n4 (11)for all X 6= X�.Proof. First suppose that X ontains both pluses and minuses. Let  (r) denote thepotential of the run r, for all r 2 R(X). That is, (r) = 8><>:1 + � +  if r is a singleton,2 + � + Æ if r is a pair,`(r) + � otherwise.10



Clearly  (X) = Xr2R(X) (r):It is not diÆult to hek that the inequality (r)`(r) + 1 � 74holds, with equality if and only if r is a singleton. Hene (X) = Xr2R(X) (r) � Xr2R(X) 7(`(r) + 1)4 = 7L(X)4 ;as stated. Now L(X) denotes the number of edges whih overlap some run in X. Sinethere are at exatly n edges in G, it follows that (X) � 7n4whenever X ontains both pluses and minuses. Sine the all-minuses on�guration haspotential n, this proves the upper bound in (11). Finally, note that (r) � 4714 ;with equality if and only if r is a pair. Therefore the lowest potential of all on�gurationswith both minuses and pluses is obtained on any on�guration whih ontains a uniquerun, this unique run being a pair. The all-minuses on�guration has potential n, but wehave assumed that n is at least 4. This proves the lower bound in (11).Proof of Theorem 1. Combining (9) and inequality (10) of Lemma 4, we an onludethat E [ (X1)℄ � �1� 249n� (X0) (12)for all X0 whih ontain both pluses and minuses. However, (12) also holds for theall-minuses on�guration, as follows. Let ~X be the all-minuses on�guration, de�ned by~X0(i) = �1 for all i. Let ~X1 be the result of running the Pavlov proess for one stepfrom ~X0. No matter whih edge is hosen, the number of minuses dereases by 2 and thenumber of runs inreases from 0 to 1. Therefore E h ( ~X1)�  ( ~X0)i = � � 2 = �1=14.Sine  ( ~X0) = n, we onlude thatE h ( ~X1)i = �1� 114n� ( ~X0) < �1� 249n� ( ~X0);as laimed. 11



So now letX0 2 f1;�1gV satisfy X0 6= X�. Starting fromX0, run the Pavlov proessfor t steps and let the resulting state be Xt. By applying (12) iteratively t times weobtain E [ (Xt)℄ � �1� 249n�t  (X0) � �1� 249n�t 7n4 ;using the �rst statement of Lemma 4 for the last inequality. Let " > 0 be given. Let� = 47"=14. Whenever t � 492 n log�7n4��we have E [ (Xt)℄ � �. Using (11), any nonzero value of  must be at least 47=14.Applying Markov's Lemma, we haveProb [ (Xt) 6= 0℄ = Prob � (Xt) � 4714� � 14�47 = ":This ompletes the proof.4 Exponential absorption on the omplete graphIn this setion we prove Theorem 2, showing that the absorption time of the Pavlovproess is exponential on the omplete graph Kn.We will use the notation Xt 2 f1;�1gn to refer to a on�guration after t steps ofthe Pavlov proess. Let Nt be the number of nodes in Xt with label 1. Clearly Xt isequal to the all-pluses absorbing state if and only if Nt = n. The basis of our proofis the observation that the proess Nt is simple to analyse, even if the proess Xt isnot. Let pt, qt denote the labels of the two nodes hosen at step t. Then the transitionprobabilities of Nt are given by the following rule:Nt+1 = 8<: Nt � 1 if ptqt = �1 (probability Nt(n�Nt)=�n2�);Nt if pt = qt = 1 (probability �Nt2 �=�n2�);Nt + 2 if pt = qt = �1 (probability �n�Nt2 �=�n2�):Consider the \speed-up" (Mt) of the hain (Nt), whih only makes transitions thathange the state:Mt+1 = � Mt � 1 with probability 2Mt=(n+Mt � 1);Mt + 2 with probability (n�Mt � 1)=(n+Mt � 1):If M0 = N0, then the time for Mt to hit n is learly at most that for Nt. We will nowshow that it takes exponentially long for Mt to reah n. Consider the hain (Qt) withtransition probabilities given byQt+1 = � Qt � 1 with probability 3=4;Qt + 2 with probability 1=4:12



If Q0 =M0 � 3n=5 then (Mt) is stohastially dominated by (Qt) as long asMt � 3n=5.Let V (k) = ak, where a = (p13 � 1)=2. Note that a > 1 and that a satis�es34a�1 + 14a2 = 1. ThenE(V (Qt+1) j V (Qt)) = 34 aQt�1 + 14 aQt+2 = aQt = V (Qt);so V (Qt) is a martingale.Suppose that Q0 is d3n=5e or d3n=5e + 1. Let T = minft j Qt < 3n=5 or Qt � n g.It is straightforward to show that Prob(QT � n) � a�2n=5. The analysis is in Exam-ple 4.1 of [3℄. We inlude it here for ompleteness. First, sine Prob(T < 1) = 1 andjV (Qmin(T;t))j � an+1 for all t, we have EV (QT ) = EV (Q0). This follows the stoppingtheorem for bounded martingales, see, for example, (3.6) of [3℄. Now V (Q0) � a3n=5+2,so EV (QT ) � a3n=5+2. Also,EV (QT ) � a3n=5�1 � Prob(QT < 3n=5) + an � Prob(QT � n);sine QT < 3n=5 implies QT = d3n=5e � 1 � 3n=5� 1. HeneProb(QT � n) � a3n=5+2 � a3n=5�1an � a3n=5�1 ;whih is at most a�2n=5 as long as n is suÆiently large (n � 23 suÆes).We onlude that every time (Mt) enters the interval [3n=5; n� 1℄ from below, theprobability that it exits out the top of the interval (rather than the bottom) is at mosta�2n=5. Thus, the probability that the hain reahes absorption in as few as (1:1)n visitsto the region is at most (a�2=5 � 1:1)n = o(1):This proves Theorem 2.5 Other topisSeveral issues remain for further study. A natural extension of our results would beto investigate the Pavlov proess for other families of graphs. Two other ases seempartiularly interesting: degree-bounded trees and random graphs. Another possibleingredient to our model is random noise (or player mistakes). The importane of thisparameter has been previously reognized in [9℄.AknowledgementsWe thank the referee for shortening the proof of Theorem 2.
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