
BETTER APPROXIMATION GUARANTEESFOR JOB-SHOP SCHEDULING�LESLIE ANN GOLDBERG y, MIKE PATERSON z, ARAVIND SRINIVASAN x , ANDELIZABETH SWEEDYK {Abstrat. Job-shop sheduling is a lassial NP-hard problem. Shmoys, Stein & Wein presentedthe �rst polynomial-time approximation algorithm for this problem that has a good (polylogarith-mi) approximation guarantee. We improve the approximation guarantee of their work, and presentfurther improvements for some important NP-hard speial ases of this problem (e.g., in the preemp-tive ase where mahines an suspend work on operations and later resume). We also present NCalgorithms with improved approximation guarantees for some NP-hard speial ases.Key words. Approximation, guarantees, job-shop, sheduling.AMS subjet lassi�ations. 68Q25, 68R05.1. Introdution. Job-shop sheduling is a lassial NP-hard minimization prob-lem [10℄. We improve the approximation guarantees for this problem and for some ofits important speial ases, both in the sequential and parallel algorithmi domains;the improvements are over the urrent-best algorithms of Leighton, Maggs & Rao[11℄ and Shmoys, Stein & Wein [21℄. In job-shop sheduling, we have n jobs and mmahines. A job onsists of a sequene of operations, eah of whih is to be proessedon a spei� mahine for a spei�ed integral amount of time; a job an have morethan one operation on a given mahine. The operations of a job must be proessedin the given sequene, and a mahine an proess at most one operation at any giventime. The problem is to shedule the jobs so that the makespan, the time when alljobs have been ompleted, is minimized. An important speial ase of this problem is�A preliminary version of this work appears in Pro. ACM-SIAM Symposium on Disrete Algo-rithms, pages 599{608, 1997.y Department of Computer Siene, University of Warwik, Coventry CV4 7AL, UK.leslie�ds.warwik.a.uk. Part of this work was performed at Sandia National Laboratories andwas supported by the U.S. Department of Energy under ontrat DE-AC04-76AL85000. Part of thiswork was supported by ESPRIT Projets ALCOM{IT(20244) and RAND-II(21726), by EU FifthFramework Projet IST-1999-14186 | ALCOM{FT, and by EPSRC grant GR/L60982.z Department of Computer Siene, University of Warwik, Coventry CV4 7AL, UK.msp�ds.warwik.a.uk. Part of this work was supported by Projets ALCOM{IT and ALCOM{FT(as above).xBell Laboratories, Luent Tehnologies, 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636,USA. srin�researh.bell-labs.om. This work was done while at: (i) the National University ofSingapore, supported in part by National University of Singapore Researh Grants RP950662 andRP960620; (ii) Cornell University, Ithaa, NY, USA, supported by an IBM Graduate Fellowship; (iii)the Shool of Mathematis, Institute for Advaned Study, Prineton, NJ, USA, supported by grant93-6-6 of the Alfred P. Sloan Foundation to the Institute for Advaned Study; (iv) DIMACS (NSFCenter for Disrete Mathematis and Theoretial Computer Siene), supported by NSF grant NSF-STC91-19999 to DIMACS and by support to DIMACS from the New Jersey Commission on Sieneand Tehnology; (v) the Sandia National Laboratories, New Mexio, USA; (vi) the Department ofComputer Siene, University of Warwik, Coventry, UK; and (vii) the Department of ComputerSiene, University of Melbourne, Vitoria, Australia, sponsored by a \Travel Grants for YoungAsian Sholars" sheme of the University of Melbourne; this part of the work was done while onstudy leave.{ Dept. of Computer Siene, Harvey Mudd College, Olin Siene Center, 301 E. Twelfth StreetClaremont, CA 91711-5980, USA. z�s.hm.edu. Supported by NSF Researh Training Grant. Partof this was done while visiting Sandia National Laboratories.1

preemptive sheduling, wherein mahines an suspend work on operations, swith toother operations, and later resume the suspended operations (if this is not allowed,we have the non-preemptive senario, whih we take as the default); in suh a ase,all operation lengths may be taken to be one. Even this speial ase with n = m = 3is NP-hard, as long as the input is enoded onisely [16, 22℄. We present furtherimproved approximation fators for preemptive sheduling and related speial asesof job-shop sheduling.Formally, a job-shop sheduling instane onsists of jobs J1; J2; : : : ; Jn, mahinesM1;M2; : : : ;Mm, and for eah Jj , a sequene of �j operations (Mj;1; tj;1); (Mj;2; tj;2);: : : ; (Mj;�j ; tj;�j). Eah operation is a (mahine, proessing time) pair: eah Mj;krepresents some mahine Mi, and the pair (Mj;i; tj;i) signi�es that the orrespondingoperation of job Jj must be proessed on mahine Mj;i for an uninterrupted integralamount of time tj;i. No mahine an proess more than one operation at a time; theoperations of eah given job must be sheduled in the given order. (For eah job Jj ,the waiting time from the ompletion of an operation (Mj;i; tj;i) until the shedulingof (Mj;i+1; tj;i+1) is allowed to be any non-negative amount.) The problem that wefous on throughout is to ome up with a shedule that has a small makespan, forgeneral job-shop sheduling and for some of its important speial ases.1.1. Earlier work. As desribed earlier, even very restrited speial ases ofjob-shop sheduling are NP-hard. Furthermore, the problem seems quite intratablein pratie, even for relatively small instanes. Call a job-shop instane ayli if nojob has more than one operation that needs to run on any given mahine. A singleinstane of ayli job-shop sheduling onsisting of 10 jobs, 10 mahines and 100operations resisted attempts at exat solution for 22 years, until its resolution byCarlier & Pinson [6℄. More suh exat solutions for ertain instanes (with no morethan 20 jobs or mahines) were omputationally provided by Applegate & Cook, whoalso left open the exat solution of ertain ayli problems, e.g., some with 15 jobs,15 mahines, and 225 operations [3℄. The reader is referred to Martin & Shmoys fora reent approah to omputing optimal shedules for suh problems [14℄.Thus, eÆient exat solution of all instanes with, say, 30 jobs, 30 mahines,and 900 operations seems quite beyond our reah at this point; an obvious nextquestion is to look at eÆient approximability. De�ne a �-approximation algorithm asa polynomial-time algorithm that always outputs a feasible shedule with a makespanof at most � times optimal; � is alled the approximation guarantee. A negativeresult is known: if there is a �-approximation algorithm for job-shop sheduling with� < 5=4, then P = NP [23℄.There are two simple lower bounds on the makespan of any feasible shedule:Pmax, the maximum total proessing time needed for any job, and �max, the maximumtotal amount of time for whih any mahine has to proess operations. Reall thede�nition of ayli job-shop sheduling given at the beginning of this subsetion.For the NP-hard speial ase of ayli job-shop sheduling wherein all operationshave unit length, a breakthrough was ahieved by Leighton, Maggs and Rao in [11℄,showing that a shedule of makespan O(Pmax+�max) always exists! (See Setions 6.1and 6.2 of Sheideler [17℄ for a shorter proof of this result.) Suh a shedule an alsobe omputed in polynomial time [12℄. Feige & Sheideler have presented many newadvanes in ayli job-shop sheduling [8℄.What about upper bounds for general job-shop sheduling? It is not hard tosee that a simple greedy algorithm, whih always shedules available operations onmahines, delivers a shedule of makespan at most Pmax�max; one would however like2

to aim for muh better. Let � = maxj �j denote the maximum number of operationsper job, and let pmax be the maximum proessing time of any operation. By invokingideas from [11, 19, 20℄ and by introduing some new tehniques, good approximationalgorithms were developed in [21℄. Their deterministi approximation bounds wereslightly improved in [18℄ to yield the following proposition. (To avoid problems withsmall positive numbers, heneforth let logx denote log2 x if x � 2 and 1 if x < 2;similarly, let log logx denote log2 log2 x if x � 4 and 1 if x < 4.)Proposition 1.1. ([21, 18℄) There is a deterministi polynomial-time algorithmthat delivers a shedule of makespanO((Pmax +�max) � log(m�)log log(m�) � log(minfm�; pmaxg))for general job-shop sheduling. If we replae m by n in this bound, then suh ashedule an also be omputed in RNC. This is a �-approximation algorithm with� = O(log(m�) log(minfm�; pmaxg)= log log(m�)). See [21, 9℄ for further results onapproximating some speial ases of shop sheduling that are not disussed here.1.2. Our results. Our �rst result improves Proposition 1.1 by a doubly loga-rithmi fator and provides further improvements for important speial ases.Theorem 1.2. There are the following deterministi algorithms for general job-shop sheduling, delivering shedules of makespan O((Pmax +�max) � �):(a) a polynomial-time algorithm, with� = log(m�)log log(m�) � � log(minfm�; pmaxg)log log(m�) � ;and if we replae m by n in this bound, then suh a shedule an also beomputed in NC,(b) a polynomial-time algorithm, with� = logmlog logm � log(minfm�; pmaxg); and() an NC algorithm, with� = logmlog logm � log(minfn�; pmaxg):Thus, part (a) improves on the previous approximation bound by a doubly loga-rithmi fator. The impat of parts (b) and () is best seen for preemptive sheduling,wherein pmax = 1, and for the related situations where pmax is \small". Our moti-vation for fousing on these ases is twofold. First, preemptability is known to be apowerful primitive in various sheduling models, see, e.g., [4℄. Seond, the result ofLeighton, Maggs and Rao shows that preemptability is powerful for ayli job-shops(in the sense that there is a shedule of makespan O(Pmax + �max) in the preemp-tive ase). Reall that job-shop sheduling is NP-hard even when n = m = 3 andpmax = 1. Parts (b) and () of Theorem 1.2 show that, as long as the number ofmahines is small or �xed, we get very good approximations. (It is trivial to get anapproximation fator of m: our approximation ratio is O(logm= log logm) if pmaxis �xed.) Note that for the ase in whih pmax is small, part () is both a deran-domization and an improvement of the previous-best parallel algorithm for job-shopsheduling (see Proposition 1.1). 3

We further explore the issue of when good approximations are possible, one againwith a view to generalizing the result of Leighton, Maggs and Rao [11℄; this is doneby the somewhat-tehnial Theorem 1.3. In the statement of the theorem, \withhigh probability" means \with probability at least 1 � �; for a positive onstant �.The failure probability � an be made arbitrarily small (exponentially small in thesize of the problem instane) by repeating the algorithm many times. Theorem 1.3shows that if (a) no job requires too muh of any given mahine for proessing, orif (b) repeated uses of the same mahine by a given job are well-separated in time,then good approximations are possible. Say that a job-shop instane is w-separatedif every distint pair ((Mj;`; tj;`); (Mj;r; tj;r)) of operations of the same job with thesame mahine (i.e., every pair suh that Mj;` =Mj;r) has j`� rj � w.Theorem 1.3. There is a randomized polynomial-time algorithm for job-shopsheduling that, with high probability, delivers a shedule of makespan O((Pmax +�max) � �), where(a) if every job needs at most u time units on eah mahine then� = log ulog logu � � log(minfm�; pmaxg)log logu � ;(b) if the job-shop instane is w-separated and pmax = 1 then� = 1 if w � log(Pmax +�max)=2;� = log(Pmax +�max)w log(log(Pmax +�max)=w) ; otherwise.Part (a) of Theorem 1.3 shows quantitatively the advantages of having multipleopies of eah mahine; in suh a ase, we an try to spread out the operations of ajob somewhat equitably to the various opies. Part (b) of Theorem 1.3 shows that ifwe have some (limited) exibility in rearranging the operation sequene of a job, thenit may pay to spread out multiple usages of the same mahine.1.3. Main ontributions. Most of our results rely on probabilisti ideas; inpartiular, we exploit a \random delays" tehnique due to [11℄. We make four ontri-butions, whih we �rst sketh in general terms. The rough idea behind the \randomdelays" tehnique is as follows. We give eah job a delay hosen randomly from a suit-able range and independently of the other jobs, and imagine eah job waiting out thisdelay and then running without interruption; next we argue that, with high probabil-ity, not too many jobs ontend for any given mahine at the same time [11, 21℄. Wethen resolve ontentions by \expanding" the above \shedule"; the \low ontention"property is invoked to argue that a small amount of suh expansion suÆes. The ap-proah of [21℄ to this \expansion" problem is as follows. First, they present an upperbound on the maximum amount of ontention on any mahine at any step, whih isshown to hold with high probability. Suppose we are given suh a shedule, in whihat most s operations ontend for any mahine at any time. If all operations are of thesame length, this an be onverted into a valid shedule by an s-fold expansion of eahtime step. However, the operation lengths may be disparate. But we may round alloperation lengths up to the nearest power of two; thus, there will only be O(log pmax)operation lengths. The approah of [21℄ is then to arefully deompose the shed-ule into ertain intervals suh that within eah interval, all operation lengths are thesame. These, along with some other ideas, onstitute the \expansion" approah of[21℄. 4

Our �rst ontribution is a better ombinatorial solution to the above expansionproblem, whih leads to a smaller expansion than that of [21℄. In partiular, we donot handle di�erent operation lengths separately, but show a way of ombining them.The seond ontribution shows that a relaxed notion of \low ontention" suÆes:we do not require that the ontention on mahines be low at eah time step. The�rst ontribution helps to prove Theorem 1.2(a); parts (b) and () of Theorem 1.2make use of the seond ontribution. We de-randomize the sequential formulationsusing a tehnique of [2℄ and then parallelize. A simple but ruial ingredient ofTheorem 1.2 is a new way to struture the operations of jobs in an initial (infeasible)shedule; we all this well-struturedness, and present it in Setion 2. This notionis our third ontribution. Finally, Theorem 1.3 omes about by introduing randomdelays and by using the Lov�asz Loal Lemma (LLL) [7℄. Although this is also donein [11℄, our improvements arise from a study of the orrelations involved and by usingTheorem 1.2(a). This study of orrelations is our fourth ontribution. The rest of thispaper is organized as follows. Setion 2 sets up some preliminary notions, Setion 3presents the proof of Theorem 1.2, and Theorem 1.3 is proved in Setion 4.2. Preliminaries. For any non-negative integer k, we let [k℄ denote the setf1; 2; : : : ; kg. The base of the natural logarithm is denoted by e as usual and, foronveniene, we may use exp(x) to denote ex.As in [21℄, we assume throughout that all operation lengths are powers of two.This an be ahieved by multiplying eah operation length by at most two. Thisassumption on operation lengths will only a�et our approximation fator and runningtime by a onstant fator. Thus, Pmax, �max and pmax should be replaed by someP 0max � 2Pmax, �0max � 2�max, and p0max � 2pmax respetively, in the sequel. Wehave avoided using suh new notation, to retain simpliity.2.1. Redutions. It is shown in [21℄ that, in deterministi polynomial time, wean redue the general shop-sheduling problem to the ase where (i) pmax � n�, andwhere (ii) n � poly(m;�), while inurring an additive O(Pmax + �max) term in themakespan of the shedule produed. The redution (i) also works in NC. (Of the tworedutions, (ii) is more involved; it uses, e.g., an algorithm due to [20℄.)Thus, for our sequential algorithms we assume that n � poly(m;�) and thatpmax � poly(m;�); while for our NC algorithms we assume only that pmax � n�.2.2. Bounds. We use the following bounds on the expetation and tails of dis-tributions.Fat 2.1. [Cherno�, Hoe�ding℄ Let X1; X2; : : : ; X` 2 [0; 1℄ be independent ran-dom variables with X :=PiXi. Then for any Æ > 0, E[(1 + Æ)X ℄ � eÆE[X℄.We de�ne G(�; Æ) := (eÆ=(1+Æ)1+Æ)�: Using Markov's inequality and Fat 2.1, weobtain Cherno� and Hoe�ding's bounds on the tails of the binomial distribution (see[15℄).Fat 2.2. [Cherno�, Hoe�ding℄ Let X1; X2; : : : ; X` 2 [0; 1℄ be independent ran-dom variables with X :=PiXi and E[X ℄ = �. Then for any Æ > 0, Pr[X � �(1+Æ)℄ �G(�; Æ).2.3. Random delays. Our algorithms use random initial delays whih weredeveloped in [11℄ and used in [21℄. A B-delayed shedule of a job-shop instane isonstruted as follows. Eah job Jj is assigned a delay dj in f0; 1; : : : ; B � 1g. In theresultingB-delayed shedule, the operations of Jj are sheduled onseutively, startingat time dj . A random B-delayed shedule is a B-delayed shedule in whih the delayshave been hosen independently and uniformly at random from f0; 1; : : : ; B�1g. Our5

algorithms shedule a job-shop instane by hoosing a random B-delayed shedulefor some suitable B, and then expanding this shedule to resolve onits betweenoperations that use the same mahine at the same time.For a B-delayed shedule S, the ontention, C(Mi; t), is the number of operationssheduled on mahineMi in the time interval [t; t+1). (Reall that operation lengthsare integral.) For any job Jj , de�ne the random variableXi;j;t to be 1 if some operationof Jj is sheduled on Mi in the time interval [t; t + 1) by S, and 0 otherwise. Sineno two operations of Jj ontend for Mi simultaneously, C(Mi; t) = Pj Xi;j;t. If thedelays are hosen uniformly at random and B � �max, then E[Xi;j;t℄ is at most thetotal proessing time of Jj onMi divided by �max. Thus, E[C(Mi; t)℄ =Pj E[Xi;j;t℄ ��max=�max = 1. We also note that the random variables fXi;j;t j j 2 [n℄g are mutuallyindependent, for any given i and t. We reord all this as follows.Fat 2.3. If B � �max and S is a random B-delayed shedule then for anymahine Mi and any time t, C(Mi; t) = Pj Xi;j;t, where the 0-1 random variablesfXi;j;t j j 2 [n℄g are mutually independent. Also, E[C(Mi; t)℄ � 1.2.4. Well-struturedness. Reall that all operation lengths are assumed to bepowers of two. We say that a delayed shedule S is well-strutured if for eah k, alloperations with length 2k begin in S at a time instant that is an integral multipleof 2k. We shall use the following simple way of onstruting suh shedules fromrandomly delayed shedules. First reate a new job-shop instane by replaing eahoperation (Mj;`; tj;`) by the operation (Mj;`; 2�tj;`). Suppose S is a random B-delayedshedule for this modi�ed instane, for some B; we will all S a padded random B-delayed shedule. From S, we an onstrut a well-strutured delayed shedule, S 0,for the original job-shop instane: simply insert (Mj;l; tj;l) with the orret boundaryin the slot assigned to (Mj;l; 2 � tj;l) by S. S0 will be alled a well-strutured randomB-delayed shedule for the original job-shop instane.3. Proof of Theorem 1.2. In this setion we prove Theorem 1.2. In Setion 3.1we give a randomized polynomial-time algorithm that proves part (b) of the theorem.In Setion 3.2 we improve the algorithm to prove part (a). Finally we disuss thederandomization and parallelization of these algorithms in Setion 3.3. Throughout,we shall assume upper bounds on n and pmax as desribed in Setion 2.1; this explainsterms suh as log(minfm�; pmaxg) in the bounds of Theorem 1.2. Given a delayedshedule S, de�ne C(t) := maxi C(Mi; t).Lemma 3.1. There is a randomized polynomial-time algorithm that takes a job-shop instane and produes a well-strutured delayed shedule whih has a makespanL � 2(Pmax +�max). With high probability, this shedule satis�es:(a) 8i 2 [m℄ 8t 2 f0; 1; : : : ; L� 1g; C(Mi; t) � �; and(b) PL�1t=0 C(t) � �(Pmax +�max),where � = 1 log(m�)= log log(m�) and � = 2 logm= log logm, for suÆiently largeonstants 1; 2 > 0.Proof. Reall that all operation lengths are assumed to be powers of 2. LetB = 2�max and let S be a padded random B-delayed shedule of the new instane,as desribed in Setion 2.4. S has a makespan of at most 2(Pmax +�max). Let S 0 bethe well-strutured random B-delayed shedule for the original instane that an beonstruted from S, as desribed in Setion 2.4. The ontention on any mahine atany time under S 0 is learly no more than under S. Thus in order to show that S 0satis�es (a) and (b) with high probability, it suÆes to show that S has this property.We will prove this now. 6

Part (a). The following proof is based on that of [21℄. Fix any positive integer k,and any Mi. For any set U = fu1; u2; : : : ; ukg of k units of proessing that need to bedone on Mi, let Collide(U) be the event that in S all these k units get sheduled atthe same unit of time on Mi. It is not hard to see that Pr[Collide(U)℄ � (1=B)k�1.(If u1; : : : ; uk are from di�erent jobs then Pr[Collide(U)℄ � (1=B)k�1. Otherwise,Pr[Collide(U)℄ = 0.) Reall that B = 2�max. Sine there are at most �2�maxk � ways ofhoosing U , we getPr[9t : C(Mi; t) � k℄ = Pr[9U : Collide(U)℄ � �2�maxk �(1=(2�max))k�1;and so Pr[9t : C(Mi; t) � k℄ � 2�max=k!. Thus,Pr[9t 9i : C(Mi; t) � k℄ � 2m�max=k!:But �max � n�pmax, whih by our assumptions in Setion 2.1 is poly(m;�). Sined�e! > (m�)1=2 for suÆiently large m or �, we an satisfy (a) with high probabilityif we hoose 1 suÆiently large.Part (b). Let = ��=2, where � is the desired onstant in the probability bound.Let the onstant 2 in the de�nition of � be suÆiently large so that > 1. Fix anyMi and t, and let � = E[C(Mi; t)℄. (By Fat 2.3, � � 1.) By Fat 2.1, with 1+ Æ = ,E[C(Mi;t)℄ � e(�1)� � e(�1):Hene, for any given t,E[C(t)℄ = E[maxi2[m℄ C(Mi;t)℄ � E[Xi2[m℄ C(Mi;t)℄ = Xi2[m℄E[C(Mi;t)℄(3.1) � me�1:Sine the funtion x 7! x is onvex, by Jensen's inequality we get that E[C(t)℄ �E[C(t)℄. If we hoose 2 suÆiently large then � me�1. Combining theseobservations with bound (3.1), we get E[C(t)℄ � . By linearity of expetation,E[Pt C(t)℄ � 2(Pmax +�max) and �nally, by Markov's inequality, we havePr[Xt C(t) > �(Pmax +�max)℄ � 2=� = �:3.1. Proof of Theorem 1.2(b). Reall that our goal is a polynomial-timealgorithm whih delivers a shedule with makespan O((Pmax + �max) � logmlog logm �log(minfm�; pmaxg)). Assume S is a delayed shedule satisfying the onditions ofLemma 3.1 with makespan L = O(Pmax+�max). We begin by partitioning the shed-ule into frames, i.e., time intervals f[ipmax; (i + 1)pmax); i = 0; 1; : : : ; dL=pmaxe � 1g.By the de�nition of pmax and the fat that S is well-strutured, no operation straddlesa frame. For example, see Figure 3.1.We onstrut a feasible shedule for the operations performed under shedule S foreah frame. Conatenating these shedules yields a feasible shedule for the originalproblem. We give the frame-sheduling algorithm where, without loss of generality,we assume that its input is the �rst frame.7

Let T be a rooted omplete binary tree with pmax leaves. For every node u of T ,let l(u) and r(u) be the labels, respetively, of the leftmost and rightmost leavesof the subtree rooted at u. We shall assoiate the operations sheduled during theframe with the nodes of T in a natural way. For i = 1; : : : ;m we de�ne Si(u) tobe those operations that are sheduled on Mi by S for preisely the time interval[l(u); r(u) + 1); eah operation sheduled by S in the �rst frame is in exatly oneSi(u). For example, see Figure 3.2. Let p(u) = (r(u)� l(u)+1) �maxi jjSi(u)jj, wherejjSi(u)jj denotes the ardinality of Si(u). p(u) is the amount of time needed to performthe operations assoiated with u. For example, see Figure 3.3. Let the nodes of Tbe numbered as u1; u2; : : : in the preorder traversal of T . De�ne f(u1) = 0 and forj � 2, let f(uj) = Pk<j p(uk). For example, see Figure 3.4. The algorithm simplyshedules the operations in Si(u) on mahine Mi onseutively beginning at timef(u) + 1 and onluding by the end of timestep f(u) + p(u). Let S 0 be the resultingshedule. For example, see Figure 3.5. Note that our algorithm does not neessarilygive the same shedule as the algorithm of Shmoys, Stein and Wein. For instane, ouralgorithm produes a di�erent shedule than the one that their algorithm produeson the example given in [21℄. Part (b) of Theorem 1.2 follows from Lemma 3.1 andthe following lemma.Lemma 3.2. S 0 is feasible and has makespan at most Pu2T p(u), whih is atmost (1 + log2 pmax) �Ppmax�1j=0 C(j), where C(t) is the maximum ontention at timet under shedule S.Proof. By onstrution, no mahine performs more than one operation at a time.Suppose O1 and O2 are distint operations of job J sheduled in the �rst frame.Assume O1 2 Si(u) and O2 2 Sj(v), where possibly i = j. Assume O1 onludesbefore O2 begins under S; thus u and v are roots of disjoint subtrees of T and upreedes v in the preorder traversal of T . Thus O1 onludes before O2 begins in S 0and the new shedule is feasible.Clearly the makespan of S 0 is at most Pu2T p(u). Fix a node u at some heightk in T . (We take leaves to have height 0.) Then p(u) = 2kmaxi jjSi(u)jj. Sine themaximum number of jobs sheduled at any time t on any mahine under S is C(t),we get that 8t 2 [l(u); : : : ; r(u)℄, maxi jjSi(u)jj � C(t). Thus,p(u) � 2kmaxi jjSi(u)jj � Xt2[l(u);:::;r(u)℄C(t):Sine eah leaf of T has (1 + log2 pmax) anestors, the makespan of S 0 is at mostXu2T p(u) �Xu2T Xt2[l(u);:::;r(u)℄C(t) = (1 + log2 pmax) � pmax�1Xt=0 C(t):3.2. Proof of Theorem 1.2(a). Reall that our goal is a polynomial-timealgorithm whih delivers a shedule with makespan O((Pmax + �max) � log(m�)log log(m�) �l log(minfm�;pmaxg)log log(m�) m). We give a slightly di�erent frame-sheduling algorithm and showthat the feasible shedule for eah frame has makespan O(pmax� dlog(pmax)= log�e),where � = 1 log(m�)= log log(m�) as in Lemma 3.1. Without loss of generality, weassume that � is a power of 2 (by inreasing it if neessary). Thus, under the assump-tions from Setion 2.1, the �nal shedule satis�es the bounds of Theorem 1.2(a).8

The diÆulty with the algorithm given in Setion 3.1 is that the operations may bebadly distributed to the nodes of T by S whih would make S 0 ineÆient. To larify,onsider the example given in Figures 3.1{3.5. In this ase, node u10 is assignedoperations C and K and node u11 is assigned operation H . The algorithm shedulesoperations C and K before operation H . However, sine H is on a di�erent mahinefrom C and K, it ould have been sheduled to overlap C or K. In this setion,we show how to overome this problem by \pushing down" operations C and K tonodes u11 and u12.The algorithm that we desribe here starts with the alloation of operations tonodes of T that is de�ned in Setion 3.1. That is, Si(u) is taken to be the set ofoperations that are sheduled on Mi by S for time interval [l(u); r(u) + 1). Thealgorithm then hops T into disjoint subtrees in a manner desribed below. For eahsubtree, it re-distributes the operations that are alloated to the nodes of the subtreeby \pushing" some operations from parents to hildren (in a manner whih will bedesribed shortly). After the re-distribution, Ri(u) is the set of mahine-i operationsthat are alloated to node u. p(u) is then taken to be the maximum over all i, ofthe sum of the lengths of the operations in Ri(u). The algorithm then �nishes thealgorithm of Setion 3.1: the p-values omputed for eah node are used to omputef(v) (for every node v). Then the operations in Ri(v) are sheduled beginning at timef(v) + 1 and onluding by the end of timestep f(v) + p(v).The partitioning of T is done by removing all edges from parents with heightequal to 0 modulo log�. (Thus, every resulting subtree T 0 has height at most log�.)Let lg denote the logarithm to the base 2. (In some plaes below, we will not beable to use logx sine, as de�ned by us, logx does not always equal the logarithm ofx to the base 2. So we need lg.)The re-distribution of operations for subtree T 0 proeeds in a top-down manner,independently for eah mahine Mi. We will illustrate the proess with the job-shopinstane in Figure 3.6, where we assume (for desriptive purposes) that T has onlyone sub-tree T 0. Start at the root, u1, of T 0. Suppose that u1 has h operationsalloated to it. (In this ase, h = 3.) Let h0 = 2dlg he (in this ase, h0 = 4) andalloate h0 � h dummy operations ; to T 0 as in Figure 3.7. (The reason for addingthe dummy operations is to make the number of operations at the root equal to apower of 2.) If the height of the subtree rooted at u1 (in this ase, 2) is at least lg(h0)(whih is also 2 in this ase), then the h0 operations originally alloated to u1 arere-alloated to the h0 nodes that are at distane lg(h0) below u as in Figure 3.8. Next,the operations are further re-alloated reursively in the subtrees below u1 (in thisase, the operations are reursively re-alloated in the subtrees rooted at u2 and u5).If, in one of these reursive alls, the height, k, of the subtree being onsidered isless than lg(h0) (where h0 is the number of originally alloated operations at the root,ounting dummy operations) then h0=2k of the operations originally alloated to theroot are re-alloated to eah of the leaves. For example, in the reursive all on thesubtree rooted at u2 in Figure 3.8, h0 = 4 (beause a dummy operation is added tou2 to make the number of operations a power of 2) and the height, k, of the subtreebelow u2 is 1. Thus, h0=21 operations are pushed from u2 to eah of its hildren asin Figure 3.9. The reursive all at u5 and the reursive alls at the leaves do notfurther re-distribute operations.A more formal desription of the pushdown algorithm is as follows. As above,we assume that jjSi(v)jj is a power of two for all i and v; furthermore, although wewill push some operations down the tree, Si(v) will throughout refer to the original9

set of operations sheduled on Mi for the time interval [l(v); r(v)+1). First partitionthe tree T into disjoint subtrees, by removing all edges from parents with heightequal to 0 modulo log�. We then proeed independently for eah subtree T 0 that isprodued from the partition, and for eah mahineMi, by alling a reursive proedurepushdown(T 0; i), whih we desribe now. Given a binary tree T 00 with root u and amahine index i, pushdown(T 00; i) is as follows. If T 00 is a leaf, the proedure doesnothing. Otherwise, suppose jjSi(u)jj = h0, with h0 being a power of two. If theheight k of T 00 is at least lg(h0), then the h0 operations of Si(u) are re-alloated tothe h0 nodes that are at distane lg(h0) below u; else if k < lg(h0), then h0=2k of theoperations in Si(u) are re-alloated to eah of the leaves of T 00. Finally, we reursivelyall the proedure on the left and right subtrees of T 00.Note that if the new algorithm is applied to the problem instane from Figures 3.1{3.5 then the makespan is redued by one, beause operations C and K are pusheddown to the leaves so operation H is sheduled to overlap operation C.Let S 0 denote the shedule produed (from S) by the new algorithm.Lemma 3.3. S 0 is a feasible shedule with makespan O(pmax�dlog pmax= log�e).Proof. The proof that S 0 is feasible follows exatly as before. The makespan ofS 0 is no more than Pu2T p(u).Consider a subtree T 0 of the partition. Assume the leaves of T 0 are at height j inT . Let w be a node in T 0 and let V be the subset of nodes of T 0 onsisting of w andits anestors in T 0.First suppose w is a leaf. Let v be a node in V and assume that v has height kin T 0 with jjSi(v)jj = h. (See Figure 3.10.)Then v ontributes at most 2dlg he=2k operations to Ri(w) and eah has length2j+k. The time needed to perform these operations is 2dlg he�k � 2j+k = 2dlg he+j . ByLemma 3.1, part (a),Pv2V jjSi(v)jj � 2�. (The fator of 2 arises from the (possible)padding of Si(v) with dummy operations.) Thus p(w) � 2j+1�.Now suppose w is at height r > 0 in T 0. (See Figure 3.11.) A node v 2 V atheight r+k in T 0 ontributes at most one operation to Ri(w) and its length is 2j+k+r .Thus p(w) �Plog��rk=0 2j+k+r � 2j+1�.Thus, if node w is at height r+j in T and is in the layer of the partition ontainingT 0, then p(w) � 2j+1�; also, there are pmax=2r+j nodes at this height in T . The sumof these p(w)'s is thus at most 2�pmax=2r. Eah layer therefore ontributes at most4�pmax, and there are d(log pmax)=(log�)e layers. ThusPv2T p(v) satis�es the boundof the lemma.3.3. Derandomization and parallelization. Note that all portions of ouralgorithm are deterministi (and an be implemented in NC), exept for the settingof the initial random delays, whih we show how to derandomize now. The methodof onditional probabilities ould be applied to give the sequential derandomization,however that result will follow from the NC algorithm that we present. We begin witha tehnial lemma.Lemma 3.4. Let x1; x2; : : : ; x` be non-negative integers suh that Pi xi = `a, forsome a � 1. Let k � a be any positive integer. Then, Pì=1 �xik � � ` � �ak�.Proof. For real x, we de�ne, as usual, �xk� := (x(x � 1) � � � (x � k + 1))=k!. We�rst verify that the funtion f(x) = �xk� is non-dereasing and onvex for x � k, bya simple hek that the �rst and seond derivatives of f are non-negative for x � k.Think of minimizing Pi �xik � subjet to the given onstraints. If xi � (k � 1) forsome i, then there should be an index j suh that xj � (k + 1), sine Pi xi � `k.Thus, we an lessen the objetive funtion by simultaneously setting xi := xi+1 and10

xj := xj � 1. Hene we may assume that all the integers xi are at least k. By theonvexity of f for x � k, we see that the objetive funtion is at least Pì=1 �ak�.De�ne, for z = (z1; z2; : : : ; zn) 2 <n, a family of symmetri polynomials Sj(z); j =0; 1; : : : ; n, where S0(z) � 1, and for 1 � j � n, Sj(z) :=P1�i1<i2���<ij�n zi1zi2 � � � zij .We reall one of the main results of [2℄ (this is not expliitly presented in [2℄, but is anobvious orollary of the results of Setion 4 in [2℄). In the statement of Proposition3.5, the funtion G refers to the one introdued in Setion 2.2. Namely, G(�; Æ) =(eÆ=(1 + Æ)1+Æ)�:Proposition 3.5. ([2℄) Suppose we are given m independent random variablesy1; : : : ; ym, eah of whih takes values uniformly in R = f0; 1; : : : ; 2b � 1g whereb = O(logN); N here is a parameter that roughly stands for \input length", andm = NO(1). Suppose we are also given, for eah j 2 [m℄, a �nite set of binaryrandom variables fzjt : t = 1; 2; : : :g where zjt is 1 if and only if yj lies in some �xedsubset Rjt of R. Also given are r random variablesUi = mXj=1 zj;f(i;j); i 2 [r℄;where f is some arbitrary given funtion. If E[Ui℄ < 1 for eah i, then given anypositive integer k suh that k = O(logN), we an �nd, deterministially using NO(1)proessors and O(logO(1)N) time on the EREW PRAM, a setting y1 := w1; : : : ; ym :=wm suh that Xi2[r℄Sk(z1;f(i;1); : : : ; zm;f(i;m)) � rG(1; k � 1)(1 +N�);for any desired onstant > 0.In our setting, the random variables yi are the initial random delays of the jobs.It is easy to verify that eah random variable C(Mi; t) is of the form of some Uj inthe notation of Proposition 3.5. By giving the initial random delays in the rangef0; 1; : : : ; 2�maxg instead of from f0; 1; : : : ; 2�max � 1g, we an ensure the onditionE[Uj ℄ < 1 of Proposition 3.5 (E[C(Mi; t)℄ � 2�max=(2�max + 1) now). Let � and �be as in Lemma 3.1, and note that both are logarithmially bounded in the lengthof the input, as required for the parameter k in Proposition 3.5. Let the randomvariables Xi;j;t be as in Fat 2.3. From the proof of part (a) of Lemma 3.1, we seethatPi;tG(1; �� 1) is smaller than 1; thus, by Proposition 3.5, we an �nd a setting~w for the initial delays in NC suh thatXi;t S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t) < 1:(3.2)If the ongestion of some mahine Mi at some t were at least � due to the abovesetting of the initial delays to ~w, then the left-hand-side of (3.2) would be at least 1,ontraditing (3.2). Thus, we have an NC derandomization of Theorem 1.2(a).As for Theorem 1.2(b), we an similarly �nd an NC assignment of initial delays~w suh thatXi;t S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t) = O((Pmax +�max)mG(1; � � 1))(3.3) = O((Pmax +�max)):11

Let C(t) be the (deterministi) maximum ontention at time t, due to this setting.Note that �C(t)� � �Xi S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t):Thus, by (3.3), we see thatXt �C(t)� � = O((Pmax +�max)):We invoke Lemma 3.4 to onlude thatPt C(t) = O((Pmax +�max)�); thus, we havean NC derandomization of Theorem 1.2(b).We remark that the work of Mahajan, Ramos & Subrahmanyam [13℄ ould alsobe used to obtain an NC derandomization.4. Proof of Theorem 1.3. We now set about to prove Theorem 1.3; we arevery muh motivated here by the framework of [5, 1, 12℄ and of Setion 6.1 of [17℄.The new ideas we need are due to the two basi ways in whih job-shop shedulinggeneralizes paket routing: both ayliity and the \pmax = 1" ondition an beviolated. Theorem 4.3 is used �rst (in the next subsetion) and proved later; this isto help the reader get to some of the new ideas quikly. The algorithms are shown inSetions 4.2 and 4.3.4.1. Preliminary results. We start with a standard fat about the funtion Gof Setion 2.2, where G(�; Æ) = (eÆ=(1 + Æ)1+Æ)�.Fat 4.1. (a) If Æ 2 [0; 1℄, then eÆ=(1 + Æ)(1+Æ) � e�Æ2=3. (b) If 0 < �1 � �2,then for any Æ � 0, G(�1; �2Æ=�1) � G(�2; Æ).Proof. (a) The proof follows from observing that the funtion Æ 7! ln(e�Æ2=3(1 +Æ)(1+Æ)e�Æ) is 0 when Æ = 0, and that its derivative is ln(1 + Æ) � 2Æ=3 whih isnon-negative for Æ 2 [0; 1℄.(b) We need to show that(1 + Æ)(1+Æ)�2 � �1 + �2Æ�1 �(1+�2Æ�1)�1 ;i.e., that �(v) := (1 + vÆ) ln(1 + vÆ) � v(1 + Æ) ln(1 + Æ) � 0 for all v � 1. We have�(1) = 0; �0(v) = Æ+Æ ln(1+vÆ)�(1+Æ) ln(1+Æ). For v � 1, �0(v) � Æ�ln(1+Æ) � 0.The next lemma follows from [18℄.Lemma 4.2. ([18℄) Let X1; : : : ; X` 2 f0; 1g be random variables suh that, forany set T � f1; 2; : : : ; `g, Pr[Vi2T (Xi = 1)℄ � Qi2T Pr[Xi = 1℄; informally, the Xiare \negatively orrelated". Then if X = PiXi with E[X ℄ � �, we have, for anyÆ � 0, Pr[X � �(1 + Æ)℄ � G(�; Æ).Suppose we are given a job-shop instane I . A delayed shedule S for I is any\shedule" in whih eah job Jj waits for some arbitrary non-negative integral amountof time dj , and then gets proessed ontinuously. (Thus, S is a delayed shedule if andonly if there exists some non-negative integer B suh that S is a B-delayed shedule.)Suppose, for some non-negative integer B0, we hoose integers d01; d02; : : : ; d0j uniformlyat random and independently, from f0; 1; : : : ; B0�1g. The (random) shedule obtained12

by giving an initial delay of d0j (in addition to the dj above) to eah job Jj , willbe alled a random (B0;S)-delayed shedule. Note that this also will be a delayedshedule.We require a few more de�nitions related to S as above. Suppose L denotesthe makespan of S. Then, given an integer `, an `-interval is any time interval ofthe form [t; t + `), where t is an integer suh that 0 � t � L � 1. We denote theinterval [t; t+ `) by Ft. The ontention of mahine Mi in interval Fk in the sheduleS, denoted CS;`(i; k), is the total proessing time on Mi within Fk, in the sheduleS. (Suppose, for instane, an operation O of length ` + 2 uses Mi and is sheduledto run on Mi in the interval [t; t + ` + 2), in S. Then, for example, O ontributes avalue of ` to CS;`(i; t) and a value of three to CS;`(i; t+ `� 1).)Given any integers j1; j2 suh that 1 � j1 � j2 � n, we let C 0S;`(i; k; j1; j2) denotethe total proessing time on mahine Mi in the interval Fk in the shedule S that isimposed by jobs Jj1 ; Jj1+1; : : : ; Jj2 . (In partiular, C 0S;`(i; k; 1; n) = CS;`(i; k).)Given a delayed shedule S, we all S an (L; `; C)-shedule if and only if:� the makespan of S is at most L, and� for all mahines Mi and all `-intervals Fk, CS;`(i; k) � C.We emphasize that this notation will be employed only for delayed shedules.We start with Theorem 4.3, whih will be of muh help in proving Theorem 1.3.Given an (L; `; C0)-shedule for a job-shop instane, Theorem 4.3 shows a suÆientondition under whih we an eÆiently onstrut an (L + B; `0; C1)-shedule forappropriate values of B; `0 and C1. In most of our appliations of the theorem, wewill have: (i) `0 � `, (ii) B � L, and (iii) C1 suÆiently small so that the new\relative ongestion" C1=`0 is not muh more than the original relative ongestionC0=`. Thus, by slightly inreasing the makespan of the delayed shedule, we are ableto bound the relative ongestion in intervals of muh smaller length (note from (i)that `0 � `). Appropriate repetitions of this idea, along with some other tools, willhelp us prove Theorem 1.3.For onveniene, we de�ne x+ = max(x; 0).Theorem 4.3. There is a suÆiently large onstant 3 > 0 suh that the followingholds. Suppose S is an (L; `; C)-shedule for a given job-shop instane I, for someL; `; C. Let non-negative integers `0 � ` and B � `� `0 + 1 be arbitrary; let S 0 be arandom (B;S)-delayed shedule.Suppose Æ > 0 is suh that for all integers i 2 [m℄, 0 � k � L + B � 1 and1 � j1 � j2 � n,Pr[C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ)℄ � (maxfL;B;Cg)�3 :Then there is a Las Vegas algorithm to onstrut an (L+B; `0; C`0B � (1+3Æ))-shedulefor I; the expeted running time of the algorithm is poly(m;L; `; C). The proof ofTheorem 4.3 will be presented in Setion 4.5. Using ideas from our earlier proofs, weobtain the following orollary.Corollary 4.4. For general job-shop sheduling, there is a polynomial-time LasVegas algorithm to onstrut a shedule of makespanO�(Pmax +�max) � log(Pmax +�max)log log(Pmax +�max) � � log(minfm�; pmaxg)log log(Pmax +�max)�� :13

Proof. Let I be a job-shop sheduling instane with assoiated values Pmax and�max; de�ne L = 2Pmax and B = 2�max. Let I 0 be the modi�ed instane formed by re-plaing eah operation (Mj;k; tj;k) by the operation (Mj;k; 2�tj;k). We trivially have an(L;B;B)-shedule S for I 0. Choose � = 0 log(Pmax +�max)= log log(Pmax +�max);0 is a suitably large onstant as spei�ed below.Let S 0 denote the random (B;S)-delayed shedule. From the proof of Lemma 3.1(a), we �nd that Pr[C 0S0;1(i; k; j1; j2) � �℄ � (maxfL;B;Cg)�3 will hold for alli; k; j1; j2, by making 0 large. Thus, by setting `0 = 1 in Theorem 4.3, we aneÆiently �nd an (L+B; 1; C0)-shedule for I 0, where C0 = O(�). So we an eÆientlyonstrut a well-strutured shedule for I with makespan O(Pmax +�max) in whih,for all mahines Mi and time steps t, the number of operations sheduled on mahineMi in the time interval [t; t+ 1) is at most O(�). The orollary now follows from theproof of Theorem 1.2(a) by using this fat in plae of Lemma 3.1.We now present Lemma 4.5, whih shows a way of using Theorem 4.3. The notionof \w-separated" in its part (b), is as de�ned in Setion 1.2. Namely, every distintpair of operations of the same job with the same mahine has at least w�1 operationsbetween them.Lemma 4.5. (a) Consider any job-shop instane I in whih any job needs atmost u units of proessing on any mahine. Suppose S is some (L; `; C)-shedule forI. For non-negative integers `0 � ` and B � `� `0+1, suppose S 0 denotes the random(B;S)-delayed shedule. Then, for any Æ > 0 and all i; k; j1; j2,Pr[C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ)℄ � G(C`0=(Bu); Æ):(b) Suppose I is a w-separated job-shop instane with pmax = 1, and that S denotes the(unique) 0-delayed shedule for I. Let S 0 denote the random �max-delayed shedulefor I. Then, for any Æ > 0 and all i; k; j1; j2,Pr[C 0S0;w(i; k; j1; j2) � w�max � (C 0S;�max+w�1(i; (k ��max + 1)+; j1; j2) + �maxÆ)℄� G(w; Æ):Proof. To have some ommon notation for parts (a) and (b), we de�ne the fol-lowing quantities for (b). First, in (b), S is a (Pmax; `; C)-shedule, where, e.g.,` = �max + w � 1 and C = �max. Also, in (b), S 0 is the random (B;S)-delayedshedule, where B = �max; we also set `0 = w in (b). Note that the onditions `0 � `and B � `� `0 + 1 now hold for (b) also.We now make some observations ommon to (a) and (b). Fix i; k; j1; j2. Sineall new delays introdued by S 0 lie in f0; 1; : : : ; B � 1g, the only units of proessingthat an get sheduled on Mi in the interval [k; k + `0) in S 0, are those that weresheduled on Mi in the interval I := [(k �B +1)+; k+ `0) in S. Note that the lengthof I is at most `0 +B � 1 � `. For eah job Jj , number its single units of proessingsheduled on Mi in I in S, as Uj;1; Uj;2; : : :. Sine the length of I is at most `,the de�nition of C 0 shows that the number of suh units for eah job Jj , is at mostC 0S;`(i; (k �B + 1)+; j; j).Let Xj;t be the indiator random variable for Uj;t getting sheduled in the interval[k; k + `0) in S 0. We have C 0S0;`0(i; k; j1; j2) � j2Xj=j1Xt Xj;t:(4.1) 14

Sine E[Xj;t℄ � `0=B for eah j; t, we have� := E[C 0S0;`0(i; k; j1; j2)℄ � j2Xj=j1(C 0S;`(i; (k �B + 1)+; j; j)`0=B)(4.2) = C 0S;`(i; (k �B + 1)+; j1; j2)`0=B:We now handle part (a). By (4.1), C 00 := C 0S0;`0(i; k; j1; j2)=u is at mostPj2j=j1 Yj ,where Yj := u�1PtXj;t. By the de�nition of u, Yj � 1 for eah j. So the randomvariables fYj : j 2 [j1; j2℄g lie in [0; 1℄, and are independent. A Cherno�-Hoe�dingbound shows for any Æ0 � 0 thatPr[C 0S0;`0(i; k; j1; j2) � �(1 + Æ0)℄ = Pr[C 00 � (�=u) � (1 + Æ0)℄ � G(�=u; Æ0):(4.3)Next, C 0S;`(i; (k � B + 1)+; j1; j2) � C, sine S is an (L; `; C)-shedule. So, applying(4.2) and Fat 4.1(b) to (4.3) ompletes the proof for part (a).For part (b), onsider any job Jj . Sine `0 = w here, the de�nition of w-separatedshows that we annot have Xj;t = Xj;t0 = 1, if t 6= t0. This easily leads us to see thatthe random variables fXj;t : j; tg are negatively orrelated, in the sense of Lemma4.2. So, an appliation of Lemma 4.2 and Fat 4.1(b) to (4.1) and (4.2) ompletes theproof for part (b).We will next use these results to prove Theorem 1.3, in Setions 4.2 and 4.3.4.2. Proof of Theorem 1.3(b). Reall that we are onsidering any w-separatedjob-shop instane I with pmax = 1 now. Let S be the 0-delayed shedule for I . Thus,S is a (Pmax; `; C)-shedule, where, e.g., ` = �max + w � 1 and C = �max. Also letS 0 be the random (B;S)-delayed shedule, where B = �max; i.e., S 0 is the randomB-delayed shedule for I . De�ne `0 = w.We an ensure that G(w; Æ) � (Pmax +�max)�3 , by hoosing (i) Æ = 00 if w �log(Pmax +�max)=2, and (ii) Æ = 00 log(Pmax +�max)=(w log(log(Pmax +�max)=w))if w < log(Pmax +�max)=2, for some suitably large onstant 00. By Lemma 4.5(b) andTheorem 4.3, we an then eÆiently onstrut a (Pmax +�max; w; w(1+3Æ))-sheduleS 00 for I . We partition S 00 into d(Pmax +�max)=we intervals eah of length w; ruially,eah of these intervals (subproblems) is an ayli job-shop instane. Also, in eahof these subproblems, pmax = 1, and any mahine has at most w(1 + 3Æ) operationsto be sheduled on it. Via the result of [12℄, eah subproblem an be eÆientlysheduled with makespan O(w + w(1 + Æ)) = O(w(1 + Æ)). We then onatenate allthese shedules, leading to a �nal makespan of O((Pmax +�max)(1 + Æ)).4.3. Proof of Theorem 1.3(a). Reall that our goal is to show the existene ofa shedule with makespan O((Pmax +�max) � log ulog log u � l log(minfm�;pmaxg)log log u m), assumingthat every job needs at most u time units on eah mahine. We assume that u � 2.Indeed, if u = 1, then we have an ayli job-shop instane with pmax = 1; so we willbe able to eÆiently onstrut a shedule of length O(Pmax +�max) [11, 12℄. Thealgorithm is presented in Setion 4.3.2; we start with a useful tool.4.3.1. L0-splitting. Suppose we are given an (L; `; C)-shedule S for a job-shopinstane I , and want to split it into subproblems eah of makespan at most L0, wherepmax < L0 < L. If pmax = 1, this is easy, as seen in Setion 4.2. Consider the asewhere pmax is arbitrary. We now show a simple way of partitioning the operationsof S into at most dL=(L0 � pmax)e subproblems P1;P2; : : :. We will also output an15

(L0; `; C)-shedule Si for eah Pi. These subproblems will be suh that they anbe solved independently and the resulting shedules onatenated to give a feasibleshedule for I . This \L0-splitting" proess is as follows.We onsider all operations that are ompletely �nished by time L0 in S; shedulingthis set of operations beomes our �rst subproblem P1. S provides a natural (L0; `; C)-shedule S1 for P1. If we have overed all operations by this proess, we stop; if not,we de�ne the next subproblem P2 as follows. De�ne t1 = 0. Let t2 be the smallestinteger suh that: (i) t2 � L0, and (ii) there is some operation O starting at time t2 inS, suh that O is not ompletely �nished by time L0. (Note that L0�pmax < t2 � L0.)Our seond subproblem P2 onsists of all operations: (a) �nishing by time t2 + L0in S, and (b) not overed by P1. The time interval [t2; t2 + L0) in S provides an(L0; `; C)-shedule S2 for P2 in the obvious way. One again, if we have not overedall operations, we de�ne t3 to be the smallest integer suh that: (i) t3 � t2 + L0, and(ii) there is some operation O starting at time t3 in S, suh that O is not ompletely�nished by time t2 + L0. We have t3 > t2 + L0 � pmax; thus t3 > 2(L0 � pmax). P3onsists of all operations �nishing by time t3 + L0 that were not overed by P1 andP2. We iterate this until all operations are overed.In general, we have ti+1 � i(L0 � pmax); so the total number of subproblemsreated is at most dL=(L0 � pmax)e. It is also easy to see that we have an (L0; `; C)-shedule Si for eah Pi. Also, the subproblems an be solved independently and theresulting shedules onatenated to give a feasible shedule for I .4.3.2. Algorithm and analysis. We hoose a suÆiently large positive on-stant b0. De�ne L0 = Pmax + �max, and Li = logLi�1 for i � 1. We repeat thisiteration until we arrive at a t for whih either Lt+1 � Lt, or Lt+1 � 36b20. (Thus, theiteration proeeds for O(log�(Pmax +�max)) steps.) Also, for 1 � i � t, de�neCi := L3i (1 + b0pL1) i�1Yj=1((1 + b0pLj+1) � 11� (Lj+1=Lj)3):(4.4)Reall that Li � 36b20 for 1 � i � t. If b0 is large enough, we haveCi � L3i exp0�(iXj=1 b0pLj) + O(i�1Xj=1(Lj+1Lj)3)1A � L3i exp(3b0=pLi) � 2L3i :(4.5)The seond inequality follows from the fat that the terms L�1j inrease exponentially,with L�1j � (36b20)�1 and b0 suÆiently large.The algorithm is as follows. First, if u2 > Pmax +�max, then Corollary 4.4 showsthat we an onstrut a shedule of makespan as laimed by Theorem 1.3(a). Sosuppose u2 � Pmax +�max. The algorithm onsists of a preproessing step and ageneral (reursive) step, motivated by the approah of Setion 6.1 of [17℄.Preproessing step. We start with the obvious (Pmax; `;�max)-shedule S, where` an be taken arbitrarily large.We �rst handle the ase where u � b0L1. We all this the \simple ase".De�ne `0 = u2, B = �max, and Æ = 1. If b0 is large enough, then G(u; Æ) �(Pmax +�max)�3 . Thus, by Lemma 4.5(a) and Theorem 4.3, we an eÆiently on-strut a (Pmax +�max; u2; 4u2)-shedule S 0. We apply u2-splitting to S 0, as de�nedin Setion 4.3.1. Sine u � 2 and pmax � u, the total number of subproblems is atmost d(Pmax +�max)=(u2 � pmax)e � O((Pmax +�max)=u2). Also, eah of the sub-problems has \Pmax" at most u2 and \�max" at most 4u2. So, by Corollary 4.4,16

eah of these subproblems an be eÆiently given a valid shedule of makespanO�u2 � log ulog log u � l log(minfm�;pmaxg)log log u m�. As seen above, the number of subproblems isO((Pmax +�max)=u2), so the onatenation of these shedules yields a �nal sheduleof makespan as laimed by Theorem 1.3(a).We now move on to the more interesting ase where u < b0L1. We de�ne `0 =L31, B = �max, and Æ = b0=(3pL1). By Fat 4.1(a) and sine u < b0L1, we haveG(`0=u; Æ) � exp(�b0L1=27), whih an be made at most (Pmax +�max)�3 if b0is hosen suÆiently large. By Lemma 4.5(a) and Theorem 4.3, we an eÆientlyonstrut a (Pmax +�max; L31; C1)-shedule S 0. (See (4.4) for the de�nition of theCi.) We apply L41-splitting to S 0 to obtain some subproblems, eah of whih alsoomes with an (L41; L31; C1)-shedule. The number of subproblems is at mostdL0=(L41 � pmax)e � dL0=(L41 � b0L1)e� L0=(L41 � b0L1) + 1� L0L41 � (1 + O(1=L31) + O(L41=L0))� L0L41 � (1 + O(1=L31)):(4.6)We next show a reursive sheme to handle eah of these subproblems.General step. Suppose, in general, we have a subproblem whih omes with an(L4i ; L3i ; Ci)-shedule, 1 � i � t. We �rst dispose of some easy ases. If i = t, thenLi = O(1); by (4.5), Ci = O(1) also. Thus, we an eÆiently �nd a shedule oflength O(1). So we assume i � t � 1. Next, suppose u2 � L3i =2. Note that the\Pmax" and \�max" values of the given subproblem are respetively at most L4i andCi � (L4i =L3i) = O(L4i). Thus, if u2 � L3i =2, then Corollary 4.4 shows that we anonstrut a shedule of makespanO�L4i � logulog logu � � log(minfm�; pmaxg)log logu �� :(4.7)So we assume that u2 < L3i =2.We now show a sheme that will onstrut a feasible shedule for the problem ifu � b0Li+1; if u < b0Li+1, we will show how to redue this problem to a number ofsubproblems, eah of whih omes with an (L4i+1; L3i+1; Ci+1)-shedule.First suppose u � b0Li+1. We follow our approah for the simple ase of thepreproessing step. De�ne B = L3i =2, ` = L3i , `0 = u2, and Æ = 1. Sine u2 < L3i =2,we have B + `0 � ` as required by Theorem 4.3. So, if b0 is suÆiently large, we willhave G(Ci`0=(Bu); Æ) � (L4i + Ci)�3 ;(4.8)sine L3i < Ci � 2L3i by (4.4) and (4.5). As in the \simple ase", we an get an(L4i+B; `0;O(`0))-shedule, apply `0-splitting to it, and solve the resulting subproblemsusing Corollary 4.4. The �nal shedule will have makespan as in (4.7).Finally, suppose u < b0Li+1. We follow the general idea of the \interestingase" of the preproessing step. De�ne B = L3i � L3i+1, ` = L3i , `0 = L3i+1, andÆ = b0=(3pLi+1). One again, sine u < b0Li+1, we will have (4.8). Thus, as in the\interesting ase", we onstrut an (L4i + L3i ; L3i+1; Ci+1)-shedule, and apply L4i+1-splitting to it. As a result, we get some number of subproblems, eah of whih is17

equipped with an (L4i+1; L3i+1; Ci+1)-shedule; we reurse on these independently. Asin the derivation of (4.6), the number of subproblems is at mostd(L4i + L3i)=(L4i+1 � b0Li+1)e � L4iL4i+1 � (1 + O(1=L3i+1)):(4.9)Let the �nal set of subproblems we solve be those that ome with an (L4p; L3p; Cp)-shedule, for some p. The produt of the terms in (4.6) and (4.9) as i runs from 1 top� 1, is O(L0=L4p). Thus, by (4.7), the �nal makespan isO�(L0=L4p)L4p � logulog logu � � log(minfm�; pmaxg)log logu ��= O�L0 � logulog logu � � log(minfm�; pmaxg)log log u �� ;as laimed by Theorem 1.3(a).4.4. Basi ideas from earlier onstrutivizations of the LLL. This setionis based on the work of [5, 1, 12℄. The main result here is Theorem 4.7, whih will beused in Setion 4.5 to prove Theorem 4.3.Given an undireted graph G = (V;E), reall that a set C � V is a dominatingset of G if and only if all verties in V �C have some neighbour in C. For any positiveinteger `, we de�ne G` to be the graph on the same vertex set V , with two vertiesadjaent if and only if they are distint and there is a path of length at most ` thatonnets them in G. We let �(G) denote the maximum degree of the verties in G.Also, suppose R is some random proess and that eah vertex in V represents someevent related to R. We say that G is a dependeny graph for R if and only if for eahv 2 V and any set of verties S suh that no element of S is adjaent to v in G, wehave that the event orresponding to v is independent of any Boolean ombination ofthe events orresponding to the elements of S.In Lemma 4.6 and subsequently, the phrase \onneted omponent" means \max-imal onneted subgraph", as usual.Lemma 4.6. Given an undireted graph G1 = (V;E) with a dominating setC, let G2 be the subgraph of G31 that is indued by C. Pik an arbitrary maximalindependent set I in G2, and let G3 be the subgraph of G32 indued by I. SupposeG1 has a onneted omponent with N verties. Then G3 has a onneted omponentwith at least N=((�(G1) + 1)(�(G1))3) verties.Proof. Let C1 = (U;E0) be a onneted omponent of G1 with N verties.Then, the verties in C \ U are onneted in G2, whih is seen as follows. Sup-pose v1; u1; u2; : : : ; ut; vt is a path in C1, where v1 and vt are in C \U , and u1; : : : ; utare all in U � (C \ U). Then, sine C \ U is a dominating set in C1, for 1 < i < t,ui must have some neighbour vi 2 C \ U . Hene, there are paths vi; ui; ui+1; vi+1for 1 � i < t so v1 and vt are onneted in G2. Thus, all of the verties in C \ Uare onneted in G2. Sine C \ U is a dominating set in C1, it is also easy to hekthat jC \ U j � N=(�(C1) + 1) � N=(�(G1) + 1). Thus, C \ U yields a onnetedomponent C2 in G2 that has at least N=(�(G1) + 1) verties.Sine �(C2) � (�(G1))3 � 1, one an similarly show that I \ (C \ U) yields aonneted omponent C3 in G3 that has at leastjC \ U j�(C2) + 1 � jC \ U j(�(G1))3 � N(�(G1) + 1)(�(G1))318

verties.We present a key ingredient of [5, 1, 12℄:Theorem 4.7. Let a graph G = (V;E) be a dependeny graph for a randomproess R, with the probability of ourrene of the event represented by any vertexof G being at most r. Run the proess R, and let C � V be the verties of G thatrepresent the events (among the elements of V) that ourred during the run. (Thus,C is a random subset of V with some distribution.) Let G1 be the subgraph of Gindued by C[C 0, where C 0 is the set of verties of G that have at least one neighbourin C. Then, for any x � 1, the probability of G1 having a onneted omponent withat least x(�(G) + 1)(�(G))3 verties, is at most jV j�(G)�18Py�x (�(G)18r)y.Proof. Observe that, by onstrution, C is a dominating set for G1. Construt G2,I , and G3 as in the statement of Lemma 4.6. Note that deterministially, �(G1) ��(G). Thus, by Lemma 4.6, we just need to bound the probability of G3 having aonneted omponent with x or more verties.Suppose that a size-y set S of verties of G forms a onneted omponent in G3.Then there is a sub-tree T of G3 whih spans the verties in S. T an be representedby a list L whih lists all of the verties that are visited in a depth-�rst traversal of T .Eah vertex in T (exept the root) is visited both before its hildren and after eahhild (the root is only visited after eah hild), so eah vertex appears on L one foreah edge adjaent to it in T . Thus, the length of L is 2(y � 1). If two verties areadjaent on L then they are adjaent in G3, whih implies that the distane betweenthem in G is at most 9. Thus, given G, the number of possible sets S is at most thenumber of possible lists L, whih is at most jV j (the number of hoies for the �rstvertex on L) times (�(G)9)2(y�1) (the number of hoies for the rest of L). Thus, thenumber of sets S whih ould possibly orrespond to size-y onneted omponentsin G3 is at most jV j�(G)�18�(G)18y.The de�nition of I implies that the verties in G3 form an independent set in G.Furthermore, given any independent set S of size y in G, Bayes' theorem and thede�nition of dependeny graphs show that the probability that all elements of S arein G3 is at most ry . Thus, the probability that G3 has a onneted omponent ofsize y is at most jV j�(G)�18(�(G)18r)y.4.5. Proof of Theorem 4.3. We now assume the notation of Theorem 4.3 andprove the theorem. De�ne the following \bad" events:E(i; k; j1; j2) � (C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ));E 0(i; k; j1) � (9j2 � j1 : E(i; k; j1; j2)):By the assumption of Theorem 4.3, Pr[E(i; k; j1; j2)℄ � (maxfL;B;Cg)�3 for all(i; k; j1; j2). Now, for the given instane I , Pmax � L and �max � C � dL=`e � CL.Thus, in partiular, at most CL jobs use any given mahine Mi. So, we have for all(i; k; j1) that Pr[E 0(i; k; j1)℄ � p := CL(maxfL;B;Cg)�3 :(4.10)The algorithm proesses the jobs in the order J1; J2; : : :. When it is job Jj 'sturn, we give it a random delay from f0; 1; : : : ; B � 1g, and hek if this makes, forany pair (i; k), the event E(i; k; 1; j) true. If so, we temporarily set aside Jj and allyet-unproessed jobs that use mahineMi. Let J1 denote the set of jobs whih do getassigned a delay by this proess. We shall basially show that, with high probability,19

the problem of assigning delays to the jobs not in J1 gets deomposed into a set ofmuh smaller subproblems. To this end, we �rst set up some notation in order toapply Theorem 4.7.Construt an undireted graph G with the events E 0(i; k; 1) as nodes, with an edgebetween two distint nodes E 0(i; k; 1) and E 0(i0; k0; 1) if and only if either (P1) i = i0,or (P2) there is some job that uses both the mahines Mi and Mi0 . It is easy to hekthat G is a valid dependeny graph for the events E 0(i; k; 1). The number of vertiesin G is at most m(L+ B). Reall that at most CL jobs use any given mahine andthat eah suh job uses at most L� 1 other mahines. Thus, eah node an have atmost L + B neighbours of type (P1), and at most CL(L � 1)(L + B) neighbours oftype (P2). So �(G) is at mostL+B + CL(L� 1)(L+B) � CL2(L+B)� 1:Run the above random proess of randomly sheduling and setting aside (if ne-essary) some of the jobs. Let C be the set of events E 0(i; k; 1) that atually happened.Let C0 be the set of nodes of G that have at least one neighbour in C, and let G1 bethe subgraph of G that is indued by C [C0. Thus, by applying Theorem 4.7 withjV j � m(L+ B), �(G) � CL2(L+ B) � 1, x = logm and r = p, we see from (4.10)thatPr[G1 has a onneted omponent with at least (CL2(L+B))4 logm nodes℄� 1=2;(4.11)if 3 is appropriately large.We repeat the above proess until all onneted omponents of G1 have at most(CL2(L + B))4 logm nodes. By (4.11), we expet to run the above proess at mosttwie.What have we ahieved? Let us �rst give all the jobs in J1 their assigned delays,and remove them from onsideration. The key observation is as follows. Fix anyremaining job Jj . Then, for no two mahines Mi and Mi0 that are both used by Jj ,an we have two nodes E 0(i; k; 1) and E 0(i0; k0; 1) in di�erent onneted omponents ofG1. This is beause E 0(i; k; 1) and E 0(i0; k0; 1) are neighbours in G. Thus, the problemin eah onneted omponent of G1 an be solved ompletely independently of theother onneted omponents.So all onneted omponents of G1 have at most (CL2(L+B))4 logm nodes. Tofurther redue this omponent size, we repeat the above proess on eah onnetedomponent CCt of G1 separately, as follows. Fix any suh CCt. De�ne f1(i) to be theleast index j suh that Jj 62 J1 and suh that Jj uses Mi. (If all jobs that use Mi arein J1, we de�ne f1(i) = n+1 for onveniene.) Note that all jobs Jj that use Mi andhave j � f1(i), lie outside the set J1. We proess the jobs lying outside J1 in orderas before. When it is job Jj 's turn, we give it a random delay from f0; 1; : : : ; B � 1g,and hek if this makes, for any pair (i; k), the event E(i; k; f1(i); j) true. (This ismostly the same as before, exept that we have \f1(i)" in plae of \1" now.) If so, wetemporarily set aside Jj and all yet-unproessed jobs lying outside J1, that use Mi.We proeed similarly as above. Let J2 denote the set of jobs whih get assigned adelay by this proess. We now show that the problem of assigning delays to the jobsnot in J1 [J2 gets deomposed into even smaller subproblems, with high probability.In plae of the bad events fE 0(i; k; 1)g, the bad events now are fE 0(i; k; f1(i))g. Wean one again invoke Theorem 4.7; we take jV j � (CL2(L + B))4 logm, �(G) �20

CL2(L+B)� 1, x = log logm and r = p. As before, if 3 is large enough, we expetto repeat this proess at most twie before ensuring that all resulting \onnetedomponents" have at most (CL2(L+B))4 log logm nodes.We now onsider any onneted omponent CC 0t remaining after the above twopasses. (One again, all these omponents an be handled independently.) De�nef2(i) to be the least index j suh that Jj 62 (J1 [J2) and suh that Jj uses Mi. Wenow show how to give delays to all jobs lying outside (J1 [J2), in a manner thatavoids all the events E 0(i; k; f2(i)). There are two ases:Case I: log logm � L + B + C. In this ase, the number of \nodes" (eventsE 0(i; k; f2(i))) in CC 0t is poly(L;B;C). Thus, if we start with a random B-delayedshedule for the jobs assoiated with CC 0t, the probability that at least one \bad"event assoiated with CC 0t (i.e., at least one node of CC 0t) happens is at most 1=2, if3 is large enough. So we expet to run this proess on CC 0t at most twie.Case II: log logm > L+B+C. The number of nodes in CC 0t is O(poly(log logm)) inthis ase. So the number of mahines assoiated with CC 0t is also O(poly(log logm)),and hene the number of jobs assoiated with CC 0t is at most O(L � poly(log logm)),i.e., O(poly(log logm)).We reall the Lov�asz Loal Lemma (LLL):Lemma 4.8. ([7℄) Let E1; E2; : : : ; E` be any events with Pr[Ei℄ � q for all i. Ifeah Ei is mutually independent of all but at most d of the other events Ej and ifeq(d+ 1) � 1, then Pr[Vì=1Ei℄ > 0.As seen above, any event E 0(i; k; f2(i)) depends on at most CL2(L+B)� 1 othersuh events. Also, Pr[E 0(i; k; f2(i))℄ � p for all i; k. Thus, if 3 is suÆiently large,the LLL shows that there exists a way of giving a delay in f0; 1; : : : ; B � 1g to eahjob assoiated with CC 0t, in order to avoid all the events E 0(i; k; f2(i)) assoiatedwith CC 0t. But here, there are at most O(poly(log logm)) jobs, and eah has onlyB � log logm possible initial delays! Thus, exhaustive searh an be applied to �nda \good" B-delayed shedule that we know to exist: the time needed for CC 0t is atmost (log logm)O(poly(log logm)) = mo(1):Let S 00 be the �nal delayed shedule produed. Consider any interval (k; k + `0).We have CS00;`0(i; k) � `0B � (C 0S;`(i; (k �B + 1)+; 1; f1(i)� 1) + CÆ) +`0B � (C 0S;`(i; (k �B + 1)+; f1(i); f2(i)� 1) + CÆ) +`0B � (C 0S;`(i; (k �B + 1)+; f2(i); n) + CÆ)= `0B � (C 0S;`(i; (k �B + 1)+; 1; n) + 3CÆ)� `0B � (C + 3CÆ);as required. 21

It is also easy to hek via linearity of expetation that the expeted running timeof the algorithm is poly(m;L; `; C). This onludes the proof of Theorem 4.3.Aknowledgements. Aravind Srinivasan thanks David Shmoys for introduing himto this area, for sharing many of his insights, and for his several suggestions. He alsothanks Cli� Stein and Joel Wein for their suggestions and many helpful disussions.We thank Uri Feige for bringing the work of [16℄ and [22℄ to our attention, and BrueMaggs and Andr�ea Riha for sending us an updated version of [12℄. We thank thereferees for their many helpful suggestions.REFERENCES[1℄ N. Alon, A parallel algorithmi version of the Loal Lemma, Random Strutures & Algorithms,2 (1991), pp. 367{378.[2℄ N. Alon and A. Srinivasan, Improved parallel approximation of a lass of integer programmingproblems, Algorithmia, 17 (1997), pp. 449{462.[3℄ D. Applegate and W. Cook, A omputational study of the job-shop sheduling problem, ORSAJournal of Computing, 3 (1991), pp. 149{156.[4℄ A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Shieber, Bandwidth alloation withpreemption, in Pro. ACM Symposium on Theory of Computing, 1995, pp. 616{625.[5℄ J. Bek, An algorithmi approah to the Lov�asz Loal Lemma, Random Strutures & Algo-rithms, 2 (1991), pp. 343{365.[6℄ J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Management Siene,35 (1989), pp. 164{176.[7℄ P. Erd}os and L. Lov�asz, Problems and results on 3-hromati hypergraphs and some relatedquestions, in In�nite and Finite Sets, A. Hajnal et. al., editors, Colloq. Math. So. J. Bolyai11, North Holland, Amsterdam, 1975, pp. 609{627.[8℄ U. Feige and C. Sheideler, Improved bounds for ayli job shop sheduling, in Pro. ACMSymposium on Theory of Computing, 1998, pp. 624{633.[9℄ L. A. Hall, Approximability of ow shop sheduling, in Pro. IEEE Symposium on Foundationsof Computer Siene, 1995, pp. 82{91.[10℄ E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequening and shedul-ing: algorithms and omplexity, in Handbooks in Operations Researh and ManagementSiene, Volume 4: Logistis of Prodution and Inventory, S. C. Graves et al., editors,Elsevier, 1993, pp. 445{522.[11℄ F. T. Leighton, B. Maggs, and S. Rao, Paket routing and jobshop sheduling in O(ongestion+ dilation) steps, Combinatoria, 14 (1994), pp. 167{186.[12℄ F. T. Leighton, B. Maggs, and A. Riha, Fast algorithms for �nding O(ongestion + dilation)paket routing shedules. Combinatoria, 19 (1999), pp. 375{401.[13℄ S. Mahajan, E. A. Ramos, and K. V. Subrahmanyam, Solving some disrepany problems inNC, in Pro. Annual Conferene on Foundations of Software Tehnology and TheoretialComputer Siene, Leture Notes in Computer Siene 1346, Springer, 1997, pp. 22{36.[14℄ P. Martin and D. B. Shmoys, A new approah to omputing optimal shedules for the job-shopsheduling problem, in Pro. MPS Conferene on Integer Programming and CombinatorialOptimization, 1996, pp. 389{403.[15℄ R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.[16℄ G. Rayzman, Approximation tehniques for job-shop sheduling problems, MS Thesis, Depart-ment of Applied Mathematis and Computer Siene, The Weizmann Institute of Siene,Rehovot 76100, Israel, July, 1996.[17℄ C. Sheideler, Universal Routing Strategies for Interonnetion Networks, Leture Notes inComputer Siene 1390, Springer, 1998.[18℄ J. P. Shmidt, A. Siegel, and A. Srinivasan, Cherno�-Hoe�ding bounds for appliations withlimited independene, SIAM J. Disrete Math., 8 (1995), pp. 223{250.[19℄ S. V. Sevast'yanov, EÆient onstrution of shedules lose to optimal for the ases of arbitraryand alternative routes of parts, Soviet Math. Dokl., 29 (1984), pp. 447{450.[20℄ S. V. Sevast'yanov, Bounding algorithm for the routing problem with arbitrary paths and al-ternative servers, Kibernetika, 22 (1986), pp. 74{79 (translation in Cybernetis 22, pp.773{780).[21℄ D. B. Shmoys, C. Stein, and J. Wein, Improved approximation algorithms for shop shedulingproblems, SIAM J. Comput., 23 (1994), pp. 617{632.22

[22℄ Yu. N. Sotskov and N. V. Shaklevih, NP-hardness of sheduling problems with three jobs, VestiAkad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 4 (1990), pp. 96{101 (in Russian).[23℄ D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K. Lenstra, S. V. Sev-ast'yanov, and D. B. Shmoys, Short shop shedules, Operations Researh, 45 (1997), pp.288{294.Job 1: A (M1)Job 2: B (M1) C (M2) D (M3)Job 3: E (M3) F (M4)Job 4: G (M4) H (M1) I (M2)Job 5: J (M2) K (M2)Fig. 3.1. One frame of S, where pmax = 8, A{K are the labels of operations, and M1{M4 arethe mahines. qA
q B, J qFq qE q C, K qDq q q qG qH qI q q

������� \\\\\\\

 JJJJ

 JJJJ���� BBBB ���� BBBB ���� BBBB ���� BBBBFig. 3.2. Assigning operations to nodes of T . For example, if u denotes the leftmost node onthe seond-highest level, then S1(u) = fBg, S5(u) = fJg, and S`(u) = ; for every other `.

23

q8
q4 q4q q2 q 4 q2q q q q1 q1 q1 q q

������� \\\\\\\

 JJJJ

 JJJJ���� BBBB ���� BBBB ���� BBBB ���� BBBBFig. 3.3. Calulating p for eah node.q u1; 0q u2; 8 q u9; 15q u3; 12 q u6; 12 q u10; 19 q u13; 25q u4; 12 q u5; 12 q u7; 14 q u8; 14 q u11; 23 q u12; 24 q u14; 27 q u15; 27

��������� ZZZZZZZZZ

 JJJJJJJ

 JJJJJJJ������� BBBBBBB ������� BBBBBBB ������� BBBBBBB ������� BBBBBBBFig. 3.4. Calulating f for eah node.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27Job 1: AM1Job 2: BM1 CM2 DM3Job 3: EM3 FM4Job 4: GM4 HM1 IM2Job 5: JM2 KM2Fig. 3.5. The shedule S0.24

Job 1: AJob 2: BJob 3: C DJob 4: E FJob 5: GJob 6: HJob 7: IJob 6: JFig. 3.6. One frame of S, foussing only on operations for a single mahine.u1
u2u3 u4 u5u6 u7

qA;B;H; ;
q C; I; J q Gq E q q F qD

������� \\\\\\\

 JJJJ

 JJJJFig. 3.7. Assigning a dummy operation ; to the root of T 0.u1
u2u3 u4 u5u6 u7

q
q C; I; J qGq E;A q B q F;H qD; ;

������� \\\\\\\

 JJJJ

 JJJJFig. 3.8. Redistributing the operations originally alloated to u1.u1
u2u3 u4 u5u6 u7

q
q qGqE;A;C; I qB; J; ; qF;H qD; ;

������� \\\\\\\

 JJJJ

 JJJJFig. 3.9. Redistributing the operations originally alloated to u2.25

� - leaves of T?
6j?
6k�������

�
\\\\\\\

\T 0
qwJJJJqv

Fig. 3.10. The ase in whih w is a leaf.

� - leaves of T?
6j?6r?
6k�������

�
\\\\\\\

\T 0
qwJJJqv

Fig. 3.11. The ase in whih w is not a leaf.
26

