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t of this arti
le is spin-systems as studied in statisti
al physi
s. We fo
us onthe 
ase of two spins. This 
ase en
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al interest, su
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alIsing model (ferromagneti
 or antiferromagneti
, with or without an applied magneti
 �eld) andthe hard-
ore gas model. There are three degrees of freedom, 
orresponding to our parameters�, 
 and �. Informally, � represents the weights of edges joining pairs of \spin blue" sites, 
represents the weight of edges joining pairs of \spin green" sites, and � represents the weightof \spin green" sites. We study the 
omplexity of (approximately) 
omputing the partitionfun
tion in terms of these parameters. We pay spe
ial attention to the symmetri
 
ase � = 1.Exa
t 
omputation of the partition fun
tion Z is NP-hard ex
ept in the trivial 
ase �
 = 1,so we 
on
entrate on the issue of whether Z 
an be 
omputed within small relative error inpolynomial time. We show that there is a fully polynomial randomised approximation s
heme(FPRAS) for the partition fun
tion in the \ferromagneti
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 � 1, but (unless RP = NP)there is no FPRAS in the \antiferromagneti
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orresponding to the square de�ned by0 < � < 1 and 0 < 
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tion, weprovide an FPRAS for the partition fun
tion within a region whi
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1 Introdu
tionThe subje
t of this arti
le is \spin-systems" as studied in statisti
al physi
s. An instan
e of aspin-system is an n-vertex graph G = (V;E). Let q � 2 be an integer. A 
on�guration of a spinsystem on G is one of the qn possible assignments � : V ! f0; : : : ; q � 1g of q spins to the verti
esof G. (We shall usually refer to spins as 
olours.) Ea
h 
on�guration has an energy H(�) whi
his the sum of individual 
ontributions from the edges and verti
es of G. The 
ontribution of ea
hedge fi; jg 2 E is a spe
i�ed fun
tion (here assumed symmetri
) of the 
olours �(i) and �(j);likewise, the 
ontribution of vertex k 2 V is a fun
tion of �(k). Ea
h 
on�guration has weightw(�) = exp(�H(�)=T ), where T is a parameter of the system 
alled temperature. The partitionfun
tion of the system is the normalising fa
tor Z = P� exp(�H(�)=T ) that turns the weightsinto probabilities.1Our goal in this paper is to study the 
omplexity of 
omputing the partition fun
tion of spinsystems. We shall deal ex
lusively with two-spin (q = 2) systems, sin
e these already seem topresent enough of a 
hallenge. Moreover, the 
ase q = 2 en
ompasses models of physi
al interest,su
h as the 
lassi
al Ising model (ferromagneti
 or antiferromagneti
, with or without an appliedmagneti
 �eld), or the hard-
ore gas model. We refer to the two 
olours (spins) as \blue" and\green". Sin
e w(�) = exp(�H(�)=T ) and H(�) is a sum of 
ontributions from edges and verti
es,we 
an equivalently take a multipli
ative view, in whi
h w(�) is de�ned as a produ
t of 
ontributionsfrom the individual edges and verti
es. (All this will be set up formally in the next se
tion; however,we hope that this informal a

ount provides an adequate basis for at least a qualitative dis
ussionof the main results of the paper.)At �rst sight it seems as though there are three parameters governing edge 
ontributions (
orre-sponding to blue-blue, blue-green and green-green edges), and two governing vertex 
ontributions(
orresponding to blue and green verti
es). But we may normalise the (multipli
ative) blue-greenedge 
ontribution to 1, and the blue vertex 
ontribution to 1 also.2 Thus there are essentially threedegrees of freedom. We denote the (multipli
ative) blue-blue edge 
ontribution by �, the green-green by 
, and the green vertex 
ontribution by �. In fa
t | partly be
ause it is easier to depi
ta two-dimensional parameter spa
e, and partly be
ause our understanding of the general situationis still in
omplete | we shall pay parti
ular attention to the spe
ial (symmetri
) 
ase � = 1.Figure 1 shows the regions in (�; 
)-spa
e as 
lassi�ed by our results when � = 1. Exa
t
omputation of the partition fun
tion Z is NP-hard ex
ept in the trivial 
ase �
 = 1 so we 
on
en-trate on the issue of whether Z 
an be 
omputed within small relative error in polynomial time.(The pre
ise notion of eÆ
ient approximation algorithm used is the \fully polynomial randomisedapproximation s
heme" or FPRAS, whi
h will be de�ned in x2.) The main features are as follows:1. To the North-East of the hyperbola is a \ferromagneti
" region �
 � 1 within whi
h thepartition fun
tion may be approximated in the FPRAS sense. This is done by redu
tion to aferromagneti
 Ising system with external �eld, whose partition fun
tion may be approximatedby a Markov 
hain Monte Carlo algorithm of Jerrum and Sin
lair [7℄. See x3.2. The square de�ned by 0 < � < 1 and 0 < 
 < 1 is an \antiferromagneti
" region be
auseblue-green edges have higher weight than blue-blue edges or green-green edges. Within thisregion, the partition fun
tion is hard to approximate (unless RP = NP). Essentially thisis be
ause \ground states" (i.e., most likely or most weighty 
on�gurations) 
orrespond to1Readers who do not �nd the physi
al setting 
ongenial may think instead of a weighted version of the graphhomomorphism problem. See Se
tion 1.1 of [4℄.2This is equivalent to normalising the energy 
ontribution of blue-green edges and blue verti
es to zero.1
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Figure 1: Results for regions of the (�; 
)-plane at � = 1.maximum 
uts in G. This at least is the intuition; the formalisation of it requires some work.See x4.3. Neither of these \natural" regions | neither the hyperbola nor the square | marks theboundary between tra
table and intra
table. In one dire
tion, we provide an FPRAS forthe partition fun
tion within the light grey region, whi
h extends well away the hyperbola.This FPRAS is based on the Markov 
hain Monte Carlo method, and its analysis uses the\path-
oupling" te
hnique of Bubley and Dyer [2℄. See x5.4. In the other dire
tion, we exhibit two tiny, symmetri
, intra
table regions extending beyondthe \antiferromagneti
" region, 
lose to the points (0; 1) and (1; 0). This is done by 
odingup an inapproximable 
ombinatorial optimisation problem following Luby and Vigoda [9℄.See x6.It will be seen that our knowledge even of the � = 1 
ase is in
omplete: spe
i�
ally, we don'tknow what happens in the remaining (medium intensity grey) regions. For example, we don'tknow whether tra
tability is monotone in � (or 
). In the remaining se
tions, we prove the resultsdepi
ted in Figure 1 and also extend these results beyond the symmetri
 
ase � = 1.2 De�nitionsTo formalise the 
laims made in the introdu
tion we need to de�ne pre
isely the terms (two-state)\spin system" and \FPRAS" (our notion of eÆ
ient approximate 
omputation).In order to de�ne the partition fun
tion of a two-state spin system spe
i�ed by weights �, 
 and�, it is 
onvenient to identify blue and green with the unit ve
tors (1; 0)0 and (0; 1)0, respe
tively.(Primes will be used to denote transposition, so spins are 
olumn ve
tors.) Then the partition2



fun
tion for a graph G = (V;E) may be expressed asZ(G) =X� Yfi;jg2E �(i)0A�(j) Yk2V b0 �(k);where A = �� 11 
� and b = �1�� ;and � ranges over f(1; 0)0; (0; 1)0gV . To see this, note that ea
h of the four possible assignments ofunit ve
tors to �(i) and �(j) pi
ks out a distin
t element of the matrix A, and similarly with b.The problem whose 
omplexity we study is (�; 
; �)-Partition, de�ned as follows. Let �, 
and � be non-negative real numbers.Name. (�; 
; �)-Partition.Instan
e. A graph G.Output. The quantity Z(G), where Z is the partition fun
tion with parameters �, 
 and �.Note that the graph G alone forms the problem instan
e, whi
h means we have a separate problemfor every triple (�; 
; �). (Our notation is intended to emphasise this.) Our goal is to map outthe tra
table region of the parameter spa
e. To avoid the issues of spe
ifying and 
omputing witharbitrary real numbers, we assume that �, 
 and � are rational.In this area, approximation algorithms are usually viewed as 
omputing fun
tions f : �� ! N,where � is a �nite alphabet for en
oding problem instan
es. In the 
urrent appli
ation, however,the output may be an arbitrary rational number. Rather than rede�ning a well-established notionof eÆ
ient approximate 
omputation, we shall sti
k with the usual de�nition, and then explain howto view (�; 
; �)-Partition in this framework.A randomised approximation s
heme for a 
ounting problem f : �� ! N (e.g., the number ofmat
hings in a graph) is a randomised algorithm that takes as input an instan
e x 2 �� (e.g., anen
oding of a graph G) and an error toleran
e " > 0, and outputs a number N 2 N (a randomvariable of the \
oin tosses" made by the algorithm) su
h that, for every instan
e x,Pr �e�"f(x) � N � e"f(x)� � 34 : (1)We speak of a fully polynomial randomised approximation s
heme, or FPRAS, if the algorithmruns in time bounded by a polynomial in jxj and "�1. It is a standard result that the number 34appearing in (1) 
ould be repla
ed by any number in the open interval (12 ; 1).To bring the problem (�; 
; �)-Partition within the FPRAS framework, we suggest the follow-ing: Assume �, 
 and � are rational, and let L be the least 
ommon multiple of their denominators.Then the desired output Z(G) 
an be expressed as a rational number z with denominator Ln+m,where n is the number of verti
es in G and m the number of edges. Then our goal is to design anFPRAS 
omputing Ln+mz.3 The \ferromagneti
 region" is tra
tableWe argue that the region �
 � 1 
orresponds fairly dire
tly to the ferromagneti
 Ising model withexternal �eld. It follows that there is an FPRAS for the partition fun
tion Z in this region. When�
 = 1 the partition fun
tion is trivially 
omputable in polynomial time.3



To make this 
orresponden
e expli
it, observe thatA =s�
 �1 00 
=���� 11 ���1 00 
=�� ;where � = p�
, and hen
e�(i)0A�(j) =s�
 �(i)0�1 00 
=���� 11 ���1 00 
=���(j)=p�=
 �(1; 
=�)�(i)���(i)0 bA�(j)��(1; 
=�)�(j)�;where bA = �� 11 �� ;and the �nal equality uses the fa
t that spins are unit ve
tors. Thus we obtain the followingalternative expression for the partition fun
tion:Z(G) = ��
�m=2X� Yfi;jg2E �(i)0 bA�(j)Yk2V �1; (
=�)d(k)���(k); (2)where d(k) is the degree of vertex k. To verify (2), note that ea
h of the d(k) edges in
ident at k
ontributes a fa
tor (1; 
=�)�(k) to Z(G), in addition to the (1; �)�(k) already present.Suppose for the moment that � = 1. When �
 � 1, i.e., when � � 1, equation (2) is, up toan easily 
omputable fa
tor, the partition fun
tion for a ferromagneti
 Ising system with external�eld. Jerrum and Sin
lair [7℄ have exhibited an FPRAS for 
omputing the partition fun
tion ofsu
h systems, from whi
h it follows that the region �
 � 1 is tra
table. More pre
isely:Theorem 1 For any �xed �, 
 satisfying �
 � 1 there is an FPRAS for (�; 
; 1)-Partition.More generally, there is an FPRAS for (�; 
; �)-Partition provided, in addition, � � 
 and� �p�=
 (or � � 
 and � �p�=
).Proof. On
e we have provided a translation between the terminology of the 
urrent paper andthat of [7℄, it will be seen that the existen
e of an FPRAS is immediate from [7, Thm. 5℄. (Thelatter theorem simply asserts the existen
e of an FPRAS for estimating the partition fun
tion of aferromagneti
 Ising system.)First, a brief des
ription of the Ising model. The Ising model is a two-spin model in whi
hintera
tions are symmetri
 under inter
hange of the two 
olours (spins): in our terminology � =� = 
. In the ferromagneti
 Ising model, like spins are favoured over unlike, i.e., � � 1. Theremay be an external (or applied) �eld, that 
auses one 
olour to be favoured over the other: inour terminology � 6= 1. The intera
tions are allowed to vary from edge to edge, provided they areall ferromagneti
. Thus we may have a separate matrix Aij asso
iated with ea
h edge fi; jg 2 E,provided ea
h matrix individually satis�es the 
onditions stated above (diagonal entries equal andnot less than 1.) The intera
tions with the external �eld may also vary, i.e., the ve
tor b may varyfrom vertex to vertex. However, one 
olour must be uniformly favoured over the other; in otherwords the parameter � must be uniformly at least 1, or uniformly at most 1.4



Inspe
ting equation (2), we see that the aforementioned 
onditions are met, provided only that(
=�)d(k)� = (
=�)d(k)=2� is uniformly at least 1 or at most 1. This will 
ertainly be the 
ase if� = 1. But it will also hold in the other situations identi�ed in the statement of the theorem.3In order to give the details of the redu
tion from (�; 
; �)-Partition to Theorem 5 of [7℄, weneed to show how to en
ode the input, that is, G, �, and the quantities (
=�)d(k)=2� as binarystrings of appropriate length. The details of this are routine, and are omitted. (Clearly, only anapproximation to � is used, sin
e � itself may be irrational.)One �nal te
hni
al point 
on
erning [7, Thm. 5℄. In the proof of that theorem it is assumedthat the intera
tion of the external �eld with spins is uniform over all sites, whereas we requirehere a non-uniform (though 
onsistently oriented) intera
tion. The proof was organised in thisway for simpli
ity of presentation. The 
lean �x is to routinely amend the proof by introdu
ingexpli
it individual intera
tion strengths at the various sites. However, an alternative �x that doesnot involve delving into the original proof is to redu
e the 
ase of varying intera
tion strengths tothat of �xed. In parti
ular, suppose " is our desired a

ura
y parameter and 
onsider an instan
e Gwith, for ea
h vertex v, an intera
tion strength �v � 1. LetÆ = "n�dmaxv ln�ve ;� = 1 + Æ, and z = (�� 1)Æ1 + �+ Æ = ��+ 1�+ � � 1:The Ising partition fun
tion for this instan
e is 
losely approximated by the partition fun
tion ofa new instan
e in whi
h the graph, G0, is formed from G by atta
hingrv := � ln(�v=�)z �pendant edges to ea
h vertex v and giving ea
h vertex intera
tion strength �. To see that theapproximation is suÆ
iently 
lose, note that the relative weight of 
olouring v green rather thanblue in G0 is  := ����+ 1�+ � �rv :Thus the de�nitions guarantee e�"=n�v �  � e"=n�v:as required. �Remark 1 When �
 = 1, expression (2) fa
torises and the (exa
t) 
omputation of Z is trivial.Remark 2 Another situation in whi
h (
=�)d(k)� is assured to be uniformly at least 1 or at most 1is when d(k) is 
onstant, i.e., G is regular.The parameter values not 
overed by Theorem 1, i.e., � > 
 and � > p�=
 (or � < 
 and� < p�=
) present a 
onundrum. These 
orrespond to a situation, whi
h may be physi
allyunrealisti
, in whi
h some verti
es in
line to one 
olour and others to the other. On the one hand,there is no obvious barrier to FPRASability when this o

urs. On the other hand, the proof of [7,Thm. 5℄ 
ertainly breaks down. The issue is that the quantity tanh�B in [7, eq. (2)℄ will be ofin
onsistent sign, leading to negative weights w(X) in [7, eq. (3)℄. In this situation, the so-
alled\subgraphs world" pro
ess is no longer well de�ned, as various \probabilities" be
ome negative.3Sin
e it is trivial to deal with any isolated verti
es of G, we may assume that d(k) � 1 for all k.5



4 The \antiferromagneti
 region" is intra
tableLet �AP be the approximation-preserving redu
tion from [5℄. Let #Sat and #LargeCut bede�ned as follows.Name. #Sat.Instan
e. A Boolean formula ' in 
onjun
tive normal form (CNF).Output. The number of satisfying assignments to '.Name. #LargeCut.Instan
e. A positive integer k and a 
onne
ted graph G in whi
h every 
ut4 has size at most k.Output. The number of size-k 
uts of G.An AP-redu
tion from #Sat to #LargeCut appears in [7℄.5 For 
ertain �, 
 and � (seeLemma 2) we will give an AP-redu
tion from #LargeCut to (�; 
; �)-Partition. The 
ombina-tion of these redu
tions implies #Sat �AP (�; 
; �)-Partition whi
h in turn implies that there
annot be an FPRAS for (�; 
; �)-Partition unless NP = RP (see Se
tion 3 of [5℄).Lemma 2 Let �, 
 and � be �xed parameters satisfying 0 < � < 1, 0 < 
 < 1 and � > 0. Then#LargeCut �AP (�; 
; �)-Partition.Proof. Let k and G = (V;E) be an instan
e of #LargeCut and let n denote jV j and m denotejEj. We wish to 
onstru
t an instan
e G0 = (V 0; E0) of (�; 
; �)-Partition. In order to make theredu
tion expli
it, we will need to de�ne a quantity s whi
h depends upon �, 
, � and n. Thereader should think of s as simply being a suÆ
iently large polynomial in n. For 
ompleteness, let
 be a positive integer su
h that the quantity� := (min(�; 
))2(max(�; 
))
�1ex
eeds 1. It will then suÆ
e to let s be the smallest integer satisfying s � �s=(2
) whi
h is at leastmax0BBB� n+ 6lg� 1�
� ; 
 ln�22n(max(1;�))2nn25(�
)m�n �ln� 1max(�;
)� ; 2
 ln �max(�; 1=�)n2n+5�ln� ; 
n1CCCA ;where lg denotes the base-2 logarithm. We now give the 
onstru
tion of G0. For every vertex u ofG let Au be the set fAu[1℄; : : : ; Au[s℄g and Bu be the set fBu[1℄; : : : ; Bu[s℄g. LetV 0 = [u2V Au [Bu4Re
all that a \
ut" of a graph is an unordered partition of its vertex set into two subsets and that the size of the
ut is the number of edges between the two subsets.5The de�nition of #LargeCut may seem unnatural be
ause it is not easy in general to verify the promise thatno 
uts ex
eeding size-k exist in the input graph. However, the redu
tion in [7℄ 
an be viewed as produ
ing an inputgraph together with a \witness" whi
h allows the promise to be 
he
ked.6



and E0 =  [u2V Au �Bu! [0� [(u;v)2E [i2f1;:::;sgf(Au[i℄; Av [i℄); (Bu[i℄; Bv [i℄)g1A :Let 
(G0) denote the set of all two-spin 
on�gurations on G0. For any subset W � 
(G0), letZW (G0) denote the 
ontribution to Z(G0) 
orresponding to 
on�gurations in W . A 
on�guration �is full if, for every vertex u of G, all of Au is 
oloured with one of the two possible spins and all ofBu is 
oloured with the other spin. Every 
ut of G 
orresponds to exa
tly two full 
on�gurations:If u and v are in the same part of the 
ut then Au and Av are 
oloured with the same 
olour.Otherwise, Au and Av are 
oloured with di�erent 
olours. If � is a full 
on�guration 
orrespondingto a size-j 
ut thenZf�g(G0) = Yfi;jg2E0 �(i)0A�(j) Yk2V 0 b0 �(k) = (�
)s(m�j)�sn:Let N be the number of size-k 
uts of G and let C be the set of full 
on�gurations whi
h 
orrespondto size-k 
uts. Let 	 = 2(�
)s(m�k)�sn;so ZC(G0) = N	:We will shortly show Z
(G0)�C(G0) � 2�4(	 + 2�nZ(G0)): (3)Equation (3) implies N � Z(G0)	 � N + 14 : (4)To see this, 
onsider �rst the 
ase N = 0. In this 
ase Z(G0) = Z
(G0)�C(G0), so Equation (3) givesZ(G0)(1 � 2�(n+4)) � 2�4	and therefore 0 � Z(G0)=	 � 1=4 so Equation (4) holds. If N > 0 then sin
e N is at most thetotal number of 
uts, whi
h is at most 2n, Equation (3) givesZ(G0) = ZC(G0) + Z
(G0)�C(G0) � ZC(G0) �1 + 116N �+ 116NZ(G0):Thus Z(G0) � 1 + 116N1� 116N ZC(G0) � (1 + 14N )ZC(G0);whi
h implies Equation (4). From Equation (4), we �nd thatN = �Z(G0)	 � : (5)Also, the 
oor fun
tion in Equation (5) does not distort the a

ura
y overly mu
h: An approxima-tion to Z(G0) gives an approximation to N . The details about the a

ura
y of the approximationare the same as those in the proof of Theorem 3 of [5℄.So, to 
on
lude the proof we prove Equation (3). We do this by splitting 
(G0) � C intoseveral (potentially overlapping) sets and then summing the partition fun
tion over these sets in7



Equation (11). Let F be the set of full 
on�gurations 
orresponding to 
uts of size less than k.Then sin
e there are at most 2n 
uts,ZF (G0) � 2n(�
)s	 � 2�6	: (6)The se
ond inequality in Equation (6) follows from the fa
t that s is at least the �rst term in itsde�nition.For u 2 V , let au be the set of 
on�gurations in whi
h Au has at least s=
 green verti
es and atleast s=
 blue verti
es. Let a = [uau.Zau(G0) � 22nsmax(1; �)2nsmax(�; 
)s�s=
 � 2�6	=n: (7)To see why the �rst inequality in Equation (7) holds, observe that the number of 
on�gurations isat most 22ns. Ea
h of the 2ns verti
es has weight at most max(1; �). All edge-weights are at mostone, but for ea
h of the s verti
es in Bu there are at least s=
 in
ident edges with weight at mostmax(�; 
). The se
ond inequality in Equation (7) follows from the fa
t that s is at least the se
ondterm in its de�nition.For w 2 [u2VBu, let a0w be the set of � 2 
(G0)� a in whi
h at least half of the edges from wto [uAu are mono
hromati
. Let a0 = [wa0w. We will showZa0w(G0) � 2�(n+5)Z(G0)=(ns): (8)We will use the following notation to establish (8). For a 
on�guration �, and a vertex w of G0, let�nw be the restri
tion of � to V 0 � fwg. Let R be the restri
tions of 
on�gurations in 
(G0) � ato V 0 � fwg. That is, R = f�nw j � 2 
(G0)� ag:For every � 2 R, let ZRf�g = Yfi;jg2E0i6=w; j 6=w �(i)0A�(j) Yk2V 0k 6=w b0 �(k):Then Za0w (G0) �X�2RZRf�gmax(�; 
)(1�1=
)smax(1; �):The fa
tor max(�; 
)(1�1=
)s 
orresponds to the weight of edges from w to [uAu. At least half ofthese edges are mono
hromati
. Be
ause � 62 a and 
 � 2 this implies that at least (1 � 1=
)s ofthem are mono
hromati
. Also,Z(G0) � Z
(G0)�a�a0w (G0) �X�2RZRf�gmin(�; 
)(s=
)+nmin(1; �):So Za0w (G0) � max(�; 
)(1�1=
)smax(1; �)min(�; 
)(s=
)+nmin(1; �) X�2RZRf�gmin(�; 
)(s=
)+nmin(1; �)� max(�; 
)(1�1=
)smin(�; 
)(s=
)+n max(�; 1=�)Z(G0)�  max(�; 
)
�1min(�; 
)2 !s=
max(�; 1=�)Z(G0)� 2�(n+5)Z(G0)=(ns): 8



The se
ond-to-last inequality uses n � s=
 and the �nal inequality follows from the fa
t thats � �s=(2
) and the fa
t that s is at least the third term in its de�nition. Thus, Equation (8) isestablished.For u 2 V , let bu be the set of 
on�gurations in whi
h Bu has at least s=
 green verti
es and atleast s=
 blue verti
es. Let b = [ubu. By analogy to Equation (7), we getZbu(G0) � 2�6	=n: (9)For w 2 [u2VAu, let b0w be the set of � 2 
(G0)� b in whi
h at least half of the edges from wto [uBu are mono
hromati
. Let b0 = [wb0w. By analogy to Equation (8), we getZb0w (G0) � 2�(n+5)Z(G0)=(ns): (10)Equation (3) follows from Equations (6), (7), (8), (9) and (10) sin
eZ
(G0)�C(G0) � ZF (G0) + Za(G0) + Za0(G0) + Zb(G0) + Zb0(G0): (11)To see that (11) holds, 
onsider any 
on�guration � whi
h is not in a [ a0 [ b [ b0. Consider anyvertex u of G. Sin
e � 62 au, more than (1 � 1=
)s of the nodes in Au have a 
ertain 
olour. So,sin
e � 62 a0w for any w 2 Bu, all of Bu is 
oloured with the other 
olour. Finally, sin
e � 62 b0w forany w 2 Au, all of Au is 
oloured with the same 
olour. We 
on
lude that � is full, so it is eitherin F or in C. �Lemma 2 has the following 
onsequen
e.Theorem 3 Let �, 
 and � be �xed parameters satisfying 0 < � < 1, 0 < 
 < 1 and � > 0. Thenthere is no FPRAS for (�; 
; �)-Partition unless NP = RP.5 An additional tra
table regionTheorem 3 showed that there is unlikely to be an FPRAS for (�; 
; �)-Partition when 0 < � < 1and 0 < 
 < 1. Theorem 1 showed that in the region �
 � 1 there is an FPRAS. In this se
tionwe will assume that �
 < 1 and either � > 1 or 
 > 1. Our aim is to identify an additional regionwhere there is still an FPRAS. The FPRAS is based on the simulation of the single-site heat-bathMarkov 
hain, whi
h is studied in Se
tion 5.1.5.1 Rapid mixing within the regionThe single-site heat-bath 
hain for the two-state partition fun
tion works as follows. Given a(
onne
ted) n-vertex input graph G = (V;E), 
(G) is the state spa
e (the set of 
on�gurations,i.e., the set of all 2-
olourings of G, in
luding improper 
olourings). From a 
on�guration � 2 
(G),the 
hain �rst 
hooses a vertex x 2 V u.a.r. Let �(x! g) denote the 
on�guration obtained from �by 
olouring x green, and �(x! b) the 
on�guration 
orresponding to 
olouring x blue. Letp(x; g)(�) = Zf�(x!g)g(G)Zf�(x!g)g(G) + Zf�(x!b)g(G)and p(x; b)(�) = 1� p(x; g)(�). The new state is taken to be �(x! g) with probability p(x; g)(�)and �(x! b) otherwise. 9



We will use path 
oupling [2℄ to prove that single-site heat bath is rapidly mixing. We adopt thenotation from [3℄. Let S � 
(G)2 be the set of pairs of 
on�gurations with Hamming-distan
e 1. If �and �0 are 
on�gurations whi
h disagree only at vertex v then 	(�; �0) (the proximity of � and �0) isde�ned to be the degree of v in G, whi
h we denote �[v℄. The distan
e fun
tion is given in the usualway: For ea
h pair (�; �0) 2 
(G)2, P(�; �0) is the set of all sequen
es � = �1; �2; : : : ; �r�1; �r = �0with (�i; �i+1) 2 S for i 2 f1; : : : ; r � 1g. The distan
e fun
tion is de�ned byÆ(�; �0) = minP(�;�0) r�1Xi=1 	(�i; �i+1); (12)whi
h 
an be written as Æ(�; �0) =Xv2V Iv(�; �0)�[v℄; (13)where Iv(�; �0) is the indi
ator for the event that � and �0 di�er at vertex v, i.e., the event�(v) 6= �0(v). Note that if Zf�g(G) and Zf�0g(G) are both positive, then there is a 
hain � =�1; �2; : : : ; �r�1; �r = �0 whi
h minimises the right-hand-side of (12), and for whi
h ea
h �i hasZf�ig(G) > 0. For example, if � > 0 then the 
hain is 
onstru
ted by �rst 
olouring some greenverti
es blue and then 
olouring some blue verti
es green.We will now de�ne a 
oupling whi
h, for every (X0; Y0) 2 S and every (X1; Y1) 2 
(G)2,gives the probability of a joint transition from (X0; Y0) to (X1; Y1). Suppose that X0 and Y0 di�eron v. The 
oupling will be the optimal one, subje
t to the assumption that the same vertex xis sele
ted in X0 and in Y0. First, a vertex x is 
hosen u.a.r. If x is not a neighbour of v thenthe same 
olour is 
hosen for x in X1 and in Y1. If x is a neighbour of v, then with probabil-ity min(p(x; g)(X0); p(x; g)(Y0)), X1 = X0(x ! g) and Y1 = Y0(x ! g), and with probabilitymin(p(x; b)(X0); p(x; b)(Y0)), X1 = X0(x ! b) and Y1 = Y0(x ! b). The rest of the 
oupling isfor
ed by the requirement that the marginals be 
orre
t.The path 
oupling lemma in [2, 3℄ guarantees that the 
hain is rapidly mixing as long as thereis an "n > 1=poly(n) su
h that that for every pair (X0; Y0) 2 S, the expe
ted value of Æ(X1; Y1),whi
h we denote E(Æ(X1; Y1)), satis�esE(Æ(X1; Y1)) � (1� "n)Æ(X0; Y0): (14)In parti
ular, the total variation distan
e between the t-step distribution of the 
hain and thestationary distribution is at most " after only ln(n"�1)="n steps.So, suppose that X0 and Y0 di�er at vertex v. For 
on
reteness, suppose that X0(v) is blue.For every neighbour w of v, let bw denote the number of neighbours of w, other than v, whi
h are
oloured blue in X0 (or equivalently, in Y0). Let gw denote the number of neighbours of w, otherthan v, whi
h are 
oloured green in X0. Thus �[w℄ = bw + gw + 1 � 1. Letfw(i) = ��[w℄�i��[w℄�i + �
i = 11 + �(�
)i���[w℄ :Note that p(w; b)(X0) = fw(gw) and p(w; b)(Y0) = fw(gw + 1).Applying Equation (14), we require that, for some "n > 1=poly(n), for every pair (X0; Y0) 2 Swhi
h disagree on vertex v,�1� 1n��[v℄ + 1nXw�v jfw(gw + 1)� fw(gw)j�[w℄ � (1� "n)�[v℄: (15)10



Our derivation of the spe
i�
 requirement in Equation (15) from the general requirement in Equa-tion (14) relies on Equation (13). The probability that X1 and Y1 di�er on v is equal to 1 � 1=n,whi
h is the probability that v is not 
hosen. If w is 
hosen then the probability that X1 andY1 di�er on w is jp(w; b)(Y0) � p(w; b)(X0)j. The �[v℄ on the right-hand-side of (15) representsÆ(X0; Y0). In order to establish (15), it suÆ
es to show that for every neighbour w of v,jfw(gw + 1)� fw(gw)j�[w℄ � �; (16)for some � < 1, depending only on �,
 and �. Then we 
an take "n = (1 � �)=n. We will identifyregions where (16) holds. We start by fo
using on the 
ase where � > 1 > 
. (The 
ase 
 > 1 > �is symmetri
 to this 
ase, and will be handled below.)Sin
e �
 < 1, fw(i) is an in
reasing fun
tion of i, and so jfw(i+1)� fw(i)j = fw(i+1)� fw(i)for all i. To satisfy (16) for all n, G, v and w, it is suÆ
ient to show that, for all integers i � 0 andall real � � 1, � 11 + yi+1x� � 11 + yix��� � �: (17)where y = �
 and x� = ����. Of 
ourse, we only really require this inequality for integer valuesof �, but the bounds we obtain are suÆ
ient for our purposes.For any �xed i � 0, let 
i = yix�. So 
i is a de
reasing fun
tion of �, with derivative �
i ln�.The derivative with respe
t to � of the logarithm of� 11 + y
i � 11 + 
i�� = (1� y)�(1 + y
i)(1 + 
�1i )is 1� � ln�� 11 + y
i � 11 + 
�1i � ;a de
reasing fun
tion of �. This 
ontinuous fun
tion tends to +1 as �! 0, and tends to � ln� < 0as �!1. Therefore there is a unique (�nite) positive value �i for whi
h this derivative vanishes,and at whi
h the maximum value of the left-hand side of inequality (17) with respe
t to the realvariable � is attained.To map the boundary of the region of (�; 
; �)-spa
e for whi
h (17) holds, we 
an thereforesolve the following simultaneous pair of relations, expressing the 
onditions that the maximisingvalue of � yields a value at most �:1�i � ln�� 11 + y
i � 11 + 
�1i � = 0; and (18)� 11 + y
i � 11 + 
i��i � �: (19)Eliminating the expli
it o

urren
es of �i, we �nd the following quadrati
 inequality for 
i:
2i y + 
i(1� y)� ln� � 1 � 0: (20)Solving this quadrati
 for 1=
i implies the inequality
i � 2� ln�1� y +p(1� y)2 + y(2� ln�)2 : (21)11



Sin
e 
i is de
reasing in i, (21) is satis�ed for all i � 0 if and only if it is satis�ed for i = 0.Sin
e we 
an 
hoose � < 1 arbitrarily and the right-hand side of (21) is an in
reasing fun
tion of �,we 
an repla
e � by 1 in (21) but make the inequality stri
t, i.e.,
i � 
0 < C(ln�) (22)where C(z) = 2z1� �
 +p(1� �
)2 + 4�
z2 : (23)Equation (18) yields ln��0 = D(
0); (24)where the right-hand side is an in
reasing fun
tion of 
0,D(z) = � 11 + �
z � 11 + z�1��1 : (25)We 
an use (22) and (24) to derive an upper bound on � as a fun
tion of � and 
. Sin
e� = 
0��0 , any 
hoi
e of � whi
h satis�es Equation (26) (below) also satis�es Equation (22) for themaximising value of �0 given by Equation (18) and for some � < 1. Hen
e, it satis�es Equation (19),as required. Our �nal bound is given by� < C(ln�) eD(C(ln �)): (26)Note that the left-hand-side of (19) is a de
reasing fun
tion of 
 for the 
riti
al 
ase, i = 0. Thuswe 
an get a simpler (but worse) bound by 
onsidering the extreme 
ase, 
 = 0. Here, C(z) = zand D(z) = 1 + z, so (26) gives the bound: � < e� ln�.The region de�ned by �
 < 1, 
 > 1 is symmetri
 to the region that we have just 
onsidered.In parti
ular, the blue{green symmetry yields the following relationships:p(w; g)(X0) = 1� p(w; b)(X0) = 1� fw(gw) = 1=(��1
�gw��[w℄�gw + 1)= 1=(1 + ��1�bw+1
bw+1��[w℄) = f̂w(bw + 1);and p(w; g)(Y0) = 1� fw(gw + 1) = 1=(1 + ��1�bw
bw��[w℄) = f̂w(bw);where f̂w is derived from fw by repla
ing �; �; 
 by ��1; 
; � respe
tively. Our requirement isjf̂w(bw + 1)� f̂w(bw)j�[w℄ � �n;whi
h is symmetri
 to Equation (16) and this is therefore met within the region de�ned by �
 < 1,
 > 1 and ��1 < C(ln
) eD(C(ln 
)) (from Equation (26)).Thus, we have shown the following result.Lemma 4 The single-site heat-bath Markov 
hain for the two-state partition fun
tion is rapidlymixing within the regions de�ned by: �
 < 1 and either1. � > 1 and � < C(ln�)eD(C(ln �)), or2. 
 > 1 and 1=� < C(ln
)eD(C(ln 
)),where fun
tions C and D are de�ned in Equations (23) and (25).12
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Figure 2: Logarithm of the maximal � in the region 1 < � � 2 and 0 � 
 < 1.Corollary 5 The single-site heat-bath Markov 
hain for the two-state partition fun
tion is rapidlymixing within the regions de�ned by: �
 < 1 and either1. � > 1 and � < e� ln�, or2. 
 > 1 and 1=� < e
 ln
.Figure 2 shows a portion of the bounding surfa
e of the region des
ribed in Lemma 4. Therapid-mixing region lies below this surfa
e, whi
h represents the logarithm of the maximal � withinthe region 1 < � � 2 and 0 � 
 < 1.5.2 Redu
ing approximate 
ounting to samplingLemma 4 showed that the single-site heat-bath Markov 
hain is rapidly mixing within the spe
i�edregion. Thus, this Markov 
hain provides a fully-polynomial approximate sampler (FPAS) for thetwo-spin partition fun
tion within the region. Su
h an FPAS is an algorithm whi
h, when it isgiven a 
onne
ted graph G = (V;E) and an a

ura
y parameter " 2 (0; 1℄, outputs a 
on�guration� 2 
(G) a

ording to a measure �G whi
h satis�es dTV(�G; �G) � " where�G(�) = Zf�g(G)Z(G)and dTV denotes total variation distan
e. Using the method of Jerrum, Valiant and Vazirani [8℄,it is straightforward to show that the FPAS 
an be turned into an FPRAS for (�; 
; �)-Partitionwithin the region. Thus, we obtain the following theorem.Theorem 6 There is an FPRAS for (�; 
; �)-Partition when the �xed parameters �, 
 and �are in the regions de�ned by �
 < 1 and either1. � > 1 and � < C(ln�)eD(C(ln �)), or2. 
 > 1 and 1=� < C(ln
)eD(C(ln 
)), 13



where fun
tions C and D are de�ned in Equations (23) and (25).Corollary 7 There is an FPRAS for (�; 
; �)-Partition when the �xed parameters �, 
 and �are in the regions de�ned by �
 < 1 and either1. � > 1 and � < e� ln�, or2. 
 > 1 and 1=� < e
 ln
.The spe
ial 
ase of � = 1 gives a numeri
al lower bound of about 1.3211 for � and 
 respe
tively.To aid the reader, we provide some details showing how to turn the FPAS into an FPRASwithin Region 1 (i.e., the region de�ned by �
 < 1 and � > 1 and � < C(ln�)eD(C(ln �))). Region 2
an be handled by a similar argument, exploiting the blue{green symmetry as in Se
tion 5.1.Suppose that the edge set E of G is E = fe1; : : : ; emg and let Gi be the graph (V; fe1; : : : ; eig).Thus, our job is to approximateZ(G) = Z(Gm) = Z(Gm)Z(Gm�1) Z(Gm�1)Z(Gm�2) � � � Z(G1)Z(G0)Z(G0):The quantity Z(G0) is easy to 
ompute, so the main task is to estimate the quantity%i = Z(Gi)Z(Gi�1) :Suppose that ei is the edge (xi; yi). For spin s, let 
si�1 denote the set of all 
on�gurations in
(Gi�1) in whi
h xi and yi are assigned spin s. Let 
�i�1 denote the set of all 
on�gurations in
(Gi�1) in whi
h xi and yi are assigned di�erent spins. Then%i = �P�2
bi�1 Zf�g(Gi�1) + 
P�2
gi�1 Zf�g(Gi�1) +P�2
�i�1 Zf�g(Gi�1)P�2
(Gi�1) Zf�g(Gi�1) : (27)We need a method for estimating %i. Consider the following experiment (whi
h makes sense,sin
e 
 � � and 1 � �): Sample a 
on�guration � 2 
(Gi�1) with weight �Gi�1(�). If � 2 
bi�1,output \yes". If � 2 
gi�1, output \yes" with probability 
=� and \no" otherwise. If � 2 
�i�1,output \yes" with probability 1=� and \no" otherwise. From (27), we dedu
e that the probabilitythat the algorithm outputs \yes" is %i=�. Thus, we 
an a

urately estimate %i by applying theexperiment to several outputs of the FPAS. (We need several outputs be
ause the FPAS hasmeasure �Gi�1 not �Gi�1 .) Also, we 
an 
on
lude that %i � �. It is known [8℄ that as long as%i � 1=poly(n), where n = jV j, then the required number of samples is only polynomial in n and"�1, so we get an FPRAS. Details 
an be found in the proof of Proposition 3.4 of [6℄.We 
on
lude this se
tion by showing that, in the region of interest, %i � 1=(1 + �). To startwith, we observe that Z
gi�1(Gi�1) � �Z
�i�1(Gi�1): (28)To see (28), 
onsider the inje
tion whi
h maps every � 2 
gi�1 to �0 2 
�i�1 by 
olouring yi blue.Sin
e 
 � 1 and � � 1, �Zf�0g(Gi�1) � Zf�g(Gi�1). Thus, from (27), sin
e � � 1,%i � Z
bi�1(Gi�1) + Z
�i�1(Gi�1)Z
gi�1(Gi�1) + Z
bi�1(Gi�1) + Z
�i�1(Gi�1)� Z
bi�1(Gi�1) + Z
�i�1(Gi�1)Z
bi�1(Gi�1) + (1 + �)Z
�i�1(Gi�1)� 11 + �: 14



6 An additional intra
table regionIn the previous se
tion, we saw that the tra
table region extends beyond that de�ned by thehyperbola �
 � 1. The main result of this se
tion is that the intra
table region extends beyondthe square de�ned by � < 1 and 
 < 1. Spe
i�
ally, we show:Theorem 8 Let � be a suÆ
iently small 
onstant (� = 10�7 will do), and suppose that 1 � � �1 + �, 0 � 
 � � and 12 � � � 2. Then there is no FPRAS for (�; 
; �)-Partition unlessNP = RP.By the same symmetry 
onsiderations exploited in Se
tion 5, Theorem 8 remains true with theroles of � and 
 reversed.The region 
overed by Theorem 8 is admittedly small. The estimates in the proof 
ould un-doubtedly be tightened with a view to expanding the range of parameter values 
overed by thetheorem. However, sin
e our main aim is to un
over some intra
table region of positive volumelying outside the square, we shall instead aim to keep the te
hni
al 
ompli
ations to a minimum.Our starting point is an inapproximability result 
on
erning independent sets in bounded degreegraphs. It is well known that that it is NP-hard to determine the size of a maximum independentset in a graph of maximum degree 4. A result of Berman and Karpinski [1, Thm 1(iv)℄ tells usmore:Proposition 9 For any " > 0, it is NP-hard to determine the size of a maximum independent setin a graph G to within ratio 7374 + ", even when G is restri
ted to have maximum degree 4.(By \determining the size: : : within ratio �" we mean 
omputing a number k̂ su
h that �k � k̂ � k,where k is the size of a maximum independent set in G.) The possibility of establishing results su
has Proposition 9 has been opened up by the theory of \polynomially 
he
kable proofs" (PCPs).Proof of Theorem 8. Our proof strategy is to design a redu
tion that takes a graph G = (V;E)of maximum degree 4 and forms a graph G0 with the following informal property: The partitionfun
tion Z(G0) of the new graph G0 determines the size of the largest independent set in G withinratio 0:99. Sin
e su
h a tight performan
e guarantee is pre
luded by Proposition 9, this will beenough to establish the result.We now des
ribe the 
onstru
tion of G0 from G. For every vertex u of G let Au be a distin
tset of size r, where r is a 
onstant to be determined later. Then de�neV 0 = [u2V Auand E0 = [fu;vg2EAu �Av:Presently, we shall argue that the partition fun
tion of G0 is bounded below and above as follows:Z(G0) � (1 + �)rk (29)and Z(G0) � kXi=0 �ni�(1 + �)ri r(n�i)Xj=0 �r(n� i)j ��j(1 + �)r2m�j�j ; (30)15



where n = jV j, m = jEj and k is the size of a maximum independent set in G. It transpires thatwhen the parameters �, 
 and � satisfy the 
onditions of the theorem, these inequalities lo
atelnZ(G0) rather a

urately: see inequality (33). Thus a good estimate for Z(G0) provides a goodestimate for k.The lower bound (29) is the easier of the two to justify. Let I be any independent set in G ofsize k. The lower bound (29) 
omes from 
onsidering just the 
on�gurations whi
h assign blue to allverti
es in Su2V nI Au. Sin
e � � 1 and there are no green-green edges, every su
h 
on�guration �
ontributes at least �j to the partition fun
tion, where j is the number of green verti
es in �. Sin
ethe green verti
es are freely sele
ted from a set of size rk, inequality (29) is now immediate.The upper bound (30) is not mu
h more diÆ
ult, if viewed in the right way. A base for a
on�guration � is an independent set I in G su
h that:� for every u 2 I the blo
k Au 
ontains at least one green vertex;� for every blo
k Au 
ontaining a green vertex, either u is in I or u is adja
ent to a vertex in I.Every 
on�guration has at least one base, sin
e we may take I to be any maximal independent setwithin the subgraph of G indu
ed by the vertex setfu 2 V : Au 
ontains at least one green vertexg:It is 
onvenient to think of the term \base" as applying both to the vertex set I in G and the vertexset Su2I Au in G0.For ea
h base, we shall estimate the total weight of 
on�gurations with that base, and thensum over all possible bases. This will lead to over
ounting, sin
e ea
h 
on�guration has many basesin general. This is �ne, as we are shooting for an upper bound. The key observation is that, inany 
on�guration with base I, ea
h green vertex lying outside the base is adja
ent to some greenvertex lying inside. Thus the number of green-green edges is at least as large as the number ofgreen non-base verti
es.With these 
onsiderations in mind, the formula in (30) may be read left-to-right as follows: (i) iranges over the possible sizes of a base, k being an upper bound sin
e any base is an independentset in G; (ii) �ni� is a bound on the number of bases of size i; (iii) (1 +�)ri 
ounts 
olourings of thebase-verti
es; (iv) j is the number of green verti
es among the non-base verti
es, ranging from j = 0(no green verti
es) to j = r(n � i) (all green); (v) �j 
omes from the j green verti
es; and �nally(vi) (1 + �)r2m�j�j is an upper bound on edge weights, sin
e there must be at least j green-greenedges.Next, we simplify the upper bound (30) by approximating the two sums:Z(G0) � kXi=0 �ni�(1 + �)ri(1 + �)r2m rnXj=0�rnj ��j�j= (1 + �)r2m kXi=0 �ni�(1 + �)ri(1 + ��)rn� (1 + �)r2m(1 + ��)rn2n kXi=0(1 + �)ri� (1 + �)r2m(1 + ��)rn2n+1(1 + �)rk; (31)where the �nal inequality assumes (as will 
ertainly be the 
ase) that (1 + �)r � 2.16



Taking logarithms of (29) and (31) we may sandwi
h lnZ(G0) as follows:rk ln(1 + �) � lnZ(G0) � (1 + 
1 + 
2 + 
3) rk ln(1 + �); (32)where 
1 = r2m ln(1 + �)rk ln(1 + �) ; 
2 = rn ln(1 + ��)rk ln(1 + �) ; and 
3 = (n+ 1) ln 2rk ln(1 + �) :Now m � 2n sin
e G has maximum degree 4. Furthermore, k � 14n sin
e G is 4-
olourableby Brooks' Theorem. (The largest 
olour 
lass is an independent set). So assuming r = 1000,12 � � � 2 and 0 � � � 10�7, we have the following bounds on 
1, 
2 and 
3:
1 � 2rn�k ln(1 + �) � 8r�ln(1 + �) � 0:002
2 � n��k ln(1 + �) � 4��ln(1 + �) � 0:001
3 � (1 + 1n)4 ln 2r ln(1 + �) � 0:007;for suÆ
iently large n.Thus from (32), rk ln(1 + �) � lnZ(G0) � 1:01 rk ln(1 + �);and hen
e 0:99 k � 0:99 lnZ(G0)r ln(1 + �) � k: (33)Finally, suppose �, 
 and � are as stated in the theorem, and that there is an FPRAS for(�; 
; �)-Partition. Then we would be able to 
ompute an approximation L to lnZ(G0) withinadditive error 1 (say), in polynomial time, with high probability. But then 0:99L=1000 ln(1 + �)(rounded to the nearest integer) would approximate the size of a maximum independent set in Gto within ratio uniformly better than 7374 . By Proposition 9, this entails RP = NP. �Referen
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