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Abstract

The subject of this article is spin-systems as studied in statistical physics. We focus on
the case of two spins. This case encompasses models of physical interest, such as the classical
Ising model (ferromagnetic or antiferromagnetic, with or without an applied magnetic field) and
the hard-core gas model. There are three degrees of freedom, corresponding to our parameters
B, v and p. Informally, 8 represents the weights of edges joining pairs of “spin blue” sites, -
represents the weight of edges joining pairs of “spin green” sites, and p represents the weight
of “spin green” sites. We study the complexity of (approximately) computing the partition
function in terms of these parameters. We pay special attention to the symmetric case p = 1.
Exact computation of the partition function Z is NP-hard except in the trivial case 8y = 1,
so we concentrate on the issue of whether Z can be computed within small relative error in
polynomial time. We show that there is a fully polynomial randomised approximation scheme
(FPRAS) for the partition function in the “ferromagnetic” region fv > 1, but (unless RP = NP)
there is no FPRAS in the “antiferromagnetic” region corresponding to the square defined by
0 < B <1land 0 < v < 1. Neither of these “natural” regions — neither the hyperbola nor
the square — marks the boundary between tractable and intractable. In one direction, we
provide an FPRAS for the partition function within a region which extends well away from the
hyperbola. In the other direction, we exhibit two tiny, symmetric, intractable regions extending
beyond the antiferromagnetic region. We also extend our results to the asymmetric case p # 1.
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1 Introduction

The subject of this article is “spin-systems” as studied in statistical physics. An instance of a
spin-system is an n-vertex graph G = (V, E). Let ¢ > 2 be an integer. A configuration of a spin
system on G is one of the ¢" possible assignments o : V' — {0,...,q — 1} of g spins to the vertices
of G. (We shall usually refer to spins as colours.) Each configuration has an energy H (o) which
is the sum of individual contributions from the edges and vertices of G. The contribution of each
edge {i,7} € E is a specified function (here assumed symmetric) of the colours o(i) and o(j);
likewise, the contribution of vertex k € V is a function of o(k). Each configuration has weight
w(o) = exp(—H(0)/T), where T is a parameter of the system called temperature. The partition
function of the system is the normalising factor Z = )" _exp(—H(c)/T) that turns the weights
into probabilities.!

Our goal in this paper is to study the complexity of computing the partition function of spin
systems. We shall deal exclusively with two-spin (¢ = 2) systems, since these already seem to
present enough of a challenge. Moreover, the case ¢ = 2 encompasses models of physical interest,
such as the classical Ising model (ferromagnetic or antiferromagnetic, with or without an applied
magnetic field), or the hard-core gas model. We refer to the two colours (spins) as “blue” and
“green”. Since w(o) = exp(—H(0)/T) and H (o) is a sum of contributions from edges and vertices,
we can equivalently take a multiplicative view, in which w(o) is defined as a product of contributions
from the individual edges and vertices. (All this will be set up formally in the next section; however,
we hope that this informal account provides an adequate basis for at least a qualitative discussion
of the main results of the paper.)

At first sight it seems as though there are three parameters governing edge contributions (corre-
sponding to blue-blue, blue-green and green-green edges), and two governing vertex contributions
(corresponding to blue and green vertices). But we may normalise the (multiplicative) blue-green
edge contribution to 1, and the blue vertex contribution to 1 also.? Thus there are essentially three
degrees of freedom. We denote the (multiplicative) blue-blue edge contribution by 3, the green-
green by v, and the green vertex contribution by u. In fact — partly because it is easier to depict
a two-dimensional parameter space, and partly because our understanding of the general situation
is still incomplete — we shall pay particular attention to the special (symmetric) case u = 1.

Figure 1 shows the regions in (f3,)-space as classified by our results when p = 1. Exact
computation of the partition function Z is NP-hard except in the trivial case vy = 1 so we concen-
trate on the issue of whether Z can be computed within small relative error in polynomial time.
(The precise notion of efficient approximation algorithm used is the “fully polynomial randomised
approximation scheme” or FPRAS, which will be defined in §2.) The main features are as follows:

1. To the North-East of the hyperbola is a “ferromagnetic” region v > 1 within which the
partition function may be approximated in the FPRAS sense. This is done by reduction to a
ferromagnetic Ising system with external field, whose partition function may be approximated
by a Markov chain Monte Carlo algorithm of Jerrum and Sinclair [7]. See §3.

2. The square defined by 0 < 8 < 1 and 0 < v < 1 is an “antiferromagnetic” region because
blue-green edges have higher weight than blue-blue edges or green-green edges. Within this
region, the partition function is hard to approximate (unless RP = NP). Essentially this
is because “ground states” (i.e., most likely or most weighty configurations) correspond to

'Readers who do not find the physical setting congenial may think instead of a weighted version of the graph
homomorphism problem. See Section 1.1 of [4].
2This is equivalent to normalising the energy contribution of blue-green edges and blue vertices to zero.
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Figure 1: Results for regions of the (3,7)-plane at p = 1.

maximum cuts in G. This at least is the intuition; the formalisation of it requires some work.

See §4.

3. Neither of these “natural” regions — neither the hyperbola nor the square — marks the
boundary between tractable and intractable. In one direction, we provide an FPRAS for
the partition function within the light grey region, which extends well away the hyperbola.
This FPRAS is based on the Markov chain Monte Carlo method, and its analysis uses the
“path-coupling” technique of Bubley and Dyer [2]. See §5.

4. In the other direction, we exhibit two tiny, symmetric, intractable regions extending beyond
the “antiferromagnetic” region, close to the points (0,1) and (1,0). This is done by coding
up an inapproximable combinatorial optimisation problem following Luby and Vigoda [9].
See §6.

It will be seen that our knowledge even of the y = 1 case is incomplete: specifically, we don’t
know what happens in the remaining (medium intensity grey) regions. For example, we don’t
know whether tractability is monotone in 8 (or ). In the remaining sections, we prove the results
depicted in Figure 1 and also extend these results beyond the symmetric case p = 1.

2 Definitions

To formalise the claims made in the introduction we need to define precisely the terms (two-state)
“spin system” and “FPRAS” (our notion of efficient approximate computation).

In order to define the partition function of a two-state spin system specified by weights 5, v and
i, 1t is convenient to identify blue and green with the unit vectors (1,0)" and (0, 1), respectively.
(Primes will be used to denote transposition, so spins are column vectors.) Then the partition



function for a graph G = (V, E) may be expressed as
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and o ranges over {(1,0)’,(0,1)'}. To see this, note that each of the four possible assignments of
unit vectors to (i) and o(j) picks out a distinct element of the matrix A, and similarly with b.

The problem whose complexity we study is (3, ~, u)-PARTITION, defined as follows. Let 3, «
and p be non-negative real numbers.

where

Name. (8,7, 1)-PARTITION.
Instance. A graph G.
Output. The quantity Z(G), where Z is the partition function with parameters 3, v and p.

Note that the graph G alone forms the problem instance, which means we have a separate problem
for every triple (8,7,u). (Our notation is intended to emphasise this.) Our goal is to map out
the tractable region of the parameter space. To avoid the issues of specifying and computing with
arbitrary real numbers, we assume that 5, v and p are rational.

In this area, approximation algorithms are usually viewed as computing functions f : 3* — N,
where . is a finite alphabet for encoding problem instances. In the current application, however,
the output may be an arbitrary rational number. Rather than redefining a well-established notion
of efficient approximate computation, we shall stick with the usual definition, and then explain how
to view (3,7, 4)-PARTITION in this framework.

A randomised approzimation scheme for a counting problem f : ¥* — N (e.g., the number of
matchings in a graph) is a randomised algorithm that takes as input an instance z € ¥* (e.g., an
encoding of a graph G) and an error tolerance ¢ > 0, and outputs a number N € N (a random
variable of the “coin tosses” made by the algorithm) such that, for every instance z,

Prle “f(z) <N <ef(z)] >=. (1)

=W

We speak of a fully polynomial randomised approzimation scheme, or FPRAS, if the algorithm
runs in time bounded by a polynomial in |z| and e~!. It is a standard result that the number %
appearing in (1) could be replaced by any number in the open interval (%, 1).

To bring the problem (3,7, 1)-PARTITION within the FPRAS framework, we suggest the follow-
ing: Assume f, v and p are rational, and let L be the least common multiple of their denominators.
Then the desired output Z(G) can be expressed as a rational number z with denominator L™+™,
where n is the number of vertices in G and m the number of edges. Then our goal is to design an

FPRAS computing L™ z.

3 The “ferromagnetic region” is tractable

We argue that the region S+ > 1 corresponds fairly directly to the ferromagnetic Ising model with
external field. It follows that there is an FPRAS for the partition function Z in this region. When
By = 1 the partition function is trivially computable in polynomial time.



To make this correspondence explicit, observe that
A B (1 0 a 1 1 0
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where o = /7y, and hence
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and the final equality uses the fact that spins are unit vectors. Thus we obtain the following
alternative expression for the partition function:

where

B\ NE d(k)
Z(G)z(—) S I o' AoG) IT (1 (r/e) ™) o(k). )
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where d(k) is the degree of vertex k. To verify (2), note that each of the d(k) edges incident at k
contributes a factor (1,v/a)o(k) to Z(G), in addition to the (1, ) o(k) already present.

Suppose for the moment that 4 = 1. When By > 1, i.e., when a > 1, equation (2) is, up to
an easily computable factor, the partition function for a ferromagnetic Ising system with external
field. Jerrum and Sinclair [7] have exhibited an FPRAS for computing the partition function of
such systems, from which it follows that the region Sy > 1 is tractable. More precisely:

Theorem 1 For any fized 3, v satisfying By > 1 there is an FPRAS for (8,7, 1)-PARTITION.
More generally, there is an FPRAS for (8,7, u1)-PARTITION provided, in addition, § > 7 and

w< By (or B < and > \/Blv).

Proof. Once we have provided a translation between the terminology of the current paper and
that of [7], it will be seen that the existence of an FPRAS is immediate from [7, Thm. 5]. (The
latter theorem simply asserts the existence of an FPRAS for estimating the partition function of a
ferromagnetic Ising system.)

First, a brief description of the Ising model. The Ising model is a two-spin model in which
interactions are symmetric under interchange of the two colours (spins): in our terminology a =
B = . In the ferromagnetic Ising model, like spins are favoured over unlike, i.e., @ > 1. There
may be an ezternal (or applied) field, that causes one colour to be favoured over the other: in
our terminology p # 1. The interactions are allowed to vary from edge to edge, provided they are
all ferromagnetic. Thus we may have a separate matrix A;; associated with each edge {7,j} € F,
provided each matrix individually satisfies the conditions stated above (diagonal entries equal and
not less than 1.) The interactions with the external field may also vary, i.e., the vector b may vary
from vertex to vertex. However, one colour must be uniformly favoured over the other; in other
words the parameter 4 must be uniformly at least 1, or uniformly at most 1.



Inspecting equation (2), we see that the aforementioned conditions are met, provided only that
(v/a)¥®) = (v/B)4*)/2 1, is uniformly at least 1 or at most 1. This will certainly be the case if
@ = 1. But it will also hold in the other situations identified in the statement of the theorem.?

In order to give the details of the reduction from (f,, 4)-PARTITION to Theorem 5 of [7], we
need to show how to encode the input, that is, G, «, and the quantities (y/£)%*)/2; as binary
strings of appropriate length. The details of this are routine, and are omitted. (Clearly, only an
approximation to « is used, since « itself may be irrational.)

One final technical point concerning [7, Thm. 5]. In the proof of that theorem it is assumed
that the interaction of the external field with spins is uniform over all sites, whereas we require
here a non-uniform (though consistently oriented) interaction. The proof was organised in this
way for simplicity of presentation. The clean fix is to routinely amend the proof by introducing
explicit individual interaction strengths at the various sites. However, an alternative fix that does
not involve delving into the original proof is to reduce the case of varying interaction strengths to
that of fixed. In particular, suppose ¢ is our desired accuracy parameter and consider an instance G
with, for each vertex v, an interaction strength u, > 1. Let

£

o =

3

na[max, In py]
up=1446, and
_(a—-1)0  pa+1l
T 1+a+0  pta
The Ising partition function for this instance is closely approximated by the partition function of
a new instance in which the graph, G’, is formed from G by attaching

L)

z

1.

pendant edges to each vertex v and giving each vertex interaction strength p. To see that the
approximation is sufficiently close, note that the relative weight of colouring v green rather than

blue in G is N
. [ pat ’
¢_M(u+a>'

efe/nuv < w < ee/nuv.

Thus the definitions guarantee

as required. 0
Remark 1 When 8y = 1, expression (2) factorises and the (exact) computation of Z is trivial.

Remark 2 Another situation in which (’y/a)d(k),u is assured to be uniformly at least 1 or at most 1
is when d(k) is constant, i.e., G is regular.

The parameter values not covered by Theorem 1, i.e., f > v and p > +/fB/v (or 5 < v and
i < +/B/v) present a conundrum. These correspond to a situation, which may be physically
unrealistic, in which some vertices incline to one colour and others to the other. On the one hand,
there is no obvious barrier to FPRASability when this occurs. On the other hand, the proof of [7,
Thm. 5] certainly breaks down. The issue is that the quantity tanh B in [7, eq. (2)] will be of
inconsistent sign, leading to negative weights w(X) in [7, eq. (3)]. In this situation, the so-called
“subgraphs world” process is no longer well defined, as various “probabilities” become negative.

3Since it is trivial to deal with any isolated vertices of G, we may assume that d(k) > 1 for all k.



4 The “antiferromagnetic region” is intractable

Let <ap be the approximation-preserving reduction from [5]. Let #SAT and #LARGECUT be
defined as follows.

Name. #SAT.

Instance. A Boolean formula ¢ in conjunctive normal form (CNF).

Output. The number of satisfying assignments to ¢.

Name. #LARGECUT.
Instance. A positive integer k and a connected graph G in which every cut? has size at most k.

QOutput. The number of size-k cuts of G.

An AP-reduction from #SAT to #LARGECUT appears in [7].> For certain 3, v and pu (see
Lemma 2) we will give an AP-reduction from #LARGECUT to (8,7, u)-PARTITION. The combina-
tion of these reductions implies #SAT <ap (8,7, #)-PARTITION which in turn implies that there
cannot be an FPRAS for (3,7, 11)-PARTITION unless NP = RP (see Section 3 of [5]).

Lemma 2 Let 8, v and p be fixed parameters satisfying 0 < <1, 0 <y <1 and p > 0. Then
#LARGECUT <ap (8,7, j1)-PARTITION,

Proof. Let k and G = (V, E) be an instance of #LARGECUT and let n denote |V| and m denote
|E|. We wish to construct an instance G' = (V', E') of (8,7, u)-PARTITION. In order to make the
reduction explicit, we will need to define a quantity s which depends upon S, vy, 4 and n. The
reader should think of s as simply being a sufficiently large polynomial in n. For completeness, let
¢ be a positive integer such that the quantity

. (min(B,7))*
(max (B, 7))

exceeds 1. Tt will then suffice to let s be the smallest integer satisfying s < p*/(2¢) which is at least

cln (22”(max(17u))2"n25)
n+6 (BY)™ 2¢cIn (max(p, 1/p)n2"5)

e() webm)

Inp
where lg denotes the base-2 logarithm. We now give the construction of G'. For every vertex u of
G let A, be the set {A4,[1],..., Ay[s]} and B, be the set {By[1],..., By[s]}. Let

max

v'=J A.uB,
ueV

"Recall that a “cut” of a graph is an unordered partition of its vertex set into two subsets and that the size of the
cut is the number of edges between the two subsets.

"The definition of #LARGECUT may seem unnatural because it is not easy in general to verify the promise that
no cuts exceeding size-k exist in the input graph. However, the reduction in [7] can be viewed as producing an input
graph together with a “witness” which allows the promise to be checked.



and

E' = (U Ay X Bu) U U U {(Auli], Ay[d]), (Buli], Byli]) }
ueV (uv)EE ie{l,...,s}

Let Q(G") denote the set of all two-spin configurations on G'. For any subset W C Q(G'), let
Zw (G'") denote the contribution to Z(G') corresponding to configurations in W. A configuration o
is full if, for every vertex u of G, all of A, is coloured with one of the two possible spins and all of
B, is coloured with the other spin. Every cut of G corresponds to exactly two full configurations:
If v and v are in the same part of the cut then A, and A, are coloured with the same colour.
Otherwise, A, and A, are coloured with different colours. If ¢ is a full configuration corresponding
to a size-j cut then

Zip (@) = [ o@)AcG) [ v/ otk) =By pum.
{i,j}eE' kev’

Let N be the number of size-k cuts of G and let C' be the set of full configurations which correspond
to size-k cuts. Let
U — 2(67)s(m—k)usn-

SO
Zc(G') = NV
We will shortly show
Zawy-c(G) <271 (T +27 " Z(G"). (3)
Equation (3) implies
Z(G") 1
N < <N + -. 4
<=5 SN+ (4)

To see this, consider first the case N = 0. In this case Z(G') = Zg(q)—c(G'), so Equation (3) gives
Z(G"Y(1 -2~y < 974y

and therefore 0 < Z(G")/¥ < 1/4 so Equation (4) holds. If N > 0 then since N is at most the
total number of cuts, which is at most 2", Equation (3) gives

1 1
! — ! , ! < ! ! .
2(6') = 20(6) + Zo)-o(6) < 20(@) (1+ 135 ) + 15216
Thus 1
Z(6") <~ 76 < (14 ) z0(@),
11— - 4N ’

6N
which implies Equation (4). From Equation (4), we find that

N = {@J | (5)

Also, the floor function in Equation (5) does not distort the accuracy overly much: An approxima-
tion to Z(G') gives an approximation to N. The details about the accuracy of the approximation
are the same as those in the proof of Theorem 3 of [5].

So, to conclude the proof we prove Equation (3). We do this by splitting Q(G') — C into
several (potentially overlapping) sets and then summing the partition function over these sets in



Equation (11). Let F be the set of full configurations corresponding to cuts of size less than k.
Then since there are at most 2" cuts,

Zp(G') < 2"(By)°T < 27°0. (6)

The second inequality in Equation (6) follows from the fact that s is at least the first term in its
definition.

For u € V, let a,, be the set of configurations in which A, has at least s/c green vertices and at
least s/c blue vertices. Let a = Uyay,.

Za, (G') < 2" max(1, 1) max(B,v)**/* < 275¥/n. (7)

To see why the first inequality in Equation (7) holds, observe that the number of configurations is
at most 2275, Each of the 2ns vertices has weight at most max(1, ). All edge-weights are at most
one, but for each of the s vertices in B, there are at least s/c incident edges with weight at most
max(f3,7). The second inequality in Equation (7) follows from the fact that s is at least the second
term in its definition.

For w € Uyey By, let al, be the set of o € Q(G') — a in which at least half of the edges from w
to Uy A, are monochromatic. Let a’ = Uyal,. We will show

70, (G') <2 Z(G!)/(ns). (®)

We will use the following notation to establish (8). For a configuration o, and a vertex w of G', let
o\w be the restriction of o to V' — {w}. Let R be the restrictions of configurations in Q(G') — a
to V' — {w}. That is,

R={c\w|o€ QG - a}.

ziy= JI ~@'Ax(G) I ¥ =)

{i,j}eE’ kev’
i£w, jEW k#w

For every m € R, let

Then
Za, (G') < 3 2f max(8, 7)) max(1, ).
TER

The factor max(ﬁ,'y)(l_l/c)s corresponds to the weight of edges from w to U, A,. At least half of
these edges are monochromatic. Because o ¢ a and ¢ > 2 this implies that at least (1 — 1/¢)s of
them are monochromatic. Also,

Z(G') > Zo(any—a-a, (G') > Y Z{tymin(B, 7)) min(1, ).
TER
So

)11/

max(f3, max(1, )

Za (G

w

VAN

Z Z{ﬂ}mln B,7) )+ min(1, )

min TeR

(6
max(f3,

min(f,

c—1 /
(%) wax(p, 1/ 2(G)

< 27 Z2(@) /(ns).

v
) i1, )
7) (1=1/e)s '
1 e w1 ()

VAN



The second-to-last inequality uses n < s/c¢ and the final inequality follows from the fact that
s < p*/(29) and the fact that s is at least the third term in its definition. Thus, Equation (8) is
established.

For u € V| let b, be the set of configurations in which B, has at least s/c green vertices and at
least s/c blue vertices. Let b = Uyb,. By analogy to Equation (7), we get

Zy, (G') <2750 /n. (9)

For w € Uyey Ay, let b, be the set of o € Q(G') — b in which at least half of the edges from w
to U, B, are monochromatic. Let b’ = U,b!,. By analogy to Equation (8), we get

Zy, (G') < 279 Z(G") [ (ns). (10)
Equation (3) follows from Equations (6), (7), (8), (9) and (10) since
Zoy-c(G') < Zp(G') + Zo(G') + Zo (G') + Zy(G') + Zy (G). (11)

To see that (11) holds, consider any configuration o which is not in a Ua' UbU V. Consider any
vertex u of G. Since o ¢ a,, more than (1 — 1/c)s of the nodes in A, have a certain colour. So,
since o ¢ al, for any w € By, all of B, is coloured with the other colour. Finally, since o ¢ b}, for
any w € Ay, all of A, is coloured with the same colour. We conclude that o is full, so it is either
in F or in C.

O

Lemma 2 has the following consequence.

Theorem 3 Let 5, v and p be fized parameters satisfying 0 < f <1, 0 <~y <1 and pt > 0. Then
there is no FPRAS for (3,7, u)-PARTITION unless NP = RP.

5 An additional tractable region

Theorem 3 showed that there is unlikely to be an FPRAS for (8, , 1)-PARTITION when 0 < 8 < 1
and 0 < v < 1. Theorem 1 showed that in the region S+ > 1 there is an FPRAS. In this section
we will assume that Sy < 1 and either 5 > 1 or v > 1. Our aim is to identify an additional region
where there is still an FPRAS. The FPRAS is based on the simulation of the single-site heat-bath
Markov chain, which is studied in Section 5.1.

5.1 Rapid mixing within the region

The single-site heat-bath chain for the two-state partition function works as follows. Given a
(connected) n-vertex input graph G = (V, E), Q(G) is the state space (the set of configurations,
i.e., the set of all 2-colourings of G, including improper colourings). From a configuration o € Q(G),
the chain first chooses a vertex z € V u.a.r. Let o(x — g) denote the configuration obtained from o
by colouring x green, and o(x — b) the configuration corresponding to colouring x blue. Let

{o(z—9)}
r,g)(0) = + Z —
p( ; )( ) Z{a’(l‘ g)}(G) {o(z b)}(G)

and p(z,b)(0) =1 — p(x,g)(c). The new state is taken to be o(z — g) with probability p(z, g)(o)
and o(x — b) otherwise.



We will use path coupling [2] to prove that single-site heat bath is rapidly mixing. We adopt the
notation from [3]. Let S C Q(G)? be the set of pairs of configurations with Hamming-distance 1. If o
and o’ are configurations which disagree only at vertex v then U(o, o’) (the prozimity of o and ¢') is
defined to be the degree of v in G, which we denote A[v]. The distance function is given in the usual
way: For each pair (0,0') € Q(G)?, P(o,0’) is the set of all sequences o = 01,09,...,0,_1,0, = o'

3

with (0;,0i11) € S for i € {1,...,r — 1}. The distance function is defined by

r—1

6(0,0") = min 3 ¥(oi,0in), (12)
7=l

which can be written as

3(o,0") =Y I(0,0")A[v], (13)

veV

where T,(0,0') is the indicator for the event that o and o' differ at vertex v, i.e., the event
o(v) # o'(v). Note that if Z(;1(G) and Z,(G) are both positive, then there is a chain o =
01,09,...,0,—1,0, = o' which minimises the right-hand-side of (12), and for which each o; has
Zis;3(G) > 0. For example, if 8 > 0 then the chain is constructed by first colouring some green
vertices blue and then colouring some blue vertices green.

We will now define a coupling which, for every (Xg,Yp) € S and every (X1,Y1) € Q(G)?,
gives the probability of a joint transition from (Xy,Yy) to (X1,Y7). Suppose that Xy and Yy differ
on v. The coupling will be the optimal one, subject to the assumption that the same vertex z
is selected in Xy and in Yy. First, a vertex z is chosen u.a.r. If x is not a neighbour of v then
the same colour is chosen for z in X; and in Y;. If = is a neighbour of v, then with probabil-
ity min(p(z, g)(Xo),p(z,9)(Ys)), X1 = Xo(z — g) and Y7 = Yy(z — g), and with probability
min(p(z, b)(Xo), p(z,b)(Yy)), X1 = Xo(z — b) and Y] = Yy(z — b). The rest of the coupling is
forced by the requirement that the marginals be correct.

The path coupling lemma in [2, 3] guarantees that the chain is rapidly mixing as long as there
is an e, > 1/poly(n) such that that for every pair (Xo,Yy) € S, the expected value of (X1, Y7)
which we denote E(§(X1,Y7)), satisfies

3

E(6(X1,Y1)) < (1 —€,)0(Xo, Yo). (14)

In particular, the total variation distance between the t¢-step distribution of the chain and the
stationary distribution is at most ¢ after only In(ne ')/, steps.

So, suppose that X; and Y differ at vertex v. For concreteness, suppose that Xg(v) is blue.
For every neighbour w of v, let b,, denote the number of neighbours of w, other than v, which are
coloured blue in X (or equivalently, in Yj). Let g, denote the number of neighbours of w, other
than v, which are coloured green in Xg. Thus Aw] = by + g +1 > 1. Let

L I@A[w}fi B 1
Jwl(i) = 6A[w]7i +,u’}’i 1+ M(ﬁ,},)lﬂfﬁ[w]'

Note that p(w, b)(Xo) = fu(gw) and p(w,b)(Ys) = fu(gw + 1).
Applying Equation (14), we require that, for some €, > 1/poly(n), for every pair (Xg,Yp) € S
which disagree on vertex v,

(1 - %) Afv] + % Z | fuw(gw +1) = fulguw)|Alw] < (1 —ep)Al]. (15)

wn~v
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Our derivation of the specific requirement in Equation (15) from the general requirement in Equa-
tion (14) relies on Equation (13). The probability that X; and Y; differ on v is equal to 1 — 1/n,
which is the probability that v is not chosen. If w is chosen then the probability that X; and
Y1 differ on w is |p(w,b)(Yy) — p(w,b)(Xo)|. The Alv] on the right-hand-side of (15) represents
0(Xo,Yp). In order to establish (15), it suffices to show that for every neighbour w of v,

| fu(gw +1) = fulgw)|Alw] <0, (16)

for some 0 < 1, depending only on 5,y and p. Then we can take €, = (1 — 6)/n. We will identify
regions where (16) holds. We start by focusing on the case where 5 > 1 > ~. (The case y > 1>
is symmetric to this case, and will be handled below.)

Since By < 1, fy(7) is an increasing function of 4, and so |fy, (i + 1) — fi,(4)| = fw(i + 1) — fu(3)
for all 4. To satisfy (16) for all n, G, v and w, it is sufficient to show that, for all integers i > 0 and

all real A > 1,

1 1

: - A A <8, (17)
1+ ytlza 14 ylaa

where y = 8y and za = pB 2. Of course, we only really require this inequality for integer values
of A, but the bounds we obtain are sufficient for our purposes.

For any fixed i > 0, let ¢; = y'za. So ¢; is a decreasing function of A, with derivative —c; In f3.
The derivative with respect to A of the logarithm of

( 11 ) . (1-yA
14+ye 1+¢ N (1 +ye)(1 —|—ci_1)

1s

1 1 1

Ao (1 +yci 1+c;1> ’
a decreasing function of A. This continuous function tends to +oc as A — 0, and tends to —In 3 < 0
as A — oo. Therefore there is a unique (finite) positive value A; for which this derivative vanishes,
and at which the maximum value of the left-hand side of inequality (17) with respect to the real
variable A is attained.

To map the boundary of the region of (5,7, u)-space for which (17) holds, we can therefore

solve the following simultaneous pair of relations, expressing the conditions that the maximising
value of A yields a value at most 6:

1 1 1
— —In _
A; 6<1+ycz' 1+cil>

1 1
(e e) >
14y 14¢

Eliminating the explicit occurrences of A;, we find the following quadratic inequality for ¢;:

2 Ci(l_y)
- — 2 _1<0. 2
iy + Al <0 (20)

0, and (18)

IN
S

(19)

Solving this quadratic for 1/¢; implies the inequality

. < 201n 3

T1-y+/0 -2 +y20mpB)2 2!
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Since ¢; is decreasing in 7, (21) is satisfied for all 7 > 0 if and only if it is satisfied for ¢ = 0.
Since we can choose # < 1 arbitrarily and the right-hand side of (21) is an increasing function of 0,
we can replace 6 by 1 in (21) but make the inequality strict, i.e.,

¢i <cp < C(lnp) (22)

where
2z

L= By + /(1= By)? + 4722

C(z) = (23)

Equation (18) yields
In #2° = D(co), (24)
where the right-hand side is an increasing function of ¢g,

D(z):( L 1>_1. (25)

1+ Byz 14271

We can use (22) and (24) to derive an upper bound on p as a function of 5 and <. Since
1 = o520, any choice of p which satisfies Equation (26) (below) also satisfies Equation (22) for the
maximising value of Ay given by Equation (18) and for some 6 < 1. Hence, it satisfies Equation (19),
as required. Our final bound is given by

p < C(In g) P B, (26)

Note that the left-hand-side of (19) is a decreasing function of 7y for the critical case, i = 0. Thus
we can get a simpler (but worse) bound by considering the extreme case, v = 0. Here, C(z) = z
and D(z) =1+ z, so (26) gives the bound: u < ef1nf.

The region defined by Sy < 1, v > 1 is symmetric to the region that we have just considered.
In particular, the blue-green symmetry yields the following relationships:

p(w,g)(Xo) = 1-p(w,b)(Xo) =1 fulg w)—l/(u_lv_gwﬁAM‘ngrl)
= /(1 +p7 ' protiybe =8l = £ by + 1),

and
p(w,9)(Yo) =1 = fulgw + 1) = 1/(1+ p~ ' groyPe =200 = £, (by),
where fw is derived from f,, by replacing u, 3,y by u~',~, 8 respectively. Our requirement is
‘fw(bw +1) - fw(bw)|A[w] < On,

which is symmetric to Equation (16) and this is therefore met within the region defined by gy < 1,
y>1and p~! < C(Iny) P17 (from Equation (26)).
Thus, we have shown the following result.

Lemma 4 The single-site heat-bath Markov chain for the two-state partition function is rapidly
mizing within the regions deﬁned by: By <1 and either

1. >1 and p < C(InB)eP(CnB) o
2. 7>1and 1/,U,<C(1nfy) D(C (ln’y))

where functions C and D are defined in Equations (23) and (25).
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Figure 2: Logarithm of the maximal p in the region 1 < <2 and 0 <~ < 1.

Corollary 5 The single-site heat-bath Markov chain for the two-state partition function is rapidly
mizing within the regions defined by: By < 1 and either

1. B>1and p < eBlng, or

2. v7>1and 1/p < eylnr.

Figure 2 shows a portion of the bounding surface of the region described in Lemma 4. The
rapid-mixing region lies below this surface, which represents the logarithm of the maximal y within
the region 1 < f<2and 0 <y < 1.

5.2 Reducing approximate counting to sampling

Lemma 4 showed that the single-site heat-bath Markov chain is rapidly mixing within the specified
region. Thus, this Markov chain provides a fully-polynomial approximate sampler (FPAS) for the
two-spin partition function within the region. Such an FPAS is an algorithm which, when it is
given a connected graph G = (V| E) and an accuracy parameter ¢ € (0, 1], outputs a configuration
o € Q(G) according to a measure ug which satisfies dry (ug, 7¢) < € where
Ziy (G)
TG(o) = G
and dtv denotes total variation distance. Using the method of Jerrum, Valiant and Vazirani [8],
it is straightforward to show that the FPAS can be turned into an FPRAS for (3, 7, 4)-PARTITION
within the region. Thus, we obtain the following theorem.

Theorem 6 There is an FPRAS for (83,7, 1)-PARTITION when the fized parameters 3, v and u
are in the regions defined by By < 1 and either

1. >1 and p < C(InB)eP(CnB) o

2.y>1and 1/u < C(lnry)eD(C(lnw))7

13



where functions C and D are defined in Equations (23) and (25).

Corollary 7 There is an FPRAS for (3,7, u)-PARTITION when the fized parameters 3, v and u
are in the regions defined by By < 1 and either

1. B>1and p < eBlng, or
2.y>1and 1/p < eyln~y.

The special case of u =1 gives a numerical lower bound of about 1.3211 for 8 and vy respectively.

To aid the reader, we provide some details showing how to turn the FPAS into an FPRAS
within Region 1 (i.e., the region defined by By < 1 and 8 > 1 and p < C(In 3)eP(€(n ) Region 2
can be handled by a similar argument, exploiting the blue-green symmetry as in Section 5.1.

Suppose that the edge set F of G is E = {ej,...,en} and let G; be the graph (V. {e1,...,e;}).
Thus, our job is to approximate

Z(Gp) Z(Gp—1) Z(Gh)
Z(Gm-1) Z(Gm—2)  Z(Gy)
The quantity Z(Gg) is easy to compute, so the main task is to estimate the quantity

_ Z(Gi)
0i = o
Z(Gi-1)
Suppose that e; is the edge (z;,v;). For spin s, let QF_; denote the set of all configurations in

Q(Gi-1) in which z; and y; are assigned spin s. Let F ; denote the set of all configurations in
Q(G;—1) in which z; and y; are assigned different spins. Then

B enr, Z1oy(Gic1) +7 gt | 210y (Gio1) + Xseqr | 210} (Gin1)
ZO’EQ(Gifl) Z{U}(Glfl) .

We need a method for estimating g;. Consider the following experiment (which makes sense,
since y < 8 and 1 < 3): Sample a configuration o € Q(G;_1) with weight g, (o). If 0 € Q0 |,
output “yes”. If o € Q?—p output “yes” with probability v/# and “no” otherwise. If o € QF_;,
output “yes” with probability 1/5 and “no” otherwise. From (27), we deduce that the probability
that the algorithm outputs “yes” is g;/8. Thus, we can accurately estimate p; by applying the
experiment to several outputs of the FPAS. (We need several outputs because the FPAS has
measure pg, , not mg, ,.) Also, we can conclude that p; < . It is known [8] that as long as
0; > 1/poly(n), where n = |V, then the required number of samples is only polynomial in n and
g1, so we get an FPRAS. Details can be found in the proof of Proposition 3.4 of [6].

We conclude this section by showing that, in the region of interest, go; > 1/(1 + u). To start
with, we observe that

2(G) = Z(G) = Z(Go).

0i (27)

ZQg (Gifl) S /LZQ;il(G/L‘fl). (28)

i—1
To see (28), consider the injection which maps every o € QY | to o' € QF_; by colouring y; blue.
Since y < 1 and g > 1, ;LZ{U/}(GZ-,l) > Z{U}(Gi,l). Thus, from (27), since g > 1,

Zagp (Gi—1) + Za: [(Gi-1)

i—1

Zag (Gi1) + Zgp_ (Giz1) + Za;_ (Gia)

i—1

Zay (Giz1) + Za: | (Gi1)

> i—1
T Zgy (Gi1)+ (1 +u)Zo;_ (Gi1)
1

1+

0 >

Vv
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6 An additional intractable region

In the previous section, we saw that the tractable region extends beyond that defined by the
hyperbola Sy > 1. The main result of this section is that the intractable region extends beyond
the square defined by § < 1 and v < 1. Specifically, we show:

Theorem 8 Let 1 be a sufficiently small constant (n = 10~7 will do), and suppose that 1 < <
147, 0<y<mnand 3 < p <2 Then there is no FPRAS for (B,~,1)-PARTITION unless
NP = RP.

By the same symmetry considerations exploited in Section 5, Theorem 8 remains true with the
roles of § and vy reversed.

The region covered by Theorem 8 is admittedly small. The estimates in the proof could un-
doubtedly be tightened with a view to expanding the range of parameter values covered by the
theorem. However, since our main aim is to uncover some intractable region of positive volume
lying outside the square, we shall instead aim to keep the technical complications to a minimum.

Our starting point is an inapproximability result concerning independent sets in bounded degree
graphs. It is well known that that it is NP-hard to determine the size of a maximum independent
set in a graph of maximum degree 4. A result of Berman and Karpinski [1, Thm 1(iv)] tells us
more:

Proposition 9 For any € > 0, it is NP-hard to determine the size of a mazimum independent set
in a graph G to within ratio % + £, even when G 1is restricted to have mazimum degree 4.

(By “determining the size. .. within ratio p” we mean computing a number k such that pk < k< k,
where k is the size of a maximum independent set in G.) The possibility of establishing results such
as Proposition 9 has been opened up by the theory of “polynomially checkable proofs” (PCPs).

Proof of Theorem 8. Our proof strategy is to design a reduction that takes a graph G = (V, E)
of maximum degree 4 and forms a graph G’ with the following informal property: The partition
function Z(G") of the new graph G’ determines the size of the largest independent set in G within
ratio 0.99. Since such a tight performance guarantee is precluded by Proposition 9, this will be
enough to establish the result.

We now describe the construction of G’ from G. For every vertex u of G let A, be a distinct
set of size r, where r is a constant to be determined later. Then define

ueV

and

Presently, we shall argue that the partition function of G’ is bounded below and above as follows:

2(G') > (1+ )™ (29)

and

Z(G") < ij (?) (14 p)" Mf) <T(n - i)> W (1 + )" I, (30)

1=0



where n = |V|, m = |E| and k is the size of a maximum independent set in G. It transpires that
when the parameters 8, v and u satisfy the conditions of the theorem, these inequalities locate
In Z(G') rather accurately: see inequality (33). Thus a good estimate for Z(G’) provides a good
estimate for k.

The lower bound (29) is the easier of the two to justify. Let I be any independent set in G of
size k. The lower bound (29) comes from considering just the configurations which assign blue to all
vertices in Uuev\ 7 Ay. Since 8 > 1 and there are no green-green edges, every such configuration o
contributes at least x4/ to the partition function, where j is the number of green vertices in 0. Since
the green vertices are freely selected from a set of size rk, inequality (29) is now immediate.

The upper bound (30) is not much more difficult, if viewed in the right way. A base for a
configuration ¢ is an independent set I in G such that:

e for every u € I the block A, contains at least one green vertex;
e for every block A, containing a green vertex, either u is in I or u is adjacent to a vertex in I.

Every configuration has at least one base, since we may take I to be any maximal independent set
within the subgraph of G induced by the vertex set

{u € V : A, contains at least one green vertex}.

It is convenient to think of the term “base” as applying both to the vertex set I in G and the vertex
set (J,e7 Au in G

For each base, we shall estimate the total weight of configurations with that base, and then
sum over all possible bases. This will lead to overcounting, since each configuration has many bases
in general. This is fine, as we are shooting for an upper bound. The key observation is that, in
any configuration with base I, each green vertex lying outside the base is adjacent to some green
vertex lying inside. Thus the number of green-green edges is at least as large as the number of
green non-base vertices.

With these considerations in mind, the formula in (30) may be read left-to-right as follows: (i) 4
ranges over the possible sizes of a base, k£ being an upper bound since any base is an independent
set in G; (i) (7)) is a bound on the number of bases of size 7; (iii) (1 + p)™ counts colourings of the
base-vertices; (iv) j is the number of green vertices among the non-base vertices, ranging from j = 0
(no green vertices) to j = r(n — i) (all green); (v) u/ comes from the j green vertices; and finally
(vi) (1+ n)rzm_j 7/ is an upper bound on edge weights, since there must be at least j green-green
edges.

Next, we simplify the upper bound (30) by approximating the two sums:

<Z( ) 1+ p)" (1 +n)" mi(?)uh

7=0

+77’mz< ) L+ )™ (1 + )™

k
< (L4n)" A+ pn)™2" S (1 + )
=0

< (L) ™A )2 (L A+ ), (31)

where the final inequality assumes (as will certainly be the case) that (1 + p)" > 2.
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Taking logarithms of (29) and (31) we may sandwich In Z(G') as follows:

rkIn(14+pu) <InZ(G") < (1+c¢1 +ca +c3)rkIn(l + p), (32)
where )
o =" mln(1+n)’ oy — rnln(l—k,un)’ and ¢ = (n+1)In2 .
rkln(l + u) rkln(l + w) rkln(l + )

Now m < 2n since G has maximum degree 4. Furthermore, k > in since GG is 4-colourable
by Brooks’ Theorem. (The largest colour class is an independent set). So assuming r = 1000,
% <p<2and0<n< 1077, we have the following bounds on ¢y, ¢y and cs:

2rnn 8rn
< 0.002
= Eln(1+p) — In(14+p) —
npn 4pn
< < < 0.001
2=+ p) = In(1+p)
1+ H4In2
o< LT A2 o0

rin(l+ )

for sufficiently large n.
Thus from (32)

rkIn(1+p) <InZ(G') < 1.017kIn(1 + p),
and hence
0.991n Z(G")
rin(l+p) —

Finally, suppose 8, v and u are as stated in the theorem, and that there is an FPRAS for
(B, v, u)-PARTITION. Then we would be able to compute an approximation L to In Z(G') within
additive error 1 (say), in polynomial time, with high probability. But then 0.99 L/10001n(1 + )
(rounded to the nearest integer) would approximate the size of a maximum independent set in G
to within ratio uniformly better than %. By Proposition 9, this entails RP = NP. (|

0.99% < (33)
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