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1 IntrodutionThe subjet of this artile is \spin-systems" as studied in statistial physis. An instane of aspin-system is an n-vertex graph G = (V;E). Let q � 2 be an integer. A on�guration of a spinsystem on G is one of the qn possible assignments � : V ! f0; : : : ; q � 1g of q spins to the vertiesof G. (We shall usually refer to spins as olours.) Eah on�guration has an energy H(�) whihis the sum of individual ontributions from the edges and verties of G. The ontribution of eahedge fi; jg 2 E is a spei�ed funtion (here assumed symmetri) of the olours �(i) and �(j);likewise, the ontribution of vertex k 2 V is a funtion of �(k). Eah on�guration has weightw(�) = exp(�H(�)=T ), where T is a parameter of the system alled temperature. The partitionfuntion of the system is the normalising fator Z = P� exp(�H(�)=T ) that turns the weightsinto probabilities.1Our goal in this paper is to study the omplexity of omputing the partition funtion of spinsystems. We shall deal exlusively with two-spin (q = 2) systems, sine these already seem topresent enough of a hallenge. Moreover, the ase q = 2 enompasses models of physial interest,suh as the lassial Ising model (ferromagneti or antiferromagneti, with or without an appliedmagneti �eld), or the hard-ore gas model. We refer to the two olours (spins) as \blue" and\green". Sine w(�) = exp(�H(�)=T ) and H(�) is a sum of ontributions from edges and verties,we an equivalently take a multipliative view, in whih w(�) is de�ned as a produt of ontributionsfrom the individual edges and verties. (All this will be set up formally in the next setion; however,we hope that this informal aount provides an adequate basis for at least a qualitative disussionof the main results of the paper.)At �rst sight it seems as though there are three parameters governing edge ontributions (orre-sponding to blue-blue, blue-green and green-green edges), and two governing vertex ontributions(orresponding to blue and green verties). But we may normalise the (multipliative) blue-greenedge ontribution to 1, and the blue vertex ontribution to 1 also.2 Thus there are essentially threedegrees of freedom. We denote the (multipliative) blue-blue edge ontribution by �, the green-green by , and the green vertex ontribution by �. In fat | partly beause it is easier to depita two-dimensional parameter spae, and partly beause our understanding of the general situationis still inomplete | we shall pay partiular attention to the speial (symmetri) ase � = 1.Figure 1 shows the regions in (�; )-spae as lassi�ed by our results when � = 1. Exatomputation of the partition funtion Z is NP-hard exept in the trivial ase � = 1 so we onen-trate on the issue of whether Z an be omputed within small relative error in polynomial time.(The preise notion of eÆient approximation algorithm used is the \fully polynomial randomisedapproximation sheme" or FPRAS, whih will be de�ned in x2.) The main features are as follows:1. To the North-East of the hyperbola is a \ferromagneti" region � � 1 within whih thepartition funtion may be approximated in the FPRAS sense. This is done by redution to aferromagneti Ising system with external �eld, whose partition funtion may be approximatedby a Markov hain Monte Carlo algorithm of Jerrum and Sinlair [7℄. See x3.2. The square de�ned by 0 < � < 1 and 0 <  < 1 is an \antiferromagneti" region beauseblue-green edges have higher weight than blue-blue edges or green-green edges. Within thisregion, the partition funtion is hard to approximate (unless RP = NP). Essentially thisis beause \ground states" (i.e., most likely or most weighty on�gurations) orrespond to1Readers who do not �nd the physial setting ongenial may think instead of a weighted version of the graphhomomorphism problem. See Setion 1.1 of [4℄.2This is equivalent to normalising the energy ontribution of blue-green edges and blue verties to zero.1
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Figure 1: Results for regions of the (�; )-plane at � = 1.maximum uts in G. This at least is the intuition; the formalisation of it requires some work.See x4.3. Neither of these \natural" regions | neither the hyperbola nor the square | marks theboundary between tratable and intratable. In one diretion, we provide an FPRAS forthe partition funtion within the light grey region, whih extends well away the hyperbola.This FPRAS is based on the Markov hain Monte Carlo method, and its analysis uses the\path-oupling" tehnique of Bubley and Dyer [2℄. See x5.4. In the other diretion, we exhibit two tiny, symmetri, intratable regions extending beyondthe \antiferromagneti" region, lose to the points (0; 1) and (1; 0). This is done by odingup an inapproximable ombinatorial optimisation problem following Luby and Vigoda [9℄.See x6.It will be seen that our knowledge even of the � = 1 ase is inomplete: spei�ally, we don'tknow what happens in the remaining (medium intensity grey) regions. For example, we don'tknow whether tratability is monotone in � (or ). In the remaining setions, we prove the resultsdepited in Figure 1 and also extend these results beyond the symmetri ase � = 1.2 De�nitionsTo formalise the laims made in the introdution we need to de�ne preisely the terms (two-state)\spin system" and \FPRAS" (our notion of eÆient approximate omputation).In order to de�ne the partition funtion of a two-state spin system spei�ed by weights �,  and�, it is onvenient to identify blue and green with the unit vetors (1; 0)0 and (0; 1)0, respetively.(Primes will be used to denote transposition, so spins are olumn vetors.) Then the partition2



funtion for a graph G = (V;E) may be expressed asZ(G) =X� Yfi;jg2E �(i)0A�(j) Yk2V b0 �(k);where A = �� 11 � and b = �1�� ;and � ranges over f(1; 0)0; (0; 1)0gV . To see this, note that eah of the four possible assignments ofunit vetors to �(i) and �(j) piks out a distint element of the matrix A, and similarly with b.The problem whose omplexity we study is (�; ; �)-Partition, de�ned as follows. Let �, and � be non-negative real numbers.Name. (�; ; �)-Partition.Instane. A graph G.Output. The quantity Z(G), where Z is the partition funtion with parameters �,  and �.Note that the graph G alone forms the problem instane, whih means we have a separate problemfor every triple (�; ; �). (Our notation is intended to emphasise this.) Our goal is to map outthe tratable region of the parameter spae. To avoid the issues of speifying and omputing witharbitrary real numbers, we assume that �,  and � are rational.In this area, approximation algorithms are usually viewed as omputing funtions f : �� ! N,where � is a �nite alphabet for enoding problem instanes. In the urrent appliation, however,the output may be an arbitrary rational number. Rather than rede�ning a well-established notionof eÆient approximate omputation, we shall stik with the usual de�nition, and then explain howto view (�; ; �)-Partition in this framework.A randomised approximation sheme for a ounting problem f : �� ! N (e.g., the number ofmathings in a graph) is a randomised algorithm that takes as input an instane x 2 �� (e.g., anenoding of a graph G) and an error tolerane " > 0, and outputs a number N 2 N (a randomvariable of the \oin tosses" made by the algorithm) suh that, for every instane x,Pr �e�"f(x) � N � e"f(x)� � 34 : (1)We speak of a fully polynomial randomised approximation sheme, or FPRAS, if the algorithmruns in time bounded by a polynomial in jxj and "�1. It is a standard result that the number 34appearing in (1) ould be replaed by any number in the open interval (12 ; 1).To bring the problem (�; ; �)-Partition within the FPRAS framework, we suggest the follow-ing: Assume �,  and � are rational, and let L be the least ommon multiple of their denominators.Then the desired output Z(G) an be expressed as a rational number z with denominator Ln+m,where n is the number of verties in G and m the number of edges. Then our goal is to design anFPRAS omputing Ln+mz.3 The \ferromagneti region" is tratableWe argue that the region � � 1 orresponds fairly diretly to the ferromagneti Ising model withexternal �eld. It follows that there is an FPRAS for the partition funtion Z in this region. When� = 1 the partition funtion is trivially omputable in polynomial time.3



To make this orrespondene expliit, observe thatA =s� �1 00 =���� 11 ���1 00 =�� ;where � = p�, and hene�(i)0A�(j) =s� �(i)0�1 00 =���� 11 ���1 00 =���(j)=p�= �(1; =�)�(i)���(i)0 bA�(j)��(1; =�)�(j)�;where bA = �� 11 �� ;and the �nal equality uses the fat that spins are unit vetors. Thus we obtain the followingalternative expression for the partition funtion:Z(G) = ���m=2X� Yfi;jg2E �(i)0 bA�(j)Yk2V �1; (=�)d(k)���(k); (2)where d(k) is the degree of vertex k. To verify (2), note that eah of the d(k) edges inident at kontributes a fator (1; =�)�(k) to Z(G), in addition to the (1; �)�(k) already present.Suppose for the moment that � = 1. When � � 1, i.e., when � � 1, equation (2) is, up toan easily omputable fator, the partition funtion for a ferromagneti Ising system with external�eld. Jerrum and Sinlair [7℄ have exhibited an FPRAS for omputing the partition funtion ofsuh systems, from whih it follows that the region � � 1 is tratable. More preisely:Theorem 1 For any �xed �,  satisfying � � 1 there is an FPRAS for (�; ; 1)-Partition.More generally, there is an FPRAS for (�; ; �)-Partition provided, in addition, � �  and� �p�= (or � �  and � �p�=).Proof. One we have provided a translation between the terminology of the urrent paper andthat of [7℄, it will be seen that the existene of an FPRAS is immediate from [7, Thm. 5℄. (Thelatter theorem simply asserts the existene of an FPRAS for estimating the partition funtion of aferromagneti Ising system.)First, a brief desription of the Ising model. The Ising model is a two-spin model in whihinterations are symmetri under interhange of the two olours (spins): in our terminology � =� = . In the ferromagneti Ising model, like spins are favoured over unlike, i.e., � � 1. Theremay be an external (or applied) �eld, that auses one olour to be favoured over the other: inour terminology � 6= 1. The interations are allowed to vary from edge to edge, provided they areall ferromagneti. Thus we may have a separate matrix Aij assoiated with eah edge fi; jg 2 E,provided eah matrix individually satis�es the onditions stated above (diagonal entries equal andnot less than 1.) The interations with the external �eld may also vary, i.e., the vetor b may varyfrom vertex to vertex. However, one olour must be uniformly favoured over the other; in otherwords the parameter � must be uniformly at least 1, or uniformly at most 1.4



Inspeting equation (2), we see that the aforementioned onditions are met, provided only that(=�)d(k)� = (=�)d(k)=2� is uniformly at least 1 or at most 1. This will ertainly be the ase if� = 1. But it will also hold in the other situations identi�ed in the statement of the theorem.3In order to give the details of the redution from (�; ; �)-Partition to Theorem 5 of [7℄, weneed to show how to enode the input, that is, G, �, and the quantities (=�)d(k)=2� as binarystrings of appropriate length. The details of this are routine, and are omitted. (Clearly, only anapproximation to � is used, sine � itself may be irrational.)One �nal tehnial point onerning [7, Thm. 5℄. In the proof of that theorem it is assumedthat the interation of the external �eld with spins is uniform over all sites, whereas we requirehere a non-uniform (though onsistently oriented) interation. The proof was organised in thisway for simpliity of presentation. The lean �x is to routinely amend the proof by introduingexpliit individual interation strengths at the various sites. However, an alternative �x that doesnot involve delving into the original proof is to redue the ase of varying interation strengths tothat of �xed. In partiular, suppose " is our desired auray parameter and onsider an instane Gwith, for eah vertex v, an interation strength �v � 1. LetÆ = "n�dmaxv ln�ve ;� = 1 + Æ, and z = (�� 1)Æ1 + �+ Æ = ��+ 1�+ � � 1:The Ising partition funtion for this instane is losely approximated by the partition funtion ofa new instane in whih the graph, G0, is formed from G by attahingrv := � ln(�v=�)z �pendant edges to eah vertex v and giving eah vertex interation strength �. To see that theapproximation is suÆiently lose, note that the relative weight of olouring v green rather thanblue in G0 is  := ����+ 1�+ � �rv :Thus the de�nitions guarantee e�"=n�v �  � e"=n�v:as required. �Remark 1 When � = 1, expression (2) fatorises and the (exat) omputation of Z is trivial.Remark 2 Another situation in whih (=�)d(k)� is assured to be uniformly at least 1 or at most 1is when d(k) is onstant, i.e., G is regular.The parameter values not overed by Theorem 1, i.e., � >  and � > p�= (or � <  and� < p�=) present a onundrum. These orrespond to a situation, whih may be physiallyunrealisti, in whih some verties inline to one olour and others to the other. On the one hand,there is no obvious barrier to FPRASability when this ours. On the other hand, the proof of [7,Thm. 5℄ ertainly breaks down. The issue is that the quantity tanh�B in [7, eq. (2)℄ will be ofinonsistent sign, leading to negative weights w(X) in [7, eq. (3)℄. In this situation, the so-alled\subgraphs world" proess is no longer well de�ned, as various \probabilities" beome negative.3Sine it is trivial to deal with any isolated verties of G, we may assume that d(k) � 1 for all k.5



4 The \antiferromagneti region" is intratableLet �AP be the approximation-preserving redution from [5℄. Let #Sat and #LargeCut bede�ned as follows.Name. #Sat.Instane. A Boolean formula ' in onjuntive normal form (CNF).Output. The number of satisfying assignments to '.Name. #LargeCut.Instane. A positive integer k and a onneted graph G in whih every ut4 has size at most k.Output. The number of size-k uts of G.An AP-redution from #Sat to #LargeCut appears in [7℄.5 For ertain �,  and � (seeLemma 2) we will give an AP-redution from #LargeCut to (�; ; �)-Partition. The ombina-tion of these redutions implies #Sat �AP (�; ; �)-Partition whih in turn implies that thereannot be an FPRAS for (�; ; �)-Partition unless NP = RP (see Setion 3 of [5℄).Lemma 2 Let �,  and � be �xed parameters satisfying 0 < � < 1, 0 <  < 1 and � > 0. Then#LargeCut �AP (�; ; �)-Partition.Proof. Let k and G = (V;E) be an instane of #LargeCut and let n denote jV j and m denotejEj. We wish to onstrut an instane G0 = (V 0; E0) of (�; ; �)-Partition. In order to make theredution expliit, we will need to de�ne a quantity s whih depends upon �, , � and n. Thereader should think of s as simply being a suÆiently large polynomial in n. For ompleteness, let be a positive integer suh that the quantity� := (min(�; ))2(max(�; ))�1exeeds 1. It will then suÆe to let s be the smallest integer satisfying s � �s=(2) whih is at leastmax0BBB� n+ 6lg� 1�� ;  ln�22n(max(1;�))2nn25(�)m�n �ln� 1max(�;)� ; 2 ln �max(�; 1=�)n2n+5�ln� ; n1CCCA ;where lg denotes the base-2 logarithm. We now give the onstrution of G0. For every vertex u ofG let Au be the set fAu[1℄; : : : ; Au[s℄g and Bu be the set fBu[1℄; : : : ; Bu[s℄g. LetV 0 = [u2V Au [Bu4Reall that a \ut" of a graph is an unordered partition of its vertex set into two subsets and that the size of theut is the number of edges between the two subsets.5The de�nition of #LargeCut may seem unnatural beause it is not easy in general to verify the promise thatno uts exeeding size-k exist in the input graph. However, the redution in [7℄ an be viewed as produing an inputgraph together with a \witness" whih allows the promise to be heked.6



and E0 =  [u2V Au �Bu! [0� [(u;v)2E [i2f1;:::;sgf(Au[i℄; Av [i℄); (Bu[i℄; Bv [i℄)g1A :Let 
(G0) denote the set of all two-spin on�gurations on G0. For any subset W � 
(G0), letZW (G0) denote the ontribution to Z(G0) orresponding to on�gurations in W . A on�guration �is full if, for every vertex u of G, all of Au is oloured with one of the two possible spins and all ofBu is oloured with the other spin. Every ut of G orresponds to exatly two full on�gurations:If u and v are in the same part of the ut then Au and Av are oloured with the same olour.Otherwise, Au and Av are oloured with di�erent olours. If � is a full on�guration orrespondingto a size-j ut thenZf�g(G0) = Yfi;jg2E0 �(i)0A�(j) Yk2V 0 b0 �(k) = (�)s(m�j)�sn:Let N be the number of size-k uts of G and let C be the set of full on�gurations whih orrespondto size-k uts. Let 	 = 2(�)s(m�k)�sn;so ZC(G0) = N	:We will shortly show Z
(G0)�C(G0) � 2�4(	 + 2�nZ(G0)): (3)Equation (3) implies N � Z(G0)	 � N + 14 : (4)To see this, onsider �rst the ase N = 0. In this ase Z(G0) = Z
(G0)�C(G0), so Equation (3) givesZ(G0)(1 � 2�(n+4)) � 2�4	and therefore 0 � Z(G0)=	 � 1=4 so Equation (4) holds. If N > 0 then sine N is at most thetotal number of uts, whih is at most 2n, Equation (3) givesZ(G0) = ZC(G0) + Z
(G0)�C(G0) � ZC(G0) �1 + 116N �+ 116NZ(G0):Thus Z(G0) � 1 + 116N1� 116N ZC(G0) � (1 + 14N )ZC(G0);whih implies Equation (4). From Equation (4), we �nd thatN = �Z(G0)	 � : (5)Also, the oor funtion in Equation (5) does not distort the auray overly muh: An approxima-tion to Z(G0) gives an approximation to N . The details about the auray of the approximationare the same as those in the proof of Theorem 3 of [5℄.So, to onlude the proof we prove Equation (3). We do this by splitting 
(G0) � C intoseveral (potentially overlapping) sets and then summing the partition funtion over these sets in7



Equation (11). Let F be the set of full on�gurations orresponding to uts of size less than k.Then sine there are at most 2n uts,ZF (G0) � 2n(�)s	 � 2�6	: (6)The seond inequality in Equation (6) follows from the fat that s is at least the �rst term in itsde�nition.For u 2 V , let au be the set of on�gurations in whih Au has at least s= green verties and atleast s= blue verties. Let a = [uau.Zau(G0) � 22nsmax(1; �)2nsmax(�; )s�s= � 2�6	=n: (7)To see why the �rst inequality in Equation (7) holds, observe that the number of on�gurations isat most 22ns. Eah of the 2ns verties has weight at most max(1; �). All edge-weights are at mostone, but for eah of the s verties in Bu there are at least s= inident edges with weight at mostmax(�; ). The seond inequality in Equation (7) follows from the fat that s is at least the seondterm in its de�nition.For w 2 [u2VBu, let a0w be the set of � 2 
(G0)� a in whih at least half of the edges from wto [uAu are monohromati. Let a0 = [wa0w. We will showZa0w(G0) � 2�(n+5)Z(G0)=(ns): (8)We will use the following notation to establish (8). For a on�guration �, and a vertex w of G0, let�nw be the restrition of � to V 0 � fwg. Let R be the restritions of on�gurations in 
(G0) � ato V 0 � fwg. That is, R = f�nw j � 2 
(G0)� ag:For every � 2 R, let ZRf�g = Yfi;jg2E0i6=w; j 6=w �(i)0A�(j) Yk2V 0k 6=w b0 �(k):Then Za0w (G0) �X�2RZRf�gmax(�; )(1�1=)smax(1; �):The fator max(�; )(1�1=)s orresponds to the weight of edges from w to [uAu. At least half ofthese edges are monohromati. Beause � 62 a and  � 2 this implies that at least (1 � 1=)s ofthem are monohromati. Also,Z(G0) � Z
(G0)�a�a0w (G0) �X�2RZRf�gmin(�; )(s=)+nmin(1; �):So Za0w (G0) � max(�; )(1�1=)smax(1; �)min(�; )(s=)+nmin(1; �) X�2RZRf�gmin(�; )(s=)+nmin(1; �)� max(�; )(1�1=)smin(�; )(s=)+n max(�; 1=�)Z(G0)�  max(�; )�1min(�; )2 !s=max(�; 1=�)Z(G0)� 2�(n+5)Z(G0)=(ns): 8



The seond-to-last inequality uses n � s= and the �nal inequality follows from the fat thats � �s=(2) and the fat that s is at least the third term in its de�nition. Thus, Equation (8) isestablished.For u 2 V , let bu be the set of on�gurations in whih Bu has at least s= green verties and atleast s= blue verties. Let b = [ubu. By analogy to Equation (7), we getZbu(G0) � 2�6	=n: (9)For w 2 [u2VAu, let b0w be the set of � 2 
(G0)� b in whih at least half of the edges from wto [uBu are monohromati. Let b0 = [wb0w. By analogy to Equation (8), we getZb0w (G0) � 2�(n+5)Z(G0)=(ns): (10)Equation (3) follows from Equations (6), (7), (8), (9) and (10) sineZ
(G0)�C(G0) � ZF (G0) + Za(G0) + Za0(G0) + Zb(G0) + Zb0(G0): (11)To see that (11) holds, onsider any on�guration � whih is not in a [ a0 [ b [ b0. Consider anyvertex u of G. Sine � 62 au, more than (1 � 1=)s of the nodes in Au have a ertain olour. So,sine � 62 a0w for any w 2 Bu, all of Bu is oloured with the other olour. Finally, sine � 62 b0w forany w 2 Au, all of Au is oloured with the same olour. We onlude that � is full, so it is eitherin F or in C. �Lemma 2 has the following onsequene.Theorem 3 Let �,  and � be �xed parameters satisfying 0 < � < 1, 0 <  < 1 and � > 0. Thenthere is no FPRAS for (�; ; �)-Partition unless NP = RP.5 An additional tratable regionTheorem 3 showed that there is unlikely to be an FPRAS for (�; ; �)-Partition when 0 < � < 1and 0 <  < 1. Theorem 1 showed that in the region � � 1 there is an FPRAS. In this setionwe will assume that � < 1 and either � > 1 or  > 1. Our aim is to identify an additional regionwhere there is still an FPRAS. The FPRAS is based on the simulation of the single-site heat-bathMarkov hain, whih is studied in Setion 5.1.5.1 Rapid mixing within the regionThe single-site heat-bath hain for the two-state partition funtion works as follows. Given a(onneted) n-vertex input graph G = (V;E), 
(G) is the state spae (the set of on�gurations,i.e., the set of all 2-olourings of G, inluding improper olourings). From a on�guration � 2 
(G),the hain �rst hooses a vertex x 2 V u.a.r. Let �(x! g) denote the on�guration obtained from �by olouring x green, and �(x! b) the on�guration orresponding to olouring x blue. Letp(x; g)(�) = Zf�(x!g)g(G)Zf�(x!g)g(G) + Zf�(x!b)g(G)and p(x; b)(�) = 1� p(x; g)(�). The new state is taken to be �(x! g) with probability p(x; g)(�)and �(x! b) otherwise. 9



We will use path oupling [2℄ to prove that single-site heat bath is rapidly mixing. We adopt thenotation from [3℄. Let S � 
(G)2 be the set of pairs of on�gurations with Hamming-distane 1. If �and �0 are on�gurations whih disagree only at vertex v then 	(�; �0) (the proximity of � and �0) isde�ned to be the degree of v in G, whih we denote �[v℄. The distane funtion is given in the usualway: For eah pair (�; �0) 2 
(G)2, P(�; �0) is the set of all sequenes � = �1; �2; : : : ; �r�1; �r = �0with (�i; �i+1) 2 S for i 2 f1; : : : ; r � 1g. The distane funtion is de�ned byÆ(�; �0) = minP(�;�0) r�1Xi=1 	(�i; �i+1); (12)whih an be written as Æ(�; �0) =Xv2V Iv(�; �0)�[v℄; (13)where Iv(�; �0) is the indiator for the event that � and �0 di�er at vertex v, i.e., the event�(v) 6= �0(v). Note that if Zf�g(G) and Zf�0g(G) are both positive, then there is a hain � =�1; �2; : : : ; �r�1; �r = �0 whih minimises the right-hand-side of (12), and for whih eah �i hasZf�ig(G) > 0. For example, if � > 0 then the hain is onstruted by �rst olouring some greenverties blue and then olouring some blue verties green.We will now de�ne a oupling whih, for every (X0; Y0) 2 S and every (X1; Y1) 2 
(G)2,gives the probability of a joint transition from (X0; Y0) to (X1; Y1). Suppose that X0 and Y0 di�eron v. The oupling will be the optimal one, subjet to the assumption that the same vertex xis seleted in X0 and in Y0. First, a vertex x is hosen u.a.r. If x is not a neighbour of v thenthe same olour is hosen for x in X1 and in Y1. If x is a neighbour of v, then with probabil-ity min(p(x; g)(X0); p(x; g)(Y0)), X1 = X0(x ! g) and Y1 = Y0(x ! g), and with probabilitymin(p(x; b)(X0); p(x; b)(Y0)), X1 = X0(x ! b) and Y1 = Y0(x ! b). The rest of the oupling isfored by the requirement that the marginals be orret.The path oupling lemma in [2, 3℄ guarantees that the hain is rapidly mixing as long as thereis an "n > 1=poly(n) suh that that for every pair (X0; Y0) 2 S, the expeted value of Æ(X1; Y1),whih we denote E(Æ(X1; Y1)), satis�esE(Æ(X1; Y1)) � (1� "n)Æ(X0; Y0): (14)In partiular, the total variation distane between the t-step distribution of the hain and thestationary distribution is at most " after only ln(n"�1)="n steps.So, suppose that X0 and Y0 di�er at vertex v. For onreteness, suppose that X0(v) is blue.For every neighbour w of v, let bw denote the number of neighbours of w, other than v, whih areoloured blue in X0 (or equivalently, in Y0). Let gw denote the number of neighbours of w, otherthan v, whih are oloured green in X0. Thus �[w℄ = bw + gw + 1 � 1. Letfw(i) = ��[w℄�i��[w℄�i + �i = 11 + �(�)i���[w℄ :Note that p(w; b)(X0) = fw(gw) and p(w; b)(Y0) = fw(gw + 1).Applying Equation (14), we require that, for some "n > 1=poly(n), for every pair (X0; Y0) 2 Swhih disagree on vertex v,�1� 1n��[v℄ + 1nXw�v jfw(gw + 1)� fw(gw)j�[w℄ � (1� "n)�[v℄: (15)10



Our derivation of the spei� requirement in Equation (15) from the general requirement in Equa-tion (14) relies on Equation (13). The probability that X1 and Y1 di�er on v is equal to 1 � 1=n,whih is the probability that v is not hosen. If w is hosen then the probability that X1 andY1 di�er on w is jp(w; b)(Y0) � p(w; b)(X0)j. The �[v℄ on the right-hand-side of (15) representsÆ(X0; Y0). In order to establish (15), it suÆes to show that for every neighbour w of v,jfw(gw + 1)� fw(gw)j�[w℄ � �; (16)for some � < 1, depending only on �, and �. Then we an take "n = (1 � �)=n. We will identifyregions where (16) holds. We start by fousing on the ase where � > 1 > . (The ase  > 1 > �is symmetri to this ase, and will be handled below.)Sine � < 1, fw(i) is an inreasing funtion of i, and so jfw(i+1)� fw(i)j = fw(i+1)� fw(i)for all i. To satisfy (16) for all n, G, v and w, it is suÆient to show that, for all integers i � 0 andall real � � 1, � 11 + yi+1x� � 11 + yix��� � �: (17)where y = � and x� = ����. Of ourse, we only really require this inequality for integer valuesof �, but the bounds we obtain are suÆient for our purposes.For any �xed i � 0, let i = yix�. So i is a dereasing funtion of �, with derivative �i ln�.The derivative with respet to � of the logarithm of� 11 + yi � 11 + i�� = (1� y)�(1 + yi)(1 + �1i )is 1� � ln�� 11 + yi � 11 + �1i � ;a dereasing funtion of �. This ontinuous funtion tends to +1 as �! 0, and tends to � ln� < 0as �!1. Therefore there is a unique (�nite) positive value �i for whih this derivative vanishes,and at whih the maximum value of the left-hand side of inequality (17) with respet to the realvariable � is attained.To map the boundary of the region of (�; ; �)-spae for whih (17) holds, we an thereforesolve the following simultaneous pair of relations, expressing the onditions that the maximisingvalue of � yields a value at most �:1�i � ln�� 11 + yi � 11 + �1i � = 0; and (18)� 11 + yi � 11 + i��i � �: (19)Eliminating the expliit ourrenes of �i, we �nd the following quadrati inequality for i:2i y + i(1� y)� ln� � 1 � 0: (20)Solving this quadrati for 1=i implies the inequalityi � 2� ln�1� y +p(1� y)2 + y(2� ln�)2 : (21)11



Sine i is dereasing in i, (21) is satis�ed for all i � 0 if and only if it is satis�ed for i = 0.Sine we an hoose � < 1 arbitrarily and the right-hand side of (21) is an inreasing funtion of �,we an replae � by 1 in (21) but make the inequality strit, i.e.,i � 0 < C(ln�) (22)where C(z) = 2z1� � +p(1� �)2 + 4�z2 : (23)Equation (18) yields ln��0 = D(0); (24)where the right-hand side is an inreasing funtion of 0,D(z) = � 11 + �z � 11 + z�1��1 : (25)We an use (22) and (24) to derive an upper bound on � as a funtion of � and . Sine� = 0��0 , any hoie of � whih satis�es Equation (26) (below) also satis�es Equation (22) for themaximising value of �0 given by Equation (18) and for some � < 1. Hene, it satis�es Equation (19),as required. Our �nal bound is given by� < C(ln�) eD(C(ln �)): (26)Note that the left-hand-side of (19) is a dereasing funtion of  for the ritial ase, i = 0. Thuswe an get a simpler (but worse) bound by onsidering the extreme ase,  = 0. Here, C(z) = zand D(z) = 1 + z, so (26) gives the bound: � < e� ln�.The region de�ned by � < 1,  > 1 is symmetri to the region that we have just onsidered.In partiular, the blue{green symmetry yields the following relationships:p(w; g)(X0) = 1� p(w; b)(X0) = 1� fw(gw) = 1=(��1�gw��[w℄�gw + 1)= 1=(1 + ��1�bw+1bw+1��[w℄) = f̂w(bw + 1);and p(w; g)(Y0) = 1� fw(gw + 1) = 1=(1 + ��1�bwbw��[w℄) = f̂w(bw);where f̂w is derived from fw by replaing �; �;  by ��1; ; � respetively. Our requirement isjf̂w(bw + 1)� f̂w(bw)j�[w℄ � �n;whih is symmetri to Equation (16) and this is therefore met within the region de�ned by � < 1, > 1 and ��1 < C(ln) eD(C(ln )) (from Equation (26)).Thus, we have shown the following result.Lemma 4 The single-site heat-bath Markov hain for the two-state partition funtion is rapidlymixing within the regions de�ned by: � < 1 and either1. � > 1 and � < C(ln�)eD(C(ln �)), or2.  > 1 and 1=� < C(ln)eD(C(ln )),where funtions C and D are de�ned in Equations (23) and (25).12
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Figure 2: Logarithm of the maximal � in the region 1 < � � 2 and 0 �  < 1.Corollary 5 The single-site heat-bath Markov hain for the two-state partition funtion is rapidlymixing within the regions de�ned by: � < 1 and either1. � > 1 and � < e� ln�, or2.  > 1 and 1=� < e ln.Figure 2 shows a portion of the bounding surfae of the region desribed in Lemma 4. Therapid-mixing region lies below this surfae, whih represents the logarithm of the maximal � withinthe region 1 < � � 2 and 0 �  < 1.5.2 Reduing approximate ounting to samplingLemma 4 showed that the single-site heat-bath Markov hain is rapidly mixing within the spei�edregion. Thus, this Markov hain provides a fully-polynomial approximate sampler (FPAS) for thetwo-spin partition funtion within the region. Suh an FPAS is an algorithm whih, when it isgiven a onneted graph G = (V;E) and an auray parameter " 2 (0; 1℄, outputs a on�guration� 2 
(G) aording to a measure �G whih satis�es dTV(�G; �G) � " where�G(�) = Zf�g(G)Z(G)and dTV denotes total variation distane. Using the method of Jerrum, Valiant and Vazirani [8℄,it is straightforward to show that the FPAS an be turned into an FPRAS for (�; ; �)-Partitionwithin the region. Thus, we obtain the following theorem.Theorem 6 There is an FPRAS for (�; ; �)-Partition when the �xed parameters �,  and �are in the regions de�ned by � < 1 and either1. � > 1 and � < C(ln�)eD(C(ln �)), or2.  > 1 and 1=� < C(ln)eD(C(ln )), 13



where funtions C and D are de�ned in Equations (23) and (25).Corollary 7 There is an FPRAS for (�; ; �)-Partition when the �xed parameters �,  and �are in the regions de�ned by � < 1 and either1. � > 1 and � < e� ln�, or2.  > 1 and 1=� < e ln.The speial ase of � = 1 gives a numerial lower bound of about 1.3211 for � and  respetively.To aid the reader, we provide some details showing how to turn the FPAS into an FPRASwithin Region 1 (i.e., the region de�ned by � < 1 and � > 1 and � < C(ln�)eD(C(ln �))). Region 2an be handled by a similar argument, exploiting the blue{green symmetry as in Setion 5.1.Suppose that the edge set E of G is E = fe1; : : : ; emg and let Gi be the graph (V; fe1; : : : ; eig).Thus, our job is to approximateZ(G) = Z(Gm) = Z(Gm)Z(Gm�1) Z(Gm�1)Z(Gm�2) � � � Z(G1)Z(G0)Z(G0):The quantity Z(G0) is easy to ompute, so the main task is to estimate the quantity%i = Z(Gi)Z(Gi�1) :Suppose that ei is the edge (xi; yi). For spin s, let 
si�1 denote the set of all on�gurations in
(Gi�1) in whih xi and yi are assigned spin s. Let 
�i�1 denote the set of all on�gurations in
(Gi�1) in whih xi and yi are assigned di�erent spins. Then%i = �P�2
bi�1 Zf�g(Gi�1) + P�2
gi�1 Zf�g(Gi�1) +P�2
�i�1 Zf�g(Gi�1)P�2
(Gi�1) Zf�g(Gi�1) : (27)We need a method for estimating %i. Consider the following experiment (whih makes sense,sine  � � and 1 � �): Sample a on�guration � 2 
(Gi�1) with weight �Gi�1(�). If � 2 
bi�1,output \yes". If � 2 
gi�1, output \yes" with probability =� and \no" otherwise. If � 2 
�i�1,output \yes" with probability 1=� and \no" otherwise. From (27), we dedue that the probabilitythat the algorithm outputs \yes" is %i=�. Thus, we an aurately estimate %i by applying theexperiment to several outputs of the FPAS. (We need several outputs beause the FPAS hasmeasure �Gi�1 not �Gi�1 .) Also, we an onlude that %i � �. It is known [8℄ that as long as%i � 1=poly(n), where n = jV j, then the required number of samples is only polynomial in n and"�1, so we get an FPRAS. Details an be found in the proof of Proposition 3.4 of [6℄.We onlude this setion by showing that, in the region of interest, %i � 1=(1 + �). To startwith, we observe that Z
gi�1(Gi�1) � �Z
�i�1(Gi�1): (28)To see (28), onsider the injetion whih maps every � 2 
gi�1 to �0 2 
�i�1 by olouring yi blue.Sine  � 1 and � � 1, �Zf�0g(Gi�1) � Zf�g(Gi�1). Thus, from (27), sine � � 1,%i � Z
bi�1(Gi�1) + Z
�i�1(Gi�1)Z
gi�1(Gi�1) + Z
bi�1(Gi�1) + Z
�i�1(Gi�1)� Z
bi�1(Gi�1) + Z
�i�1(Gi�1)Z
bi�1(Gi�1) + (1 + �)Z
�i�1(Gi�1)� 11 + �: 14



6 An additional intratable regionIn the previous setion, we saw that the tratable region extends beyond that de�ned by thehyperbola � � 1. The main result of this setion is that the intratable region extends beyondthe square de�ned by � < 1 and  < 1. Spei�ally, we show:Theorem 8 Let � be a suÆiently small onstant (� = 10�7 will do), and suppose that 1 � � �1 + �, 0 �  � � and 12 � � � 2. Then there is no FPRAS for (�; ; �)-Partition unlessNP = RP.By the same symmetry onsiderations exploited in Setion 5, Theorem 8 remains true with theroles of � and  reversed.The region overed by Theorem 8 is admittedly small. The estimates in the proof ould un-doubtedly be tightened with a view to expanding the range of parameter values overed by thetheorem. However, sine our main aim is to unover some intratable region of positive volumelying outside the square, we shall instead aim to keep the tehnial ompliations to a minimum.Our starting point is an inapproximability result onerning independent sets in bounded degreegraphs. It is well known that that it is NP-hard to determine the size of a maximum independentset in a graph of maximum degree 4. A result of Berman and Karpinski [1, Thm 1(iv)℄ tells usmore:Proposition 9 For any " > 0, it is NP-hard to determine the size of a maximum independent setin a graph G to within ratio 7374 + ", even when G is restrited to have maximum degree 4.(By \determining the size: : : within ratio �" we mean omputing a number k̂ suh that �k � k̂ � k,where k is the size of a maximum independent set in G.) The possibility of establishing results suhas Proposition 9 has been opened up by the theory of \polynomially hekable proofs" (PCPs).Proof of Theorem 8. Our proof strategy is to design a redution that takes a graph G = (V;E)of maximum degree 4 and forms a graph G0 with the following informal property: The partitionfuntion Z(G0) of the new graph G0 determines the size of the largest independent set in G withinratio 0:99. Sine suh a tight performane guarantee is preluded by Proposition 9, this will beenough to establish the result.We now desribe the onstrution of G0 from G. For every vertex u of G let Au be a distintset of size r, where r is a onstant to be determined later. Then de�neV 0 = [u2V Auand E0 = [fu;vg2EAu �Av:Presently, we shall argue that the partition funtion of G0 is bounded below and above as follows:Z(G0) � (1 + �)rk (29)and Z(G0) � kXi=0 �ni�(1 + �)ri r(n�i)Xj=0 �r(n� i)j ��j(1 + �)r2m�j�j ; (30)15



where n = jV j, m = jEj and k is the size of a maximum independent set in G. It transpires thatwhen the parameters �,  and � satisfy the onditions of the theorem, these inequalities loatelnZ(G0) rather aurately: see inequality (33). Thus a good estimate for Z(G0) provides a goodestimate for k.The lower bound (29) is the easier of the two to justify. Let I be any independent set in G ofsize k. The lower bound (29) omes from onsidering just the on�gurations whih assign blue to allverties in Su2V nI Au. Sine � � 1 and there are no green-green edges, every suh on�guration �ontributes at least �j to the partition funtion, where j is the number of green verties in �. Sinethe green verties are freely seleted from a set of size rk, inequality (29) is now immediate.The upper bound (30) is not muh more diÆult, if viewed in the right way. A base for aon�guration � is an independent set I in G suh that:� for every u 2 I the blok Au ontains at least one green vertex;� for every blok Au ontaining a green vertex, either u is in I or u is adjaent to a vertex in I.Every on�guration has at least one base, sine we may take I to be any maximal independent setwithin the subgraph of G indued by the vertex setfu 2 V : Au ontains at least one green vertexg:It is onvenient to think of the term \base" as applying both to the vertex set I in G and the vertexset Su2I Au in G0.For eah base, we shall estimate the total weight of on�gurations with that base, and thensum over all possible bases. This will lead to overounting, sine eah on�guration has many basesin general. This is �ne, as we are shooting for an upper bound. The key observation is that, inany on�guration with base I, eah green vertex lying outside the base is adjaent to some greenvertex lying inside. Thus the number of green-green edges is at least as large as the number ofgreen non-base verties.With these onsiderations in mind, the formula in (30) may be read left-to-right as follows: (i) iranges over the possible sizes of a base, k being an upper bound sine any base is an independentset in G; (ii) �ni� is a bound on the number of bases of size i; (iii) (1 +�)ri ounts olourings of thebase-verties; (iv) j is the number of green verties among the non-base verties, ranging from j = 0(no green verties) to j = r(n � i) (all green); (v) �j omes from the j green verties; and �nally(vi) (1 + �)r2m�j�j is an upper bound on edge weights, sine there must be at least j green-greenedges.Next, we simplify the upper bound (30) by approximating the two sums:Z(G0) � kXi=0 �ni�(1 + �)ri(1 + �)r2m rnXj=0�rnj ��j�j= (1 + �)r2m kXi=0 �ni�(1 + �)ri(1 + ��)rn� (1 + �)r2m(1 + ��)rn2n kXi=0(1 + �)ri� (1 + �)r2m(1 + ��)rn2n+1(1 + �)rk; (31)where the �nal inequality assumes (as will ertainly be the ase) that (1 + �)r � 2.16



Taking logarithms of (29) and (31) we may sandwih lnZ(G0) as follows:rk ln(1 + �) � lnZ(G0) � (1 + 1 + 2 + 3) rk ln(1 + �); (32)where 1 = r2m ln(1 + �)rk ln(1 + �) ; 2 = rn ln(1 + ��)rk ln(1 + �) ; and 3 = (n+ 1) ln 2rk ln(1 + �) :Now m � 2n sine G has maximum degree 4. Furthermore, k � 14n sine G is 4-olourableby Brooks' Theorem. (The largest olour lass is an independent set). So assuming r = 1000,12 � � � 2 and 0 � � � 10�7, we have the following bounds on 1, 2 and 3:1 � 2rn�k ln(1 + �) � 8r�ln(1 + �) � 0:0022 � n��k ln(1 + �) � 4��ln(1 + �) � 0:0013 � (1 + 1n)4 ln 2r ln(1 + �) � 0:007;for suÆiently large n.Thus from (32), rk ln(1 + �) � lnZ(G0) � 1:01 rk ln(1 + �);and hene 0:99 k � 0:99 lnZ(G0)r ln(1 + �) � k: (33)Finally, suppose �,  and � are as stated in the theorem, and that there is an FPRAS for(�; ; �)-Partition. Then we would be able to ompute an approximation L to lnZ(G0) withinadditive error 1 (say), in polynomial time, with high probability. But then 0:99L=1000 ln(1 + �)(rounded to the nearest integer) would approximate the size of a maximum independent set in Gto within ratio uniformly better than 7374 . By Proposition 9, this entails RP = NP. �Referenes[1℄ P. Berman and M. Karpinski, On some tighter inapproximability results (extended abstrat),Proeedings of the 26th EATCS International Colloquium on Automata, Languages and Pro-gramming (ICALP), (Springer-Verlag, 1999) 200{209.[2℄ R. Bubley and M. Dyer, Path oupling: A tehnique for proving rapid mixing in Markov hains,Proeedings of the 38th IEEE Annual Symposium on Foundations of Computer Siene, (IEEE,Los Alamitos, 1997) 223{231.[3℄ M. Dyer and C. Greenhill, Random walks on ombinatorial objets, in J. D. Lamb and D. A.Preee, eds., Surveys in Combinatoris 1999, vol. 267 of London Mathematial Soiety LetureNote Series, (Cambridge University Press, Cambridge, 1999) 101{136.[4℄ M. Dyer and C. Greenhill, The omplexity of ounting graph homomorphisms, Random Stru-tures & Algorithms 17 (2000) 260{289.[5℄ M. Dyer, C. Greenhill, L.A. Goldberg, and M. Jerrum, On the relative omplexity of approx-imate ounting problems, Proeedings of APPROX, volume 1913 of Springer Leture Notes inComputer Siene, (2000) 108{119. 17
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